WO2014027384A1 - 3次元接触歯形を有する波動歯車装置 - Google Patents
3次元接触歯形を有する波動歯車装置 Download PDFInfo
- Publication number
- WO2014027384A1 WO2014027384A1 PCT/JP2012/005193 JP2012005193W WO2014027384A1 WO 2014027384 A1 WO2014027384 A1 WO 2014027384A1 JP 2012005193 W JP2012005193 W JP 2012005193W WO 2014027384 A1 WO2014027384 A1 WO 2014027384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tooth
- section
- tooth profile
- curve
- external
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/08—Profiling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H49/00—Other gearings
- F16H49/001—Wave gearings, e.g. harmonic drive transmissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/08—Profiling
- F16H55/0833—Flexible toothed member, e.g. harmonic drive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19642—Directly cooperating gears
Definitions
- the present invention relates to a wave gear device having a three-dimensional contact tooth shape in which a rigid internal gear and a flexible external gear mesh in a three-dimensional contact state.
- a meshing state is formed in which both gears are in continuous contact with each other in a cross section perpendicular to the axis set at a predetermined position in the tooth trace direction of both gears. Even in the cross-sections perpendicular to each axis in the direction of the tooth trace, a meshing state in which both gears are partially in contact is formed.
- Wave gear device is the founder C.I. W. Invented by Musser (Patent Document 1). Since then, various inventions related to the wave gear device have been made by many researchers including the present inventor. There are various types of inventions related to the tooth profile. For example, the inventor proposed in Patent Document 2 that the basic tooth profile is an involute tooth profile, and in Patent Documents 3 and 4, a method of approximating the meshing of the teeth of the rigid internal gear and the flexible external gear with a rack. It proposes a tooth form design method that uses it to derive the end tooth form of both gears that make wide-area contact.
- a typical wave gear device has an annular rigid internal gear, a flexible external gear coaxially arranged inside, and a wave generator fitted inside.
- the flexible external gear is formed on a flexible cylindrical body, a diaphragm extending in the radial direction from the rear end of the cylindrical body, and an outer peripheral surface portion on the front end opening side of the cylindrical body. With external teeth.
- the flexible external gear is bent into an ellipse by a wave generator and meshes with the rigid internal gear at both ends of the long axis of the ellipse.
- the external teeth of the flexible external gear flexed in an elliptical shape extend from the diaphragm along the direction of the tooth trace from the inner end of the outer tooth on the diaphragm side toward the outer end of the outer tooth on the front end opening side. The amount of deflection increases almost in proportion to the distance.
- each portion of the tooth portion of the flexible external gear repeatedly bends radially outward and inward. Such a bending operation of the teeth of the flexible external gear is called “corning”.
- the rim neutral circle of the external teeth of the flexible external gear is deformed into an elliptical rim neutral curve.
- w is the amount of bending in the radial direction relative to the rim neutral circle before deformation
- the value obtained by dividing the radius of the rim neutral circle by the reduction ratio of the wave gear device is a normal (standard) This is called a deflection amount wo.
- these ratios (w / wo) are called deviation coefficients ⁇ .
- the deflection of the normal deflection amount wo is called “non-deviation deflection”, the deflection of the deflection amount ( ⁇ > 1) larger than the normal deflection amount wo is called “positive deflection”, and the deflection of the normal deflection amount wo Also, a small amount of deflection ( ⁇ ⁇ 1) is called “negative deflection”. Assuming that the module of the flexible external gear is m and the difference in the number of teeth between the flexible external gear and the rigid internal gear is n (n is a positive integer), the deflection amount w is “2 ⁇ mn”.
- the present inventor has proposed a wave gear device having a tooth profile capable of continuous meshing in consideration of the coning of the teeth of the flexible external gear.
- the wave gear device proposed in Patent Document 5 is as follows.
- the meshing of the flexible external gear and the rigid internal gear is approximated by rack meshing.
- Each movement trajectory of the tooth of the flexible external gear relative to the tooth of the rigid internal gear accompanying rotation of the wave generator is obtained in a cross section perpendicular to the axis including the main cross section in the tooth trace direction of the flexible external gear.
- the said 1st similarity curve is employ
- a curve obtained by rotating the first similarity curve by 180 degrees around the end point of the first similarity curve is multiplied by (1- ⁇ ) / ⁇ with the end point as the center of similarity to obtain a second similarity curve Ask for.
- the second similar curve is adopted as the basic tooth profile of the end of the flexible external gear.
- the main cross section is sandwiched and the tooth profile portions on both sides in the tooth trace direction are shifted.
- the range of the tooth trace extending from the main cross section to the outer tooth outer edge and the outer tooth internal to the main cross section is centered on the meshing of the continuous tooth profile over a wide range in the main cross section. Effective engagement can be realized in the range of the tooth traces reaching the end. Therefore, more torque can be transmitted compared to the wave gear device meshing in the conventional narrow tooth trace range.
- An object of the present invention is to consider the coning of a flexible external gear in a wave gear device in which the tooth shapes of the rigid internal gear and the flexible external gear are a composite tooth profile having a curved tooth profile portion and a linear tooth profile portion. Then, it is providing the three-dimensional contact tooth profile which can implement
- the tooth forms of the rigid internal gear and the flexible external gear are compound tooth forms each having a straight tooth portion and a curved tooth portion.
- the curve defining the curved tooth profile is a similarity curve obtained by similarity conversion of a part of the movement trajectory of the tooth of the flexible external gear when the meshing of both gears is approximated by rack meshing.
