WO2014021406A1 - 合わせガラス及び合わせガラスの取り付け方法 - Google Patents
合わせガラス及び合わせガラスの取り付け方法 Download PDFInfo
- Publication number
- WO2014021406A1 WO2014021406A1 PCT/JP2013/070819 JP2013070819W WO2014021406A1 WO 2014021406 A1 WO2014021406 A1 WO 2014021406A1 JP 2013070819 W JP2013070819 W JP 2013070819W WO 2014021406 A1 WO2014021406 A1 WO 2014021406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminated glass
- resin layer
- resin
- infrared
- wavelength
- Prior art date
Links
- 239000005340 laminated glass Substances 0.000 title claims abstract description 300
- 238000000034 method Methods 0.000 title claims description 18
- 229920005989 resin Polymers 0.000 claims abstract description 320
- 239000011347 resin Substances 0.000 claims abstract description 320
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 30
- 238000002834 transmittance Methods 0.000 claims description 150
- 239000002245 particle Substances 0.000 claims description 107
- 239000003795 chemical substances by application Substances 0.000 claims description 52
- 239000004014 plasticizer Substances 0.000 claims description 43
- -1 phthalocyanine compound Chemical class 0.000 claims description 38
- 229920002554 vinyl polymer Polymers 0.000 claims description 30
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 29
- 239000011354 acetal resin Substances 0.000 claims description 29
- 229920006324 polyoxymethylene Polymers 0.000 claims description 29
- 150000001875 compounds Chemical class 0.000 claims description 27
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 25
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 229910044991 metal oxide Inorganic materials 0.000 claims description 17
- 150000004706 metal oxides Chemical class 0.000 claims description 17
- 239000011888 foil Substances 0.000 claims description 13
- 229910003437 indium oxide Inorganic materials 0.000 claims description 7
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000004973 liquid crystal related substance Substances 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 367
- 239000010408 film Substances 0.000 description 160
- 239000011521 glass Substances 0.000 description 47
- 239000011229 interlayer Substances 0.000 description 35
- 239000003963 antioxidant agent Substances 0.000 description 30
- 235000006708 antioxidants Nutrition 0.000 description 30
- 230000003078 antioxidant effect Effects 0.000 description 24
- 239000005357 flat glass Substances 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 12
- 238000012216 screening Methods 0.000 description 12
- 230000003595 spectral effect Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- 239000012964 benzotriazole Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 238000006359 acetalization reaction Methods 0.000 description 7
- 150000001299 aldehydes Chemical class 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 6
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 125000004036 acetal group Chemical group 0.000 description 6
- 230000021736 acetylation Effects 0.000 description 6
- 238000006640 acetylation reaction Methods 0.000 description 6
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 235000010208 anthocyanin Nutrition 0.000 description 4
- 239000004410 anthocyanin Substances 0.000 description 4
- 229930002877 anthocyanin Natural products 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000002895 organic esters Chemical class 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 3
- FRQDZJMEHSJOPU-UHFFFAOYSA-N Triethylene glycol bis(2-ethylhexanoate) Chemical compound CCCCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CCCC FRQDZJMEHSJOPU-UHFFFAOYSA-N 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 239000002530 phenolic antioxidant Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- KNQFGKYCUMPAHP-UHFFFAOYSA-N 1-[3-(benzotriazol-2-yl)-5-pentylphenyl]pentan-2-ol Chemical compound CCCCCC1=CC(CC(O)CCC)=CC(N2N=C3C=CC=CC3=N2)=C1 KNQFGKYCUMPAHP-UHFFFAOYSA-N 0.000 description 2
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- YJGHMLJGPSVSLF-UHFFFAOYSA-N 2-[2-(2-octanoyloxyethoxy)ethoxy]ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCCC YJGHMLJGPSVSLF-UHFFFAOYSA-N 0.000 description 2
- JEYLQCXBYFQJRO-UHFFFAOYSA-N 2-[2-[2-(2-ethylbutanoyloxy)ethoxy]ethoxy]ethyl 2-ethylbutanoate Chemical compound CCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CC JEYLQCXBYFQJRO-UHFFFAOYSA-N 0.000 description 2
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical compound OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical compound CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 2
- YIKSCQDJHCMVMK-UHFFFAOYSA-N Oxamide Chemical class NC(=O)C(N)=O YIKSCQDJHCMVMK-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000004636 anthocyanins Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- KJYSXRBJOSZLEL-UHFFFAOYSA-N (2,4-ditert-butylphenyl) 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 KJYSXRBJOSZLEL-UHFFFAOYSA-N 0.000 description 1
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 1
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 1
- DLZBUNUDESZERL-UHFFFAOYSA-N 1-o-heptyl 6-o-nonyl hexanedioate Chemical compound CCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCC DLZBUNUDESZERL-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- CKQNDABUGIXFCL-UHFFFAOYSA-N 2-(2-octanoyloxyethoxy)ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOC(=O)CCCCCCC CKQNDABUGIXFCL-UHFFFAOYSA-N 0.000 description 1
- LEVFXWNQQSSNAC-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexoxyphenol Chemical compound OC1=CC(OCCCCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 LEVFXWNQQSSNAC-UHFFFAOYSA-N 0.000 description 1
- UNNGUFMVYQJGTD-UHFFFAOYSA-N 2-Ethylbutanal Chemical compound CCC(CC)C=O UNNGUFMVYQJGTD-UHFFFAOYSA-N 0.000 description 1
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- GCDUWJFWXVRGSM-UHFFFAOYSA-N 2-[2-(2-heptanoyloxyethoxy)ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCC GCDUWJFWXVRGSM-UHFFFAOYSA-N 0.000 description 1
- SSKNCQWPZQCABD-UHFFFAOYSA-N 2-[2-[2-(2-heptanoyloxyethoxy)ethoxy]ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCC SSKNCQWPZQCABD-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- VWSWIUTWLQJWQH-UHFFFAOYSA-N 2-butyl-6-[(3-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CCCCC1=CC(C)=CC(CC=2C(=C(CCCC)C=C(C)C=2)O)=C1O VWSWIUTWLQJWQH-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- JQDJSFVRBAXBCM-UHFFFAOYSA-N 2-tert-butyl-6-(5-chloro-2H-benzotriazol-4-yl)-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(C=2C=3N=NNC=3C=CC=2Cl)=C1O JQDJSFVRBAXBCM-UHFFFAOYSA-N 0.000 description 1
- GPNYZBKIGXGYNU-UHFFFAOYSA-N 2-tert-butyl-6-[(3-tert-butyl-5-ethyl-2-hydroxyphenyl)methyl]-4-ethylphenol Chemical compound CC(C)(C)C1=CC(CC)=CC(CC=2C(=C(C=C(CC)C=2)C(C)(C)C)O)=C1O GPNYZBKIGXGYNU-UHFFFAOYSA-N 0.000 description 1
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- FLZYQMOKBVFXJS-UHFFFAOYSA-N 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoic acid Chemical compound CC1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O FLZYQMOKBVFXJS-UHFFFAOYSA-N 0.000 description 1
- QYBPUVGDDCVYPC-UHFFFAOYSA-N 3-[4,4-bis(5-tert-butyl-3-hydroxy-2-methylphenyl)butan-2-yl]-5-tert-butyl-2-methylphenol Chemical compound C=1C(C(C)(C)C)=CC(O)=C(C)C=1C(C)CC(C=1C(=C(O)C=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=CC(O)=C1C QYBPUVGDDCVYPC-UHFFFAOYSA-N 0.000 description 1
- JFLOHZLEAYQBLO-UHFFFAOYSA-N 3-oxo-3-(1,2,2,6,6-pentamethylpiperidin-4-yl)oxypropanoic acid Chemical compound CN1C(C)(C)CC(OC(=O)CC(O)=O)CC1(C)C JFLOHZLEAYQBLO-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- NGKNMHFWZMHABQ-UHFFFAOYSA-N 4-chloro-2h-benzotriazole Chemical group ClC1=CC=CC2=NNN=C12 NGKNMHFWZMHABQ-UHFFFAOYSA-N 0.000 description 1
- ZUDPXPYGTYNSCK-UHFFFAOYSA-N 6-(1-hexylcyclohexyl)oxy-6-oxohexanoic acid Chemical compound OC(=O)CCCCC(=O)OC1(CCCCCC)CCCCC1 ZUDPXPYGTYNSCK-UHFFFAOYSA-N 0.000 description 1
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 1
- OIUGWVWLEGLAGH-UHFFFAOYSA-N 6-nonoxy-6-oxohexanoic acid Chemical compound CCCCCCCCCOC(=O)CCCCC(O)=O OIUGWVWLEGLAGH-UHFFFAOYSA-N 0.000 description 1
- LQYZKSSUQDTYTR-UHFFFAOYSA-N 7-(4-methoxyphenyl)-1,5-dioxocane-2,4-dione Chemical compound C1=CC(OC)=CC=C1C1COC(=O)CC(=O)OC1 LQYZKSSUQDTYTR-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- HUUJFOGLCYMPCS-UHFFFAOYSA-N C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C Chemical compound C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C HUUJFOGLCYMPCS-UHFFFAOYSA-N 0.000 description 1
- PPRZEPPKBKXKPD-UHFFFAOYSA-N C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC Chemical compound C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC PPRZEPPKBKXKPD-UHFFFAOYSA-N 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- MOABYHZDQQELLG-UHFFFAOYSA-N OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC Chemical compound OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC MOABYHZDQQELLG-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- FSRKEDYWZHGEGG-UHFFFAOYSA-N [2-(8-methylnonyl)phenyl] dihydrogen phosphate Chemical compound CC(C)CCCCCCCC1=CC=CC=C1OP(O)(O)=O FSRKEDYWZHGEGG-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- ZEFSGHVBJCEKAZ-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite Chemical compound CC=1C=C(C(C)(C)C)C=C(C(C)(C)C)C=1OP(OCC)OC1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C ZEFSGHVBJCEKAZ-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical group 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- OJXOOFXUHZAXLO-UHFFFAOYSA-M magnesium;1-bromo-3-methanidylbenzene;bromide Chemical compound [Mg+2].[Br-].[CH2-]C1=CC=CC(Br)=C1 OJXOOFXUHZAXLO-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- ZBNMOUGFCKAGGQ-UHFFFAOYSA-N n'-(5-tert-butyl-2-ethoxyphenyl)-n-(2-ethylphenyl)oxamide Chemical compound CCOC1=CC=C(C(C)(C)C)C=C1NC(=O)C(=O)NC1=CC=CC=C1CC ZBNMOUGFCKAGGQ-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 1
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 1
- 229950002083 octabenzone Drugs 0.000 description 1
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000005461 organic phosphorous group Chemical group 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 150000003329 sebacic acid derivatives Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OXFUXNFMHFCELM-UHFFFAOYSA-N tripropan-2-yl phosphate Chemical compound CC(C)OP(=O)(OC(C)C)OC(C)C OXFUXNFMHFCELM-UHFFFAOYSA-N 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- MGMXGCZJYUCMGY-UHFFFAOYSA-N tris(4-nonylphenyl) phosphite Chemical compound C1=CC(CCCCCCCCC)=CC=C1OP(OC=1C=CC(CCCCCCCCC)=CC=1)OC1=CC=C(CCCCCCCCC)C=C1 MGMXGCZJYUCMGY-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- PEXOFOFLXOCMDX-UHFFFAOYSA-N tritridecyl phosphite Chemical compound CCCCCCCCCCCCCOP(OCCCCCCCCCCCCC)OCCCCCCCCCCCCC PEXOFOFLXOCMDX-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10431—Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10614—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
- B32B17/10633—Infrared radiation absorbing or reflecting agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10651—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10678—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/22—Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
- G02B5/282—Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/287—Interference filters comprising deposited thin solid films comprising at least one layer of organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31627—Next to aldehyde or ketone condensation product
- Y10T428/3163—Next to acetal of polymerized unsaturated alcohol [e.g., formal butyral, etc.]
