WO2014030461A1 - コネクタ用めっき端子及びコネクタ用めっき端子の製造方法 - Google Patents

コネクタ用めっき端子及びコネクタ用めっき端子の製造方法 Download PDF

Info

Publication number
WO2014030461A1
WO2014030461A1 PCT/JP2013/069142 JP2013069142W WO2014030461A1 WO 2014030461 A1 WO2014030461 A1 WO 2014030461A1 JP 2013069142 W JP2013069142 W JP 2013069142W WO 2014030461 A1 WO2014030461 A1 WO 2014030461A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
plating layer
nickel
alloy
base material
Prior art date
Application number
PCT/JP2013/069142
Other languages
English (en)
French (fr)
Inventor
古川 欣吾
照善 宗像
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2014030461A1 publication Critical patent/WO2014030461A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets

Definitions

  • the present invention relates to a plated terminal for a connector and a manufacturing method thereof, and more particularly to a plated terminal for a connector having a nickel plating layer and a tin plating layer on the surface and a manufacturing method thereof.
  • FIG. 5 (a) shows a cross-sectional image of a cross-sectional focused ion beam after leaving a plated sample piece in which a nickel underlayer and a tin plating layer are formed in this order on the surface of an aluminum base material at room temperature for a long time (180 days).
  • FIG. 5C shows a surface image in a state where only a tin component is eluted using a pure tin stripping solution (p-nitrophenol + sodium hydroxide aqueous solution). According to these, it is confirmed that the alloy phase has grown in a plate shape from the interface between the nickel underlayer and the tin plating layer.
  • a tin-nickel alloy grows in the form of a plate in the tin plating layer from the nickel / tin interface, as shown in the FIB-SIM images of FIGS. 5B and 5C and the schematic diagram of FIG.
  • the phase reaches the outermost surface, and the tin-nickel alloy is partially exposed on the outermost surface. Since a tin-nickel alloy has a higher electrical resistivity than tin, exposure to the surface causes an increase in contact resistance at the connector terminal contact portion. Further, since the portion where tin is exposed on the outermost surface and the portion where tin-nickel alloy is exposed coexist, the contact resistance value becomes unstable.
  • the problem to be solved by the present invention is that, in a plating terminal for a connector having a tin plating layer on the outermost surface and further having a nickel underlayer, an increase in contact resistance on the outermost surface due to the growth of a plate-like tin-nickel alloy.
  • An object of the present invention is to provide a suppressed plating terminal for a connector and to provide a manufacturing method thereof.
  • a connector plating terminal includes a nickel plating layer formed on a surface of a base material in a region including a contact portion that is in electrical contact with another conductive member, and the nickel plating layer.
  • a tin-nickel alloy is formed at the interface between the nickel plating layer and the tin plating layer by reflowing the tin plating layer formed on the outermost surface in contact with the surface at a temperature equal to or higher than the melting point of tin.
  • the base material may be made of aluminum or an aluminum alloy.
  • the tin-nickel alloy is densely formed with a granular material.
  • the method for manufacturing a plating terminal for a connector includes forming a nickel plating layer on a surface of a base material in a region including a contact portion that is in electrical contact with another conductive member, and contacting the surface of the nickel plating layer. Forming a tin plating layer, and reflowing the nickel plating layer and the tin plating layer at a temperature equal to or higher than the melting point of tin, thereby forming a tin-nickel alloy at the interface between the nickel plating layer and the tin plating layer.
  • the gist is to form.
  • a tin-nickel alloy is formed at the interface between the nickel layer and the tin layer by reflow treatment. Then, even when left at room temperature, the plate-like tin-nickel alloy is further prevented from growing toward the outermost surface. As a result, even if the plate-like tin-nickel alloy is left for a long time near room temperature, it is avoided that the plate-like tin-nickel alloy is exposed on the outermost surface and the contact resistance of the surface is increased.
  • the adhesion between the nickel plating layer and the tin plating layer is improved by the formation of the tin-nickel alloy, the tin plating layer is firmly adhered to the surface of the base material.
  • the internal stress of the nickel plating layer and the tin plating layer is released by the reflow treatment, and the effect of preventing the generation of whiskers is obtained.
  • the nickel plating layer is interposed between the tin plating layer and the surface of the base material, which have low adhesion to each other without the presence of the nickel plating layer.
  • the tin plating layer can be formed without increasing the contact resistance. The effect of the nickel plating layer of improving adhesion can be enjoyed.
  • a tin-nickel alloy formed by agglomeration of particles is easily formed when the laminated nickel plating layer and the tin plating layer are subjected to reflow treatment. By forming this, a plate-like tin- Growth of the nickel alloy inside the tin plating layer is effectively suppressed.
  • an increase in contact resistance due to growth of a plate-shaped tin-nickel alloy is effectively suppressed in a tin-plated terminal having a nickel base by a simple method called reflow treatment. can do.
  • FIG. 1 It is a schematic diagram of the cross section which shows an example of the structure of the surface about the plating terminal for connectors concerning this invention. It is sectional drawing which shows an example of the structure of the plating terminal for connectors concerning this invention.
  • (A) and (b) are FIB-SIM images of a tin-plated sample piece having a nickel underlayer that has undergone reflow treatment according to Example 1 of the present invention, and (c) and (d) are according to Comparative Example 1. It is a FIB-SIM image of a tin plating sample piece having a nickel underlayer that has not undergone reflow treatment.
  • (A) and (c) are cross-sectional images, and (b) and (d) are surface images.
  • FIG. 4 is an FIB-SIM image of the surface in a state where tin is eluted from the plated sample piece of FIG. 3, (a) and (b) are those subjected to the reflow process of Example 1, and (c) and (d) are The reflow process of Comparative Example 1 has not been performed.
  • (B) and (d) are enlarged images of (a) and (c), respectively. It is a FIB-SIM image of a tin-plated sample piece having a general nickel underlayer, (a) is a cross-sectional image in an initial state, (b) is a cross-sectional image after being left at room temperature, and (c) is a tin image after being left at room temperature. It is a surface image when it was eluted. It is a schematic diagram which shows the cross section after standing at room temperature about the tin plating member which has a general nickel base layer.