- ⁇ Axis perpendicular to the center of the tooth of the flexible external gear in the direction of the tooth trace is set as the main cross section where no deflection occurs.
- dislocations are applied in different forms to the external teeth so that the meshing of the tooth profile in consideration of coning is established on both sides of the main cross section of the flexible external gear in the tooth trace direction. .
- the effective meshing between both gears can be realized in the entire range of the tooth trace.
- a wave gear device capable of transmitting more torque can be realized.
- FIG. 1 It is a schematic front view of a general wave gear device. It is explanatory drawing which shows the bending condition of a flexible external gear, (a) shows the state before a deformation
- FIG. 1 is a front view of the wave gear device.
- FIG. 2 is a cross-sectional view showing a state in which the opening of the flexible external gear is bent in an elliptical shape, in a cross-section including a shaft,
- FIG. 2 (a) is a state before deformation, and
- FIG. 2 (b) is a state after deformation.
- FIG. 2 (c) shows a cross section including the minor axis of the elliptic curve after deformation.
- 2A to 2C the solid line indicates the cup-shaped flexible external gear, and the broken line indicates the top hat-shaped flexible external gear.
- the wave gear device 1 includes an annular rigid internal gear 2, a flexible external gear 3 disposed on the inner side thereof, and a wave generator having an elliptical profile fitted on the inner side. 4.
- the rigid internal gear 2 and the flexible external gear 3 are both spur gears of the module m.
- the difference in the number of teeth between the two gears is 2n (n is a positive integer), and the rigid internal gear 2 is more common.
- the flexible external gear 3 is bent in an elliptical shape by a wave generator 4 having an elliptical outline, and meshes with the rigid internal gear 2 at both end portions in the major axis L1 direction of the elliptical curve.
- the flexible external gear 3 includes a flexible cylindrical body 31, a diaphragm 32 that extends continuously in the radial direction from the rear end 31 b, a boss 33 that continues to the diaphragm 32, and the cylindrical body 31. External teeth 34 formed on the outer peripheral surface portion on the opening end 31a side.
- the cylindrical body portion 31 is directed from the diaphragm-side rear end 31b toward the opening end 31a.
- the amount of bending outward or inward in the radial direction is gradually increased.
- the amount of outward deflection gradually increases in proportion to the distance from the rear end 31b to the open end 31a, as shown in FIG. 2 (c).
- the amount of inward bending gradually increases in proportion to the distance from the rear end 31b to the opening end 31a. Therefore, the amount of deflection of the external teeth 34 formed on the outer peripheral surface portion on the opening end 31a side changes in each axis perpendicular to the tooth trace direction. That is, the amount of deflection gradually increases in proportion to the distance from the rear end 31b from the position of the inner end 34b on the diaphragm side toward the position of the outer end 34a on the opening end side in the tooth trace direction of the outer teeth 34.
- the axially perpendicular cross section 34c near the center of the external teeth 34 of the flexible external gear 3 in the direction of the tooth trace is a cross section in which no deflection is generated.
- This cross section is referred to as a “main cross section 34c”.
- FIG. 5 is an explanatory diagram showing an example of a tooth profile that is the basis of the tooth profile of both the gears 2 and 3.
- the tooth profile of the external tooth 34 shown in this figure is a basic tooth profile that is the basis for defining the tooth profile of the main cross section 34c set near the center of the external teeth 34 in the tooth trace direction.
- the basic tooth profile is a convex curvilinear external tooth addendum portion 41, a continuous external tooth linear tooth profile portion 42, a concave curved external tooth base tooth profile portion 43 continuous thereto, and a continuous tooth. It is defined by the external tooth bottom portion 44.
- the main cross section 34c is, for example, a cross section perpendicular to the axis through which the ball center line of the wave bearing passes, as shown in FIG.
- the tooth profile shape of the outer teeth 34 from the main cross section 34c to the outer end 34a was obtained by applying a negative dislocation in the tooth height direction and the tooth thickness direction to the basic tooth shape shown in FIG. Dislocation tooth profile.
- the tooth profile of the outer teeth 34 extending from the main cross section 34c to the inner end 34b is a dislocation tooth profile obtained by subjecting the basic tooth profile shown in FIG. 3 to minus shift only in the tooth height direction, as will be described later. is there.
- the tooth profile of the internal teeth 24 is the same throughout the tooth trace direction, and is set to the tooth profile shown in FIG. That is, the tooth profile shape of the internal teeth 24 is a convex curved internal tooth end tooth profile portion 51, an internal tooth linear tooth profile portion 52 continuous thereto, a concave curved internal tooth root tooth profile portion 53 continuous thereto, and The inner tooth root portion 54 is continuous with the inner tooth root portion 54.
- FIG. 3 is a diagram showing a movement locus of the external teeth 34 of the flexible external gear 3.
- the movement locus of the external teeth 34 of the flexible external gear 3 with respect to the internal teeth 24 of the rigid internal gear 2 is obtained.
- the x-axis indicates the translation direction of the rack
- the y-axis indicates the direction perpendicular to the rack
- ⁇ indicates the rotation angle of the wave generator.
- the origin of the y-axis in FIG. 3 is the average position of the amplitude of the movement trajectory.
- Movement locus M 2 is of the case of a positive deviation deflection is deflection factor kappa> 1
- the movement locus M 3 are obtained when the negative excursion deflection is deflection factor kappa ⁇ 1.
