WO2014030821A1 - 초음파를 이용한 레드머드로부터의 금속이온 추출 방법 - Google Patents

초음파를 이용한 레드머드로부터의 금속이온 추출 방법 Download PDF

Info

Publication number
WO2014030821A1
WO2014030821A1 PCT/KR2013/003622 KR2013003622W WO2014030821A1 WO 2014030821 A1 WO2014030821 A1 WO 2014030821A1 KR 2013003622 W KR2013003622 W KR 2013003622W WO 2014030821 A1 WO2014030821 A1 WO 2014030821A1
Authority
WO
WIPO (PCT)
Prior art keywords
red mud
metal ions
extraction
reaction
extracting
Prior art date
Application number
PCT/KR2013/003622
Other languages
English (en)
French (fr)
Inventor
정우창
진정환
Original Assignee
Jeong Woo Chang
Jin Jung Hwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeong Woo Chang, Jin Jung Hwan filed Critical Jeong Woo Chang
Priority to CA2879616A priority Critical patent/CA2879616A1/en
Priority to EP13831357.2A priority patent/EP2889278A4/en
Priority to CN201380041486.7A priority patent/CN104540793A/zh
Priority to RU2015104051A priority patent/RU2015104051A/ru
Priority to US14/418,379 priority patent/US20150307956A1/en
Priority to AU2013306653A priority patent/AU2013306653B2/en
Publication of WO2014030821A1 publication Critical patent/WO2014030821A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/066Treatment of the separated residue
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/04Obtaining aluminium with alkali metals earth alkali metals included
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/124Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors
    • C22B34/1245Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors containing a halogen ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/124Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors
    • C22B34/125Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors containing a sulfur ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/89Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by mass-spectroscopy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for extracting metal ions from red mud, and more particularly, to a method for extracting metal ions from red mud using ultrasound capable of effectively extracting metal ions from red mud which is a waste after extracting aluminum from bauxite To a metal ion extraction method.
  • Red mud which is a remnant red residue after removing alumina and aluminum from bauxite is discharged into the world by sludge of 120 million tons per year and dry powder of more than 40 million tons, .
  • Red Mud with annual sludge status is discharged at a rate of 200,000 tons.
  • there is no way to treat Red Mud itself so that not only is it used only very limitedly, such as brick manufacturing and heavy metal removal, to be.
  • Red Mud is not suitable for the loading place worldwide, and it causes many environmental problems such as leakage of leachate and damage to nearby crops and human life.
  • the amount of red mud that is discarded is in a dried state, and the amount of waste is almost 1: 1 compared to alumina. Therefore, the amount of waste is very high, They are buried in artificial dams or are buried in abandoned mines. Most coastal states are neutralized and disposed of in the sea or connected to pipelines in the sea. A more serious problem is the amount of sludge that is increasing every year and the pH of the sludge.
  • the amount of waste red mud is 2-3 times the amount of alumina extracted from bauxite.
  • the pH of final waste generated by sodium hydroxide used in aluminum extraction from bauxite is 12-13 Because it is a strong base, it causes crop damage, groundwater pollution, ecosystem destruction and human injury when waste is leaked.
  • a typical example of this is the red mud spill in Hungary in 2010, where a massive red mud sludge from an artificial reservoir was hit by a neighboring village, causing environmental damage to the crops and human life in Hungary. In some countries, the situation is similar, and red mud is in urgent need of treatment.
  • Redmud As such, the likelihood of environmental disasters by Redmud is increasing, which is becoming more serious due to the continued accumulation of waste Redmud.
  • dried red mud can cause environmental problems as well as sludge condition, especially air pollution due to fine dust.
  • Red Mud The main reason why we can not solve this problem globally and have not found various applications from Red Mud is because the metals such as titanium and aluminum contained in Red Mud are combined in a stable oxide form, + ) Were extracted and the metal ions in the red mud could not be fundamentally extracted and utilized. Due to the difficulties in extracting these metal ions, there are many problems in application and application of Red Mud. In addition, when the red mud itself is commercialized, that is, when it is used as a brick containing red mud and used as concrete and construction materials, the strength of the product is lowered by a large amount of iron ions, Problems have arisen.
  • a related prior art is Korean Patent Registration No. 10-0460262 (published on Dec. 14, 2004), which discloses a method for producing artificial loess mortar using red mud and a method for applying artificial loess mortar.
  • the object of the present invention is to provide a method of recovering high-value-added products by solving the environmental pollution problem caused by red mud sludge caused by red mud and recycling industrial wastes, And a method for extracting metal ions.
  • a method for extracting metal ions from a red mud using ultrasonic waves comprising the steps of: (a) placing a neutralized red mud slurry and an acidic solution or Dissolving the metal ions contained in the red mud by applying ultrasonic waves while feeding the mud, distilled water and acidic solution, heating the thermostatic chamber and reacting the red mud slurry in the reaction tank; And (b) filtering the product after the reaction in the step (a) to separate and recover the red mud residue and the extracted filtrate.
  • the ultrasonic wave is applied using an ultrasonic generator And applying ultrasonic waves to an ultrasonic tip mounted inside the thermostatic chamber.
  • the method for extracting metal ions from red mud using ultrasonic waves is a method for extracting most of the metal ions contained in red mud, which is the waste left after extracting aluminum from bauxite. Especially, the method of extracting metal ions from ultrasonic wave, strong acid, There is an advantage that the metal ions contained in the red mud can be effectively extracted by the optimum combination of the control and the adjustment.
  • the metal ion extraction method from red mud using ultrasonic waves according to the present invention has an advantage that the extraction condition can be performed at a relatively low temperature and the extraction process is simple. Therefore, when the metal ion extraction method according to the present invention is used, not only the extracted metal ions and the red mud residue remaining after the extraction can be used commercially, but also the change of the physical properties and the chemical composition of the red mud residue Making it possible for commercial applications in various fields.
  • strong acid and distilled water are added to the dried red mud powder using ultrasonic waves and reacted at a temperature of 50 to 100 ° C, the metal ions contained in the red mud are eluted. Since iron, titanium, and aluminum ions are the main components of the eluted metal ions, it is possible to proceed to the recycling step.
  • Various compounds can be synthesized from the extracted metal ions through the elution process.
  • the metal ions and metal ions extracted by the metal ion extraction method from the red mud using the ultrasonic wave according to the present invention are extracted, and the remaining red mud residue is decomposed into a heat resistant pigment, a ceramic material, a heat resistant brick, a concrete, a cement, It is possible to produce various materials such as heat-resistant inorganic materials, iron compounds, catalysts and building materials.
  • the metal ions contained in the red mud can be eluted, and the extraction amount of the metal ions can be controlled.
  • the extraction amount of the metal ions By controlling the extraction amount of the metal ions, the components of the product can be controlled, The characteristics can be adjusted.
  • the residue of red mud which remains after extraction due to the change of physical properties of red mud can be utilized in various fields.
  • FIG. 1 is a flow chart showing a method of extracting metal ions from a red mud using ultrasonic waves according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a metal ion extracting apparatus from a red mud using an ultrasonic wave according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the results of measurement using XRD (X-ray diffraction) measuring equipment by drying Red Mud sludge for comparison.
  • XRD X-ray diffraction
  • Example 4 is a graph showing the results of measurement of red mud residue collected by an experimental method according to Example 4 using an XRD measuring instrument.
  • FIG. 5 is a graph showing the results of XRD measurement of a red mud residue solid oxide obtained by firing the red mud residue recovered by the experimental method according to Example 8 at 900 ° C. for 6 hours.
  • FIG. 7 is a graph showing ICP measurement results for a metal extraction solution extracted from red mud as a result of extraction test according to the kind of acid. (calculated in terms of ppm unit in g and converted to the concentration of the extracted metal (wt%) relative to 30 g (100 wt%) of red mud)
  • FIG. 8 is a graph showing ICP measurement results for a metal extraction solution extracted from red mud as a result of an extraction test according to temperature. (calculated in terms of ppm unit in g and converted to the concentration of the extracted metal (wt%) relative to 30 g (100 wt%) of red mud)
  • FIG. 9 is a graph showing ICP measurement results for a metal extraction solution extracted from red mud as a result of extraction with time. (calculated in terms of ppm unit in g and converted to the concentration of the extracted metal (wt%) relative to 30 g (100 wt%) of red mud)
  • metal ion extraction device 102 water
  • Ultrasonic generator 132 Ultrasonic tip
  • the present invention proposes a method of utilizing red mud as various commercial products to solve environmental problems, and a method of extracting metal ions in red mud so that various products can be manufactured.
  • strong acid was used to extract iron (Fe), titanium (Ti), and aluminum (Al) cations, which are the most abundant components in red mud.
  • the amount of water was added in a volume ratio of 1: 1 to 1:10 with respect to the strong acid, and adjusted at an appropriate ratio considering neutralization later.
  • the temperature was maintained at 50 to 100 ° C in a thermostatic chamber and extracted for 3 hours or more while applying ultrasonic waves.
  • Metal ions including iron ions are slowly extracted and after a period of about 3 to 4 hours, a large amount of metal ions are extracted. After 5 to 8 hours, most of metal ions such as iron, titanium, aluminum, calcium, And extracted.
  • metal ions in red mud are extracted to change the chemical composition in the red mud, and the extracted metal ions can be used for various syntheses.
  • a method for chemically treating red mud can be fundamentally provided.
  • a method for extracting metal ions by searching for an experimental method for completely chemically treating red mud. We have found that most of the metal ions in the red mud are combined by combining the optimum ultrasonic condition, reaction temperature condition and strong acid content ratio And extracted.
  • FIG. 1 is a process flow diagram illustrating a method of extracting metal ions from a powdered red mud using ultrasonic waves according to an embodiment of the present invention.
  • FIG. 2 is a flow chart illustrating a method of extracting metal ions from a red mud using ultrasonic waves according to an embodiment of the present invention.
  • a method of extracting metal ions from a red mud using ultrasound is a red mud slurry preparation step (S110), a red mud A metal ion elution step (S120) and a red mud sediment and an extraction filtrate collection step (S130).
  • red mud slurry discharged from the aluminum extraction process or the like When the red mud slurry discharged from the aluminum extraction process or the like is directly used, it is neutralized with a strong acid, and then an acidic solution is further added to make the acidic atmosphere again.
  • an acidic solution is further added to make the acidic atmosphere again.
  • red mud is in powder form, (S110) mixing red mud powder, acidic solution, and distilled water in a reaction tank 120 inserted into the reaction tube 110 to prepare a red mud slurry.
  • the acid solution may include one or more selected from among sulfuric acid, hydrochloric acid, nitric acid, and aqua regia (mixed acid of hydrochloric acid and nitric acid), but when sulfuric acid is used, .
  • the reagents used in the extraction experiment are as follows.
  • the red mud in the form of slurry or powder and the acidic solution are preferably mixed at a weight ratio of 1: 1 to 1:20.
  • the mixing ratio of the red mud and the acidic solution is less than 1: 1, the ratio of the acidic solution is relatively low, so that the elution to the metal ions may not be performed smoothly.
  • the mixing ratio of red mud and acid solution exceeds 1:20, the extraction efficiency is increased, but the amount of base consumed during neutralization with the base after the extraction filtrate is increased So it is not economical.
  • the acidic solution and the distilled water are preferably mixed in a volume ratio of 1: 1 to 1:10.
  • the mixing ratio of the acidic solution to the distilled water is less than 1: 1, there is a problem that the amount of the base consumed in the neutralization with the base is increased after the extraction filtrate is recovered, which is not economical.
  • the mixing ratio of the acidic solution and the distilled water is more than 1:10, when the amount of the red mud is large, the content of the acidic solution of the strong acid is relatively decreased, which may cause a problem of poor extraction efficiency.
  • the thermostat 110 is heated to react with the red mud slurry S in the reaction tank 120, and ultrasound is applied to elute the metal ions contained in the red mud.
  • the ultrasound which is the most important factor in the elution of metal ions in the red mud
  • the reaction is preferably performed at 50 to 100 ° C for 3 hours or more .
  • the reaction is not economical compared with the extraction efficiency, and since the titanium is gradually extracted as the extraction solution, the proportion of titanium in the redmud residue can be relatively reduced, and thus it is not effective for recycling the redmud residue as a photocatalyst.