Definitions
- the present invention relates to laminated glass used for laminated glass for automobiles and buildings.
- the present invention also relates to a method for attaching the laminated glass.
- Laminated glass is superior in safety even if it is damaged by an external impact and the amount of glass fragments scattered is small. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
- the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between a pair of glass plates. High heat-insulating properties are required for laminated glass used in such vehicle and building openings.
- Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
- infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays. Therefore, in order to improve the heat shielding property of the laminated glass, it is necessary to sufficiently block infrared rays.
- Patent Document 1 As an intermediate film containing heat shielding particles for effectively blocking the infrared rays (heat rays), the following Patent Document 1 includes tin-doped indium oxide particles (ITO particles) or antimony-doped tin oxide particles (ATO particles). An interlayer film comprising is disclosed. Patent Document 2 below discloses an intermediate film containing tungsten oxide particles.
- laminated glass using an interlayer film is required to have both high heat shielding properties and high visible light transmittance (Visible Transmittance). That is, in the laminated glass, it is necessary to increase the heat shielding property while keeping the visible light transmittance high.
- Patent Documents 1 and 2 may not be able to achieve both high heat shielding properties and high visible light transmittance.
- An object of the present invention is to provide a laminated glass having a high heat shielding property and a method for attaching the laminated glass.
- a limited object of the present invention is to provide a laminated glass having high heat shielding properties and high visible light transmittance, and a method for attaching the laminated glass.
- the infrared transmittance of the first resin layer at a wavelength of 780 to 2100 nm is higher than the infrared transmittance of the second resin layer at a wavelength of 780 to 2100 nm.
- the infrared transmittance of the first laminated glass member at a wavelength of 780 to 2100 nm is higher than the infrared transmittance of the second laminated glass member at a wavelength of 780 to 2100 nm.
- the infrared transmittance at a wavelength of 780 to 2100 nm of the first resin layer is higher than the infrared transmittance at a wavelength of 780 to 2100 nm of the second resin layer.
- the infrared transmittance of the first laminated glass member at a wavelength of 780 to 2100 nm is more than the infrared transmittance of the second laminated glass member at a wavelength of 780 to 2100 nm. Is also expensive.
- the infrared transmittance at a wavelength of 780 to 2100 nm of the first resin layer is higher than the infrared transmittance at a wavelength of 780 to 2100 nm of the second resin layer.
- the infrared transmittance of the first laminated glass member at a wavelength of 780 to 2100 nm is higher than the infrared transmittance of the second laminated glass member at a wavelength of 780 to 2100 nm.
- the infrared reflective layer is a resin film with a metal foil, a multilayer laminated film in which a metal layer and a dielectric layer are formed on the resin layer, a multilayer resin film, or a liquid crystal film. is there.
- the second resin layer includes metal oxide particles.
- the metal oxide particles are tin-doped indium oxide particles or tungsten oxide particles.
- the second resin layer contains at least one of a phthalocyanine compound, a naphthalocyanine compound, and an anthocyanin compound.
- thermoplastic resin in the first resin layer is a polyvinyl acetal resin
- thermoplastic resin in the second resin layer is a polyvinyl acetal resin.
- the first resin layer includes a plasticizer
- the second resin layer includes a plasticizer
- the first resin layer contains an ultraviolet shielding agent.
- the second resin layer contains an ultraviolet shielding agent.
- a method for attaching the laminated glass described above to an opening between an external space and an internal space into which heat rays are incident from the external space in a building or a vehicle attaching the laminated glass to the opening so that one laminated glass member is located on the outer space side and the second laminated glass member is located on the inner space side
- a method is provided.
- the first laminated glass member, the first resin layer, the infrared reflective layer, the second resin layer, and the second laminated glass member are arranged in this order.
- the infrared transmittance at a wavelength of 780 to 2100 nm of the entire two layers of the first laminated glass member and the first resin layer is such that the second laminated glass member, the second resin layer, Since the infrared transmittance of the entire two layers is higher than the infrared transmittance at a wavelength of 780 to 2100 nm, the heat shielding property can be increased.
- FIG. 1 is a partially cutaway sectional view showing a laminated glass according to an embodiment of the present invention.
- FIG. 2 is a partially cutaway cross-sectional view showing an interlayer film for laminated glass used in a laminated glass according to an embodiment of the present invention.
- FIG. 2 schematically shows a partially cut cross-sectional view of an interlayer film for laminated glass used in a laminated glass according to an embodiment of the present invention.
- the intermediate film 1 shown in FIG. 2 is a multilayer intermediate film.
- the intermediate film 1 is used to obtain a laminated glass.
- the intermediate film 1 is an intermediate film for laminated glass.
- the intermediate film 1 includes an infrared reflection layer 2, a first resin layer 3 disposed on the first surface 2 a side of the infrared reflection layer 2, and a second opposite to the first surface 2 a of the infrared reflection layer 2. And a second resin layer 4 disposed on the surface 2b side.
- the first resin layer 3 is laminated on the first surface 2 a of the infrared reflecting layer 2.
- the second resin layer 4 is laminated on the second surface 2 b of the infrared reflecting layer 2.
- the infrared reflection layer 2 is an intermediate layer and has a performance of reflecting heat rays.
- the first and second resin layers 3 and 4 are surface layers in this embodiment.
- the infrared reflecting layer 2 is disposed between the first and second resin layers 3 and 4.
- the infrared reflection layer 2 is sandwiched between the first and second resin layers 3 and 4. Therefore, the intermediate film 1 has a multilayer structure in which the first resin layer 3, the infrared reflection layer 2, and the second resin layer 4 are laminated in this order.
- the other layer include a layer containing a thermoplastic resin such as polyvinyl acetal resin, and a layer containing polyethylene terephthalate.
- the infrared reflection layer reflects infrared rays.
- the infrared reflection layer is not particularly limited as long as it has the ability to reflect infrared rays.
- Examples of the infrared reflective layer include a resin film with a metal foil, a multilayer laminated film in which a metal layer and a dielectric layer are formed on the resin layer, a film containing graphite, a multilayer resin film, and a liquid crystal film. These films have the ability to reflect infrared radiation.
- the infrared reflective layer is particularly preferably a resin film with a metal foil, a multilayer laminated film in which a metal layer and a dielectric layer are formed on the resin layer, a multilayer resin film, or a liquid crystal film.
- These films are quite excellent in infrared reflection performance. Therefore, the use of these films provides a laminated glass that has a higher heat-shielding property and can maintain a high visible light transmittance for a longer period of time.
- the infrared reflective layer may be a resin film with a metal foil, a multilayer resin film, or a liquid crystal film.
- the resin film with metal foil includes a resin film and a metal foil laminated on the outer surface of the resin film.
- the resin film include polyethylene terephthalate resin, polyvinyl acetal resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic copolymer resin, polyurethane resin, polyvinyl alcohol resin, polyolefin resin, polyvinyl chloride resin, and polyimide resin. Etc.
- the material for the metal foil include aluminum, copper, silver, gold, palladium, and alloys containing these.
- the multilayer laminated film in which the metal layer and the dielectric layer are formed on the resin layer is a multilayer laminated film in which the metal layer and the dielectric layer are alternately laminated in an arbitrary number of layers on the resin layer (resin film).
- Examples of the material for the resin layer (resin film) in the multilayer laminated film include the same materials as those for the resin film in the resin film with metal foil.
- As the material of the resin layer (resin film) in the multilayer laminated film polyethylene, polypropylene, polylactic acid, poly (4-methylpentene-1), polyvinylidene fluoride, cyclic polyolefin, polymethyl methacrylate, polyvinyl chloride, polyvinyl Examples include alcohol, polyamide such as nylon 6, 11, 12, 66, polystyrene, polycarbonate, polyester, polyphenylene sulfide, and polyetherimide.
- Examples of the material for the metal layer in the multilayer laminated film include the same materials as those for the metal foil in the resin film with metal foil.
- a metal or mixed oxide coating layer can be applied to both or one side of the metal layer.
- Examples of the material for the coating layer include ZnO, Al 2 O 3 , Ga 2 O 3 , InO 3 , MgO, Ti, NiCr, and Cu.
- Examples of the material of the dielectric layer in the multilayer laminated film include indium oxide.
- the multilayer resin film is a laminated film in which a plurality of resin films are laminated.
- the material for the multilayer resin film include the same materials as those for the resin layer (resin film) in the multilayer laminated film.
- the number of laminated resin films in the multilayer resin film is 2 or more, 3 or more, or 5 or more. 1000 or less may be sufficient as the number of lamination
- the multilayer resin film may be a multilayer resin film in which two or more types of thermoplastic resin layers having different optical properties (refractive indexes) are alternately or randomly laminated in an arbitrary number of layers. Such a multilayer resin film is configured to obtain desired infrared reflection performance.
- liquid crystal film examples include a film in which cholesteric liquid crystal layers that reflect light having an arbitrary wavelength are laminated in an arbitrary number of layers. Such a liquid crystal film is configured to obtain desired infrared reflection performance.
- the infrared transmittance at a wavelength of 780 to 2100 nm of the first resin layer is preferably higher than the infrared transmittance at a wavelength of 780 to 2100 nm of the second resin layer.
- the infrared absorption rate of the first resin layer is lower than the infrared absorption rate of the second resin layer.
- the infrared transmittance of the first resin layer When the infrared transmittance of the first resin layer is higher than the infrared transmittance of the second resin layer, the first resin layer transmits a relatively large amount of infrared rays. For this reason, many infrared rays which permeate
- the temperature rise of the intermediate film when infrared rays are incident on the intermediate film can be suppressed. For this reason, since the heat shielding property of the intermediate film is increased and the light resistance is excellent, a high visible light transmittance can be maintained for a long period of time. Moreover, the temperature rise of the internal space of a building or a vehicle can be effectively suppressed by attaching the laminated glass using the said intermediate film to the opening part of a building or a vehicle.