- the main cross section 34c which is the basis for forming the tooth profile of the two gears 2 and 3 is perpendicular to the center of the external tooth 34 of the flexible external gear 3 in the vicinity of the center in the tooth trace direction.
- the positive excursion movement trajectory M 2 is a trajectory obtained in a cross section perpendicular to the main end 34 c in the tooth trace direction of the external teeth 34 on the outer end 34 a side
- the negative excursion movement trajectory M 3 is a tooth of the external teeth 34. This is a locus obtained in a cross section perpendicular to the axis on the inner end 34b side with respect to the main cross section 34c in the muscle direction.
- FIG. 4 is an explanatory diagram showing a method for setting the tooth addendum of the external teeth 34 and the internal teeth 24.
- a use range set in movement locus M 1 unpolarized position deflected state in order to set the addendum tooth profile.
- the main section 34c movement locus M 1 parameter ⁇ is ⁇ of: from 0 (B point the bottom of the movement locus): take the curved portion ranging (A point top of the movement locus). Point B as the center of similarity, obtaining a first similarity curve BC with similarity transformation in the curved portion of the movement locus M 1 lambda times (0 ⁇ ⁇ 1).
- the first similarity curve BC is adopted as a tooth profile curve used to define the tooth addendum of the rigid internal gear 2.
- a curve B′C is obtained.
- the curve B′C is multiplied by (1 ⁇ ) / ⁇ with the end point C as the center of similarity to obtain a second similarity curve AC.
- the second similarity curve AC is adopted as a tooth profile curve used for defining the end tooth profile of the basic tooth profile shape of the flexible external gear 3.
- the basic tooth profile shape in the main cross section 34c of the external tooth 34 is set as follows. 4 and 5, a straight line L of the pressure angle ⁇ passing through the point C is drawn with respect to the tooth profile curve AC for defining the addendum tooth profile in the basic tooth profile shape of the flexible external gear 3.
- the curve portion AD between the end point A and the intersection D with the straight line L in the tooth profile curve AC is obtained.
- the curved portion AD is adopted as a tooth profile curve that defines a normal tooth addendum, and the external tooth addendum portion 41 is formed using the tooth profile curve.
- the external tooth straight tooth portion 42 is defined by the straight portion of the straight line L extending from the intersection D.
- the external tooth bottom is defined by the external tooth linear tooth portion 42 and the predetermined external tooth bottom curve so that the external tooth linear tooth portion 42 has a predetermined clearance for the internal tooth 24.
- the external tooth root portion 43 is defined by a predetermined concave curve connecting the portion 44.
- the tooth profile of the internal tooth 24 is formed using the tooth profile curve BC used to define the end tooth profile.
- the intersection of the straight line L and the curve BC is defined as E, and this curve portion BE is adopted as a tooth profile curve that defines a normal tooth addendum, and the tooth profile curve is used.
- the internal tooth addendum portion 51 is formed.
- the internal tooth straight tooth portion 52 is defined by the straight portion of the straight line L extending from the intersection point E.
- the inner tooth bottom portion defined by the inner tooth straight tooth portion 52 and the predetermined inner tooth bottom curve so that the inner tooth straight tooth portion 52 secures a predetermined apex space with respect to the outer teeth 34.
- An internal tooth root portion 53 is defined by a predetermined concave curve that connects to 54.
- tooth profile portions 43, 44, 53, and 54 of both gears do not participate in meshing. Therefore, the tooth profile portions 43, 44, 53, and 54 of the tooth base do not interfere with the tooth profile portions 51, 52, 41, and 42 of the mating tooth ends, and can be freely set.
- the basic tooth profile shape and the tooth profile shape of the internal teeth 24 in the main cross section 34c of the external teeth 34 shown in FIG. 5 are set.
- the pressure angle ⁇ of the linear tooth profile is 9 degrees. It is desirable to avoid a small value of ⁇ from the viewpoint of gear machining, and it is sufficient that a linear tooth profile is formed from a point where the pressure angle is around 6 degrees to 12 degrees and the tooth profile is connected to the tooth root.
- the tooth profile of the inner tooth 24 and the tooth profile of the outer tooth 34 on the main cross section 34c set as described above are obtained by contact between the tooth addendum portions of both teeth 24, 34 and between the linear tooth profile portions. Engagement by contact.
- external teeth 34 along the movement locus M 1 flexible external gear 3 is moved with respect to the internal 24 of the rigid internal gear 2, it is defined by similar curves derived from addendum tooth profile between both movement trajectory As a result, continuous contact is assured and a continuous meshing of both gears is formed.
- the deviation coefficient is ⁇ > 1 in each axis perpendicular to the outer teeth 34 from the main cross section 34c to the outer end side, and is deviated in each axis perpendicular section from the main section 34c to the outer teeth 34 on the inner end side.
- the order coefficient ⁇ ⁇ 1.
- both the positive displacement movement locus M 2 and the negative displacement movement locus M 3 interfere with the non-deviation movement locus M 1, and the two teeth 24 and 34 contact each other as they are. A meshing state cannot be formed.
- the tooth profile of the tooth profile in the cross section perpendicular to each axis is the same as the tooth profile of the tooth profile in the main section 34c.
- dislocation is applied to the basic tooth profile shown in FIG.
- the obtained dislocation tooth profile is a tooth profile having a cross section perpendicular to each axis extending from the main cross section 34c to the outer end 34a.
- the horizontal dislocation amount x and the vertical dislocation amount y required at this time are given by the following equations (4a) and (4b). This equation is obtained by assuming that the pressure angle of the linear portion of the rack tooth profile that has been displaced is ⁇ , and that the linear tooth portion after the displacement in the cross section perpendicular to the axis coincides with the external tooth linear tooth portion 42 of the main cross section 34c. .