  • the inventors of the present invention have found that when ultrasonic waves are not used, metal ions are not eluted even under a strong acid, whereas when ultrasonic waves are used, metal ions are eluted from various strong acids.
  • a minimum amount of strong acid is used in order to minimize the amount of base consumed in the neutralization of strong acid in consideration of the commercialization process.
  • the action of ultrasonic waves used in the elution of metal ions is very important. It is known that the intensity of cavitation bubbles generated in water when ultrasonic waves are applied is decreased when the water temperature is higher than 40 ° C. However, in the present invention, it is preferable to carry out the extraction test at 50-100 ° C. higher than 40 ° C. in order to increase the main reaction of the main reaction with the acid, which is the next reaction, and the primary activation step to increase the reactivity between the metal ions and the acid I found out.
  • the reason for carrying out the ultrasonic treatment in the present invention is that the vibration of the bubbles occurs due to the pores generated by the ultrasonic waves, and the strong stirring effect between the red mud slurry (S) and the strong acid
  • the metal ions are induced to be eluted smoothly.
  • the higher the reaction temperature the more the reactivity with acid and metal ions increases and eventually the metal ions elute. Therefore, the elution reaction of metal ions in the red mud can be effectively performed by the effect of the micro-bubbles caused by the ultrasonic waves and the chemical effect of strong acid at a temperature of 50 to 100 ° C. Can be extracted.
  • the application of the ultrasonic wave is performed by applying the frequency and the output power to the ultrasonic tip 132 mounted inside the thermostatic chamber 110 using the ultrasonic generator 130.
  • the ultrasonic tip 132 may be mounted on the inner surface or the inner center of the thermostatic chamber 110.
  • the reaction is performed directly in the thermostatic chamber without using a separate reaction tank by using a SUS-containing thermostatic bath which is not a glass reaction tank, so that it is freed from the output power condition and is output with an output power condition of 300 to 500W .
  • reaction temperature is less than 50 ° C or the reaction time is less than 3 hours in this step, the reaction between the metal ions contained in the red mud and the strong acid can not be performed smoothly, which makes it difficult to elute the metal ions in the red mud Can be followed.
  • reaction temperature exceeds 100 ° C. or the reaction time exceeds 10 hours, the extraction amount of the metal ion increases somewhat, but it may act as a factor that excessively increases the processing time and cost compared to the effect increase, Problems may arise.
  • the reactant produced by the reaction in the metal ion elution step (S120) contained in the red mud is filtered to separate and recover the red mud residue and the metal extraction filtrate.
  • the extraction filtrate can be defined as a solution containing a metal ion other than the red mud residue.
  • the filtering can be carried out by a method using a filter, or a method using centrifugation.
  • the method of extracting metal ions from red mud using ultrasonic waves may further include a step of obtaining a red mud residue (not shown) and a firing step (not shown) have.
  • the collected red mud residue is washed, and the washed red mud sediment is dried at 50 to 70 ° C for 6 hours or more to obtain a redmud solid residue. At this time, it is preferable that washing is repeated 3 to 5 times using distilled water.
  • the red mud residue is recycled and fired at a temperature of 900 ° C or more for 4 hours or more in order to convert to the oxide of the new composition.
  • calcination was performed at 900 DEG C for 6 hours.
  • the method for extracting metal ions from red mud using ultrasound is a method for extracting most of the metal ions contained in the red mud, which is the remnant after extracting aluminum from bauxite, And the temperature control of the thermostat, it is possible to effectively extract the metal ions contained in the red mud.
  • the metal ion extraction method from red mud using ultrasonic waves according to the present invention has an advantage that the extraction condition can be performed at a relatively low temperature and the extraction process is simple. Therefore, when the metal ion extraction method according to the present invention is used, not only the extracted metal ions and the red mud residue remaining after the extraction can be used commercially, but also the red mud solid residue from which the metal ions are extracted exhibits physical property change and chemical composition change It is possible to apply them to various fields. In other words, most of the excess iron ingredient, which was a barrier to the recycling of Red Mud, was extracted and the red mud residue was converted into a material mainly composed of silicon and titanium, which made it possible to apply it to various fields such as construction field and environment friendly field.
  • the metal ions contained in the red mud are eluted. Since the iron, titanium and aluminum ions are the main components of the eluted metal ions, it is possible to proceed to the recycling step. Through this elution process, it is possible to recover metals from the extracted metal ions and to synthesize various compounds, To 100% of the recycling rate.
  • the reaction product was filtered to separate and collect redmud residue and extraction filtrate. Then, the recovered red mud residue was washed with distilled water and dried at 60 ° C for 12 hours. At this time, the extraction filtrate, which is a solution containing the extracted metal ions, was analyzed using ICP (PerkinElmer, OPTIMA 2100DV).
  • Example 2 The experiment was carried out in the same manner as in Example 1, except that 300 ml of nitric acid (HNO 3 , 65%) was mixed as an acidic solution instead of mixed acid of hydrochloric acid and nitric acid.
  • 300 ml of nitric acid HNO 3 , 65%
  • Example 4 The experiment was carried out in the same manner as in Example 4 except that the thermostat was heated and reacted at 55 ° C for 6 hours.
  • Example 4 The experiment was carried out in the same manner as in Example 4, except that the thermostat was heated to react at 85 ° C for 6 hours.
  • Example 4 The same procedure as in Example 4 was carried out except that the thermostatic chamber was heated and reacted at 85 ⁇ for 8 hours.
  • Example 4 The same procedure as in Example 4 was carried out except that the thermostat was heated to react at 85 ° C for 9 hours.
  • reaction product was filtered to separate and collect redmud residue and extraction filtrate. Then, the recovered red mud residue was washed with distilled water and dried at 60 ° C for 12 hours.
  • the dried red mud residue was fired at 900 DEG C for 6 hours to convert it into red mud residue oxide.
  • Table 1 shows the measurement results of the extracted filtrate collected by the experimental method according to Examples 1 to 4 by ICP-MS (inductively coupled plasma mass spectrometer). Particularly, Table 1 shows the results of experiments in which different strong acids were used to examine the effect of strong acids on the extraction of metal ions.
  • Example 4 the most metal ions were extracted in Example 4 using sulfuric acid as an acid solution as in the ICP-MS measurement results.
  • metal ions were extracted in the order of Example 1 using aqua regia (mixed acid of hydrochloric acid and nitric acid) and Example 2 using hydrochloric acid.
  • aqua regia mixed acid of hydrochloric acid and nitric acid
  • Example 2 using hydrochloric acid.
  • iron ion extraction efficiency was the lowest. Therefore, sulfuric acid is most effective in the synthesis of strong acids that are effective for the extraction of metal ions including iron, hydrochloric acid, and sulfuric acid, and in consideration of the influence of chlorine ions in the subsequent synthesis of metal ion solutions.
  • Experimental results showed that the extraction of sulfuric acid was carried out without any significant effect on the synthesis of other materials after metal ion extraction.
  • Metal ions are chlorine in the extracted solution during the neutralization with a base to take advantage of the solution ion (Cl -) are When present, such as deposit formation, etc. will affect the next reaction rinsing the chloride ion (Cl -) difficulties, such as removal , And sulfuric acid, which has better extraction efficiency than WangSu or HCl, was used.
  • sulfuric acid sulfuric acid was used as the main extraction acid in the present invention since the effect of influencing the following reaction conditions is less than that of chlorine ions.
  • the ICP results for the red mud 30 g extracted with various acids are shown in Fig. 7 in terms of g unit. As shown in FIG. 7, it can be seen that the use of sulfuric acid is the best in terms of extraction efficiency.
  • the iron ions in the metal ions were extracted most in the solution extracted with sulfuric acid, and metal ions such as aluminum, titanium, and calcium were extracted including iron, which is a main metal of red mud Respectively.
  • the extracted metal ion solution has the highest iron ion content, followed by aluminum and titanium, which can be used as a catalyst, and can be manufactured from a variety of materials such as iron oxide, pottery, and ceramics using many iron ion components It was confirmed through experiments. Therefore, it is confirmed that metal ions extracted through extraction of metal ions in red mud can be utilized as other products, and remnant red mud residues can be commercialized as building materials, and thus red mud can be recycled.
  • Table 2 shows the results of ICP-MS measurement of the extracted filtrate recovered by the experimental method according to Examples 4 to 7. [ Particularly, Table 2 shows the results of experiments in which the reaction temperature was varied in order to examine the effect of the reaction temperature on the extraction of metal ions.
  • the ICP results for the extraction solution according to the temperature change in 30 g of red mud are shown in FIG. 8 in terms of g unit. As shown in FIG. 8, it can be seen that the extraction efficiency increases as the temperature of the thermostat increases.
  • the extraction amount of iron, aluminum, and titanium ions which are the main components in red mud, increases with the increase of extraction temperature. It can be seen that the extraction rate is greatly affected by the reaction temperature. Respectively.
  • Table 3 shows the results of measurement of red mud residue collected by the experimental method according to Examples 4 to 7 using XRF (X-ray fluorescence spectrometer, SHIMADZU, Japan, model name XRF-1700).
  • FIG. 3 is a graph showing the results of X-ray diffraction (XRD) measurement of a red mud in a dry state for comparison.
  • FIG. 4 is a graph showing the results of a red mud residue
  • FIG. 5 is a graph showing the results of measurement using an XRD measuring instrument after drying at 70 ° C.
  • FIG. 5 is a graph showing the results of a red mud residue obtained by firing the red mud residue collected at 900 ° C. for 6 hours XRD. ≪ / RTI >
  • Table 3 Unit wt% division Fe 2 O 3 Al 2 O 3 SiO 2 TiO 2 Na 2 O CaO Others Red Mud 35.5 23.7 14.3 8.8 8.6 7.8 1.3
  • Example 4 3.7 18.2 49.6 12.3 - 15.4 0.8
  • Example 5 7.8 33.0 44.5 12.0 - 2.2 0.5
  • Example 6 6.0 27.1 40.1 14.0 0.7 11.4 0.7
  • Example 7 2.5 7.8 53.7 14.6 - 20.4 1.0
  • the composition of the red mud residue recovered by the experimental method according to Example 4 shows peaks different from those of FIG. 3, indicating that the ratio of the chemical composition is changed by extracting metal ions in the red mud it means.
  • Table 3 the peak of ? -Fe 2 O 3 abruptly decreased, and the peak of TiO 2 (anatase) was relatively increased.
  • XRD analysis of redmud solid residues collected by the experimental method according to Example 11 showed that TiO 2 , SiO 2 , Al 2 O 3 , CaSO 4 , and Fe 2 O 3 were in an oxide form , And the peak of ⁇ - Fe 2 O 3 was drastically decreased compared to that of red mud before extraction. Most of the iron components were extracted. After extraction, SiO 2 , Al 2 O 3 , CaSO 4 and TiO 2 were the main components It can be applied to a variety of building materials and catalysts.
  • the ICP results for the solution extracted according to the temperature change with respect to 30 g of red mud are shown in FIG. 9 in terms of g unit.
  • the extraction rate increases with increasing reaction time, the increase in extraction rate after 8 hours of reaction time is not significant.
  • half of the metal ions in the red mud were extracted with an extraction ratio of 50% or more.
  • the chemical composition of the red mud was completely changed to enable complete recycling of the red mud.
  • the extraction reaction conditions by controlling the extraction amount of metal ions, especially iron ions.
  • the extraction amount of iron ions is small, that is, the iron ion content is large in the red mud solid residue
  • red mud solid residue is fired, the color becomes orange.
  • the iron ion is extracted extensively, red mud solid residue is changed into a light orange color upon firing, so it is possible to adjust the color according to the iron content.
  • the extraction amount of iron ions can be adjusted to suit various applications.
  • the red mud solid residue remaining after the extraction can be adjusted to the product according to the purpose by controlling the composition ratio of iron ion and silicon ion upon firing.
  • a thermally stable orange oxide can be used for color bricks, pigments, adsorbents and the like. Further, a large amount of iron ions are extracted and a high SiO 2 Wow TiO 2 It can be applied not only to high-strength bricks but also to various materials such as an adsorbent, a filler, a catalyst, a cement, a grout, and other building materials.
  • the calcium component was not sufficiently washed after washing with sulfuric acid, and precipitated with calcium sulfate and converted into calcium oxide, which resulted in the detection of a large amount of calcium oxide, which can be removed by sufficient washing to some extent.
  • most of the iron in the red mud is extracted by the present invention. Therefore, when the remaining red mud residue is converted to oxide, it is chemically converted into a refractory material composed of silicon, titanium, and aluminum to produce cement, catalyst, high strength concrete , And can be used as various heat resisting agents having photocatalytic function by titanium.
  • the chemical composition of the redmud solid residue was completely changed due to silicon as a main component in the remaining redmud solid residue, It can be applied to various fields because it is changed into a component having higher strength, heat resistance and fire resistance than red mud.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