- the infrared transmittance of the first resin layer is higher than the infrared transmittance of the second resin layer, the first resin layer and the infrared reflective layer are temporarily combined with each other.
- the transmitted infrared rays reach the second resin layer.
- the infrared transmittance of the second resin layer is low, the second resin layer effectively blocks infrared transmission. For this reason, the amount of heat rays passing through the entire intermediate film can be reduced.
- This also increases the heat shielding property of the interlayer film for laminated glass, and by attaching the laminated glass using the interlayer film for laminated glass to the opening of the building or vehicle, Temperature rise can be effectively suppressed.
- the first resin layer and the second resin layer may be the same or different.
- the first resin layer and the second resin layer are preferably different from each other.
- the infrared transmittance at a wavelength of 780 to 2100 nm of the first resin layer is higher than the infrared transmittance at a wavelength of 780 to 2100 nm of the second resin layer, the first resin layer and the second resin layer
- the composition of the resin layer is different.
- the first resin layer includes a thermoplastic resin.
- the thermoplastic resin in the first resin layer is more preferably a polyvinyl acetal resin.
- the first resin layer preferably includes a plasticizer, and more preferably includes a polyvinyl acetal resin and a plasticizer.
- the first resin layer preferably contains an ultraviolet shielding agent, and preferably contains an antioxidant.
- the second resin layer contains a thermoplastic resin.
- the thermoplastic resin in the second resin layer is more preferably a polyvinyl acetal resin.
- the second resin layer preferably contains a plasticizer, and more preferably contains a polyvinyl acetal resin and a plasticizer.
- the second resin layer preferably contains an ultraviolet shielding agent, and preferably contains an antioxidant.
- the second resin layer preferably contains a heat shielding compound.
- the infrared transmittance of the first resin layer is higher than the infrared transmittance of the second resin layer.
- the infrared transmittance of the entire two layers of the first laminated glass member and the first resin layer is represented by the entire two layers of the second laminated glass member and the second resin layer. It is easy to make it higher than the above infrared transmittance.
- the first resin layer may contain a heat shielding compound. Further, when the content (% by weight) of the heat shielding compound in the first resin layer is less than the content (% by weight) of the heat shielding compound in the second resin layer, the first It is easy to make the infrared transmittance of the resin layer higher than the infrared transmittance of the second resin layer.
- the heat-shielding compound include heat-shielding particles such as metal oxide particles, and at least one component among the phthalocyanine compounds, naphthalocyanine compounds, and anthracocyanine compounds (hereinafter sometimes referred to as component X). Can be mentioned.
- a heat-shielding compound means the compound which can absorb infrared rays.
- the total content (% by weight) of the heat shielding compounds in the first resin layer is the second resin layer. It is preferably less than the total content (% by weight) of the above heat-shielding compounds in the resin layer, more preferably 0.05% by weight or more, still more preferably 0.1% by weight or more, 2% by weight or less is particularly preferable, and 0.4% by weight or more is most preferable. Furthermore, since the heat shielding property is further increased, the total content (% by weight) of the heat shielding compound in the second resin layer and the total content of the heat shielding compound in the first resin layer. The difference from the amount (% by weight) is preferably 2% by weight or less.
- the first and second resin layers include a thermoplastic resin.
- the thermoplastic resin is not particularly limited.
- a conventionally well-known thermoplastic resin can be used as a thermoplastic resin.
- As for a thermoplastic resin only 1 type may be used and 2 or more types may be used together.
- the thermoplastic resin in the first resin layer and the thermoplastic resin in the second resin layer may be the same or different.
- thermoplastic resin examples include polyvinyl acetal resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic copolymer resin, polyurethane resin, and polyvinyl alcohol resin. Thermoplastic resins other than these may be used.
- the thermoplastic resin is preferably a polyvinyl acetal resin.
- the adhesion of the first and second resin layers to other layers such as the laminated glass member and the infrared reflection layer is further increased.
- the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
- the polyvinyl alcohol can be produced, for example, by saponifying polyvinyl acetate.
- the saponification degree of the polyvinyl alcohol is generally in the range of 70 to 99.8 mol%.
- the average degree of polymerization of the polyvinyl alcohol is preferably 200 or more, more preferably 500 or more, preferably 5000 or less, more preferably 4000 or less, still more preferably 3500 or less, particularly preferably 3000 or less, and most preferably 2500 or less. .
- the average degree of polymerization is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
- the average degree of polymerization is not more than the above upper limit, the intermediate film can be easily molded.
- the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
- the carbon number of the acetal group contained in the polyvinyl acetal resin is not particularly limited.
- the aldehyde used when manufacturing the said polyvinyl acetal resin is not specifically limited.
- the carbon number of the acetal group in the polyvinyl acetal resin is preferably 3 or 4. When the carbon number of the acetal group in the polyvinyl acetal resin is 3 or more, the glass transition temperature of the intermediate film is sufficiently low.
- the aldehyde is not particularly limited. In general, an aldehyde having 1 to 10 carbon atoms is preferably used as the aldehyde.
- Examples of the aldehyde having 1 to 10 carbon atoms include propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, and n-nonylaldehyde.
- propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferable
- propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferable
- n-butyraldehyde is still more preferable.
- the said aldehyde only 1 type may be used and 2 or more types may be used together.
- the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin is preferably 15 mol% or more, more preferably 18 mol% or more, still more preferably 20 mol% or more, particularly preferably 28 mol% or more, preferably 40 mol. % Or less, more preferably 35 mol% or less, still more preferably 32 mol% or less.
- the hydroxyl group content is at least the above lower limit, the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
- the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
- the amount of the ethylene group to which the hydroxyl group is bonded can be determined, for example, by measuring according to JIS K6726 “Testing method for polyvinyl alcohol”.
- the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, still more preferably 0.5 mol% or more, preferably 30 mol% or less. More preferably, it is 25 mol% or less, more preferably 20 mol% or less, particularly preferably 15 mol% or less, and most preferably 3 mol% or less.
- the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased.
- the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
- the degree of acetylation is obtained by subtracting the amount of ethylene groups to which acetal groups are bonded and the amount of ethylene groups to which hydroxyl groups are bonded from the total amount of ethylene groups of the main chain, It is a value indicating the mole fraction obtained by dividing by the percentage.
- the amount of ethylene group to which the acetal group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
- the degree of acetalization of the polyvinyl acetal resin is preferably 60 mol% or more, more preferably 63 mol% or more, preferably 85 mol% or less, more preferably 75 mol%. Hereinafter, it is 70 mol% or less more preferably.
- the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
- the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
- the above-mentioned degree of acetalization is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which acetal groups are bonded by the total amount of ethylene groups in the main chain as a percentage.
- the degree of acetalization can be calculated by a method based on JIS K6728 “Testing methods for polyvinyl butyral”.
- the hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
- the polyvinyl acetal resin is a polyvinyl butyral resin
- the hydroxyl group content (hydroxyl content), the acetalization degree (butyralization degree), and the acetylation degree are determined in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It is preferable to calculate from the results measured by.
- the first resin layer preferably contains a plasticizer
- the second resin layer preferably contains a plasticizer.
- the thermoplastic resin in the first and second resin layers is a polyvinyl acetal resin
- the plasticizer is not particularly limited.
- a conventionally known plasticizer can be used as the plasticizer.
- As for the said plasticizer only 1 type may be used and 2 or more types may be used together.
- plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and phosphate plasticizers such as organic phosphate plasticizers and organic phosphorous acid plasticizers. It is done. Of these, organic ester plasticizers are preferred.
- the plasticizer is preferably a liquid plasticizer.
- the monobasic organic acid ester is not particularly limited.
- examples include esters.
- Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
- Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
- the polybasic organic acid ester is not particularly limited, and examples thereof include an ester compound of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
- Examples of the polybasic organic acid include adipic acid, sebacic acid, and azelaic acid.
- the organic ester plasticizer is not particularly limited, and triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n- Octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethyl butyrate, 1,3-propylene glycol di -2-Ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl hexanoate, dipropylene glycol Rudi-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, te
- the organic phosphate plasticizer is not particularly limited, and examples thereof include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
- the plasticizer is preferably a diester plasticizer represented by the following formula (1).
- R1 and R2 each represent an organic group having 2 to 10 carbon atoms
- R3 represents an ethylene group, an isopropylene group or an n-propylene group
- p represents an integer of 3 to 10
- R1 and R2 in the above formula (1) are each preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
- the plasticizer preferably contains at least one of triethylene glycol di-2-ethylhexanoate (3GO) and triethylene glycol di-2-ethylbutyrate (3GH). More preferably, it contains 2-ethylhexanoate.
- the content of the plasticizer is not particularly limited.
- the content of the plasticizer with respect to 100 parts by weight of the thermoplastic resin is preferably 25 parts by weight or more, more preferably 30 parts by weight or more, and further preferably 35 parts. It is at least 75 parts by weight, preferably at most 75 parts by weight, more preferably at most 60 parts by weight, even more preferably at most 50 parts by weight, particularly preferably at most 40 parts by weight.
- the content of the plasticizer is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
- the content of the plasticizer is not more than the above upper limit, the transparency of the interlayer film is further enhanced.
- the second resin layer preferably contains a heat shielding compound.
- the second resin layer preferably includes at least one component X among a phthalocyanine compound, a naphthalocyanine compound, and an anthracocyanine compound.
- the second resin layer preferably contains at least one component X of phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds, or contains heat shielding particles described later.
- the first resin layer may contain the component X.
- the component X is a heat shielding compound.
- the component X is not particularly limited.
- component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds can be used.
- As for the said component X only 1 type may be used and 2 or more types may be used together.
- Examples of the component X include phthalocyanine, a derivative of phthalocyanine, naphthalocyanine, a derivative of naphthalocyanine, an anthocyanin, and an anthocyanin derivative.
- the phthalocyanine compound and the phthalocyanine derivative preferably each have a phthalocyanine skeleton.
- the naphthalocyanine compound and the naphthalocyanine derivative preferably each have a naphthalocyanine skeleton. It is preferable that each of the anthocyanin compound and the derivative of the anthracyanine has an anthracyanine skeleton.
- the component X is preferably at least one selected from the group consisting of phthalocyanine, phthalocyanine derivatives, naphthalocyanine, and naphthalocyanine derivatives. More preferably, it is at least one of phthalocyanine and phthalocyanine derivatives.
- the component X preferably contains a vanadium atom or a copper atom.
- the component X preferably contains a vanadium atom, and preferably contains a copper atom.
- the component X is more preferably at least one of a phthalocyanine containing a vanadium atom or a copper atom and a phthalocyanine derivative containing a vanadium atom or a copper atom.
- the component X preferably has a structural unit in which an oxygen atom is bonded to a vanadium atom.