  • the plating terminal for a connector according to the present invention (hereinafter sometimes simply referred to as a plating terminal) is obtained by reflow treatment of a base material surface in which a nickel plating layer and a tin plating layer are laminated in this order at a temperature equal to or higher than the melting point of tin. It is formed by doing.
  • the base material is a base material for the connector terminal, and may be formed of any metal material such as copper or copper alloy, aluminum or aluminum alloy.
  • any metal material such as copper or copper alloy, aluminum or aluminum alloy.
  • peeling is likely to occur, and the adhesion of the tin plating layer to the base material surface can be enhanced by interposing the nickel plating layer. Is preferred.
  • the base material is made of aluminum or an aluminum alloy
  • a very hard and chemically stable thick oxide film is formed on the surface of the base material, and an electric field is not easily formed.
  • the nickel plating layer cannot be formed. Therefore, a thin zinc layer may be formed on the surface of the base material by electroless plating prior to the formation of the nickel plating layer (zincate treatment).
  • a very thick oxide film is not formed on the surface of the zinc layer, and an electric field can be formed on the surface, so that a nickel plating layer can be formed thereon by electrolytic plating. In this process, most of the zinc is replaced with nickel, and finally only a small amount of zinc remains at the interface between the base material and the nickel layer.
  • the thickness of the zinc layer formed by the zincate treatment is preferably 0.1 ⁇ m or less, more preferably about 0.05 ⁇ m. Then, the electric field necessary for nickel plating is sufficiently formed on the surface, and the influence of corrosion and the like due to a large amount of zinc remaining in the final plating terminal can be avoided. In addition, even if reflow processing is performed by preventing the diffusion of zinc by the nickel plating layer, it is possible to prevent zinc from diffusing into the tin plating layer and contributing to an increase in surface contact resistance.
  • the tin plating layer is formed in the terminal contact portion to ensure good electrical contact with another conductive member.
  • a relatively hard tin oxide film is formed on the outermost surface of the tin plating layer, but it is easily broken by applying a load, and the soft metal tin is exposed and is in close contact with another conductive member. A contact is formed.
  • the nickel plating layer plays a role of improving the adhesion between the base material and the tin plating layer. This is because nickel has high adhesiveness to a copper-based or aluminum-based base material and to tin.
  • the nickel plating layer and the tin plating layer may be formed by any method, but are preferably formed by an electrolytic plating method from the viewpoint of productivity and the like. These thicknesses are not particularly limited, but the thickness of the nickel plating layer is preferably in the range of 0.2 to 0.6 ⁇ m. If it has a thickness in this range, the nickel plating layer remains sufficiently even after alloying with tin by performing reflow treatment described later, and the workability of the plated member may be reduced by being too thick. Absent.
  • the thickness of the tin plating layer is preferably in the range of 1 to 2.5 ⁇ m. This is because a tin plating layer having a thickness sufficient to ensure sufficiently good contact characteristics on the outermost surface remains even after nickel and an alloy are formed by a reflow process described later.
  • the nickel plating layer 2 and the tin plating layer are formed as shown in FIG.
  • a tin-nickel alloy 3 is formed at the interface 4.
  • the tin-nickel alloy 3 is different from the plate-like alloy 6 (FIG. 6) formed when the nickel plating layer 2 and the tin plating layer 4 are laminated and left at room temperature for a long time.
  • the directivity is small, and a relatively flat layer is formed at the interface between the nickel plating layer 2 and the tin plating layer 4.
  • the tin-nickel alloy 3 tends to be formed as an aggregate of granular alloys.
  • the granular tin-nickel alloy 3 has a major axis (the length of the longest straight line across the particle) of about 0.01 to 0.6 ⁇ m when observed in the cross section of the plating layer.
  • the aspect ratio defined as the ratio of the longest diameter to the length of the shortest straight line passing through the center of is approximately 2 or less. That is, it has a particle shape with small anisotropy that is clearly different from the plate-like alloy as shown in FIGS.
  • the average thickness of the layer formed by the tin-nickel alloy 3 is about 0.1 to 0.4 ⁇ m.
  • the thickness of the nickel plating layer 2 that remains without being alloyed after the reflow treatment is preferably 0.5 ⁇ m or less.
  • the thickness of the tin plating layer 4 remaining without being alloyed is desirably in the range of 0.5 to 2 ⁇ m.
  • the tin plating layer is entirely used for alloying, the outermost surface of the terminal contact portion is not covered with tin, and it is not preferable because the effect of improving contact characteristics by tin cannot be obtained. If the reflow process is performed for a long time, such a situation may occur. Therefore, when the above temperature range is adopted, it is desirable to perform the reflow process for a time in the range of 10 to 120 seconds. The reflow treatment time may be appropriately set within this time range so that a desired amount of tin-nickel alloy is formed.
  • the reflow treatment may be performed using any heating means as long as the nickel plating layer and the tin plating layer can be heated to a predetermined temperature.
  • heating by hot air and heating by flame can be exemplified.
  • FIG. 6 As described above, if the tin-nickel alloy 3 is formed at the interface between the tin plating layer 4 and the nickel plating layer 2 by reflow treatment, even if the plating terminal is left at a temperature near room temperature for a long time, FIG. As in the case of a tin-plated terminal having a nickel underlayer that is not subjected to the conventional reflow treatment shown in FIG. 6, the tin-nickel alloy has a plate-like structure and is prevented from growing further. That is, it is suppressed that the tin-nickel alloy that has grown into a plate shape and is exposed on the outermost surface increases the contact resistance.
  • the nickel plating layer 2 and the base material of the tin plating layer 4 are further formed before the reflow treatment. The effect that the adhesiveness to 1 surface is improved is also exhibited.
  • the internal stress accumulated in the layers when the tin plating layer 4 and the nickel plating layer 2 are formed is released simultaneously with the formation of the alloy. Further, coarsening of tin crystal grains that are not spent for alloying occurs. As a result, the generation of whiskers in the tin plating layer 4 is suppressed.
  • the particle size of tin before the reflow treatment is about 3 to 5 ⁇ m, but when the reflow treatment is carried out, it becomes 50 ⁇ m or more.
  • the plated terminal for a connector includes a tin-nickel at the interface between the nickel plating layer 2 and the tin plating layer 4 formed by reflow treatment as described above at least at a contact portion that is in electrical contact with another conductive member.