- the deviation coefficient is ⁇ ⁇ 1
- the amount of deflection is less than that of the main cross section 34c.
- FIG. 6 shows an example of the vertical shift amount at each position of the tooth trace of the external tooth 34 of the flexible external gear 3 represented by the above equations (4b) and (5).
- the horizontal axis indicates the displacement coefficient ⁇ of the cross section perpendicular to each axis of the flexible external gear 3
- the vertical axis indicates the vertical displacement given by the equations (4b) and (5) corresponding to the displacement coefficient ⁇ . Indicates the amount.
- the tooth thickness interference caused by the meshing can be used as a preload for removing backlash.
- the dislocation straight line C3 is a straight line indicating the amount of dislocation at each position from the main cross section 34c to the inner end 34b represented by the equation (5).
- the tooth profile outline of the external tooth 34 when viewed along the tooth trace direction is the main cross section. It becomes a polygonal line with the position of 34c as a vertex.
- Fig.7 (a) is explanatory drawing which shows the tooth profile outline along the tooth trace direction of the external tooth 34 and the internal tooth 24 set as mentioned above, and shows the state (deepest engagement state) in the long axis L1.
- a portion including the main cross section 34c in the external tooth 34 is defined by a quartic curve C4, and a portion closer to the outer end 34a is defined by a tangent line C2 approximating the dislocation curve C1.
- a portion closer to the inner end 34b than 34c is defined by a dislocation line C3.
- FIGS. 7B, 7C, and 7D are explanatory views showing tooth profile shapes on the cross-section perpendicular to the axis at positions of the outer end 34a, the main section 34c, and the inner end 34b of the outer teeth 34, respectively. .
- These drawings also show the state at the position of the long axis L1 (the deepest engagement state).
- the tooth profile of the internal teeth 24 is the same in each axis perpendicular to the tooth trace direction.
- the tooth profile of the external teeth 34 is defined by the basic tooth profile shown in FIG. 5 in the main cross section 34c, but is defined by a straight line 45 so that the top is slightly scraped to form a flat portion. .
- the tooth profile in the cross section perpendicular to the axis closer to the outer end 34a than the main section 34c is a shape in which vertical and horizontal negative dislocations are applied to the basic tooth profile.
- the tooth profile in the cross-section perpendicular to the inner end 34b from the main section 34c is a shape obtained by subjecting the basic tooth profile to vertical minus dislocations.
- FIG. 8 shows a movement trajectory M 1 by rack approximation of the external teeth 34 to the internal teeth 24 in three cross-sections perpendicular to the axis from the main cross section 34c of the external teeth 34 of the flexible external gear 3 to the outer end 34a.
- M 2 (1) and M 2 (2) are shown.
- the engagement of both teeth 34, 24 is made with the straight tooth profile portion 42 of the outer tooth 34 in contact with the straight tooth profile portion 52 of the inner tooth 24. It is formed.
- FIG. 9 shows a movement trajectory M 1 by rack approximation of the external teeth 34 to the internal teeth 24 in three axially orthogonal cross sections from the main cross section 34 c of the external teeth 34 of the flexible external gear 3 to the inner end 34 b.
- M 3 (2) and M 3 (2) are shown.
- the movement trajectories M 3 (1) and M 3 (2) of the points on the tooth profile of the external teeth 34 after the dislocation are the bottom of the movement trajectory M 1 of the main cross section 34c. Touch at.
- the trajectory of the bottom portion in the vicinity of these moving track is well approximated to the movement locus M 1. This has been found by the present inventors. Thereby, the meshing by the continuous contact between the tooth addendum portions is formed.
- 10 (a), 10 (b), and 10 (c) are explanatory diagrams showing the appearance of the meshing between the external teeth 34 and the internal teeth 24 having the tooth profile as described above by rack approximation.
- 10A is obtained at the position of the outer end 34a of the outer tooth 34
- FIG. 10B is obtained at the position of the main cross section 34c of the outer tooth 34
- FIG. 10C is obtained at the position of the inner end 34b of the outer tooth 34.
- the main cross section 34c shows the movement locus when a flat portion is provided.