- the content of the component X is preferably 0.001 in 100% by weight of the first and second resin layers. % By weight or more, more preferably 0.005% by weight or more, further preferably 0.01% by weight or more, particularly preferably 0.02% by weight or more, preferably 0.2% by weight or less, more preferably 0.1% by weight. % Or less, more preferably 0.05% by weight or less, particularly preferably 0.04% by weight or less.
- the content of the component X in the first and second resin layers is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
- the visible light transmittance can be 70% or more.
- the second resin layer preferably includes heat shielding particles.
- the first resin layer may contain heat shielding particles.
- the heat shielding particles are a heat shielding compound. Infrared rays (heat rays) can be effectively blocked by using a heat-shielding compound in at least one layer of the entire intermediate film. When the second resin layer contains heat shielding particles, infrared rays can be blocked more effectively.
- the heat shielding particles are more preferably metal oxide particles.
- the heat shielding particles are preferably particles (metal oxide particles) formed of a metal oxide. Only 1 type may be used for a heat-shielding particle and 2 or more types may be used together.
- Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
- infrared rays have a large thermal effect, and once infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays.
- heat shielding particles By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked.
- the heat shielding particles mean particles that can absorb infrared rays.
- heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
- Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used.
- metal oxide particles are preferable because of their high heat ray shielding function, ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles are more preferable, and ITO particles or tungsten oxide particles are particularly preferable.
- tin-doped indium oxide particles ITO particles
- tungsten oxide particles are also preferable because they have a high heat ray shielding function and are easily available.
- the tungsten oxide particles are generally represented by the following formula (X1) or the following formula (X2).
- tungsten oxide particles represented by the following formula (X1) or the following formula (X2) are preferably used.
- W represents tungsten
- O represents oxygen
- y and z satisfy 2.0 ⁇ z / y ⁇ 3.0.
- M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu , Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta
- O represents oxygen
- x, y, and z represent 0.001 ⁇ x / y ⁇ 1, and 2.0 ⁇ z / y ⁇ 3.0 is satisfied.
- the tungsten oxide particles are preferably metal-doped tungsten oxide particles.
- the “tungsten oxide particles” include metal-doped tungsten oxide particles. Specific examples of the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, and rubidium-doped tungsten oxide particles.
- cesium-doped tungsten oxide particles are particularly preferable.
- the cesium-doped tungsten oxide particles are preferably tungsten oxide particles represented by the formula: Cs 0.33 WO 3 .
- the average particle diameter of the heat shielding particles is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
- the average particle size is not less than the above lower limit, the heat ray shielding property is sufficiently increased.
- the average particle size is not more than the above upper limit, the dispersibility of the heat shielding particles is increased.
- the above “average particle diameter” indicates the volume average particle diameter.
- the average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
- the content of the heat shielding particles in 100% by weight of the first and second resin layers is preferably 0.00. 01 wt% or more, more preferably 0.1 wt% or more, still more preferably 1 wt% or more, particularly preferably 1.5 wt% or more, preferably 6 wt% or less, more preferably 5.5 wt% or less, More preferably, it is 4% by weight or less, particularly preferably 3.5% by weight or less, and most preferably 3.0% by weight or less.
- the content of the heat shielding particles is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
- the first and second resin layers contain the heat shielding particles at a rate of 0.1 to 12 g / m 2 . It is preferable to contain.
- the ratio of the heat shielding particles is within the above range, the heat shielding property is sufficiently high, and the visible light transmittance is sufficiently high.
- the proportion of the heat shielding particles is preferably 0.5 g / m 2 or more, more preferably 0.8 g / m 2 or more, still more preferably 1.5 g / m 2 or more, particularly preferably 3 g / m 2 or more, preferably Is 11 g / m 2 or less, more preferably 10 g / m 2 or less, still more preferably 9 g / m 2 or less, and particularly preferably 7 g / m 2 or less.
- the ratio is equal to or higher than the lower limit, the heat shielding property is further enhanced.
- the said visible light transmittance becomes it still higher that the said ratio is below the said upper limit.
- the first resin layer preferably contains an ultraviolet shielding agent.
- the second resin layer preferably contains an ultraviolet shielding agent. More preferably, both the first resin layer and the second resin layer contain an ultraviolet shielding agent.
- the ultraviolet shielding agent By using the ultraviolet shielding agent, even if the interlayer film and the laminated glass are used for a long period of time, the visible light transmittance is more unlikely to decrease.
- this ultraviolet shielding agent only 1 type may be used and 2 or more types may be used together.
- the ultraviolet shielding agent includes an ultraviolet absorber.
- the ultraviolet shielding agent is preferably an ultraviolet absorber.
- UV screening agents are, for example, metal UV screening agents, metal oxide UV screening agents, benzotriazole UV screening agents (benzotriazole compounds), and benzophenone UV screening agents (benzophenone).
- Compound triazine-based UV screening agent (triazine compound), malonic acid ester-based UV screening agent (malonic acid ester compound), oxalic acid anilide-based UV screening agent (oxalic acid anilide compound) and benzoate-based UV screening agent (benzoate compound) Etc.
- the metallic ultraviolet shielding agent examples include platinum particles, particles in which the surface of the platinum particles is coated with silica, palladium particles, particles in which the surface of the palladium particles is coated with silica, and the like.
- the ultraviolet shielding agent is preferably not a heat shielding particle.
- metal oxide ultraviolet shielding agent examples include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
- the insulating metal oxide examples include silica, alumina and zirconia.
- the insulating metal oxide has a band gap energy of 5.0 eV or more, for example.
- benzotriazole ultraviolet shielding agent examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5 ′). -Di-t-butylphenyl) benzotriazole (“Tinvin 320” manufactured by BASF), 2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (manufactured by BASF " And benzotriazole-based UV screening agents such as 2- (2′-hydroxy-3 ′, 5′-di-amylphenyl) benzotriazole (“Tinvin 328” manufactured by BASF)).
- the benzotriazole-based ultraviolet shielding agent is preferably a benzotriazole-based ultraviolet shielding agent containing a halogen atom, and more preferably a benzotriazole-based ultraviolet shielding agent containing a chlorine atom, because of its excellent ability to absorb ultraviolet rays. .
- benzophenone-based ultraviolet shielding agent examples include octabenzone (“Chimasorb 81” manufactured by BASF).
- triazine-based ultraviolet screening agent examples include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol (manufactured by BASF, “Tinuvin 1577FF”). ]) And the like.
- malonic ester-based ultraviolet shielding agent examples include 2- (p-methoxybenzylidene) malonic acid dimethyl, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, 2- (p-methoxybenzylidene) -bis. (1,2,2,6,6-pentamethyl 4-piperidinyl) malonate and the like.
- Hostavin B-CAP As commercial products of the above-mentioned malonic ester-based ultraviolet screening agents, there are Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
- Examples of the oxalic acid anilide-based ultraviolet shielding agent include N- (2-ethylphenyl) -N ′-(2-ethoxy-5-tert-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl) -N ′.
- Oxalic acid diamides having an aryl group substituted on the nitrogen atom such as-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2'-ethoxy-oxyanilide ("Sanduvor VSU" manufactured by Clariant) Can be mentioned.
- benzoate-based ultraviolet shielding agent examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (manufactured by BASF, “Tinuvin 120”).
- the ultraviolet shielding agent described above is 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5- It is preferably chlorobenzotriazole (“Tinvin 326” manufactured by BASF) or 2- (2′-hydroxy-3 ′, 5′-di-amylphenyl) benzotriazole (“Tinvin 328” manufactured by BASF), It may be (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole.
- the content of the ultraviolet shielding agent is preferably 0.1% by weight or more in 100% by weight of the first and second resin layers. More preferably 0.2% by weight or more, still more preferably 0.3% by weight or more, particularly preferably 0.5% by weight or more, preferably 2.5% by weight or less, more preferably 2% by weight or less, still more preferably. Is 1% by weight or less, particularly preferably 0.8% by weight or less.
- the content of the ultraviolet shielding agent is not less than the above lower limit and not more than the above upper limit, a decrease in visible light transmittance after time is further suppressed.
- the content of the ultraviolet shielding agent is 0.2% by weight or more in 100% by weight of the first and second resin layers, the visible light transmittance after the aging of the interlayer film and the laminated glass is reduced. Remarkably suppressed.
- the first resin layer preferably contains an antioxidant.
- the second resin layer preferably contains an antioxidant. It is preferable that both the first resin layer and the second resin layer contain an antioxidant. As for this antioxidant, only 1 type may be used and 2 or more types may be used together.
- antioxidants examples include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
- the phenolic antioxidant is an antioxidant having a phenol skeleton.
- the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
- the phosphorus antioxidant is an antioxidant containing a phosphorus atom.
- the antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
- phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl - ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-butylphenol), 2,2'-methylenebis- (4-ethyl- 6-t-butylphenol), 4,4′-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-tert-butylphenyl) Butane, tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4- Droxy-5-tert-butylphenol) butane, 1,3,5-trimethyl-2,
- Examples of the phosphorus antioxidant include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos.
- antioxidants examples include “IRGANOX 245” manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Smilizer BHT” manufactured by Sumitomo Chemical, and “ Irganox 1010 "and the like.
- the content of the antioxidant is preferably 0.1% by weight or more in 100% by weight of the first and second resin layers. , Preferably 2% by weight or less, more preferably 1.8% by weight or less.
- the content of the antioxidant is not less than the above lower limit, the high visible light transmittance of the interlayer film and the laminated glass is maintained for a longer period of time.
- the content of the antioxidant is not more than the above upper limit, an excessive antioxidant is hardly generated to obtain the addition effect.
- the interlayer film for laminated glass may contain additives such as a light stabilizer, a flame retardant, an antistatic agent, a pigment, a dye, an adhesion adjusting agent, a moisture proofing agent, and a fluorescent brightening agent, if necessary.
- additives such as a light stabilizer, a flame retardant, an antistatic agent, a pigment, a dye, an adhesion adjusting agent, a moisture proofing agent, and a fluorescent brightening agent, if necessary.
- additives such as a light stabilizer, a flame retardant, an antistatic agent, a pigment, a dye, an adhesion adjusting agent, a moisture proofing agent, and a fluorescent brightening agent, if necessary.
- 1 type may be used and 2 or more types may be used together.
- the interlayer film for laminated glass is used by being disposed between the first laminated glass member and the second laminated glass member.
- the interlayer film for laminated glass is laminated glass attached to an opening between an external space (first space) and an internal space (second space) into which heat rays are incident from the external space in a building or a vehicle. It is preferably used to obtain In this case, it is preferable that the first resin layer of the first and second resin layers is disposed on the external space side.
- the thickness of the interlayer film for laminated glass is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently increasing the heat shielding property, the thickness of the intermediate film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more preferably 1.5 mm or less. is there. When the thickness of the intermediate film is not less than the above lower limit, the penetration resistance of the laminated glass is increased.