  • the laminated structure 5 having the alloy 3 it may have any shape.
  • it can be set as the plating terminal 20 for female connectors which has the same shape as a well-known female connector terminal like FIG.
  • the pinching portion 23 of the female connector plating terminal 20 is formed in a square tube shape having an open front, and a male terminal 29 that is a counterpart connection member is inserted into the pinching portion 23.
  • an elastic contact piece 21 is formed that is folded back inward.
  • the elastic contact piece 21 comes into contact with the male terminal 29 at the protruding embossed portion 21 a and applies an upward force to the male terminal 29.
  • the surface of the ceiling portion of the pinching portion 23 facing the elastic contact piece 12 is an internal facing contact surface 22, and the male terminal 29 is pressed against the internal facing contact surface 22 by the elastic contact piece 21, thereby causing the male terminal 29. Is held in the clamping unit 23.
  • the plated terminal 20 for female connector is formed using aluminum or an aluminum alloy as a base material 1.
  • the laminated structure 5 is formed in the surface exposed inside the pinching part 23 of the elastic contact piece 21 and the internal opposing contact surface 22. Due to the presence of the laminated structure 5, a low friction coefficient and a high heat resistance are realized at the contact portion between the elastic contact piece 21 and the internal facing contact surface 22 and the male terminal 29.
  • the laminated structure 5 may be formed over a wider area, and the entire surface of the base material 1 constituting the female connector plating terminal 20 may be covered. If the laminated structure 5 is also formed on the surface of the male terminal 29, a better electrical connection can be formed at the contact portions of both terminals.
  • Example 1 A galvanized layer having a thickness of 0.05 ⁇ m was formed on the surface of a clean aluminum substrate by electroless plating. A 0.8 ⁇ m thick nickel plating layer was formed thereon by electrolytic plating. Furthermore, a tin plating layer having a thickness of 1.0 ⁇ m was formed thereon by electrolytic plating. In this state, the sample piece concerning Example 1 was created by performing a reflow process at 260 degreeC for 30 second (s).
  • Example 2 A sample piece according to Example 2 was obtained by forming a nickel plating layer and a tin plating layer on the surface of a clean copper substrate in the same manner as in Example 1 and performing reflow treatment.
  • the contact resistance value of the surface was measured in the initial state and the state after being left at 50 ° C. for 180 hours.
  • the contact resistance value was measured by the four probe method.
  • one of the electrodes was a flat plate and the other was an embossed shape having a radius of 3 mm. Further, the measurement was performed with an open-circuit voltage of 20 mV, an energization current of 10 mA, and a 6N load applied.
  • FIG. 3C shows a cross-sectional structure of the sample piece according to Comparative Example 1.
  • the darkest portion of the lowermost layer that is observed is the aluminum base material, and the layer that is formed thereon and is observed with intermediate brightness is the nickel plating layer.
  • the tin plating layer is observed brightest in the uppermost layer. No other layers are observed at the interface between the nickel plating layer and the tin plating layer.
  • the state of FIG. 3C is a state before the reflow process in the first embodiment, but by applying the reflow process, as shown in FIG. 3A, the interface between the nickel plating layer and the tin plating layer.
  • FIG. 2 a structure having brightness intermediate between the two is observed. This corresponds to a tin-nickel alloy formed by reflow treatment.
  • the tin-nickel alloy has a granular structure with a major axis of about 0.3 to 0.6 ⁇ m and is densely formed at the tin / nickel interface.
  • Example 2 and Comparative Example 2 were also subjected to FIB-SIM observation in the same manner. As a result, the display of the image was omitted. It was observed that the alloy was formed and that the tin grains were coarsened.
  • FIGS. 4 (a) and 4 (b) show FIB-SIM images obtained by observing the structure formed under the tin layer by selectively eluting tin from the sample piece according to Example 1.
  • FIG. 3 (a) it can be seen that small granular structures having a particle size of 2 ⁇ m or less corresponding to the granular tin-nickel alloy observed at the interface between the nickel layer and the tin layer are densely arranged.
  • FIGS. 4C and 4D show FIB-SIM images when tin is similarly eluted from the sample piece according to Comparative Example 1.
  • FIG. Looking at this, unlike the case where the reflow process of FIGS. 4A and 4B is performed, elongated structures having a major axis of about 1 to 5 ⁇ m are formed in a random arrangement. This is similar to the structure observed when a similar plated member shown in FIG. 5C is left for a long time, and corresponds to a plate-like tin-nickel alloy formed at the nickel / tin interface. It is thought that.
  • a nickel-plated layer and a tin-plated layer are laminated in this order on the base material, and a reflow process is performed, so that a plate-like tin-nickel alloy is not formed at the interface between the nickel layer and the tin layer, and a granular structure It was found that a tin-nickel alloy having This phenomenon involves only the nickel plating layer and the tin plating layer, and is considered not to depend on the type of base material such as aluminum or copper.
  • Table 1 shows the values of contact resistance measured for the sample pieces of Example 2 and Comparative Example 2 for the initial state and the state after standing at 50 ° C. for 180 days. The error indicates variation in values measured for a plurality of sample pieces.
  • the initial contact resistance values are the same when the reflow process of Example 2 is performed and when the reflow process of Comparative Example 2 is not performed. That is, the state of the outermost surface is considered to be almost the same.
  • Example 2 the contact resistance increases only slightly more than twice the initial value, while in Comparative Example 2, it increases to 15 times the initial value. Further, the variation in the contact resistance value for each sample piece is larger in Comparative Example 2.
  • the plate-shaped tin-nickel is formed from the interface between the nickel plating layer and the tin plating layer toward the outermost surface of the tin layer by leaving it at room temperature for a long time. It is considered that the alloy grows and is partially exposed on the outermost surface, increasing the contact resistance and destabilizing.
  • a granular tin-nickel alloy was formed at the interface between the nickel plating layer and the tin plating layer by the reflow treatment, and the tin-nickel alloy was further formed. Is prevented from growing toward the outermost surface of the tin layer.
  • the contact resistance value does not increase greatly and shows a stable value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