보크사이트(bauxite)로부터 알루미늄을 추출한 후 남은 폐기물인 레드머드로부터 금속이온을 효과적으로 추출할 수 있는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법에 대하여 개시한다. 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법은 (a) 항온조 내부에 삽입되는 반응조 내에 ① 중화된 레드머드 슬러리 및 산성 용액 또는 ② 분말 형태의 레드머드, 증류수 및 산성 용액을 투입하고, 상기 항온조를 가열하여 상기 반응조 내의 레드머드 슬러리를 반응시키면서 초음파를 인가하여 상기 레드머드에 함유된 금속이온들을 용출하는 단계; 및 (b) 상기 (a) 단계에서의 반응 후 생성물을 필터링하여, 레드머드 잔사와 추출 여액을 분리 회수하는 단계;를 포함하며, 상기 (a) 단계에서, 상기 초음파 인가는 초음파 발생기를 이용하여, 상기 항온조의 내부에 장착되는 초음파 팁에 초음파를 인가하는 방식으로 실시하는 것을 특징으로 한다.

Description

초음파를 이용한 레드머드로부터의 금속이온 추출 방법
본 발명은 레드머드로부터의 금속이온 추출 방법에 관한 것으로, 보다 상세하게는 보크사이트(bauxite)로부터 알루미늄을 추출한 후 남은 폐기물인 레드머드로부터 금속이온을 효과적으로 추출할 수 있는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법에 관한 것이다.
보크사이트(bauxite)로부터 알루미나와 알루미늄을 제거하고 남은 붉은색 잔존물인 레드머드는 전세계적으로 슬러지 상태로 연간 1억 2천 만톤, 건조 분말상태로는 4천 만톤 이상 배출되고 있으며, 그 양은 매년 증가하고 있는 추세이다.
국내에서도 연간 슬러지 상태의 레드머드가 20 만톤씩 배출되고 있으나, 레드머드 자체를 처리할 수 있는 방안이 없어 벽돌제조, 중금속제거 등 극히 제한적으로만 이용되고 있을 뿐만 아니라, 그 근본적인 처리방안도 없는 상황이다. 특히, 전 세계적으로 레드머드의 적재장소가 마땅치 않으며, 침출수 유출에 의하여 인근 농작물 및 인명에 피해를 주기도 하는 등 많은 환경문제를 야기하고 있다.
특히, 폐기되는 레드머드의 양이 건조된 상태로 알루미나와 비교시 거의 1 : 1의 비율로 폐기물이 나오고 있어 그 양은 엄청나며, 특히 전세계 레드머드의 처리상황을 보면 슬러지 상태로 배출되어 인공저수지, 인공댐에 매몰하고 있거나 폐광산에 매립하고 있고, 대부분의 해안국가는 중화시켜 바다에 폐기하거나 바다에 파이프라인을 연결하여 폐기하고 있는 상황이다. 이보다 더 심각한 문제는 매년 증가하고 있는 슬러지의 양과 슬러지의 pH가 문제가 된다.
폐기물인 레드머드의 양은 보크사이트에서 추출되는 알루미나 양의 2 ∼ 3배 정도의 슬러지가 발생하고 있으며, 보크사이트에서 알루미늄 추출시 사용되는 수산화나트륨에 의하여 최종적으로 발생하는 폐기물의 pH가 12 ∼ 13으로 강염기이므로 폐기물 유출시 농작물의 피해와 지하수오염, 생태계파괴 및 인명피해를 유발시키게 된다. 그 대표적인 예가 2010년도에 헝가리에서 발생한 레드머드 유출사례로 인공저수지에서 유출된 대규모의 레드머드 슬러지가 인근 마을에 덮쳐 농작물, 그리고 인명피해에까지 영향을 준 헝가리 환경 재난 사태를 들 수 있다. 몇몇 국가에서도 이와 유사한 상황에 처해있어 레드머드의 처리가 시급한 상황이다.
이와 같이, 레드머드에 의한 환경재난의 가능성이 점차 증가하고 있으며 이는 폐기물인 레드머드의 계속되는 누적량으로 인하여 그 심각성이 더해지고 있다. 또한, 건조된 레드머드 역시 슬러지 상태와 마찬가지로 환경문제를 일으키며 특히 미세분진에 의한 공기오염도 일어날 수 있다.
전 세계적으로 이러한 문제를 해결하지 못하고 레드머드로부터 다양한 활용방안을 찾지 못했던 가장 큰 이유는 레드머드 내에 함유되어 있는 철을 포함한 티타늄, 알루미늄 등의 금속들이 안정한 산화물형태로 결합되어 있기 때문에 나트륨 이온(Na+) 등 일부의 금속이온들만이 추출되어 레드머드 내에 있는 금속이온들을 근본적으로 추출하여 활용할 수 없었기 때문이다. 이러한 금속이온들을 추출하는데 있어서의 어려움으로 인하여 레드머드의 활용방안과 응용에 많은 문제가 있었다. 또한, 레드머드 자체를 바로 상업화시킬 경우, 즉 레드머드를 함유한 벽돌제작과 콘크리트 및 건설재료로 사용시, 많은 철 이온에 의하여 제품의 강도가 떨어지거나 강한 염기성물질로 인한 제품의 응용제한 등 여러 가지 문제점들이 발생하였다.
이와 같이, 이전의 기술들은 단순히 강산 또는 높은 압력과 높은 온도를 이용하여 대부분의 금속이온들을 추출하려고 하였으나, 이는 나트륨과 같이 극히 일부의 금속만이 침출되어 거의 재활용할 수 있는 단계로 나아갈 수 없었으며, 그 공정 과정도 고온, 고압이라 상업성이 없는 상태였다. 따라서, 기존의 기술은 이러한 레드머드 내의 금속이온 추출의 한계로 인하여 레드머드의 표면을 유기물로 처리하거나 황으로 술폰화하는 방법 등으로 표면처리를 약간 개선하여 중금속 처리제로 이용하는 등 레드머드 자체의 물성만 개선하여 흡착제등의 용도로만 연구되어 대량의 상업적인 처리방안을 찾지 못하였다.
또한, 건축재료로 사용시 과량의 철이온 함량에 의하여 건축재료의 강도가 떨어지는 등의 문제로 역시 상업화에 많은 문제가 있었다.
관련 선행 문헌으로는 대한민국 등록특허공보 제10-0460262호(2004.12.14. 공고)가 있으며, 상기 문헌에는 레드머드를 이용한 인조황토 몰탈의 제조방법 및 인조황토몰탈의 시공방법이 개시되어 있다.
본 발명의 목적은 레드머드로 인하여 발생하는 레드머드 슬러지에 의한 환경 오염문제를 해결하고, 산업폐기물의 재활용을 통하여 고부가가치의 제품으로 재생산하고자 하는 방안을 마련할 수 있는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법은 (a) 항온조 내부에 삽입되는 반응조 내에 ① 중화된 레드머드 슬러리 및 산성 용액 또는 ② 분말 형태의 레드머드, 증류수 및 산성 용액을 투입하고, 상기 항온조를 가열하여 상기 반응조 내의 레드머드 슬러리를 반응시키면서 초음파를 인가하여 상기 레드머드에 함유된 금속이온들을 용출하는 단계; 및 (b) 상기 (a) 단계에서의 반응 후 생성물을 필터링하여, 레드머드 잔사와 추출 여액을 분리 회수하는 단계;를 포함하며, 상기 (a) 단계에서, 상기 초음파 인가는 초음파 발생기를 이용하여, 상기 항온조의 내부에 장착되는 초음파 팁에 초음파를 인가하는 방식으로 실시하는 것을 포함하는 것을 특징으로 한다.
본 발명에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법은 보크사이트로부터 알루미늄을 추출한 후 남은 폐기물인 레드머드 내에 함유된 대부분의 금속이온들을 추출하는 방법으로써, 특히 초음파와 강산, 그리고 항온조의 온도조절에 대한 최적의 조합에 의하여 레드머드 내에 함유된 금속이온들을 효과적으로 추출할 수 있는 이점이 있다.
또한, 본 발명에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법은 추출조건을 비교적 낮은 온도에서 진행할 수 있는 장점이 있고 추출공정이 단순하다는 이점이 있다. 따라서, 본 발명에 따른 금속이온 추출 방법을 이용하면 추출된 금속이온들과 추출 후 남은 레드머드 잔사를 상업적으로 활용할 수 있을 뿐만 아니라, 금속이온들이 추출된 레드머드 잔사의 물성변화와 화학적 조성 변화로 인하여 다양한 분야로의 상업적인 응용이 가능하다. 이에 더불어, 건조된 레드머드 분말에 초음파를 이용하여 강산과 증류수를 가하여 50 ~ 100℃의 온도에서 반응시키면, 레드머드 내에 함유된 금속이온들이 용출되어 나오게 된다. 이렇게 용출된 금속이온들 중에서 철, 티타늄과 알루미늄 이온이 주성분이므로 이를 재활용단계로 넘어가는 것이 가능하며, 이러한 용출과정을 통하여 추출된 금속이온으로부터 다양한 화합물의 합성이 가능하다.
또한, 본 발명에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법으로 추출된 금속이온과 금속이온들이 추출되고 남은 레드머드 잔사는 내열성안료, 세라믹재료, 내열성벽돌, 콘크리트, 시멘트, 황토, 옹기재료 등 내열성무기물과 철화합물, 촉매, 건축재료 등 다양한 물질로 제조하는 것이 가능하다.
특히, 본 발명에서는 레드머드 내에 함유되어 있는 대부분의 금속이온들의 용출이 가능할 뿐만 아니라, 금속이온들의 추출량을 조절할 수 있으며, 이러한 금속이온 추출량의 조절을 통하여 제품제조의 성분조절이 가능하고, 제품의 특성을 조절할 수 있다. 또한, 본 발명에서는 레드머드의 물성변화로 인하여 추출 후 남은 잔존물인 레드머드 잔사를 다양한 분야에 활용할 수가 있다.
따라서, 추출된 금속이온 용액을 활용하여 다양한 철화합물, 촉매 등을 합성하는 방안과 추출 후 남아있는 레드머드 잔사를 고온에서 소성하여 고강도 내열성재료 등으로 활용할 수 있는바, 폐기물처리로 환경문제를 일으키는 레드머드를 재활용하여 환경문제를 해결하고 아울러 고부가가치의 다양한 제품으로도 응용할 수 있는 효과 있다.
도 1은 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법을 나타낸 공정 순서도이다.
도 2는 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 장치를 개략적으로 나타낸 도면이다.
도 3은 비교를 위하여 레드머드 슬러지를 건조시켜 XRD(X-ray diffraction) 측정 장비를 이용하여 측정한 결과를 나타낸 도면이다.
도 4는 실시예 4에 따른 실험 방법으로 회수한 레드머드 잔사를 XRD 측정 장비를 이용하여 측정한 결과를 나타낸 도면이다.
도 5는 실시예 8에 따른 실험 방법으로 회수한 레드머드 잔사를 900℃에서 6시간 동안 소성한 레드머드 잔존물 고체 산화물을 XRD를 이용하여 측정한 결과를 나타낸 도면이다.