- the thickness of the infrared reflection layer is preferably 0.01 mm or more, more preferably 0.04 mm or more, further preferably 0.07 mm or more, preferably 0.3 mm or less, more preferably 0.2 mm or less, and still more preferably 0. .18 mm or less, particularly preferably 0.16 mm or less.
- the thickness of the infrared reflection layer is not less than the above lower limit, the heat shielding property of the laminated glass is further enhanced.
- the thickness of the infrared reflection layer is not more than the above upper limit, the transparency of the laminated glass is further increased.
- the thicknesses of the first and second resin layers are preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.25 mm or more, particularly preferably 0.3 mm or more, preferably 1.0 mm. Hereinafter, it is more preferably 0.6 mm or less, still more preferably 0.5 mm or less, still more preferably 0.45 mm or less, and particularly preferably 0.4 mm or less.
- the thickness of the first and second resin layers is equal to or greater than the lower limit, the penetration resistance of the laminated glass is further enhanced.
- the thickness of the first and second resin layers is not more than the above upper limit, the transparency of the laminated glass is further increased.
- the method for producing the intermediate film is not particularly limited.
- a conventionally known method can be used as a method for producing the intermediate film.
- the manufacturing method etc. which knead
- the first and second resin layers are preferably formed by extrusion.
- the method of kneading is not particularly limited. Examples of this method include a method using an extruder, a plastograph, a kneader, a Banbury mixer, a calendar roll, or the like. Especially, since it is suitable for continuous production, a method using an extruder is preferable, and a method using a twin screw extruder is more preferable.
- an intermediate film may be obtained by laminating layers, or an intermediate film may be obtained by laminating the first resin layer, the infrared reflecting layer, and the second resin layer by coextrusion.
- an intermediate film may be obtained by coating the surface of the infrared reflective layer with a composition for forming the first and second resin layers to form the first and second resin layers.
- the first resin layer and the second resin layer preferably contain the same polyvinyl acetal resin, and more preferably contain the same polyvinyl acetal resin and the same plasticizer. Preferably, it is more preferably formed of the same resin composition. On the other hand, from the viewpoint of further improving the heat shielding property, it is preferable that the first resin layer and the second resin layer are formed of different resin compositions.
- the laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and an intermediate film disposed between the first and second laminated glass members.
- This intermediate film is the above-mentioned intermediate film for laminated glass.
- the first laminated glass member is disposed outside the first resin layer in the intermediate film.
- the second laminated glass member is disposed outside the second resin layer in the intermediate film.
- the infrared transmittance at a wavelength of 780 to 2100 nm of the entire two layers of the first laminated glass member and the first resin layer is the two layers of the second laminated glass member and the second resin layer. It is higher than the infrared transmittance at the entire wavelength of 780 to 2100 nm.
- the infrared transmittance of the entire two layers of the first laminated glass member and the first resin layer is the laminate of the two layers of the first laminated glass member and the first resin layer. Infrared transmittance.
- the infrared transmittance of the entire two layers, the second laminated glass member and the second resin layer is the laminate of the two layers of the second laminated glass member and the second resin layer. Infrared transmittance.
- the heat shielding property of laminated glass using an intermediate film may be low, and Tts (Total solar energy transmitted through a glazing) may be high.
- the conventional laminated glass has a problem that it is difficult to achieve both a low Tts and a high visible light transmittance (Visible Transmittance).
- the laminated glass includes an intermediate film disposed between the first and second laminated glass members, and the intermediate film includes the infrared reflective layer, the first and second resin layers, and
- the infrared transmittance at a wavelength of 780 to 2100 nm of the entire two layers of the first laminated glass member and the first resin layer is such that the second laminated glass member and the second resin layer
- the infrared transmittance of the entire two layers is higher than the infrared transmittance at a wavelength of 780 to 2100 nm
- the heat shielding property of the laminated glass can be increased.
- the visible light transmittance of the laminated glass can be increased.
- the present invention it is possible to obtain a laminated glass having a low Tts, which is an index of heat shielding properties, and it is possible to obtain a laminated glass having a high visible light transmittance.
- the Tts of the laminated glass can be 60% or less, and the visible light transmittance can be 65% or more.
- Tts can be made 55% or less, Tts can be made 50% or less, and the visible light transmittance can be made 70% or more.
- the laminated glass has the above-described configuration, Tds (Solar Direct Transmission) that is a heat shielding index can be lowered.
- Tds of the laminated glass can be 50% or less, can be 45% or less, and can be further 40% or less.
- the two layers of the first laminated glass member and the first resin layer as a whole transmit a relatively large amount of infrared rays. Furthermore, many infrared rays which permeate
- the temperature rise of the intermediate film when infrared rays are incident on the intermediate film can be suppressed.
- the heat shielding property of the interlayer film for laminated glass is increased and the light resistance is further improved, so that a high visible light transmittance can be maintained for a long period of time.
- the temperature rise of the internal space of a building or a vehicle can be effectively suppressed by attaching the said laminated glass to the opening part of a building or a vehicle.
- the transmitted infrared light is transmitted through the second resin layer or the first resin layer.
- 2 laminated glass members Since the infrared transmittance of the entire two layers of the second resin layer and the second laminated glass member is relatively low, the second resin layer and the second laminated glass member transmit infrared rays. Blocks effectively. For this reason, the quantity of the heat ray which passes the whole laminated glass can be reduced. Also by this, the heat-shielding property of a laminated glass becomes high, and the temperature rise of the interior space of a building or a vehicle can be effectively suppressed by attaching this laminated glass to the opening part of a building or a vehicle.
- the second resin layer contains a heat shielding compound such as a heat shielding particle, the deterioration of the heat shielding compound can be suppressed, and high heat shielding properties can be maintained for a long period of time.
- the laminated glass according to the present invention is preferably a laminated glass attached to an opening between an external space and an internal space where heat rays are incident from the external space in a building or vehicle.
- the first laminated glass member of the first and second laminated glass members is disposed so as to be located on the external space side.
- FIG. 1 is a cross-sectional view showing an example of laminated glass using an interlayer film for laminated glass according to an embodiment of the present invention.
- a laminated glass 11 shown in FIG. 1 includes an intermediate film 1 and first and second laminated glass members 21 and 22.
- the intermediate film 1 is sandwiched between the first and second laminated glass members 21 and 22.
- a first laminated glass member 21 is laminated on the first surface 1 a of the intermediate film 1.
- a second laminated glass member 22 is laminated on a second surface 1 b opposite to the first surface 1 a of the intermediate film 1.
- a first laminated glass member 21 is laminated on the outer surface 3 a of the first resin layer 3 in the intermediate film 1.
- a second laminated glass member 22 is laminated on the outer surface 4 a of the second resin layer 4 in the intermediate film 1.
- the infrared transmittance of the entire two layers of the first laminated glass member and the first resin layer is the infrared transmittance of the entire two layers of the second laminated glass member and the second resin layer. Since it is easy to make it higher than the transmittance, is the infrared transmittance at a wavelength of 780 to 2100 nm of the first resin layer higher than the infrared transmittance at a wavelength of 780 to 2100 nm of the second resin layer? Alternatively, the infrared transmittance of the first laminated glass member at a wavelength of 780 to 2100 nm is preferably higher than the infrared transmittance of the second laminated glass member at a wavelength of 780 to 2100 nm.
- the infrared transmittance of the first resin layer is higher than the infrared transmittance of the second resin layer, and the infrared transmittance of the first laminated glass member is the first transmittance. It may be higher than the infrared transmittance of the laminated glass member 2.
- the infrared transmittance of the first resin layer at a wavelength of 780 to 2100 nm is higher than the infrared transmittance of the second resin layer at a wavelength of 780 to 2100 nm. preferable.
- the infrared transmittance of the first laminated glass member at a wavelength of 780 to 2100 nm is higher than the infrared transmittance of the second laminated glass member at a wavelength of 780 to 2100 nm. It is preferable.
- first and second laminated glass members include glass plates and PET (polyethylene terephthalate) films.
- the laminated glass includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
- Laminated glass is a laminated body provided with a glass plate, and preferably at least one glass plate is used.
- the first and second laminated glass members are each a glass plate or a PET (polyethylene terephthalate) film, and the intermediate film includes at least one glass plate as the first and second laminated glass members. It is preferable. It is particularly preferable that both the first and second laminated glass members are glass plates.
- the glass plate examples include inorganic glass and organic glass.
- the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, mesh plate glass, wire plate glass, and green glass.
- the organic glass is a synthetic resin glass substituted for inorganic glass.
- the organic glass examples include polycarbonate plates and poly (meth) acrylic resin plates.
- the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
- the first laminated glass member and the second laminated glass member are each preferably clear glass or heat ray absorbing plate glass. Since the infrared transmittance is high and the heat shielding property of the laminated glass is further enhanced, the first laminated glass member is preferably clear glass. Since the infrared transmittance is low and the heat shielding property of the laminated glass is further enhanced, the second laminated glass member is preferably a heat ray absorbing plate glass. The heat ray absorbing plate glass is preferably green glass. It is preferable that the first laminated glass member is clear glass and the second laminated glass member is a heat ray absorbing plate glass. The heat ray absorbing plate glass is a heat ray absorbing plate glass based on JIS R3208.
- the thickness of the first and second laminated glass members is not particularly limited, but is preferably 1 mm or more, and preferably 5 mm or less.
- the thickness of the glass plate is preferably 1 mm or more, and preferably 5 mm or less.
- the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
- the method for producing the laminated glass is not particularly limited.
- the intermediate film is sandwiched between the first and second laminated glass members, passed through a pressing roll, or put in a rubber bag and sucked under reduced pressure, thereby the first and second laminated glasses.
- the air remaining between the member and the intermediate film is deaerated. Thereafter, it is pre-adhered at about 70 to 110 ° C. to obtain a laminate.
- the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained.
- the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
- the laminated glass is preferably laminated glass for buildings or vehicles, and more preferably laminated glass for vehicles.
- the laminated glass can be used for other purposes.
- the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like. Since the heat shielding property is high and the visible light transmittance is high, the laminated glass is suitably used for automobiles.
- the visible light transmittance of the laminated glass is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more.
- the visible light transmittance of the laminated glass can be measured according to JIS R3211 (1998).
- the Tts of the laminated glass is preferably 60% or less, more preferably 55% or less, still more preferably 53% or less, particularly preferably 51% or less, and most preferably. Is 50% or less.
- the Tts is measured according to ISO 13837.
- the Tds of the laminated glass is preferably 50% or less, more preferably 45% or less, still more preferably 43% or less, and particularly preferably 41% or less.
- the Tds is measured according to ISO 13837.
- the infrared transmittance (Tir) is obtained by measuring the infrared transmittance and standardizing it using the weight coefficient described in JIS Z8722 and JIS R3106.
- the infrared transmittance T1 at a wavelength of 780 to 2100 nm of the entire two layers of the first laminated glass member and the first resin layer is measured as follows.