- the external teeth 34 of the flexible external gear 3 are approximate to the internal teeth 24 in all cross sections from the outer end 34a through the main cross section 34c to the inner end 34b. Sufficient contact has been made.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
- Gears, Cams (AREA)
Abstract
Description
図1は波動歯車装置の正面図である。図2はその可撓性外歯車の開口部を楕円状に撓ませた状況を含軸断面で示す断面図であり、図2(a)は変形前の状態、図2(b)は変形後における楕円状曲線の長軸を含む断面、図2(c)は変形後における楕円状曲線の短軸を含む断面をそれぞれ示してある。なお、図2(a)~(c)において実線はカップ状の可撓性外歯車を示し、破線はシルクハット状の可撓性外歯車を示す。
図5は両歯車2、3の歯形の基本となる歯形形状の一例を示す説明図である。この図に示す外歯34の歯形形状は、外歯34の歯筋方向の中央付近に設定した主断面34cの歯形形状を規定するための基本となる基本歯形形状である。基本歯形形状は、凸曲線状の外歯歯末歯形部分41、これに連続する外歯直線歯形部分42、これに連続する凹曲線状の外歯歯元歯形部分43、および、これに連続する外歯歯底部分44によって規定されている。主断面34cは、例えば、図2に示すように、ウエーブベアリングのボール中心線が通る軸直角断面である。
次に、図3、図4および図5を参照して、外歯34の基本歯形形状および内歯24の歯形形状の設定方法を説明する。
図3は可撓性外歯車3の外歯34の移動軌跡を示す図である。波動歯車装置1の両歯車2、3の歯の相対運動をラックで近似すると、剛性内歯車2の内歯24に対する可撓性外歯車3の外歯34の移動軌跡が得られる。図において、x軸はラックの併進方向、y軸はそれに直角な方向を示し、θは波動発生器の回転角を示す。可撓性外歯車3の外歯34の歯筋方向における任意の位置の軸直角断面において、当該外歯34の楕円状リム中立線における長軸位置L1における当該外歯34が楕円状に撓む前のリム中立円に対する撓み量は、κを偏位係数として2κmnである。可撓性外歯車3の外歯34の移動軌跡は次の(1)式で与えられる。
x=0.5mn(θ-κsinθ)
y=κmncosθ (1)
x=0.5(θ-κsinθ)
y=κcosθ (1a)
図4は、外歯34および内歯24の歯末歯形の設定方法を示す説明図である。この図には、歯末歯形を設定するために、無偏位撓み状態の移動軌跡M1に設定した利用範囲を示してある。まず、主断面34cの移動軌跡M1のパラメーターθがπ(B点:移動軌跡の底部)から0(A点:移動軌跡の頂部)までの範囲の曲線部分を取る。B点を相似の中心として、この移動軌跡M1の曲線部分をλ倍(0<λ<1)に相似変換して第1相似曲線BCを得る。図4には、λ=0.6の場合を示してある。第1相似曲線BCを剛性内歯車2の歯末歯形を規定するために用いる歯形曲線として採用する。
剛性内歯車の歯末歯形の基本式:
xCa=0.5{(1-λ)π+λ(θ-sinθ)}
yCa=λ(1+cosθ) (2)
(0≦θ≦π)
可撓性外歯車の歯末歯形の基本式:
xFa=0.5(1-λ)(π-θ+sinθ)
yFa=(λ-1)(1+cosθ) (3)
(0≦θ≦π)
上記のように求めた歯末歯形を規定するための歯形曲線ACを用いて、次のように外歯34の主断面34cにおける基本歯形形状を設定する。図4および図5を参照して説明すると、可撓性外歯車3の基本歯形形状における歯末歯形を規定するための歯形曲線ACに対して、点Cを通る圧力角αの直線Lを引き、歯形曲線ACにおける端点Aから直線Lとの交点Dまでの間の曲線部分ADを求める。この曲線部分ADを正規の歯末歯形を規定する歯形曲線として採用し、当該歯形曲線を用いて外歯歯末歯形部分41を形成する。また、交点Dから延びている直線Lの直線部分によって外歯直線歯形部分42を規定する。この際、外歯直線歯形部分42が内歯24に対して所定の頂隙が確保されるように、当該外歯直線歯形部分42と所定の外歯歯底曲線によって規定される外歯歯底部分44との間を繋ぐ所定の凹曲線によって外歯歯元歯形部分43を規定する。
同様にして、歯末歯形を規定するために用いる歯形曲線BCを用いて内歯24の歯形を形成する。図4および図5を参照して説明すると、前記直線Lと曲線BCとの交点をEとし、この曲線部分BEを正規の歯末歯形を規定する歯形曲線として採用し、当該歯形曲線を用いて内歯歯末歯形部分51を形成する。また、交点Eから延びている直線Lの直線部分によって内歯直線歯形部分52を規定する。さらに、内歯直線歯形部分52が外歯34に対して所定の頂隙が確保されるように、当該内歯直線歯形部分52と所定の内歯歯底曲線によって規定される内歯歯底部分54との間を繋ぐ所定の凹曲線によって内歯歯元歯形部分53を規定する。
主断面34cにおける両歯車2、3の歯末歯形同士の噛み合いにおいては、図3に示す移動軌跡M1に沿って可撓性外歯車3が剛性内歯車2に対して移動するとき、歯末歯形同士は相似曲線の性質から連続的に接触する。
y=κ-1 (5)
Claims (5)
- 剛性内歯車と、この内側に同軸に配置した可撓性外歯車と、この内側に嵌めた波動発生器とを有し、
前記可撓性外歯車は、可撓性の円筒状胴部と、この円筒状胴部の後端から半径方向に延びているダイヤフラムと、前記円筒状胴部の前端開口の側の外周面部分に形成した外歯とを備え、
前記可撓性外歯車は前記波動発生器によって楕円状に撓められて、前記剛性内歯車の内歯に部分的に噛み合っており、
前記剛性内歯車および前記可撓性外歯車は、共にモジュールmの平歯車であり、
前記可撓性外歯車の歯数は、nを正の整数とすると、前記剛性内歯車の歯数より2n枚少なく、
前記外歯の歯筋方向の任意の位置での軸直角断面において、前記可撓性外歯車の楕円状のリム中立曲線の長軸位置における、楕円状に撓む前のリム中立円に対する撓み量は、偏位係数をκとすると、2κmnであり、
前記撓み量は、前記外歯の歯筋方向に沿って、前記ダイヤフラムの側の外歯内端から前記前端開口の側の外歯外端に向けて、前記ダイヤフラムからの距離に比例して増加しており、
前記外歯の歯筋方向における前記外歯内端から前記外歯外端まで間の途中の位置の軸直角断面を主断面とすると、当該主断面の撓み状態は偏位係数κ=1の無偏位撓みに設定され、前記外歯内端の撓み状態は偏位係数κ<1の負偏位撓みであり、前記外歯外端の撓み状態は偏位係数κ>1の正偏位撓みであり、
前記波動発生器の回転に伴う前記外歯の前記内歯に対する移動軌跡は、前記外歯と前記内歯のかみ合いをラックかみ合いで近似した場合に、前記外歯の各軸直角断面において、x軸をラックの併進方向、y軸をそれに直角な方向、y軸の原点を前記移動軌跡の振幅の平均位置に設定した場合に、次の(1)式により規定され、