最表面にスズめっき層を有し、さらにニッケル下地層を有するコネクタ用めっき端子において、板状のスズ-ニッケル合金の成長による最表面の接触抵抗の上昇が抑制されたコネクタ用めっき端子を提供すること、及びその製造方法を提供すること。 他の導電部材と電気的に接触する接点部を含む領域の母材表面に形成されたニッケルめっき層と前記ニッケルめっき層の表面に接触して最表面に形成されたスズめっき層とをスズの融点以上の温度でリフロー処理することにより、前記ニッケルめっき層と前記スズめっき層との界面にスズ-ニッケル合金を形成する。

Description

コネクタ用めっき端子及びコネクタ用めっき端子の製造方法
 本発明は、コネクタ用めっき端子及びその製造方法に関し、さらに詳しくは表面にニッケルめっき層とスズめっき層を有するコネクタ用めっき端子及びその製造方法に関する。
 従来、自動車用配線に使用されるコネクタ端子の母材としては、銅や銅合金が広く利用されてきた。また近年では、軽量化等を目的として、アルミニウム又はアルミニウム合金も用いられるようになってきている。これらの母材の表面に形成された酸化物等の絶縁性の被膜が、他の導体との接点部において接触抵抗を上昇させることを避けるため、コネクタ端子の接点部には従来からスズめっきが施されることが一般的である。そして、母材表面とスズめっき層の間には、母材へのスズめっき層の密着性を高めることなどを目的として、ニッケルや銅よりなる下地層が形成されることも多い。
 特に、母材がアルミニウム又はアルミニウム合金よりなる場合に、スズはアルミニウムと合金を形成しないため、スズめっき層を母材表面に直接形成すると、スズめっき層が非常に剥離しやすくなる。銅及びニッケルは、アルミニウムと界面で合金を形成するため、これらを下地層として使用することで、スズめっき層の母材への密着性が高くなる。このようなコネクタ端子は、例えば特許文献1に開示されている。
特開2010-272414号公報
 ニッケルとスズは、室温付近において、非常にゆっくりとではあるが、合金化を起こす。よって、コネクタ端子において、ニッケルを下地層として用いてその上にスズめっき層を形成した場合、ニッケル/スズ界面から徐々に合金化が進行する。この合金相は異方的に成長する。つまり、ニッケル/スズ界面からスズめっき層内部の結晶粒界に沿って合金が成長し、さらには最表面に向かって板状の合金が形成される。図5(a)に断面像を示したアルミニウム母材表面にニッケル下地層、スズめっき層をこの順に形成しためっき試料片を、室温で長時間(180日間)放置した後の断面の収束イオンビーム-走査イオン顕微鏡(FIB-SIM)像を図5(b)に示す。また、図5(c)に、純スズ剥離液(p-ニトロフェノール+水酸化ナトリウム水溶液)を用いてスズ成分のみを溶出させた状態の表面像を示す。これらによると、ニッケル下地層とスズめっき層の界面から、板状に合金相が成長しているのが確認される。
 このようにニッケル/スズ界面からスズ-ニッケル合金がスズめっき層中に板状に成長すると、図5(b)、(c)のFIB-SIM像及び図6の模式図に示すように、合金相が最表面に達し、部分的にスズ-ニッケル合金が最表面に露出するようになる。スズ-ニッケル合金は、スズよりも高い電気抵抗率を有するため、表面に露出されることで、コネクタ端子接点部において、接触抵抗の上昇が引き起こされる。また、最表面にスズが露出した箇所とスズ-ニッケル合金が露出した箇所が混在するため、接触抵抗値が不安定化する。
 本発明が解決しようとする課題は、最表面にスズめっき層を有し、さらにニッケル下地層を有するコネクタ用めっき端子において、板状のスズ-ニッケル合金の成長による最表面の接触抵抗の上昇が抑制されたコネクタ用めっき端子を提供すること、及びその製造方法を提供することにある。
 上記課題を解決するために、本発明にかかるコネクタ用めっき端子は、他の導電部材と電気的に接触する接点部を含む領域の母材表面に形成されたニッケルめっき層と前記ニッケルめっき層の表面に接触して最表面に形成されたスズめっき層とをスズの融点以上の温度でリフロー処理することによって、前記ニッケルめっき層と前記スズめっき層との界面にスズ-ニッケル合金が形成されていることを要旨とする。
 ここで、前記母材はアルミニウム又はアルミニウム合金よりなるとよい。
 また、前記スズ-ニッケル合金は、粒状体で緻密に形成されていることが好適である。
 本発明にかかるコネクタ用めっき端子の製造方法は、他の導電部材と電気的に接触する接点部を含む領域の母材表面に、ニッケルめっき層を形成し、前記ニッケルめっき層の表面に接触させてスズめっき層を形成し、前記ニッケルめっき層と前記スズめっき層とをスズの融点以上の温度でリフロー処理することで、前記ニッケルめっき層と前記スズめっき層との界面にスズ-ニッケル合金を形成することを要旨とする。
 上記発明にかかるコネクタ用めっき端子によると、リフロー処理により、ニッケル層とスズ層の界面にスズ-ニッケル合金が形成される。すると、室温で放置しても、さらに板状のスズ-ニッケル合金が最表面に向かって成長することが抑制される。これにより、室温付近で長時間放置しても、板状のスズ-ニッケル合金が最表面に露出し、表面の接触抵抗を上昇させることが回避される。
 また、スズ-ニッケル合金の形成により、ニッケルめっき層とスズめっき層の間の密着性が向上するので、スズめっき層が母材表面に強固に密着するようになる。さらに、リフロー処理によってニッケルめっき層及びスズめっき層の内部応力が解放され、ウィスカーの発生が防止されるという効果も有する。
 ここで、母材がアルミニウム又はアルミニウム合金よりなる場合には、ニッケルめっき層の存在なしには相互間の密着性が低いスズめっき層と母材表面の間に、ニッケルめっき層が介在することで、高い密着性が付与されるが、上記のように、リフロー処理を経ることで板状のスズ-ニッケル合金が成長することが抑制されるので、接触抵抗を上昇させることなく、スズめっき層の密着性の向上というニッケルめっき層の効果を享受することができる。
 また、粒状体が集合してなるスズ-ニッケル合金は、積層されたニッケルめっき層とスズめっき層をリフロー処理した場合に形成されやすいものであり、これが形成されることで、板状のスズ-ニッケル合金のスズめっき層内部への成長が効果的に抑制される。
 上記発明にかかるコネクタ用めっき端子の製造方法によると、リフロー処理という簡便な方法で、ニッケル下地を有するスズめっき端子において、板状のスズ-ニッケル合金の成長による接触抵抗の増大を効果的に抑制することができる。
本発明にかかるコネクタ用めっき端子について表面の構成の一例を示す断面の模式図である。 本発明にかかるコネクタ用めっき端子の構造の一例を示す断面図である。 (a)及び(b)は本発明の実施例1にかかるリフロー処理を経たニッケル下地層を有するスズめっき試料片のFIB-SIM像であり、(c)及び(d)は比較例1にかかるリフロー処理を経ていないニッケル下地層を有するスズめっき試料片のFIB-SIM像である。(a)及び(c)は断面像であり、(b)及び(d)は表面像である。 図3のめっき試料片からスズを溶出させた状態の表面についてのFIB-SIM像であり、(a)及び(b)は実施例1のリフロー処理を経たもの、(c)及び(d)は比較例1のリフロー処理を経ていないものである。(b)及び(d)はそれぞれ(a)及び(c)の拡大像である。 一般的なニッケル下地層を有するスズめっき試料片のFIB-SIM像であり、(a)は初期状態の断面像、(b)は室温放置後の断面像、(c)は室温放置後にスズを溶出させた時の表面像である。 一般的なニッケル下地層を有するスズめっき部材について、室温放置後の断面を示す模式図である。
以下に、本発明の実施形態について、図面を用いて詳細に説明する。
 本発明にかかるコネクタ用めっき端子(以下、単にめっき端子と称する場合がある)は、母材表面に、ニッケルめっき層とスズめっき層をこの順に積層したものをスズの融点以上の温度でリフロー処理することによって形成される。