도 6은 실시예 12에 따른 실험 방법으로 pH=7에서 침전된 침전물을 900℃에서 6시간 동안 소성하여 측정한 XRD결과를 나타낸 도면이다.
도 7은 산의 종류에 따른 추출 실험 결과로 레드머드로부터 추출한 금속 추출 용액에 대한 ICP 측정 결과를 나타낸 도면이다. (ppm단위를 g단위로 환산하여 계산하였으며, 레드머드 30g(100wt%)에 대하여 추출된 금속의 농도(wt%)로 환산하여 계산하였다.)
도 8은 온도에 따른 추출 실험 결과로 레드머드로부터 추출한 금속 추출 용액에 대한 ICP 측정 결과를 나타낸 도면이다. (ppm단위를 g단위로 환산하여 계산하였으며, 레드머드 30g(100wt%)에 대하여 추출된 금속의 농도(wt%)로 환산하여 계산하였다.)
도 9는 시간에 따른 추출 실험 결과로 레드머드로부터 추출한 금속 추출 용액에 대한 ICP 측정 결과를 나타낸 도면이다. (ppm단위를 g단위로 환산하여 계산하였으며, 레드머드 30g(100wt%)에 대하여 추출된 금속의 농도(wt%)로 환산하여 계산하였다.)
[부호의 설명]
100 : 금속이온 추출 장치 102 : 물
110 : 항온조 120 : 반응조
130 : 초음파 발생장치 132 : 초음파 팁
S : 레드머드 슬러리
S110 : 레드머드 슬러리 제조 단계
S120 : 레드머드에 함유된 금속이온 용출 단계
S130 : 레드머드 침전물과 추출 여액 회수 단계
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
본 발명에서는 레드머드를 다양한 상업적인 제품으로 활용할 수 있는 방안을 마련하여 환경문제를 해결함과 더불어, 다양한 제품으로의 제조가 가능하도록 레드머드 내의 금속이온들을 추출하는 방법을 제시한다.
이를 위한 실험방법은 레드머드 내에서 가장 많은 성분으로 존재하는 철(Fe), 티타늄(Ti), 알루미늄(Al) 양이온을 추출하기 위하여 강산을 이용하였다. 물의 양은 강산에 대하여 1 : 1 ∼ 1 : 10의 부피비율로 첨가하였으며, 나중에 중화를 고려하여 적절한 비율로 조절하였다. 항온조 내에서 온도를 50 ~ 100℃로 유지하고 초음파를 가하면서 3시간 이상 추출하였다. 철 이온들을 포함한 금속이온들은 서서히 추출되어 대략 3 ∼ 4시간이 지나면 많은 양의 금속이온들이 추출되기 시작하여, 5 ∼ 8시간이 지나면 철, 티타늄, 알루미늄, 칼슘, 나트륨, 칼륨 등 금속이온 대부분이 추출되었다.
레드머드 내의 금속이온 추출시 반응온도가 높을수록, 그리고 레드머드 대비 강산의 양이 많을수록 추출되는 금속이온의 양이 증가하나, 다음 응용단계와 상업적 경제성을 생각하여 적정조건을 찾아내었다.
따라서, 본 발명을 통하여 레드머드로부터 금속이온을 추출하여 다양한 금속이온 화합물을 제조하고, 금속이온 추출 후 물성과 화학적 조성이 변화된 남아있는 레드머드 잔사를 고온에서 가열하여 다양한 내열제 재료나 촉매, 흡착제, 시멘트, 건축재료 등으로 활용할 수 있어, 레드머드를 재활용하여 다양한 분야에 응용할 수 있는 방안을 마련하였다.
또한, 본 발명에서는 레드머드 내의 금속이온들을 추출하여 레드머드 내의 화학적 조성을 변화시킴과 더불어, 추출된 금속이온들을 다양한 합성에 이용할 수 있어 근본적으로 레드머드를 화학적으로 처리할 수 있는 방안을 마련하였다. 그리고, 레드머드를 완전히 화학적으로 처리하기 위한 실험 방법을 찾아 금속이온들을 추출하는 방법을 알아내었으며, 최적의 초음파 조건, 반응 온도 조건 및 강산의 함량비를 조합하여 레드머드 내의 대부분의 금속이온들을 추출하였다.
초음파를 사용하지 않고 강산만으로 산 처리할 경우에는 금속이온들의 추출은 극히 미량이 용출되는 것을 확인하였으며, 초음파를 사용하더라도 항온조에서 50℃ 이상, 보다 바람직하게는 50 ~ 100℃의 온도에서 초음파를 사용해야만 효과적으로 추출이 가능하다는 것을 알아내었다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법에 관하여 상세히 설명하면 다음과 같다.
도 1은 본 발명의 실시예에 따른 초음파를 이용한 분말형태의 레드머드로부터의 금속이온 추출 방법을 나타낸 공정 순서도이고, 도 2는 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 장치를 개략적으로 나타낸 도면이다.
도 1 및 도 2를 참조하면, 도시된 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법은 분말형태의 레드머드인 경우, 레드머드 슬러리 제조 단계(S110), 레드머드에 함유된 금속이온 용출 단계(S120) 및 레드머드 침전물과 추출 여액 회수 단계(S130)를 포함한다.
레드머드 슬러리 제조
알루미늄 추출공정 등에서 배출되는 강염기성의 레드머드 슬러리를 직접 사용하는 경우에는 이를 강산으로 중화시킨 후 다시 한번 산성 분위기로 만들기 위해 산성 용액을 더 가하는 단계를 수행하게 되나, 레드머드가 분말형태인 경우 상기 항온조(110) 내부에 삽입되는 반응조(120) 내에 분말형태의 레드머드, 산성 용액 및 증류수를 혼합하여 레드머드 슬러리를 제조하는 단계(S110)를 더 포함할 수 있다.
이때, 상기 산성 용액은 황산, 염산, 질산 및 왕수(염산 및 질산의 혼합산) 중 선택된 하나이거나 선택된 둘 이상의 혼합산을 포함할 수 있으나, 황산을 사용하는 경우 후술하는 바와 같이 가장 추출 효율이 뛰어난 것을 알 수 있다. 추출 실험에 사용된 시약은 다음과 같다.
황산(H2SO4 95%, Junsei Chemicals, Japan), 질산(HNO3, 65%, DUKSAN reagents, Korea), 염산(HCl, 35%, Matsunoen Chemicals, Japan), 이온교환수, 레드머드(KC(주), Korea)이고 강산은 원액 그대로 사용하였다. 실험 결과, 황산을 이용할 경우가 추출 효율이 가장 우수하다는 것을 확인하였다.
본 단계에서, 상기 슬러리 상태 또는 분말 형태의 레드머드와 산성 용액은 1 : 1 ~ 1 : 20의 중량비로 혼합하는 것이 바람직하다. 레드머드와 산성 용액의 혼합비가 1 : 1 미만일 경우에는 산성 용액의 비율이 상대적으로 낮아 금속이온들에 대한 용출이 원활히 이루어지지 않을 우려가 있다. 반대로, 레드머드와 산성 용액의 혼합비가 1 : 20을 초과할 경우에는 추출 효율이 증대되는 이점이 있기는 하나, 추출 여액을 회수한 이후에 염기로 중화시 소비되는 염기의 양이 많아지는 결과를 초래하므로, 경제적이지 못하다.
한편, 산성 용액과 증류수는 1 : 1 ~ 1 : 10의 부피비로 혼합하는 것이 바람직하다. 산성 용액과 증류수의 혼합비가 1 : 1 미만일 경우에는 추출 여액을 회수한 이후에 염기로 중화시 소비되는 염기의 양이 많아지는 문제가 있는바, 경제적이지 못하다. 반대로, 산성 용액과 증류수의 혼합비가 1 : 10을 초과할 경우에는 레드머드의 양이 많은 경우 강산인 산성 용액의 함량이 상대적으로 감소하는 문제로 추출효율이 떨어지는 문제를 야기할 수 있다.
레드머드에 함유된 금속이온 용출
레드머드에 함유된 금속이온 용출 단계(S120)에서는 항온조(110)를 가열하여 반응조(120) 내의 레드머드 슬러리(S)를 반응시키면서 초음파를 인가하여 레드머드에 함유된 금속이온들을 용출시킨다.
특히, 레드머드 내의 금속이온들의 용출에서 가장 중요한 요소인 초음파는 30 ~ 50kHz의 주파수 범위 내에서는 및 260 ∼ 300W의 출력 전력 조건으로 인가하는 것이 바람직하며, 반응은 50 ~ 100℃에서 3시간 이상 동안 실시하는 것이 바람직하다. 이때, 10시간 이상 반응시, 추출 효율 대비 경제적이지 못하며, 추출 용액으로 티타늄이 점차적으로 추출되어 상대적으로 레드머드 잔사의 티타늄 비율이 줄어들 수 있어, 레드머드 잔사의 광촉매로서의 재활용에는 효율적이지 못하다.
본 발명의 연구자들은 초음파를 사용하지 않았을 경우에는 강산 하에서도 금속이온들의 용출이 이루어지지 않는 반면, 초음파를 사용할 경우 다양한 강산에서 금속이온들이 용출되기 시작하는 것을 알아내었다. 또한, 첨가되는 강산의 농도가 진할수록 추출율이 높았으며, 항온조의 온도가 높을수록 추출율이 높게 나타나는 것을 확인하였다. 특히, 본 발명에서는 향후 제품화 과정을 고려하여 강산의 중화시 소비되는 염기의 양을 최소화하기 위하여 최소한의 강산을 이용하였다.
본 단계에서, 금속이온들의 용출과정에서 사용되는 초음파의 작용이 매우 중요하며, 보통 초음파를 인가할 시 물에서 생성되는 동공(cavitation bubbles)의 세기는 물의 온도가 40℃보다 높을 경우 감소하는 것으로 알려져 있으나, 본 발명에서는 주 반응이 금속이온들과 산과의 반응성을 높이기 위한 1차 활성화 단계와 다음 반응인 산과의 주 반응을 높이기 위하여 40℃ 보다 높은 50 ~ 100℃에서 추출실험을 행하는 것이 바람직하다는 것을 알아내었다.
특히, 본 발명에서 초음파 처리를 실시하는 이유는 초음파에 의해 발생된 동공에 의해 기포의 진동이 생기고, 레드머드 슬러리(S)와 강산과의 강력한 교반 효과에 의해서 레드머드 내의 금속이온과 강산과의 접촉빈도를 높임으로써 금속이온들이 원활히 용출되도록 유도하게 되며, 이 용출반응은 반응온도가 높을수록 산과 금속이온들과의 반응성이 증가하여 결국 금속이온들이 용출하게 된다. 따라서, 레드머드 내의 금속이온들의 용출반응은 초음파에 의해 발생한 동공에 의해서 미세기포들의 진동효과와 다소 높은 50 ~ 100℃의 온도에서 강산과의 화학반응이 서로 상호작용함으로써 레드머드 내의 금속이온들을 효과적으로 추출할 수 있다.
이때, 초음파 인가는 초음파 발생기(130)를 이용하여, 상기 항온조(110)의 내부에 장착되는 초음파 팁(132)에 해당 주파수 및 출력 전력을 인가하는 방식으로 실시하는 것이 바람직하다. 상기 초음파 팁(132)의 장착은 상기 항온조(110)의 내측면, 내부 중앙 등에 장착할 수 있으나, 상기 항온조(110)의 바닥면과 상기 반응조(120)의 바닥면 사이에 장착될 경우 추출 효율이 높다.