x=0.5mn(θ-κsinθ)
y=κmncosθ (1)
次の(2)式で規定される第1相似曲線は、前記外歯の前記主断面において得られる前記移動軌跡における一つの頂点をAとし、当該頂点Aの次の底点をBとし、λを1未満の正の値とすると、頂点Aから底点Bに至る第1曲線部分ABを、前記底点Bを相似の中心としてλ倍して得られる相似曲線BCであり、
xFa=0.5(1-λ)(π-θ+sinθ)
yFa=(λ-1)(1+cosθ) (2)
(0≦θ≦π)
次の(3)式で規定される第2相似曲線は、前記第1相似曲線BCにおけるC点を中心として、当該第1相似曲線BCを180度回転することによって得られる第2曲線を、当該C点を相似の中心として、{(1-λ)/λ}倍して得られる相似曲線ACであり、
xCa=0.5{(1-λ)π+λ(θ-sinθ)}
yCa=λ(1+cosθ) (3)
(0≦θ≦π)
前記外歯における前記主断面上の歯形を規定する基本歯形は、αを20未満の正の値とし、前記第2相似曲線ACにおけるC点を通り、y軸に対する傾斜角度がα度の直線をLとし、当該直線Lと前記第2相似曲線ACの交点をDとすると、前記第2相似曲線AC上におけるA点から交点Dまでの間の曲線部分によって規定される歯末歯形部分と、前記交点Dから延びている前記直線の部分によって規定される直線歯形部分と、前記直線歯形部分に接続した歯元歯形部分とによって規定され、この歯元歯形部分を規定する曲線は、前記内歯に干渉することのないように設定した両歯のかみ合いに関与しない曲線であり、
前記外歯における前記主断面から前記外歯外端に至る各軸直角断面上の歯形は、各軸直角断面上における前記基本歯形形状が描く前記移動軌跡における前記直線歯形部分が、前記主断面における前記基本歯形形状が描く移動軌跡における前記直線歯形部分に一致するまで、各軸直角断面上における前記基本歯形形状に対して前記x軸方向および前記y軸方向に転位を施すことにより得られた転位歯形によって規定され、
前記外歯における前記主断面から前記外歯内端に至る各軸直角断面上の歯形は、各軸直角断面上の前記基本歯形形状が描く前記移動軌跡が、前記主断面における前記基本歯形形状が描く前記移動軌跡の底部に接するように、各軸直角断面上における前記基本歯形形状に対して前記y軸方向に転位を施すことにより得られる転位歯形によって規定され、
前記内歯の歯形は、前記直線Lと前記第1相似曲線BCとの交点をEとすると、前記第1相似曲線BC上におけるB点から交点Eまでの間の曲線部分によって規定される歯末歯形部分と、前記交点Eから延びている前記直線の部分によって規定される直線歯形部分と、当該直線歯形部分に接続した歯元歯形部分とによって規定され、この歯元歯形部分を規定する曲線は、前記外歯に干渉することのないように設定した両歯のかみ合いに関与しない曲線である、
3次元接触歯形を有する波動歯車装置。 - y軸方向の前記転位量として、前記の(4b)式のy軸方向の転位量を規定する転位曲線の代わりに、当該転位曲線における撓み係数κ=1の点に引いた接線で表される転位直線によって規定される転位量を採用する請求項2に記載の3次元接触歯形を有する波動歯車装置。
- 前記外歯における前記主断面から前記外歯内端に至る外歯部分に施すy軸方向の転位量を次の(5)式により与える請求項1乃至3のうちのいずれか一つの項に記載の3次元接触歯形を有する波動歯車装置。
y=(κ―1)mn (5) - 前記主断面を境として、前記外歯外端の側および前記外歯内端の側に施すy軸方向の転位によって生ずる当該主断面の位置を頂点とする折れ線状の歯筋輪郭における、前記頂点を含む歯筋輪郭部分を、前記主断面の位置に頂点を持つ4次曲線を用いて滑らかに繋がる輪郭にした請求項1乃至4のうちのいずれか一つの項に記載の3次元接触歯形を有する波動歯車装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280008141.7A CN103748382B (zh) | 2012-08-17 | 2012-08-17 | 具有三维接触齿形的波动齿轮装置 |
PCT/JP2012/005193 WO2014027384A1 (ja) | 2012-08-17 | 2012-08-17 | 3次元接触歯形を有する波動歯車装置 |
US13/993,252 US9052004B2 (en) | 2012-08-17 | 2012-08-17 | Wave gear device having three-dimensional-contact tooth profile |
DE112012000328.4T DE112012000328T5 (de) | 2012-08-17 | 2012-08-17 | Wellgetriebe, das ein Zahnprofil mit dreidimensionalem Kontakt hat |
JP2013524296A JP5456941B1 (ja) | 2012-08-17 | 2012-08-17 | 3次元接触歯形を有する波動歯車装置 |
KR1020137016635A KR101485863B1 (ko) | 2012-08-17 | 2012-08-17 | 3 차원 접촉 치형을 가지는 파동 기어 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/005193 WO2014027384A1 (ja) | 2012-08-17 | 2012-08-17 | 3次元接触歯形を有する波動歯車装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014027384A1 true WO2014027384A1 (ja) | 2014-02-20 |
Family
ID=50099129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005193 WO2014027384A1 (ja) | 2012-08-17 | 2012-08-17 | 3次元接触歯形を有する波動歯車装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9052004B2 (ja) |
JP (1) | JP5456941B1 (ja) |
KR (1) | KR101485863B1 (ja) |
CN (1) | CN103748382B (ja) |
DE (1) | DE112012000328T5 (ja) |
WO (1) | WO2014027384A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022091383A1 (ja) * | 2020-10-30 | 2022-05-05 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6017066B2 (ja) * | 2014-07-11 | 2016-10-26 | 株式会社ハーモニック・ドライブ・システムズ | 円弧歯形を用いて形成した連続接触歯形を有する波動歯車装置 |