 母材は、コネクタ用端子の基材となるものであり、銅又は銅合金、アルミニウム又はアルミニウム合金など、どのような金属材料より形成されていてもよい。好ましくは、スズめっき層を直接表面に形成すると剥離が生じやすく、ニッケルめっき層を介在させることでスズめっき層の母材表面に対する密着性が高められるという点において、アルミニウム又はアルミニウム合金よりなる場合が好適である。
 母材がアルミニウム又はアルミニウム合金よりなる場合、母材表面には非常に硬くて化学的にも安定な厚い酸化物被膜が形成されており、電場が形成されにくいので、そのままの状態で電解めっき法によってニッケルめっき層を形成することはできない。そこで、母材表面に、ニッケルめっき層の形成に先立ち、無電解めっきによって薄い亜鉛層を形成しておくとよい(ジンケート処理)。亜鉛層の表面にはそれほど厚い酸化被膜は形成されず、表面に電場が形成されうるので、その上にニッケルめっき層を電解めっきによって形成することが可能となる。この過程で、亜鉛の大部分はニッケルに置換され、最終的には亜鉛は少量しか母材とニッケル層の界面に残存しない。ジンケート処理によって形成する亜鉛層の厚さは、0.1μm以下であることが好適であり、さらに好ましくは0.05μm程度であるとよい。すると、ニッケルめっきに必要な電場が十分に表面に形成されるとともに、多量の亜鉛が最終的なめっき端子に残存することによる腐食等の影響を回避することができる。なお、ニッケルめっき層が亜鉛の拡散を阻止することにより、リフロー処理を行っても、亜鉛がスズめっき層に拡散して表面の接触抵抗の上昇などに寄与することが防止される。
 スズめっき層は、端子接点部において、別の導電部材との良好な電気的接触を確保するために形成される。スズめっき層の最表面には比較的硬いスズ酸化膜が形成されるが、荷重を印加することで容易に破壊され、軟らかい金属スズが露出して別の導電部材と密着し、良好な電気的接触が形成される。
 ニッケルめっき層は、母材とスズめっき層の間の密着性を高める役割を果たす。ニッケルは銅系又はアルミニウム系等の母材に対してもスズに対しても高い密着性を有するからである。
 ニッケルめっき層及びスズめっき層は、いかなる方法で形成されてもよいが、生産性等の観点から、電解めっき法によって形成することが好適である。これらの厚さは、特に限定されるものではないが、ニッケルめっき層の厚さは、0.2~0.6μmの範囲にあることが好適である。この範囲の厚みを有していれば、後述するリフロー処理を施してスズと合金化した後にも十分にニッケルめっき層が残存するとともに、厚すぎることによって、めっき部材の加工性が低下することもない。また、スズめっき層の厚さは、1~2.5μmの範囲にあることが好適である。後述するリフロー処理によってニッケルと合金を形成した後にも、最表面において十分に良好な接触特性が確保されるだけの厚さのスズめっき層が残るからである。
 上記のようにニッケルめっき層とスズめっき層を順に積層した状態で、スズの融点つまり232℃よりも高い温度でリフロー処理を行うと、図1に示すように、ニッケルめっき層2とスズめっき層4の界面にスズ-ニッケル合金3が形成される。スズ-ニッケル合金3は、ニッケルめっき層2とスズめっき層4を積層して室温付近で長時間放置した場合に形成される板状の合金6(図6)とは異なり、成長方向についての異方性が小さく、ニッケルめっき層2とスズめっき層4の界面に、比較的平坦な層として形成される。より具体的には、粒状の合金の集合体としてスズ-ニッケル合金3が形成される傾向がある。この粒状のスズ-ニッケル合金3について、めっき層の断面において観察した際の長径(粒子を横切る最長の直線の長さ)は0.01~0.6μm程度であり、粒子の短径(粒子断面の中心を通る最短の直線の長さ)に対する長径の比として規定されるアスペクト比はおおむね2以下である。つまり、図5(b)、(c)に示されるような板状の合金とは明らかに異なる、異方性の小さい粒子形状をとる。スズ-ニッケル合金3が形成する層の平均の厚さとしては、0.1~0.4μm程度である。
 また、リフロー処理後に合金化せずに残るニッケルめっき層2の厚さとしては、0.5μm以下であることが望ましい。また、同様に合金化せずに残るスズめっき層4の厚さとしては、0.5~2μmの範囲にあることが望ましい。
 リフロー処理においては、スズを溶融させてニッケルと合金を形成させるために、スズの融点以上に加熱を行う必要があるが、高温にしすぎても、母材1の最結晶や軟化を起こすおそれがある。特に、軟化温度の低いアルミニウム系の母材を採用する場合は、このようなことが起こりやすい。そこで、スズの融点から0~50℃高い温度の範囲でリフロー処理を行うことが望ましい。また、スズめっき層及び/又はニッケルめっき層の全部が合金形成に費やされてしまうことや、形成された合金が最表面に露出することは好ましくない。特に、スズめっき層が全て合金化に費やされてしまうと、端子接点部の最表面がスズによって被覆されないことになり、スズによる接点特性向上の効果が得られなくなるので、好ましくない。長時間リフロー処理を行いすぎると、このような事態が発生する可能性があるので、上記温度範囲を採用した場合、リフロー処理は10~120秒の範囲の時間だけ行うことが望ましい。所望される量のスズ-ニッケル合金が形成されるように、この時間範囲の中でリフロー処理の時間を適宜設定すればよい。
 リフロー処理は、ニッケルめっき層及びスズめっき層を所定の温度に加熱することができれば、どのような加熱手段を用いて行ってもよい。例えば、熱風による加熱、火炎による加熱を例示することができる。
 上記のように、リフロー処理によってスズ-ニッケル合金3をスズめっき層4とニッケルめっき層2の界面に形成しておけば、めっき端子を室温近傍の温度で長時間放置したとしても、図5及び図6に示す、従来のリフロー処理を施されないニッケル下地層を有するスズめっき端子の場合のように、スズ-ニッケル合金が板状の構造をとって、それ以上に成長することが抑制される。つまり、板状に成長して最表面に露出したスズ-ニッケル合金が接触抵抗を上昇させることが抑制される。これは、リフロー処理によって粒状のスズ-ニッケル合金3が緻密に配列された構造がニッケルめっき層2とスズめっき層4の界面に形成されることで、このスズ-ニッケル合金3の層を通ってスズ及び/又はニッケルが拡散することが阻止され、それ以上に合金化が進行しないためであると考えられる。
 また、リフロー処理によってスズ-ニッケル合金3がニッケルめっき層2とスズめっき層3の界面に形成されることで、リフロー処理を施す前よりもさらに、スズめっき層4のニッケルめっき層2及び母材1表面への密着性が高められるという効果も発揮される。
 加えて、リフロー処理を行うと、合金の形成と同時に、スズめっき層4及びニッケルめっき層2を形成する際に層内に蓄積された内部応力が解放される。また、合金化に費やされないスズの結晶粒の粗大化が起こる。これらにより、スズめっき層4におけるウィスカーの発生が抑制される。典型的にはリフロー処理を行う前のスズの粒径は3~5μm程度であるが、リフロー処理を行うと、50μm以上となる。
 本発明にかかるコネクタ用めっき端子は、少なくとも他の導電部材と電気的に接触する接点部に、上記のようなリフロー処理によって形成されたニッケルめっき層2とスズめっき層4の界面にスズ-ニッケル合金3を有する積層構造5を備えていれば、いかなる形状を有していてもよい。一例として図2のような公知のメス型コネクタ端子と同様の形状を有するメス型コネクタ用めっき端子20とすることができる。メス型コネクタ用めっき端子20の挟圧部23は、前方が開口した四角筒状に形成され、挟圧部23内に相手方接続部材であるオス型端子29が挿入される。挟圧部23の底面の内側には、内側後方へ折り返された形状の弾性接触片21が形成されている。弾性接触片21はオス型端子29と突出したエンボス部21aにおいて接触し、オス型端子29に上向きの力を加える。弾性接触片12と相対する挟圧部23の天井部の表面が内部対向接触面22とされ、オス型端子29が弾性接触片21によって内部対向接触面22に押し付けられることにより、オス型端子29が挟圧部23内において挟圧保持される。