특히, 본 단계에서, 초음파 출력 전력이 260W 미만일 경우에는 레드머드 내의 대부분의 금속이온들을 용출시키는 데 어려움이 따를 수 있다. 반대로, 초음파 출력 전력이 300W를 초과할 경우에는 과도한 출력 전력으로 인해 유리 재질의 반응조(120)를 파손시킬 우려가 있다. 이를 극복하기 위해 유리 반응조가 아닌 산에 강한 SUS재질의 항온조 등을 이용하여 별도의 반응조 없이 상기 항온조 내부에서 직접 반응이 이루어지도록 함으로써 상기 출력 전력 조건으로 부터 자유로워져 300 ~ 500W의 출력 전력 조건으로 인가하는 방식이 가능하다.
또한, 본 단계에서, 반응 온도가 50℃ 미만이거나, 반응 시간이 3시간 미만일 경우에는 레드머드 내에 함유된 금속이온들과 강산의 반응이 원활히 이루어지지 못하여 레드머드 내의 금속이온들을 모두 용출시키는 데 어려움이 따를 수 있다. 반대로, 반응 온도가 100℃를 초과하거나, 또는 반응 시간이 10시간을 초과할 경우에는 금속이온의 추출량은 다소 증가하나 효과 상승 대비 공정 시간 및 비용이 과도하게 소요되는 요인으로 작용할 수 있으므로, 경제적인 문제점이 발생할 수 있다.
레드머드 잔사와 추출 여액 회수
레드머드 잔사와 추출 여액 회수 단계(S130)에서는 레드머드에 함유된 금속이온 용출 단계(S120)에서의 반응으로 생성된 반응물을 필터링하여, 레드머드 잔사와 금속 추출 여액을 분리 회수한다.
이때, 추출 여액은 레드머드 잔사를 제외한 금속이온을 함유한 용액이라 정의할 수 있다. 본 단계에서, 필터링은 필터를 이용한 방식, 또는 원심 분리를 이용한 방식으로 실시될 수 있다.
한편, 도면으로 도시하지는 않았지만, 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 후 활용방법은 레드머드 잔사 수득 단계(미도시) 및 소성 단계(미도시)를 더 포함할 수 있다.
레드머드 잔사 수득
레드머드 고체 잔사 수득 단계에서는 수거된 레드머드 잔사를 세척한 후, 세척된 레드머드 침전물을 50 ~ 70℃에서 6시간 이상 건조하여 레드머드 고체 잔사를 수득한다. 이때, 세척은 증류수를 이용하여 3 ~ 5회 동안 반복 실시하는 것이 바람직하다.
소성
소성 단계에서는 레드머드 잔사를 재활용하여 새로운 조성의 산화물형태로 전환하기 위하여 900℃ 이상의 온도에서 4시간 이상 동안 소성한다. 본 발명에서는 900℃에서 6시간 동안 소성하였다.
전술한 본 발명의 실시예에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법은 보크사이트로부터 알루미늄을 추출한 후 남은 폐기물인 레드머드 내에 함유된 대부분의 금속이온들을 추출하는 방법으로써, 특히 초음파와 강산, 그리고 항온조의 온도조절에 대한 최적의 조합에 의하여 레드머드 내에 함유된 금속이온들을 효과적으로 추출할 수 있는 이점이 있다.
또한, 본 발명에 따른 초음파를 이용한 레드머드로부터의 금속이온 추출 방법은 추출조건을 비교적 낮은 온도에서 진행할 수 있는 장점이 있고 추출공정이 단순하다는 이점이 있다. 따라서, 본 발명에 따른 금속이온 추출 방법을 이용하면 추출된 금속이온들과 추출 후 남은 레드머드 잔사를 상업적으로 활용할 수 있을 뿐만 아니라, 금속이온들이 추출된 레드머드 고체 잔사는 물성변화와 화학적 조성 변화로 인하여 다양한 분야로의 상업적인 응용이 가능하다. 즉, 레드머드의 재활용에 장벽이 되었던 과량의 철 성분 대부분을 추출하여 레드머드 잔사가 실리콘과 티타늄이 주 성분인 물질로 전환되어 건축분야, 친환경 분야 등 다양한 분야에 응용이 가능하게 되었다. 이와 더불어, 건조된 레드머드에 초음파를 이용하여 강산과 증류수를 가하여 50 ~ 100℃의 온도에서 반응시키면, 레드머드 내에 함유된 금속이온들이 용출되어 나오게 된다. 이렇게 용출된 금속이온들 중에서 철, 티타늄과 알루미늄 이온이 주성분이므로 이를 재활용단계로 넘어가는 것이 가능하며, 이러한 용출과정을 통하여 추출된 금속이온으로부터 금속의 회수 및 다양한 화합물의 합성이 가능하게 되어 레드머드의 100% 재활용이 가능하도록 하였다. 또한, 추출된 금속 이온 용액은 강한 산성 용액이므로 이러한 산성 용액에 암모니아수나 수산화나트륨 용액 등 염기성 물질을 가하여 pH=7에서 침전물을 침전시켜 향후 반응 공정에서도 최종 폐수 용액의 처리를 용이하도록 하였다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 실험 방법
실시예 1
항온조 내부에 삽입된 2L의 삼각 플레스크 내에 레드머드 30g, 증류수 900ml를 투입하고 나서, 염산(HCl) 225ml와 질산(HNO3) 75ml의 혼합산을 혼합한 후, 항온조를 75℃로 가열한 상태에서 36.7 kHz의 주파수 및 280W의 출력 전력으로 초음파를 인가하면서 6시간 동안 반응시켰다.
이후, 반응물을 여과하여 레드머드 잔사와 추출 여액을 각각 분리 회수하였다. 이후, 회수한 레드머드 잔사를 증류수로 세척하여 60℃에서 12시간 동안 건조하였다. 이때, 추출된 금속이온들이 함유된 용액인 추출 여액은 ICP(PerkinElmer, OPTIMA 2100DV)를 이용하여 분석하였다.
실시예 2
산성 용액으로 염산과 질산의 혼합산 대신 염산(HCl, 35%) 300ml를 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 실험을 실시하였다.
실시예 3
산성 용액으로 염산과 질산의 혼합산 대신 질산(HNO3, 65%) 300ml를 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 실험을 실시하였다.
실시예 4
산성 용액으로 염산과 질산의 혼합산 대신 황산(H2SO4, 95%) 300ml를 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 실험을 실시하였다.
여기서, 상기 황산의 밀도를 고려하여 중량으로 환산하면 1ml 당 1.83g에 해당하므로 레드머드 1g에 대해 황산 1.83g이 되어 이를 중량비로 계산하면 레드머드와 황산의 중량비는 1 : 18.3에 해당한다.
실시예 5
상기 항온조를 가열하여 55℃에서 6시간 동안 반응시킨 것을 제외하고는 실시예 4와 동일한 방식으로 실험을 실시하였다.
실시예 6
상기 항온조를 가열하여 65℃에서 6시간 동안 반응시킨 것을 제외하고는 실시예 4와 동일한 방식으로 실험을 실시하였다.
실시예 7
상기 항온조를 가열하여 85℃에서 6시간 동안 반응시킨 것을 제외하고는 실시예 4와 동일한 방식으로 실험을 실시하였다.
실시예 8
상기 항온조를 가열하여 85℃에서 8시간 동안 반응시킨 것을 제외하고는 실시예 4와 동일한 방식으로 실시하였다.
실시예 9
상기 항온조를 가열하여 85℃에서 9시간 동안 반응시킨 것을 제외하고는 실시예 4와 동일한 방식으로 실시하였다.
실시예 10
상기 항온조를 가열하여 85℃에서 12시간 동안 반응시킨 것을 제외하고는 실시예 4와 동일한 방식으로 실험을 실시하였다.
실시예 11
항온조 내부에 삽입된 삼각 플레스크 내에 레드머드 30g, 증류수 900ml를 투입하고 나서 황산(H2SO4) 300ml를 혼합한 후, 항온조를 75℃로 가열한 상태에서 36.7 kHz의 주파수 및 280W의 출력 전력으로 초음파를 인가하면서 6시간 동안 반응시켰다.
이후, 반응물을 여과하여 레드머드 잔사와 추출 여액을 각각 분리 회수하였다. 이후, 회수한 레드머드 잔사를 증류수로 세척하여 60℃에서 12시간 동안 건조하였다.
이후, 건조된 레드머드 잔사를 900℃에서 6시간 동안 소성하여 레드머드 잔사 산화물로 전환시켰다.
실시예 12
상기 실시예 4에서 금속이온을 추출한 추출 용액은 강한 산성 용액이므로, 여기에 암모니아수나 수산화나트륨 용액을 가하여 pH=7로 중화시켜 침전물을 얻었으며, 최종폐수는 pH=7에서 반응을 종결시켰다. 여기서 pH=7에서 침전된 침전물은 900℃에서 6시간 동안 소성하여 철이 함유된 산화물로 전환하였다.
2. 물성 평가
표 1은 실시예 1 ~ 4에 따른 실험 방법으로 회수한 추출 여액을 ICP-MS(Inductively coupled plasma mass spectrometer)로 측정한 결과를 나타낸 것이다. 특히, 표 1은 강산이 금속이온의 추출에 미치는 영향을 알아보기 위해 강산의 종류를 달리하여 실험한 결과를 나타낸 것이다.
표 1 단위 : mg/L
구분 실시예 1 실시예 2 실시예 3 실시예 4
Fe 3836 3898 2417 4724
Al 1007 1023 1010 1767
Ti 357.1 356.6 367.7 482.2
Na 615.1 647.2 704.2 830.7
Ca 548.5 626.5 629.0 452.1
K 173.7 184.3 188.1 214.2
Mg 63.58 69.32 70.62 104.1
Cu 13.18 13.31 13.17 13.56
Pb 2.058 3.248 0.770 2.984
표 1을 참조하면, ICP-MS 측정 결과에서와 같이 산성 용액으로 황산을 이용한 실시예 4에서 가장 많은 금속이온들이 추출되었다. 다음으로, 왕수(염산 + 질산의 혼합산)을 이용한 실시예 1, 그리고 염산을 이용한 실시예 2의 순서로 금속이온들이 추출되었다. 질산을 이용한 실시예 3에서는 철이온 추출효율이 가장 낮게 나타났다. 따라서, 왕수, 염산, 황산이 철을 포함한 금속이온들의 추출에 효과가 있는 강산이나, 이후에 금속이온 용액을 다른 물질로 합성시 염소이온의 영향을 고려하여 황산이 가장 효과적인 것으로 나타났으며, 응용 실험결과 황산으로 추출시 금속이온 추출 이후 다른 물질의 합성과정에서 큰 영향 없이 진행되었다.
즉, 레드머드 내의 금속이온들을 추출시 강산만을 사용하면 금속이온들의 추출이 이루어지지 않았으며, 이는 초음파를 인가하는 것 없이 강산만을 사용하였을 시에는 금속이온들을 추출할 수 없었다.