JP6218690B2 (ja) * | 2014-07-23 | 2017-10-25 | 株式会社ハーモニック・ドライブ・システムズ | デュアルタイプの波動歯車装置 |
DE102015104135A1 (de) | 2015-03-19 | 2016-09-22 | Harmonic Drive Ag | Wellgetriebe mit Trockenlauf |
US10871213B2 (en) | 2015-06-02 | 2020-12-22 | Harmonic Drive Systems Inc. | Strain wave gearing with compound meshing that involves congruity of tooth surfaces |
KR102032237B1 (ko) * | 2016-01-15 | 2019-10-15 | 가부시키가이샤 하모닉 드라이브 시스템즈 | 2응력 순분리의 파동기어장치 |
JP6830736B2 (ja) * | 2017-06-05 | 2021-02-17 | 株式会社ハーモニック・ドライブ・システムズ | 2応力純分離の波動歯車装置 |
JP6912989B2 (ja) * | 2017-09-27 | 2021-08-04 | 住友重機械工業株式会社 | 撓み噛合い式歯車装置 |
JPWO2019220515A1 (ja) * | 2018-05-14 | 2021-02-12 | 株式会社ハーモニック・ドライブ・システムズ | 波動歯車装置 |
KR102146753B1 (ko) * | 2019-09-03 | 2020-08-21 | 숭실대학교산학협력단 | 물림률이 향상된 하모닉 드라이브 기어 |
WO2021140592A1 (ja) * | 2020-01-08 | 2021-07-15 | 株式会社ハーモニック・ドライブ・システムズ | 波動歯車装置 |
CN113658133B (zh) * | 2021-08-16 | 2022-06-21 | 江苏鑫丰源机电有限公司 | 一种基于图像处理的齿轮表面缺陷检测方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007211907A (ja) * | 2006-02-09 | 2007-08-23 | Harmonic Drive Syst Ind Co Ltd | 連続噛み合い高ラチェティングトルク歯形を有する波動歯車装置 |
WO2010023710A1 (ja) * | 2008-08-29 | 2010-03-04 | 株式会社ハーモニック・ドライブ・システムズ | 正偏位噛み合い複合歯形を有する波動歯車装置 |
WO2010070712A1 (ja) * | 2008-12-18 | 2010-06-24 | 株式会社ハーモニック・ドライブ・システムズ | 3次元接触可能な転位歯形を有する波動歯車装置 |
JP2011144916A (ja) * | 2010-01-18 | 2011-07-28 | Harmonic Drive Systems Inc | 3次元接触の正偏位歯形を有する波動歯車装置 |
WO2012104927A1 (ja) * | 2011-02-04 | 2012-08-09 | 株式会社ハーモニック・ドライブ・システムズ | 3次元接触のインボリュート正偏位歯形を有する波動歯車装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1767867A (en) * | 1928-03-10 | 1930-06-24 | Wildhaber Ernest | Gear |
US2906143A (en) | 1955-03-21 | 1959-09-29 | United Shoe Machinery Corp | Strain wave gearing |
JPS62141358A (ja) * | 1985-12-17 | 1987-06-24 | Sumitomo Heavy Ind Ltd | 噛合機構における歯形 |
JPH0784896B2 (ja) | 1986-11-05 | 1995-09-13 | 株式会社ハーモニック・ドライブ・システムズ | 撓み噛み合い式歯車装置 |
SE460921B (sv) * | 1987-01-26 | 1989-12-04 | Gustav Rennerfelt | Excentervaexel samt foerfarande foer grafisk framstaellning av kuggar |
JP2503027B2 (ja) | 1987-09-21 | 1996-06-05 | 株式会社ハーモニック・ドライブ・システムズ | 撓みかみ合い式歯車装置 |
JP3441160B2 (ja) * | 1994-04-19 | 2003-08-25 | 株式会社ハーモニック・ドライブ・システムズ | 追い越し接触型歯形の撓み噛み合い式歯車装置 |
WO1996019683A1 (fr) * | 1994-12-19 | 1996-06-27 | Harmonic Drive Systems Inc. | Transmission semi-rigide a engrenement ayant un profil de dents a depassement et deviation negative |
BR9814839A (pt) * | 1997-11-03 | 2000-12-19 | Ker Train Holdings Ltd | Montagem de engrenagem de relação variável, e, embreagem binária. |
JP4357054B2 (ja) * | 1999-11-22 | 2009-11-04 | 株式会社ハーモニック・ドライブ・システムズ | 追い越し型極大歯たけの歯形を有する負偏位撓みかみ合い式歯車装置 |
JP4248334B2 (ja) * | 2003-07-18 | 2009-04-02 | 株式会社ハーモニック・ドライブ・システムズ | 波動歯車装置 |
JP4597051B2 (ja) * | 2003-10-30 | 2010-12-15 | 株式会社ハーモニック・ドライブ・システムズ | 広域噛み合い歯形を有する波動歯車装置 |
US7735396B2 (en) * | 2004-06-21 | 2010-06-15 | Harmonic Drive Systems Inc. | Wave gear drive having negative deflection meshing tooth profile |
US8061229B2 (en) * | 2005-07-05 | 2011-11-22 | Roman Vasilyevich Novikov | Gear drive |
JP5275150B2 (ja) * | 2009-06-23 | 2013-08-28 | 株式会社ハーモニック・ドライブ・システムズ | 波動歯車装置 |