 メス型コネクタ用めっき端子20は、アルミニウム又はアルミニウム合金を母材1として形成されている。このうち、弾性接触片21と内部対向接触面22の挟圧部23の内側に露出される表面に、積層構造5が形成されている。積層構造5の存在により、弾性接触片21及び内部対向接触面22と、オス型端子29との接点部において、低い摩擦係数と高い耐熱性が実現されている。ここで、積層構造5は、弾性接触片21の表面全体に形成されていなくても、弾性接触片21のうち、エンボス部21aにのみ形成されていれば、十分である。逆に、さらに広い領域にわたって積層構造5が形成されていてもよく、メス型コネクタ用めっき端子20を構成する母材1の表面全体を被覆していてもよい。また、オス型端子29の表面にも、積層構造5が形成されていれば、両端子の接点部において、さらに良好な電気的接続が形成される。
 以下、実施例を用いて本発明を詳細に説明する。
[実施例1]
 清浄なアルミニウム基板の表面に、無電解めっきにより、厚さ0.05μmの亜鉛めっき層を形成した。その上に、電解めっきにより、厚さ0.8μmのニッケルめっき層を形成した。さらにその上に、電解めっきにより、厚さ1.0μmのスズめっき層を形成した。この状態で、260℃で30秒間リフロー処理を行うことにより、実施例1にかかる試料片を作成した。
[実施例2]
 清浄な銅基板の表面に、実施例1の場合と同様にニッケルめっき層とスズめっき層を形成し、リフロー処理を行ったものを実施例2にかかる試料片とした。
[比較例1、2]
 実施例1及び2にかかる試料片と同様に形成しためっき層構造に対し、リフロー処理を行わないものをそれぞれ比較例1及び2にかかる試料片とした。
[試験方法]
(めっき層の構造の評価)
 収束イオンビーム-走査イオン顕微鏡(FIB-SIM)を用いて、各実施例及び比較例にかかる試料片の断面及び表面を観察した。とりわけスズ-ニッケル界面に形成される合金相の構造に着目して、めっき層の構造の評価を行った。
 また、各実施例及び比較例にかかる試料片について、純スズ剥離液を用いてスズ(合金を形成していない純スズ層)のみを溶出させ、残った構造の表面をFIB-SIMを用いて観察した。
(接触抵抗値の測定)
 実施例2及び比較例2にかかる試料片について、初期状態と50℃で180時間放置した後の状態において、表面の接触抵抗値を計測した。接触抵抗値は四端子法によって測定した。この際、電極は一方を平板とし、一方を半径3mmのエンボス形状とした。また、開放電圧を20mV、通電電流を10mAとし、6Nの荷重を印加して測定を行った。
[試験結果及び考察]
(めっき層の構造評価)
 図3(c)に比較例1にかかる試料片の断面構造を示す。最下層の最も暗く観測される部分がアルミニウム母材であり、その上に形成された中間の明るさで観察されている層がニッケルめっき層である。また、最上層に最も明るく観察されているのが、スズめっき層である。ニッケルめっき層とスズめっき層の界面には、それら以外の層は観察されていない。
 図3(c)の状態は、実施例1において、リフロー処理を施す前の状態でもあるが、リフロー処理を施すことで、図3(a)のように、ニッケルめっき層とスズめっき層の界面において、両者の中間の明るさを有する構造が観測されるようになっている。これは、リフロー処理を経ることで形成されたスズ-ニッケル合金に対応する。スズ-ニッケル合金は、長径0.3~0.6μm程度の粒状の構造をとって、スズ/ニッケル界面に緻密に形成されている。
 また、図3(d)に示す比較例1の試料片の表面においては、スズが粒径5μm以下の小さな結晶粒を形成しているのが観察されている。これに対し、図3(b)に示す実施例1の試料片においては、このような小さな結晶粒は観察されない。さらに大きなスケールで観察すると、粒径50μm以上の粗大な結晶粒が形成されているのが見られた。これは、リフロー処理によって、粒径の小さいスズが一旦溶融して最結晶化したためである。
 実施例2、比較例2の試料片についても、同様にFIB-SIM観察を行ったところ、画像の表示は省略するが、上記と同様に、リフロー処理によってニッケル層とスズ層の間に粒状の合金が形成されること及びスズの結晶粒が粗大化することが観測された。
 次に、図4(a)、(b)に実施例1にかかる試料片について、スズを選択的に溶出させ、スズ層の下に形成されている構造を観測したFIB-SIM像を示す。図3(a)においてニッケル層とスズ層の界面において観察された粒状のスズ-ニッケル合金に対応する粒径2μm以下の小さな粒状の構造が緻密に配列されているのが分かる。
 一方、図4(c)、(d)に比較例1にかかる試料片について、同様にスズを溶出させた時のFIB-SIM像を示す。これを見ると、図4(a)、(b)のリフロー処理を経た場合とは異なり、長軸が1~5μm程度の細長い構造がランダムな配置で形成されている。これは、図5(c)に示した同様のめっき部材を長時間放置した場合に観測される構造と類似しており、ニッケル/スズ界面に形成された板状のスズ-ニッケル合金に対応していると考えられる。しかしながら、比較例1にかかるめっき試料片を形成した直後に観測しているので、この構造の成長があまり進行しておらず、図3(c)の断面像には、対応する構造は観察されていない。長時間放置すれば、板状構造がさらに成長し、図5(c)のようにスズ層中に筋状に観察されるようになると考えられる。
 実施例2、比較例2の試料片についてもスズ層を溶出させてFIB-SIM観察を行ったところ、上記と同様の結果が得られた。
 以上より、ニッケルめっき層とスズめっき層を母材上にこの順に積層し、リフロー処理を行うことで、ニッケル層とスズ層の界面に、板状のスズ-ニッケル合金が形成されず、粒状構造を有するスズ-ニッケル合金が形成されることが明らかになった。この現象は、ニッケルめっき層とスズめっき層のみが関与するものであり、アルミニウムや銅など、母材の種類にはよらないと考えられる。
(接触抵抗値の測定)
 実施例2及び比較例2の試料片について、初期状態と、50℃にて180日間放置した後の状態について測定した接触抵抗の値を下の表1に示す。誤差は、複数の試料片に対して測定した値のばらつきを示すものである。
Figure JPOXMLDOC01-appb-T000001
 実施例2のリフロー処理を施した場合と、比較例2のリフロー処理を施さない場合で、初期の接触抵抗値は一致している。つまり、最表面の状態はほぼ同じであると考えられる。
 しかし、50℃で長時間放置した後では、それらの接触抵抗値は大きく異なっている。実施例2においては、接触抵抗が初期値の2倍強にしか増加していないのに対し、比較例2においては、初期値の15倍にまで増大している。また、試料片ごとの接触抵抗値のばらつきも比較例2の場合の方が大きい。
 つまり、比較例にかかるリフロー処理を施していない試料片においては、室温付近で長時間放置することにより、ニッケルめっき層とスズめっき層の界面からスズ層最表面に向かって板状のスズ-ニッケル合金が成長し、最表面に部分的に露出して、接触抵抗を上昇させるとともに、不安定化させていると考えられる。これに対し、実施例にかかるリフロー処理を施した試料片においては、リフロー処理によってニッケルめっき層とスズめっき層の界面に粒状のスズ-ニッケル合金が形成されており、それ以上にスズ-ニッケル合金がスズ層最表面に向かって成長するのを阻止している。これによって、実施例にかかるめっき試料片においては、長時間放置されても、接触抵抗値が大きくは増加せず、安定した値を示すものと解釈される。
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。