- a laminated glass in which a first laminated glass member, a first resin layer, and a clear glass (thickness 2.5 mm) are laminated in this order is manufactured.
- a weight coefficient of 780 to 2100 nm shown in Appendix 2 of JIS R3106 (1998) it is standardized as a new weight coefficient of infrared transmittance.
- U-4100 manufactured by Hitachi High-Tech
- the obtained spectral transmittance is calculated as a weighted average by multiplying a newly normalized weight coefficient, and an infrared transmittance of 780 to 2100 nm is calculated.
- the infrared transmittance T2 at a wavelength of 780 to 2100 nm of the entire two layers of the second laminated glass member and the second resin layer is measured as follows.
- a laminated glass in which a second laminated glass member, a second resin layer, and a clear glass (thickness 2.5 mm) are laminated in this order is manufactured.
- a weight coefficient of 780 to 2100 nm shown in Appendix 2 of JIS R3106 (1998) it is standardized as a new weight coefficient of infrared transmittance.
- U-4100 manufactured by Hitachi High-Tech
- the spectral transmittance at a wavelength of 780 to 2100 nm of the laminated glass is obtained in accordance with JIS R3106 (1998).
- the obtained spectral transmittance is calculated as a weighted average by multiplying the newly normalized weight coefficient, and the infrared transmittance at a wavelength of 780 to 2100 nm is calculated.
- the infrared transmittance at a wavelength of 780 to 2100 nm of the first resin layer or the second resin layer is specifically measured as follows.
- 1st resin layer or 2nd resin layer (measurement object of infrared transmittance) etc. are laminated between two sheets of clear glass to produce a laminated glass.
- a spectrophotometer (“U-4100” manufactured by Hitachi High-Tech)
- the spectral transmittance at a wavelength of 780 to 2100 nm of the laminated glass is obtained in accordance with JIS R3106 (1998).
- the obtained spectral transmittance is calculated as a weighted average by multiplying the newly normalized weight coefficient, and the infrared transmittance at a wavelength of 780 to 2100 nm is calculated.
- the haze value of the laminated glass is preferably 2% or less, more preferably 1% or less, still more preferably 0.5% or less, and particularly preferably 0.4% or less.
- the haze value of the laminated glass can be measured according to JIS K6714.
- the attachment method of the laminated glass which concerns on this invention is a method of attaching the laminated glass mentioned above to the opening part between external space and internal space into which a heat ray injects from this external space in a building or a vehicle.
- the laminated glass is attached to the opening so that the first laminated glass member is located on the outer space side and the second laminated glass member is located on the inner space side. That is, external space / first laminated glass member / (other layer /) first resin layer / (other layer /) infrared reflective layer / (other layer /) second resin layer / (other layer) /) A laminated glass is attached so that it may be arrange
- external space / first laminated glass member / first resin layer / (other layer /) infrared reflective layer / (other layer /) second resin layer / second laminated glass member / internal space The outer space / first laminated glass member / (other layer /) first resin layer / infrared reflective layer / second resin layer / (other layer /) second It is preferable to arrange in order of laminated glass member / internal space, and external space / first laminated glass member / first resin layer / infrared reflective layer / second resin layer / second laminated glass member / internal space. It is preferable to arrange in this order.
- the arrangement form includes a case where another member is disposed between the outer space and the first laminated glass member, and the other member is disposed between the inner space and the second laminated glass member. The case where it is arranged is included.
- the other layer and the other member may or may not exist.
- Sunlight including heat rays enters the laminated glass from the external space, and the sunlight including heat rays passing through the laminated glass is guided to the internal space.
- the outer surface of the first laminated glass member serves as a heat ray incident surface. Further, the heat rays enter the first resin layer earlier than the second resin layer.
- the following materials were used to form the first and second resin layers.
- Thermoplastic resin Polyvinyl butyral resins PVB1 to PVB7 (all of which are acetalized with n-butyraldehyde (PVB)) shown in Table 1 below were prepared.
- Plasticizer 3GO (triethylene glycol di-2-ethylhexanoate)
- BHT Antioxidant, 2,6-di-t-butyl-p-cresol
- T-460 (2,4-bis “2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3-5-triazine,“ Tinvin 460 ”manufactured by BASF
- T-326 UV shielding agent, 2- (2′-hydroxy-3′-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, “Tinuvin 326” manufactured by BASF
- LAF70 ultraviolet shielding agent, triazine ultraviolet shielding agent, “LA-F70” manufactured by ADEKA
- VSU UV blocking agent, 2-ethyl-2′-ethoxy-oxyanilide, “Sanduvor VSU” manufactured by Clariant Japan
- PR25 UV shielding agent, malonic acid [(4-methoxyphenyl) -methylene] -dimethyl ester, “Hostavin PR
- XIR-75 resin film with metal foil, “XIR-75” manufactured by Southwall Technologies
- Multilayer film (3M, multilayer resin film, “Multilayer Nano 80S” manufactured by Sumitomo 3M)
- Clear glass length 100cm x width 100cm x thickness 2mm
- Green glass heat-absorbing plate glass according to JIS R3208, length 100 cm x width 100 cm x thickness 2 mm
- the obtained composition was extruded by an extruder to obtain a single resin layer A1 having a thickness of 380 ⁇ m.
- Preparation of resin layer B1 40 parts by weight of a plasticizer (3GO) and an amount of 0.39% by weight in the resin layer B1 from which ITO can be obtained were added and kneaded sufficiently to obtain a plasticizer dispersion.
- the total amount of the plasticizer dispersion and 0.2 parts by weight of the antioxidant (BHT) were added to 100 parts by weight of the polyvinyl butyral resin (PVB1), and the mixture was sufficiently kneaded with a mixing roll to obtain a composition.
- the obtained composition was extruded by an extruder to obtain a single resin layer B1 having a thickness of 380 ⁇ m.
- the blending amounts of PVB1, 3GO, BHT, T-326, T-460, LAF70, VSU and PR25 are blending amounts (parts by weight) relative to 100 parts by weight of polyvinyl butyral resin (PVB).
- the blending amounts of ITO, CWO, 43V, and SG-5A1257 are blending amounts (% by weight) in 100% by weight of the resin layer.
- Example 1 Production of interlayer film for laminated glass XIR-75 (resin film with metal foil, “XIR-75” manufactured by Southwall Technologies) was prepared as an infrared reflective layer.
- the infrared reflection layer was sandwiched between the obtained resin layer A1 and the obtained resin layer B3 to obtain an intermediate film.
- the obtained intermediate film was cut into a size of 30 cm in length and 30 cm in width.
- one clear glass length 30 cm ⁇ width 30 cm ⁇ thickness 2 mm
- one green glass heat ray absorbing plate glass compliant with JIS R3208, length 30 cm ⁇ width 30 cm ⁇ thickness 2 mm
- the obtained intermediate film was sandwiched between the clear glass and the green glass, held at 90 ° C. for 30 minutes with a vacuum laminator, and vacuum pressed to obtain a laminate.
- the intermediate film portion protruding from the glass plate was cut off to obtain a laminated glass.
- Example 2 to 29 Examples except that the types of the first and second resin layers, the types of the infrared reflecting layers, and the types of the first and second laminated glass members (glass) are set as shown in Tables 4 to 6 below. In the same manner as in Example 1, an interlayer film and a laminated glass were produced.
- Comparative Example 2 The same infrared reflective layer as in Example 1 was sandwiched between the obtained resin layer A1 and the obtained resin layer A1 to obtain an intermediate film.
- a laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used and clear glass was used as the second laminated glass member.
- the infrared reflection layer was sandwiched between the obtained resin layer A1 and the obtained resin layer A1 to obtain an intermediate film.
- a laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used and clear glass was used as the second laminated glass member.
- the infrared reflection layer was sandwiched between the obtained resin layer A1 and the obtained resin layer A1 to obtain an intermediate film.
- a laminated glass was obtained in the same manner as in Example 1 except that the obtained interlayer film was used and that the first laminated glass member was changed to green glass.
- Tts Total solar energy transmitted through a glazing
- the infrared transmittance at a wavelength of 780 to 2100 nm of the first resin layer is Tx1
- the infrared transmittance at a wavelength of 780 to 2100 nm of the second resin layer is When the rate was Tx2, the relationship between Tx1 and Tx2 was described.
- the infrared transmittance at the wavelength 780 to 2100 nm of the first laminated glass member is Ty1
- the wavelength of the second laminated glass member is 780 to 2100 nm. The relationship between Ty1 and Ty2 was described when the infrared transmittance in Ty was Ty2.
- the infrared transmittance T1 at a wavelength of 780 to 2100 nm of the entire two layers of the first laminated glass member and the first resin layer was measured as follows. A laminated glass in which a first laminated glass member, a first resin layer, and clear glass (thickness 2.5 mm) were laminated in this order was produced. Using the weight coefficient of 780 to 2100 nm shown in Appendix 2 of JIS R3106 (1998), it was standardized as a new weight coefficient of infrared transmittance.
- the spectral transmittance at a wavelength of 780 to 2100 nm of the laminated glass was obtained in accordance with JIS R3106 (1998).
- the obtained spectral transmittance was calculated as a weighted average by multiplying the newly normalized weight coefficient, and the infrared transmittance T1 having a wavelength of 780 to 2100 nm was calculated.
- the infrared transmittance T2 at a wavelength of 780 to 2100 nm of the entire two layers of the second laminated glass member and the second resin layer was measured as follows. A laminated glass in which the second laminated glass member, the second resin layer, and the clear glass (thickness 2.5 mm) were laminated in this order was produced. Using the weight coefficient of 780 to 2100 nm shown in Appendix 2 of JIS R3106 (1998), it was standardized as a new weight coefficient of infrared transmittance.
- the spectral transmittance at a wavelength of 780 to 2100 nm of the laminated glass was obtained in accordance with JIS R3106 (1998).
- the obtained spectral transmittance was calculated as a weighted average by multiplying a newly normalized weight coefficient, and infrared transmittance T2 having a wavelength of 780 to 2100 nm was calculated.
- infrared transmittances Tx1 and Tx2 at wavelengths of 780 to 2100 nm of the first resin layer or the second resin layer were measured as follows.
- the first resin layer or the second resin layer was laminated between two sheets of clear glass (thickness 2.5 mm) to produce a laminated glass.
- a spectrophotometer (“U-4100” manufactured by Hitachi High-Tech)
- the spectral transmittance at a wavelength of 780 to 2100 nm of the laminated glass was obtained in accordance with JIS R3106 (1998).