위의 실험결과에 의하면, 초음파를 사용하지 않고 강산만으로 추출시 레드머드 내의 금속이온들이 거의 추출되지 않았으며, 레드머드 내의 금속이온들을 강산에 의해 추출하기 위해서는 반드시 초음파를 가해주어야만 되며, 또한 항온조 내의 온도를 50℃ 이상으로 가열해 주어야 금속이온들이 추출되기 시작한다는 것을 확인하였다. 초음파를 사용하여 추출시 주요 금속이온인 철, 알루미늄, 티타늄 이온들에 대하여 네 종류의 강산에 대해서 추출이 일어났으나, 질산에 대해서는 철 이온의 추출효율이 가장 낮게 나타났다.
특히, 주요금속이온인 철, 알루미늄, 티타늄 이온에 대하여 황산이 다른 강산에 비하여 추출 효율이 높았으며 다양한 금속이온에 대하여 추출이 잘 이루어져 레드머드 내의 금속이온들을 추출시 황산을 이용하는 것이 가장 효율적이라는 것을 확인하였다.
금속이온이 추출된 용액을 활용하기 위해 염기로 중화시 용액 내에 염소이온(Cl-)들이 존재하게 되면, 침전물 형성등과 같이 다음 반응에 영향을 주며 세척시 염소이온(Cl-) 제거 등의 어려움이 있어, 왕수나 염산보다는 추출효율이 더 나은 황산을 이용하여 실험하였다. 황산의 경우 다음 반응조건에 영향을 미치는 영향이 염소이온에 비하여 적으므로 본 발명에서는 황산을 주된 추출 산으로 이용하였다.
레드머드 30g에 대하여 각종 산을 이용하여 추출한 용액에 대한 ICP 결과를 g단위로 환산하여 도 7에 정리하였다. 도 7에서 보는 바와 같이 황산을 이용한 경우가 추출효율의 측면에서 가장 우수함을 알 수 있다.
표 1 및 도 7에서 살펴본 바와 같이, 황산으로 추출된 용액 내에는 금속이온 중 철 이온이 가장 많이 추출되었으며, 레드머드의 주요금속인 철을 포함하여 알루미늄, 티타늄, 칼슘 등의 금속이온이 추출되는 것을 확인하였다. 추출되어진 금속이온 용액은 철 이온 성분이 가장 많으며, 다음으로 알루미늄, 티타늄 성분이 많아 이를 촉매제조로 사용할 수 있으며, 많은 철 이온 성분을 이용하여 산화철, 옹기재료, 도자기 등 다양한 물질로 제조가 가능하다는 것을 실험을 통해 확인할 수 있었다. 따라서, 레드머드 내의 금속이온들의 추출을 통하여 추출된 금속이온들을 다른 제품으로 활용할 수 있으며, 아울러 남아있는 레드머드 잔사를 건축재료 등으로 제품화할 수 있어, 레드머드의 재활용이 가능하다는 것을 확인하였다.
표 2는 실시예 4 ~ 7에 따른 실험 방법으로 회수한 추출 여액을 ICP-MS로 측정한 결과를 나타낸 것이다. 특히, 표 2는 반응 온도가 금속이온의 추출에 미치는 영향을 알아보기 위해 반응 온도를 변화시켜 실험한 결과를 나타낸 것이다.
표 2 단위 : mg/L
구분 실시예 4 실시예 5 실시예 6 실시예 7
Fe 4724 3981 4453 5207
Al 1767 1155 1429 2173
Ti 482.2 339 367.4 520.2
Na 830.7 799.1 888.8 787.2
Ca 452.1 471.8 242.6 352.8
K 214.2 183.4 194.2 186.4
Mg 104.1 68.65 85.52 78.22
Cu 13.56 13.46 13.28 13.30
Pb 2.984 0.843 2.859 3.303
레드머드 30g에 대하여 온도 변화에 따른 추출 용액에 대한 ICP 결과를 g단위로 환산하여 도 8에 정리하였다. 도 8에서 보는 바와 같이 항온조의 온도가 증가할수록 추출 효율이 증가하는 것을 알 수 있다.
또한, 표 2 및 도8을 참조하면, 실시예 4 ~ 7과 같이 초음파를 사용하여 황산으로 추출 실험을 수행하였을 경우, 항온조의 온도에 따라 금속이온들이 추출되는 양에 차이를 보이기는 하나, 실시예 4 ~ 7 모두 대부분의 금속이온들이 추출되는 것을 확인하였다.
즉, 레드머드 내의 주요성분인 철, 알루미늄, 티타늄이온의 추출이 추출온도가 증가함에 따라 추출량이 증가하고 있어 추출률이 반응온도에 많은 영향을 받고 있음을 알 수 있으며 추출온도가 높을수록 추출효율이 높게 나타났다.
한편, 표 3은 실시예 4 ~ 7에 따른 실험 방법으로 회수한 레드머드 잔사를 XRF(X-ray fluorescence spectrometer, 일본 SHIMADZU사, 모델명 XRF-1700)를 이용하여 측정한 결과를 나타낸 것이다. 또한, 도 3은 비교를 위하여 건조상태의 레드머드를 XRD(X-ray diffraction) 측정 장비를 이용하여 측정한 결과를 나타낸 도면이고, 도 4는 실시예 4에 따른 실험 방법으로 회수한 레드머드 잔사를 70℃에서 건조 시킨 후 XRD 측정 장비를 이용하여 측정한 결과를 나타낸 도면이며, 도 5는 실시예 11에 따른 실험 방법으로 회수한 레드머드 잔사를 900℃에서 6시간 동안 소성한 레드머드 잔사를 XRD를 이용하여 측정한 결과를 나타낸 도면이다. 이때, 측정 장비로는 일본 Rigaku 사(Japan, 모델명 D/MAX 2500)의 장비를 사용하였으며, XRD 패턴은 Cu K α (λ=1.5404Å)를 사용하여 얻었다.
표 3 단위 : 중량%
구분 Fe2O3 Al2O3 SiO2 TiO2 Na2O CaO Others
레드머드 35.5 23.7 14.3 8.8 8.6 7.8 1.3
실시예 4 3.7 18.2 49.6 12.3 - 15.4 0.8
실시예 5 7.8 33.0 44.5 12.0 - 2.2 0.5
실시예 6 6.0 27.1 40.1 14.0 0.7 11.4 0.7
실시예 7 2.5 7.8 53.7 14.6 - 20.4 1.0
표 3을 참조하면, XRF로 측정한 결과 실시예 4 ~ 7에 따른 실험 방법으로 회수한 레드머드 잔사에는 Fe2O3의 함량이 급격히 감소한 것을 확인할 수 있다. 이는 철 이온들이 용출된 것임을 알 수 있다.
도 4를 참조하면 실시예 4에 따른 실험 방법으로 회수한 레드머드 잔사의 조성을 보면 도 3과는 다른 형태의 피크를 보여주고 있으며 이는 레드머드내의 금속이온들이 추출되어 화학적인 조성의 비율이 변화되었음을 의미한다. 표 3과 마찬가지로 α-Fe2O3의 피크는 급격히 감소하였으며, 상대적으로 TiO2(anatase)의 피크가 증가한 것을 알 수 있다.
또한, 도 5를 참조하면, 실시예 11에 따른 실험 방법으로 회수한 레드머드 고체 잔존물들을 XRD로 분석한 결과, TiO2, SiO2, Al2O3, CaSO4, Fe2O3가 산화물형태로 각각 남아 있었으며, α-Fe2O3 피크가 추출되기 전 레드머드에 비하여 급격히 감소되어 대부분의 철 성분이 추출 되었으며, 추출 후 SiO2, Al2O3, CaSO4 및 TiO2가 주성분이 되어 다양한 건축 자료와 촉매 분야로의 응용이 가능함을 보여주고 있다.
또한, 시간에 대한 추가적인 실험으로, 레드머드 30g에 대하여 온도 변화에 따라 추출한 용액에 대한 ICP 결과를 g단위로 환산하여 도 9에 정리하였다. 도 9에서 보는 바와 같이, 반응 시간이 증가할수록 추출률이 증가하고 있으나, 반응 시간이 8시간 이후부터는 추출률의 증가폭이 크지 않음을 볼 수 있다. 또한, 추출률이 50% 이상으로 레드머드 중 금속이온의 반 정도가 추출되었음을 알 수 있으며, 이와 같이 레드머드의 화학적 조성이 완전히 변화되어 레드머드의 완전한 재활용이 가능함을 확인하였다.
이와 같은 추출 실험결과로 TiO2와 Al2O3, SiO2의 피크가 상대적으로 큰 것을 알 수가 있으며 이러한 결과는 XRF의 측정결과와 일치하고 있음을 알 수가 있다.
이와 같은 추출 실험결과에 의하여, 추출반응 조건을 조절하여 금속이온, 특히 철 이온의 추출함량을 조절하여 추출할 수 있으며, 철 이온의 추출량이 작을 경우, 즉 레드머드 고체 잔사에 철 이온 함량이 많을 경우, 레드머드 고체 잔사를 소성시 컬러는 오렌지색이 된다. 그리고, 철 이온의 추출이 많을 경우, 레드머드 고체 잔사를 소성시 연한 오렌지색으로 바뀌므로 철 함량의 조절에 따라 색상 조절이 가능하다. 이와 같이, 철 이온의 추출량을 조절하여 다양한 용도에 맞추어 사용이 가능하다.
또한, 실시예 12에서와 같이 추출된 금속 이온 용액은 강산으로 추출하였으므로 강한 산성을 띄고 있어 이를 중화시키기 위해 암모니아수나 수산화나트륨 용액을 사용하였으며, pH=7까지 중화시켜 침전물을 침전시키고 나머지는 pH=7에서 중화된 폐수로 처리가 가능하도록 하였다. 침전물에 대한 XRD 측정 결과가 도 6에 나타나 있으며, 예상했듯이 대부분의 철 성분들이 침전되어 있음을 알 수 있다. 이와 같이 pH=7에서의 중화 반응 단계를 거침으로써 향후 레드머드의 대량 처리시 공정 과정을 단축하고 단순화 할 수 있는 방안을 마련하였다.
따라서, 본 발명에서는 철 이온의 추출량을 조절함으로써, 추출 후 남은 레드머드 고체 잔사를 소성시 철 이온과 실리콘 이온의 성분비를 조절하여 용도에 맞게 제품화할 수 있다.
또한, 철 이온 추출의 조절에 의하여 열적으로 안정한 오렌지색 산화물을 컬러벽돌, 안료, 흡착제 등에 사용할 수 있으며, 또한 많은 철 이온을 추출하여 남아 있는 레드머드 고체 잔사에 높은 SiO2 TiO2함량을 함유하도록 하여 고강도 벽돌뿐만 아니라, 흡착제, 충진제, 촉매, 시멘트, 그라우트 등 건축재료와 같이 다양한 재료분야에 활용할 수 있다.
칼슘성분은 황산세척 후 충분히 세척이 이루어지지 않아 황산칼슘으로 침전되어 칼슘산화물로 전환되었으며, 이로 인하여 칼슘산화물이 다량 검출되었으며, 이는 충분한 세척에 의하여 칼슘이온의 제거가 어느 정도 가능하다. 이와 같이, 본 발명에 의하여 레드머드 내의 성분 중 대부분의 철이 추출되었으며, 따라서 남아 있는 레드머드 잔사를 산화물로 전환시키면 실리콘과 티타늄, 그리고 알루미늄으로 구성된 내열성 물질로 화학적으로 전환하여 시멘트, 촉매, 고강도 콘크리트, 티타늄에 의한 광촉매 기능을 가진 다양한 내열제로 사용할 수 있다.
또한, 금속이온을 추출한 이후 남아있는 조성에서 보는 바와 같이 대부분의 철 이온이 추출되어 남아 있는 레드머드 고체 잔사에는 실리콘이 주성분으로 되어 레드머드 고체 잔사의 화학적 조성이 완전히 변화되었으며, 철 성분이 많던 이전의 레드머드에 비하여 강도와 내열성, 내화성이 더 증가된 성분으로 바뀌어져 다양한 분야에 활용이 가능하다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.