Claims (6)

  1.  他の導電部材と電気的に接触する接点部を含む領域の母材表面に形成されたニッケルめっき層と前記ニッケルめっき層の表面に接触して最表面に形成されたスズめっき層とをスズの融点以上の温度でリフロー処理することによって、前記ニッケルめっき層と前記スズめっき層との界面にスズ-ニッケル合金が形成されていることを特徴とするコネクタ用めっき端子。
  2.  前記母材はアルミニウム又はアルミニウム合金よりなることを特徴とする請求項1に記載のコネクタ用めっき端子。
  3.  前記スズ-ニッケル合金は、粒状体を形成していることを特徴とする請求項1又は2に記載のコネクタ用めっき端子。
  4.  他の導電部材と電気的に接触する接点部を含む領域の母材表面に、ニッケルめっき層を形成し、前記ニッケルめっき層の表面に接触させてスズめっき層を形成し、前記ニッケルめっき層と前記スズめっき層とをスズの融点以上の温度でリフロー処理することで、前記ニッケルめっき層と前記スズめっき層との界面にスズ-ニッケル合金を形成することを特徴とするコネクタ用めっき端子の製造方法。
  5.  前記母材としてアルミニウム又はアルミニウム合金よりなる母材を使用することを特徴とする請求項4に記載のコネクタ用めっき端子の製造方法。
  6.  前記スズ-ニッケル合金を粒状体として形成することを特徴とする請求項4又は5に記載のコネクタ用めっき端子の製造方法。
PCT/JP2013/069142 2012-08-24 2013-07-12 コネクタ用めっき端子及びコネクタ用めっき端子の製造方法 WO2014030461A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-184695 2012-08-24
JP2012184695A JP2014040649A (ja) 2012-08-24 2012-08-24 コネクタ用めっき端子及びコネクタ用めっき端子の製造方法