- the obtained spectral transmittance was calculated as a weighted average by multiplying the newly normalized weight coefficient, and the infrared transmittance at a wavelength of 780 to 2100 nm was calculated.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
- Securing Of Glass Panes Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
上記第1,第2の樹脂層は熱可塑性樹脂を含む。該熱可塑性樹脂は特に限定されない。熱可塑性樹脂として、従来公知の熱可塑性樹脂を用いることができる。熱可塑性樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。上記第1の樹脂層中の熱可塑性樹脂と、上記第2の樹脂層中の熱可塑性樹脂とは同一であってもよく、異なっていてもよい。
中間膜の接着力をより一層高める観点からは、上記第1の樹脂層は可塑剤を含むことが好ましく、上記第2の樹脂層は可塑剤を含むことが好ましい。上記第1,第2の樹脂層中の熱可塑性樹脂が、ポリビニルアセタール樹脂である場合に、上記第1,第2の樹脂層はそれぞれ、可塑剤を含むことが特に好ましい。
成分X:
上記第2の樹脂層は、遮熱性化合物を含むことが好ましい。上記第2の樹脂層は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むことが好ましい。上記第2の樹脂層は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むか、又は、後述する遮熱粒子を含むことが好ましい。上記第1の樹脂層は、上記成分Xを含んでいてもよい。上記成分Xは遮熱性化合物である。中間膜全体で少なくとも1層に上記成分Xを用いることにより、赤外線(熱線)を効果的に遮断できる。上記第2の樹脂層が上記成分Xを含むことにより、赤外線をより一層効果的に遮断できる。
上記第2の樹脂層は、遮熱粒子を含むことが好ましい。上記第1の樹脂層は、遮熱粒子を含んでいてもよい。遮熱粒子は遮熱性化合物である。中間膜全体で少なくとも1層に遮熱性化合物を用いることにより、赤外線(熱線)を効果的に遮断できる。上記第2の樹脂層が遮熱粒子を含むことにより、赤外線をより一層効果的に遮断できる。
上記式(X1)において、Wはタングステン、Oは酸素を表し、y及びzは2.0<z/y<3.0を満たす。
上記式(X2)において、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta及びReからなる群から選択される少なくとも1種の元素、Wはタングステン、Oは酸素を表し、x、y及びzは、0.001≦x/y≦1、及び2.0<z/y≦3.0を満たす。
上記第1の樹脂層は、紫外線遮蔽剤を含むことが好ましい。上記第2の樹脂層は、紫外線遮蔽剤を含むことが好ましい。上記第1の樹脂層と上記第2の樹脂層との双方が、紫外線遮蔽剤を含むことがより好ましい。紫外線遮蔽剤の使用により、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。該紫外線遮蔽剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記第1の樹脂層は、酸化防止剤を含むことが好ましい。上記第2の樹脂層は、酸化防止剤を含むことが好ましい。上記第1の樹脂層と上記第2の樹脂層との双方が酸化防止剤を含むことが好ましい。該酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記合わせガラス用中間膜は、必要に応じて、光安定剤、難燃剤、帯電防止剤、顔料、染料、接着力調整剤、耐湿剤及び蛍光増白剤等の添加剤を含んでいてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記合わせガラス用中間膜は、第1の合わせガラス部材と第2の合わせガラス部材との間に配置されて用いられる。
本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、該第1,第2の合わせガラス部材の間に配置された中間膜とを備える。該中間膜が、上述した合わせガラス用中間膜である。上記中間膜における上記第1の樹脂層の外側に、上記第1の合わせガラス部材が配置されている。上記中間膜における上記第2の樹脂層の外側に上記第2の合わせガラス部材が配置されている。上記第1の合わせガラス部材と上記第1の樹脂層との2つの層全体の波長780~2100nmにおける赤外線透過率は、上記第2の合わせガラス部材と上記第2の樹脂層との2つの層全体の波長780~2100nmにおける赤外線透過率よりも高い。
本発明に係る合わせガラスの取り付け方法は、上述した合わせガラスを、建築物又は車両において外部空間と該外部空間から熱線が入射される内部空間との間の開口部に取り付ける方法である。
下記の表1に示すポリビニルブチラール樹脂PVB1~PVB7(いずれも、n-ブチルアルデヒドによりアセタール化されているポリビニルブチラール樹脂(PVB))を用意した。
3GO(トリエチレングリコールジ-2-エチルヘキサノエート)
BHT(酸化防止剤、2,6-ジ-t-ブチル-p-クレゾール)
T-460(2,4-ビス「2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、BASF社製「Tinuvin460」)
T-326(紫外線遮蔽剤、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、BASF社製「Tinuvin326」)
LAF70(紫外線遮蔽剤、トリアジン系紫外線遮蔽剤、ADEKA社製「LA-F70」)
VSU(紫外線遮蔽剤、2-エチル-2’-エトキシ-オキシアニリド、クラリアントジャパン社製「Sanduvor VSU」)
PR25(紫外線遮蔽剤、マロン酸[(4-メトキシフェニル)-メチレン]-ジメチルエステル、クラリアントジャパン社製「Hostavin PR-25」)
ITO(ITO粒子、錫ドープ酸化インジウム粒子)
CWO(CWO粒子、セシウムドープ酸化タングステン(Cs0.33WO3)粒子)
43V(成分X、フタロシアニン化合物、中心金属としてバナジウムを含有する、山田化学社製「NIR-43V」)
SG-5A1257(成分X、銅を含有するフタロシアニン化合物、住化カラー社製「BLUE SG-5A1257」)
多層フィルム(3M、多層樹脂フィルム、住友スリーエム社製「マルチレイヤー Nano 80S」)
グリーンガラス(JIS R3208に準拠した熱線吸収板ガラス、縦100cm×横100cm×厚み2mm)
ポリビニルブチラール樹脂(PVB1)100重量部に対し、可塑剤(3GO)40重量部と、紫外線遮蔽剤(T-326)0.8重量部と、酸化防止剤(BHT)0.2重量部とを添加し、ミキシングロールで充分に混練し、組成物を得た。
配合成分の種類及び配合量を下記の表2に示すように設定したこと以外は樹脂層A1と同様にして、厚み380μmの単層の樹脂層A2~A7を得た。
可塑剤(3GO)40重量部と、ITOを得られる樹脂層B1中で0.39重量%となる量とを添加し、充分に混練し、可塑剤分散液を得た。ポリビニルブチラール樹脂(PVB1)100重量部に対し、可塑剤分散液全量と、酸化防止剤(BHT)0.2重量部とを添加し、ミキシングロールで充分に混練し、組成物を得た。
配合成分の種類及び含有量を下記の表3に示すように設定したこと以外は樹脂層B1と同様にして、厚み380μmの単層の樹脂層B2~B17を作製した。
(1)合わせガラス用中間膜の作製
赤外線反射層として、XIR-75(金属箔付き樹脂フィルム、Southwall Technologies社製「XIR-75」)を用意した。
得られた中間膜を、縦30cm×横30cmの大きさに切断した。また、1枚のクリアガラス(縦30cm×横30cm×厚み2mm)と、1枚のグリーンガラス(JIS R3208に準拠した熱線吸収板ガラス、縦30cm×横30cm×厚み2mm)とを用意した。このクリアガラスとグリーンガラスとの間に、得られた中間膜を挟み込み、真空ラミネーターにて90℃で30分間保持し、真空プレスし、積層体を得た。積層体において、ガラス板からはみ出た中間膜部分を切り落とし、合わせガラスを得た。
第1,第2の樹脂層の種類、赤外線反射層の種類、並びに第1,第2の合わせガラス部材(ガラス)の種類を下記の表4~6に示すように設定したこと以外は実施例1と同様にして、中間膜及び合わせガラスを作製した。
赤外線反射層を用いずに、得られた樹脂層A1と得られた樹脂層A1とを積層して、中間膜を得た。得られた中間膜を用いたこと以外は実施例1と同様にして、合わせガラスを得た。
実施例1と同じ赤外線反射層を、得られた樹脂層A1と得られた樹脂層A1との間に挟み込んで、中間膜を得た。得られた中間膜を用いたこと、並びに第2の合わせガラス部材としてクリアガラスを用いたこと以外は実施例1と同様にして、合わせガラスを得た。
赤外線反射層として、多層フィルム(3M、多層樹脂フィルム、住友スリーエム社製「マルチレイヤー Nano 80S」)を用意した。
赤外線反射層として、多層フィルム(3M、多層樹脂フィルム、住友スリーエム社製「マルチレイヤー Nano 80S」)を用意した。
(1)可視光線透過率(A光Y値、A-Y(380~780nm))の測定
分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R3211(1998)に準拠して、得られた合わせガラスの波長380~780nmにおける上記可視光線透過率を測定した。
分光光度計(日立ハイテク社製「U-4100」)を用いて、ISO 13837に準拠して、得られた合わせガラスの波長300~2500nmでのTdsを測定した。
ISO 13837に準拠して、分光光度計(日立ハイテク社製「U-4100」)を用いて、波長300~2500nmの透過率/反射率を測定して、Ttsを算出した。
1a…第1の表面
1b…第2の表面
2…赤外線反射層
2a…第1の表面
2b…第2の表面
3…第1の樹脂層
3a…外側の表面
4…第2の樹脂層
4a…外側の表面
11…合わせガラス
21…第1の合わせガラス部材
22…第2の合わせガラス部材
Claims (14)
- 第1の合わせガラス部材と、
第2の合わせガラス部材と、
前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置された中間膜とを備え、
前記中間膜が、赤外線を反射する赤外線反射層と、前記赤外線反射層の第1の表面側に配置されており、かつ熱可塑性樹脂を含む第1の樹脂層と、前記赤外線反射層の前記第1の表面とは反対の第2の表面側に配置されており、かつ熱可塑性樹脂を含む第2の樹脂層とを備え、
前記中間膜における前記第1の樹脂層の外側に、前記第1の合わせガラス部材が配置されており、かつ前記中間膜における前記第2の樹脂層の外側に、前記第2の合わせガラス部材が配置されており、
前記第1の合わせガラス部材と前記第1の樹脂層との2つの層全体の波長780~2100nmにおける赤外線透過率が、前記第2の合わせガラス部材と前記第2の樹脂層との2つの層全体の波長780~2100nmにおける赤外線透過率よりも高い、合わせガラス。 - 前記第1の樹脂層の波長780~2100nmにおける赤外線透過率が、前記第2の樹脂層の波長780~2100nmにおける赤外線透過率よりも高いか、又は、
前記第1の合わせガラス部材の波長780~2100nmにおける赤外線透過率が、前記第2の合わせガラス部材の波長780~2100nmにおける赤外線透過率よりも高い、請求項1に記載の合わせガラス。 - 前記第1の樹脂層の波長780~2100nmにおける赤外線透過率が、前記第2の樹脂層の波長780~2100nmにおける赤外線透過率よりも高い、請求項1に記載の合わせガラス。
- 前記第1の合わせガラス部材の波長780~2100nmにおける赤外線透過率が、前記第2の合わせガラス部材の波長780~2100nmにおける赤外線透過率よりも高い、請求項1に記載の合わせガラス。
- 前記第1の樹脂層の波長780~2100nmにおける赤外線透過率が、前記第2の樹脂層の波長780~2100nmにおける赤外線透過率よりも高く、かつ、
前記第1の合わせガラス部材の波長780~2100nmにおける赤外線透過率が、前記第2の合わせガラス部材の波長780~2100nmにおける赤外線透過率よりも高い、請求項1に記載の合わせガラス。 - 前記赤外線反射層が、金属箔付き樹脂フィルム、樹脂層上に金属層及び誘電層が形成された多層積層フィルム、多層樹脂フィルム又は液晶フィルムである、請求項1~5のいずれか1項に記載の合わせガラス。
- 前記第2の樹脂層が金属酸化物粒子を含む、請求項1~6のいずれか1項に記載の合わせガラス。
- 前記金属酸化物粒子が、錫ドープ酸化インジウム粒子又は酸化タングステン粒子である、請求項7に記載の合わせガラス。
- 前記第2の樹脂層が、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種を含む、請求項1~8のいずれか1項に記載の合わせガラス。
- 前記第1の樹脂層中の前記熱可塑性樹脂がポリビニルアセタール樹脂であり、
前記第2の樹脂層中の前記熱可塑性樹脂がポリビニルアセタール樹脂である、請求項1~9のいずれか1項に記載の合わせガラス。 - 前記第1の樹脂層が可塑剤を含み、
前記第2の樹脂層が可塑剤を含む、請求項1~10のいずれか1項に記載の合わせガラス。 - 前記第1の樹脂層が紫外線遮蔽剤を含む、請求項1~11のいずれか1項に記載の合わせガラス。
- 前記第2の樹脂層が紫外線遮蔽剤を含む、請求項1~12のいずれか1項に記載の合わせガラス。
- 請求項1~13のいずれか1項に記載の合わせガラスを、建築物又は車両において、外部空間と前記外部空間から熱線が入射される内部空間との間の開口部に取り付ける方法であって、