WO2012153363A1 (ja) * | 2011-05-09 | 2012-11-15 | 株式会社ハーモニック・ドライブ・システムズ | 3次元連続接触歯形を有する波動歯車装置 |
-
2012
- 2012-08-17 DE DE112012000328.4T patent/DE112012000328T5/de active Pending
- 2012-08-17 CN CN201280008141.7A patent/CN103748382B/zh active Active
- 2012-08-17 JP JP2013524296A patent/JP5456941B1/ja active Active
- 2012-08-17 US US13/993,252 patent/US9052004B2/en active Active
- 2012-08-17 KR KR1020137016635A patent/KR101485863B1/ko active IP Right Grant
- 2012-08-17 WO PCT/JP2012/005193 patent/WO2014027384A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007211907A (ja) * | 2006-02-09 | 2007-08-23 | Harmonic Drive Syst Ind Co Ltd | 連続噛み合い高ラチェティングトルク歯形を有する波動歯車装置 |
WO2010023710A1 (ja) * | 2008-08-29 | 2010-03-04 | 株式会社ハーモニック・ドライブ・システムズ | 正偏位噛み合い複合歯形を有する波動歯車装置 |
WO2010070712A1 (ja) * | 2008-12-18 | 2010-06-24 | 株式会社ハーモニック・ドライブ・システムズ | 3次元接触可能な転位歯形を有する波動歯車装置 |
JP2011144916A (ja) * | 2010-01-18 | 2011-07-28 | Harmonic Drive Systems Inc | 3次元接触の正偏位歯形を有する波動歯車装置 |
WO2012104927A1 (ja) * | 2011-02-04 | 2012-08-09 | 株式会社ハーモニック・ドライブ・システムズ | 3次元接触のインボリュート正偏位歯形を有する波動歯車装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022091383A1 (ja) * | 2020-10-30 | 2022-05-05 | ||
WO2022091383A1 (ja) * | 2020-10-30 | 2022-05-05 | 株式会社ハーモニック・ドライブ・システムズ | 三次元歯形を備えた波動歯車装置 |
JP7203275B2 (ja) | 2020-10-30 | 2023-01-12 | 株式会社ハーモニック・ドライブ・システムズ | 三次元歯形を備えた波動歯車装置 |
US11946536B2 (en) | 2020-10-30 | 2024-04-02 | Harmonic Drive Systems Inc. | Strain wave gearing provided with three-dimensional tooth profile |
Also Published As
Publication number | Publication date |
---|---|
US9052004B2 (en) | 2015-06-09 |
KR20140041395A (ko) | 2014-04-04 |
DE112012000328T5 (de) | 2014-08-07 |
CN103748382A (zh) | 2014-04-23 |
JPWO2014027384A1 (ja) | 2016-07-25 |
KR101485863B1 (ko) | 2015-01-26 |
CN103748382B (zh) | 2016-12-07 |
US20140047937A1 (en) | 2014-02-20 |
JP5456941B1 (ja) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5456941B1 (ja) | 3次元接触歯形を有する波動歯車装置 | |
JP5165120B2 (ja) | 3次元連続接触歯形を有する波動歯車装置 | |
JP5774713B2 (ja) | 波動歯車装置の可撓性外歯車の歯底リム厚設定方法 | |
JP5138783B2 (ja) | 3次元接触可能な転位歯形を有する波動歯車装置 | |
JP5913378B2 (ja) | リム厚を考慮したインボリュート正偏位歯形を有する波動歯車装置 | |
JP6017066B2 (ja) | 円弧歯形を用いて形成した連続接触歯形を有する波動歯車装置 | |
JP5275265B2 (ja) | 3次元接触の正偏位歯形を有する波動歯車装置 | |
TWI638105B (zh) | Harmonic gear device with negative offset tooth profile with 2 degree contact | |
WO2012104927A1 (ja) | 3次元接触のインボリュート正偏位歯形を有する波動歯車装置 | |
TWI690665B (zh) | 伴隨著齒面一致的複合嚙合諧波齒輪裝置 | |
JP6067183B2 (ja) | 追い越し型かみ合いの負偏位波動歯車装置 | |
TWI648486B (zh) | 2應力分離的諧波齒輪裝置 | |
WO2022091383A1 (ja) | 三次元歯形を備えた波動歯車装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013524296 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13993252 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137016635 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112012000328 Country of ref document: DE Ref document number: 1120120003284 Country of ref document: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12891342 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12891342 Country of ref document: EP Kind code of ref document: A1 |