Publications (1)

Publication Number Publication Date
WO2014030461A1 true WO2014030461A1 (ja) 2014-02-27

Family

ID=50149774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069142 WO2014030461A1 (ja) 2012-08-24 2013-07-12 コネクタ用めっき端子及びコネクタ用めっき端子の製造方法

Country Status (2)

Country Link
JP (1) JP2014040649A (ja)
WO (1) WO2014030461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131786A1 (ja) * 2019-12-26 2021-07-01 株式会社オートネットワーク技術研究所 メス端子、コネクタ、及びワイヤーハーネス
CN115175466A (zh) * 2022-07-04 2022-10-11 江苏富乐华半导体科技股份有限公司 一种提升陶瓷覆铜基板表面电镀锡镍合金的焊接方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740635B2 (ja) * 2015-03-13 2020-08-19 三菱マテリアル株式会社 錫めっき付銅端子材及びその製造方法並びに電線端末部構造
JP6946806B2 (ja) * 2017-07-19 2021-10-06 I−Pex株式会社 端子及び端子の製造方法
JP7270968B2 (ja) * 2019-05-21 2023-05-11 オリエンタル鍍金株式会社 めっき積層体の製造方法及びめっき積層体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107290A (ja) * 1999-10-12 2001-04-17 Kyowa Densen Kk 電子部品用錫系めっき条材とその製造法
JP2004263210A (ja) * 2003-02-26 2004-09-24 Toyo Kohan Co Ltd ハンダ性に優れた表面処理Al板、それを用いたヒートシンク、およびハンダ性に優れた表面処理Al板の製造方法
JP2006342369A (ja) * 2005-06-07 2006-12-21 Toyo Kohan Co Ltd 表面処理Al板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206977A (ja) * 2005-01-28 2006-08-10 Toyo Kohan Co Ltd ハンダ性に優れた表面処理Al板
JP5101798B2 (ja) * 2005-02-14 2012-12-19 東洋鋼鈑株式会社 表面処理Al板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107290A (ja) * 1999-10-12 2001-04-17 Kyowa Densen Kk 電子部品用錫系めっき条材とその製造法
JP2004263210A (ja) * 2003-02-26 2004-09-24 Toyo Kohan Co Ltd ハンダ性に優れた表面処理Al板、それを用いたヒートシンク、およびハンダ性に優れた表面処理Al板の製造方法
JP2006342369A (ja) * 2005-06-07 2006-12-21 Toyo Kohan Co Ltd 表面処理Al板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131786A1 (ja) * 2019-12-26 2021-07-01 株式会社オートネットワーク技術研究所 メス端子、コネクタ、及びワイヤーハーネス
JP2021106129A (ja) * 2019-12-26 2021-07-26 株式会社オートネットワーク技術研究所 メス端子、コネクタ、及びワイヤーハーネス
CN115175466A (zh) * 2022-07-04 2022-10-11 江苏富乐华半导体科技股份有限公司 一种提升陶瓷覆铜基板表面电镀锡镍合金的焊接方法
CN115175466B (zh) * 2022-07-04 2023-06-06 江苏富乐华半导体科技股份有限公司 一种提升陶瓷覆铜基板表面电镀锡镍合金的焊接方法

Also Published As

Publication number Publication date
JP2014040649A (ja) 2014-03-06

Similar Documents

Publication Publication Date Title
TWI362046B (en) Flat cable
JP5696811B2 (ja) コネクタ用めっき端子および端子対
JP5356544B2 (ja) 圧着端子、接続構造体、並びに圧着端子の作製方法
WO2014030461A1 (ja) コネクタ用めっき端子及びコネクタ用めっき端子の製造方法
WO2009123157A1 (ja) 接続部品用金属材料およびその製造方法
WO2018124116A1 (ja) 表面処理材及びその製造方法、並びにこの表面処理材を用いて作製した部品
JP5949291B2 (ja) コネクタ端子及びコネクタ端子用材料
JP6060875B2 (ja) 基板用端子および基板コネクタ
US20150280339A1 (en) Connector terminal and material for connector terminal
WO2018124114A1 (ja) 表面処理材およびこれを用いて作製した部品
TW201527596A (zh) 鍍錫之銅合金端子材料
JP5479789B2 (ja) コネクタ用金属材料
WO2014034300A1 (ja) コネクタ端子及びコネクタ端子用材料
JP2013227630A (ja) コネクタ用めっき端子
JP2013254681A (ja) コネクタ端子
JP2014201753A (ja) コネクタ端子材料の製造方法およびコネクタ端子の製造方法
TW201837240A (zh) 電鍍線棒材及其製造方法,及使用其形成的電纜、電線、線圈及彈簧構件
JP5803833B2 (ja) コネクタ用めっき端子
US9954297B2 (en) Terminal fitting and connector
WO2018124115A1 (ja) 表面処理材およびこれを用いて作製した部品
JP6193687B2 (ja) 銀めっき材およびその製造方法
WO2015182786A1 (ja) 電気接点材、電気接点材の製造方法および端子
CN109845041B (zh) 连接端子及连接端子的制造方法
WO2018079253A1 (ja) 電気接点、コネクタ端子対、およびコネクタ対
JP2018104821A (ja) 表面処理材及びこれを用いて作製した部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830280

Country of ref document: EP

Kind code of ref document: A1