Claims (9)

  1. (a) 항온조 내부에 삽입되는 반응조 내에 ① 중화된 레드머드 슬러리 및 산성 용액 또는 ② 분말 형태의 레드머드, 증류수 및 산성 용액을 투입하고, 상기 항온조를 가열하여 상기 반응조 내의 레드머드 슬러리를 반응시키면서 초음파를 인가하여 상기 레드머드에 함유된 금속이온들을 용출하는 단계; 및
    (b) 상기 (a) 단계에서의 반응 후 생성물을 필터링하여, 레드머드 잔사와 추출 여액을 분리 회수하는 단계;를 포함하며,
    상기 (a) 단계에서, 상기 초음파 인가는 초음파 발생기를 이용하여, 상기 항온조의 내부에 장착되는 초음파 팁에 초음파를 인가하는 방식으로 실시하는 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  2. 제1항에 있어서,
    상기 슬러리 또는 분말 형태의 레드머드와 산성 용액은 1:1 ~ 1:20의 중량비로 혼합되고, 상기 산성 용액과 증류수는 1:1 ~ 1:10의 부피비로 혼합되는 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  3. 제1항에 있어서,
    상기 초음파 팁이 상기 항온조의 바닥면과 상기 반응조의 바닥면 사이에 장착되는 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  4. 제1항에 있어서,
    상기 산성 용액은 황산인 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  5. 제1항에 있어서,
    상기 (a) 단계에서, 상기 반응은 50 ~ 100℃에서 3시간 이상 실시하는 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  6. 제1항에 있어서,
    상기 초음파는 30 ~ 50kHz의 주파수 범위내에서 (i) 260 ~ 300W의 출력 전력 조건으로 인가하거나 (ii) 별도의 반응조 없이 상기 항온조 내부에서 직접 반응이 이루어지는 경우에는 300 ~ 500W의 출력 전력 조건으로 인가하는 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  7. 제1항에 있어서,
    상기 (b) 단계에서, 상기 추출 여액은 상기 레드머드 잔사를 제외한 금속이온을 함유한 용액인 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  8. 제1항에 있어서,
    상기 (a) 단계에서, 반응 시간 및 반응 온도를 조절하여 상기 레드머드 잔사 및 추출 여액의 조성비를 변화시켜 다양한 용도로 재활용 하는 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
  9. 제1항에 있어서,
    상기 (b) 단계 이후,
    상기 레드머드 잔사를 900℃ 이상에서 4시간 이상 소성하여 새로운 조성의 산화물을 얻는 단계를 더 포함하는 것을 특징으로 하는 초음파를 이용한 레드머드로부터의 금속이온 추출 방법.
PCT/KR2013/003622 2012-08-23 2013-04-26 초음파를 이용한 레드머드로부터의 금속이온 추출 방법 WO2014030821A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2879616A CA2879616A1 (en) 2012-08-23 2013-04-26 Method for extracting metal ions from red mud using ultrasonic waves
EP13831357.2A EP2889278A4 (en) 2012-08-23 2013-04-26 PROCESS FOR EXTRACTION OF METALIONS FROM RED MUD WITH THE ULTRASONIC WAVES
CN201380041486.7A CN104540793A (zh) 2012-08-23 2013-04-26 利用超声波从赤泥中提取金属离子的方法
RU2015104051A RU2015104051A (ru) 2012-08-23 2013-04-26 Способ извлечения ионов металлов из красного шлама посредством обработки ультразвуком
US14/418,379 US20150307956A1 (en) 2012-08-23 2013-04-26 Method of extracting metal ions from red mud by sonication
AU2013306653A AU2013306653B2 (en) 2012-08-23 2013-04-26 Method for extracting metal ions from red mud using ultrasonic waves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0092355 2012-08-23
KR20120092355A KR101222652B1 (ko) 2012-08-23 2012-08-23 초음파를 이용한 레드머드로부터의 금속이온 추출 방법

Publications (1)

Publication Number Publication Date
WO2014030821A1 true WO2014030821A1 (ko) 2014-02-27

Family

ID=47841921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003622 WO2014030821A1 (ko) 2012-08-23 2013-04-26 초음파를 이용한 레드머드로부터의 금속이온 추출 방법

Country Status (8)

Country Link
US (1) US20150307956A1 (ko)
EP (1) EP2889278A4 (ko)
KR (1) KR101222652B1 (ko)
CN (1) CN104540793A (ko)
AU (1) AU2013306653B2 (ko)
CA (1) CA2879616A1 (ko)
RU (1) RU2015104051A (ko)
WO (1) WO2014030821A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775011C1 (ru) * 2021-08-20 2022-06-27 Сергей Владимирович Кидаков Безотходная переработка бокситов и красного шлама
WO2023022622A1 (ru) * 2021-08-20 2023-02-23 Сергей Владимирович КИДАКОВ Безотходная переработка руд бокситов и красного шлама

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082842A1 (en) * 2015-11-09 2017-05-18 Turkiye Petrol Rafinerileri Anonim Sirketi Tupras Adsorbent material for adsorbing sulfur compounds and a production method thereof
UA123678C2 (uk) * 2016-03-15 2021-05-12 Флоурхемі Ґмбг Франкфурт Композиція, яка містить модифікований червоний шлам з низьким вмістом хроматів, і спосіб її отримання
KR102220768B1 (ko) * 2019-02-22 2021-02-25 고려대학교 산학협력단 레드머드로부터의 유용 중금속을 선택적으로 회수하는 방법
CN112479230B (zh) * 2020-12-16 2022-06-24 中原工学院 高碱性氧化铝赤泥固碳的方法
CN112808755B (zh) * 2021-02-01 2022-04-12 湖南绿脉环保科技股份有限公司 一种高铁低硅赤泥综合利用方法
CN113198445B (zh) * 2021-03-16 2022-08-12 山东大学 一种赤泥scr催化剂及其制备方法和应用
CN115646502B (zh) * 2022-11-07 2023-07-04 深圳仕上电子科技有限公司 金属负载钒酸铟及其制备方法、光催化固氮催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030424A (en) * 1989-04-03 1991-07-09 Alcan International Limited Recovery of rare earth elements from Bayer process red mud
JPH08100176A (ja) * 1994-09-29 1996-04-16 Sumitomo Chem Co Ltd 農業用資材の製造方法
KR20040087370A (ko) * 2003-04-07 2004-10-14 케이씨 주식회사 바이어 공정의 부산물을 이용한 저소다 헤마타이트질산화물의 제조방법
KR100460262B1 (ko) 2001-10-17 2004-12-14 코스모정밀화학 주식회사 레드머드를 이용한 인조황토 몰탈의 제조방법 및 인조황토몰탈의 시공방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL98812C (ko) * 1955-12-16 1900-01-01
US3311449A (en) * 1962-02-12 1967-03-28 Mitsubishi Shipbuilding & Eng Process of recovering valuable components from red mud
US3776717A (en) * 1970-12-04 1973-12-04 Tatabanyai Szenbanyak Method for processing of red mud
US4119698A (en) * 1976-11-26 1978-10-10 Kernforschungsanlage Julich, Gesellschaft Mit Beschrankter Haftung Reclamation treatment of red mud
US6248302B1 (en) * 2000-02-04 2001-06-19 Goldendale Aluminum Company Process for treating red mud to recover metal values therefrom
CN102534224B (zh) * 2012-02-09 2013-10-30 华南理工大学 一种分离固废中的重金属组分的方法
CN102583528A (zh) * 2012-02-15 2012-07-18 山西同华科技有限公司 一种用氧化铝赤泥制备二氧化钛的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030424A (en) * 1989-04-03 1991-07-09 Alcan International Limited Recovery of rare earth elements from Bayer process red mud
JPH08100176A (ja) * 1994-09-29 1996-04-16 Sumitomo Chem Co Ltd 農業用資材の製造方法
KR100460262B1 (ko) 2001-10-17 2004-12-14 코스모정밀화학 주식회사 레드머드를 이용한 인조황토 몰탈의 제조방법 및 인조황토몰탈의 시공방법
KR20040087370A (ko) * 2003-04-07 2004-10-14 케이씨 주식회사 바이어 공정의 부산물을 이용한 저소다 헤마타이트질산화물의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENES SAYAN: "STATISTICAL MODELING AND OPTIMIZATION OF ULTRASOUND-ASSISTED SULFURIC ACID LEACHING OF TIO2 FROM RED MUD", HYDROMETALLURGY, vol. 71, 31 December 2004 (2004-12-31), pages 397 - 401, XP004480766 *
See also references of EP2889278A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775011C1 (ru) * 2021-08-20 2022-06-27 Сергей Владимирович Кидаков Безотходная переработка бокситов и красного шлама
WO2023022622A1 (ru) * 2021-08-20 2023-02-23 Сергей Владимирович КИДАКОВ Безотходная переработка руд бокситов и красного шлама

Also Published As

Publication number Publication date
EP2889278A4 (en) 2016-04-13
KR101222652B1 (ko) 2013-01-16
CA2879616A1 (en) 2014-02-27
US20150307956A1 (en) 2015-10-29
AU2013306653B2 (en) 2016-05-26
AU2013306653A1 (en) 2015-02-26
CN104540793A (zh) 2015-04-22
EP2889278A1 (en) 2015-07-01
RU2015104051A (ru) 2016-10-20

Similar Documents

Publication Publication Date Title
WO2014030821A1 (ko) 초음파를 이용한 레드머드로부터의 금속이온 추출 방법
CN109127654B (zh) 一种低污染的二次铝灰处理方法
Nam et al. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid
CN100415679C (zh) 电熔莫来石的制造方法
WO2020085608A1 (ko) 폐탈질촉매로부터 고순도 이산화타이타늄 제조방법
KR100278777B1 (ko) 알루미늄드로스의 재활용방법
KR101751691B1 (ko) 알칼리 세라믹 혼화제를 이용한 불산폐수나 폐산 처리방법
EP1047636A1 (en) Method of treating spent potliner material from aluminum reduction cells
KR20000062297A (ko) 오염된 퇴적물과 토양의 개질을 통한 환경적으로 안정한 생성물제조 방법
WO2017078308A1 (ko) 화력발전소의 바닥재를 이용한 합성 제올라이트 제조방법
KR20120112675A (ko) 티타늄 함유 부산물을 회수하기 위한 방법
WO2019022320A1 (ko) 석탄회로부터 희소 금속 원소 추출 방법 및 희소 금속 원소 추출 장치
KR20150085427A (ko) 폐불소화합물을 무해하게 안정화시켜 산업 기초 원료로 제조하여 재활용하는 기술
JP5126924B2 (ja) 焼却灰からの高純セメント製造法
US11214520B1 (en) Mortar for eco-masonry element
KR101325204B1 (ko) 광미로부터 매트와 슬래그를 얻는 방법
WO2021101126A1 (ko) 규산칼슘 제조방법
JP3965769B2 (ja) 飛灰の処理方法
US6123908A (en) Method of treating spent potliner material from aluminum reduction cells
WO2010074516A2 (ko) 이차 더스트를 이용한 고 순도 산화아연의 제조방법
RU2083705C1 (ru) Способ извлечения благородных металлов из глиноземных материалов и отходов производства
WO2018216886A1 (ko) 수소 가스 제조 방법
WO2023182562A1 (ko) 아연, 구리 폐기물로부터 용매추출을 이용한 유가금속 회수방법
CA2314123C (en) Method of treating spent potliner material from aluminum reduction cells
JP2004269304A (ja) 赤泥の処理方法およびセメントクリンカの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2879616

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013831357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013831357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14418379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013306653

Country of ref document: AU

Date of ref document: 20130426

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015104051

Country of ref document: RU

Kind code of ref document: A