前記第1の合わせガラス部材が、前記外部空間側に位置するように、かつ前記第2の合わせガラス部材が前記内部空間側に位置するように、前記合わせガラスを前記開口部に取り付ける、合わせガラスの取り付け方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/418,919 US10414130B2 (en) | 2012-07-31 | 2013-07-31 | Laminated glass and method of mounting laminated glass |
JP2013547766A JP6144203B2 (ja) | 2012-07-31 | 2013-07-31 | 合わせガラス及び合わせガラスの取り付け方法 |
EP13825301.8A EP2883848B1 (en) | 2012-07-31 | 2013-07-31 | Laminated glass and method of mounting laminated glass |
CN201380036240.0A CN104470869B (zh) | 2012-07-31 | 2013-07-31 | 夹层玻璃及夹层玻璃的安装方法 |
US16/402,694 US10766230B2 (en) | 2012-07-31 | 2019-05-03 | Laminated glass and method of mounting laminated glass |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-170290 | 2012-07-31 | ||
JP2012-170289 | 2012-07-31 | ||
JP2012170289 | 2012-07-31 | ||
JP2012170290 | 2012-07-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/418,919 A-371-Of-International US10414130B2 (en) | 2012-07-31 | 2013-07-31 | Laminated glass and method of mounting laminated glass |
US16/402,694 Continuation US10766230B2 (en) | 2012-07-31 | 2019-05-03 | Laminated glass and method of mounting laminated glass |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014021406A1 true WO2014021406A1 (ja) | 2014-02-06 |
Family
ID=50028075
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070819 WO2014021406A1 (ja) | 2012-07-31 | 2013-07-31 | 合わせガラス及び合わせガラスの取り付け方法 |
PCT/JP2013/070820 WO2014021407A1 (ja) | 2012-07-31 | 2013-07-31 | 合わせガラス用中間膜、合わせガラス及び合わせガラスの取り付け方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070820 WO2014021407A1 (ja) | 2012-07-31 | 2013-07-31 | 合わせガラス用中間膜、合わせガラス及び合わせガラスの取り付け方法 |
Country Status (5)
Country | Link |
---|---|
US (3) | US10414130B2 (ja) |
EP (2) | EP2883848B1 (ja) |
JP (4) | JP6144203B2 (ja) |
CN (4) | CN108724852B (ja) |
WO (2) | WO2014021406A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016039469A1 (ja) * | 2014-09-11 | 2016-03-17 | 積水化学工業株式会社 | 合わせガラス用中間膜、合わせガラス及び合わせガラスの取り付け方法 |
JP2017124971A (ja) * | 2014-11-10 | 2017-07-20 | 株式会社クラレ | 合わせガラス用中間膜および合わせガラス |
JP2019038727A (ja) * | 2017-08-28 | 2019-03-14 | 怡利電子工業股▲ふん▼有限公司 | 合わせガラス用フィルム挟み作製方法 |
WO2020203278A1 (ja) | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | 車両用合わせガラス及び車両 |
KR20230066342A (ko) | 2020-09-10 | 2023-05-15 | 세키스이가가쿠 고교가부시키가이샤 | 접합 유리용 중간막, 접합 유리, 및 접합 유리용 적층체 |
WO2024204469A1 (ja) * | 2023-03-31 | 2024-10-03 | 積水化学工業株式会社 | 合わせガラス用中間膜、及び合わせガラス |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2774386A1 (en) * | 2011-04-15 | 2012-10-15 | Tac-Fast Systems Canada Limited | Methods and systems for engagement of decorative covering |
WO2014021406A1 (ja) | 2012-07-31 | 2014-02-06 | 積水化学工業株式会社 | 合わせガラス及び合わせガラスの取り付け方法 |
WO2014163119A1 (ja) * | 2013-04-03 | 2014-10-09 | 住友金属鉱山株式会社 | 熱線遮蔽膜、熱線遮蔽合わせ透明基材、熱線遮蔽樹脂シート材、自動車および建造物 |
EP3912809A1 (en) | 2014-01-31 | 2021-11-24 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass, laminated glass and method for fitting laminated glas |
MX2017002845A (es) * | 2014-09-12 | 2017-05-30 | Sekisui Chemical Co Ltd | Capa intermedia para vidrio laminado, y vidrio laminado. |
JP6755944B2 (ja) * | 2015-10-07 | 2020-09-16 | ジェンテックス コーポレイション | 電気光学素子を組み込んだサンルーフ |
US10722917B2 (en) * | 2016-01-13 | 2020-07-28 | Nippon Paint Holdings Co., Ltd | Multi-layer coating film with high infrared-light reflectivity and high visible-light transmissivity and forming method thereof |
CN108473372A (zh) * | 2016-02-05 | 2018-08-31 | 积水化学工业株式会社 | 夹层玻璃用中间膜及夹层玻璃 |
JP6949710B2 (ja) * | 2016-03-30 | 2021-10-13 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
CN109072010B (zh) | 2016-06-02 | 2022-09-23 | M技术株式会社 | 透明材料用紫外线和/或近红外线遮断剂组合物 |
CN109416422B (zh) * | 2016-07-15 | 2021-08-13 | 东丽株式会社 | 膜及叠层体 |
US11209580B2 (en) | 2016-12-23 | 2021-12-28 | Sabic Global Technologies B.V. | Articles comprising an infrared blocking layer and methods of making the same |
EP3574174B1 (de) * | 2017-01-30 | 2023-03-29 | Saint-Gobain Glass France | Isolierverglasung mit erhöhter durchbruchhemmung und einem adapterelement |
WO2018168469A1 (ja) * | 2017-03-15 | 2018-09-20 | Agc株式会社 | インナーミラー付き車両用合わせガラス |
GB201711553D0 (en) * | 2017-07-18 | 2017-08-30 | Pilkington Group Ltd | Laminated glazing |
CN110998414A (zh) * | 2017-08-09 | 2020-04-10 | 帝人株式会社 | 平视显示器显示装置和用于该平视显示器显示装置的透光部件 |
JP7299704B2 (ja) * | 2017-10-10 | 2023-06-28 | 積水化学工業株式会社 | 照明装置、及び乗り物用ガラス利用方法 |
CN107542376B (zh) * | 2017-10-17 | 2019-10-29 | 江山市丰泽木业有限公司 | 一种用于门板装饰的三聚氰胺面板 |
JP6954194B2 (ja) * | 2018-03-13 | 2021-10-27 | Jsr株式会社 | 赤外線吸収組成物 |
CN111918852A (zh) * | 2018-03-29 | 2020-11-10 | 积水化学工业株式会社 | 夹层玻璃、平视显示系统和平视显示系统的制造方法 |
TW201941947A (zh) * | 2018-03-29 | 2019-11-01 | 日商積水化學工業股份有限公司 | 層合玻璃用中間膜、層合玻璃及抬頭顯示器系統之製造方法 |
EP3778514A4 (en) * | 2018-03-29 | 2021-12-29 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass, and laminated glass |
US20200391484A1 (en) * | 2018-03-29 | 2020-12-17 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass, laminated glass, and method for installing laminated glass |
KR20200138191A (ko) * | 2018-03-29 | 2020-12-09 | 세키스이가가쿠 고교가부시키가이샤 | 접합 유리용 중간막, 접합 유리 및 헤드업 디스플레이 시스템의 제조 방법 |
US20210046738A1 (en) * | 2018-05-16 | 2021-02-18 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glasses, laminated glass, and automobile |
TWI811435B (zh) | 2018-08-23 | 2023-08-11 | 日商積水化學工業股份有限公司 | 層合玻璃用中間膜、層合玻璃、及玻璃構成體 |
JPWO2020189780A1 (ja) * | 2019-03-20 | 2020-09-24 | ||
CN112297531A (zh) * | 2019-03-21 | 2021-02-02 | 黄涛 | 一种隔热抗辐射夹层玻璃膜的生产工艺 |
CN113574029B (zh) * | 2019-03-29 | 2023-07-07 | 积水化学工业株式会社 | 夹层玻璃及车辆系统 |
WO2020203989A1 (ja) * | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | 合わせガラス、及び車両システム |
JP7468036B2 (ja) * | 2020-03-23 | 2024-04-16 | 住友金属鉱山株式会社 | 熱線遮蔽合わせ透明基材 |
US20230065099A1 (en) * | 2020-03-31 | 2023-03-02 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass, and laminated glass |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001025162A1 (en) | 1999-10-01 | 2001-04-12 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass and laminated glass |
WO2005087680A1 (ja) | 2004-03-16 | 2005-09-22 | Sumitomo Metal Mining Co., Ltd. | 日射遮蔽用合わせ構造体 |
JP2010222233A (ja) * | 2009-02-27 | 2010-10-07 | Central Glass Co Ltd | 断熱合わせガラス |
WO2011074425A1 (ja) * | 2009-12-16 | 2011-06-23 | 旭硝子株式会社 | 合わせガラス |
JP2012106931A (ja) * | 2009-08-24 | 2012-06-07 | Sekisui Chem Co Ltd | 合わせガラス用中間膜及び合わせガラス |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1001374A (en) | 1971-10-27 | 1976-12-14 | Robert E. Moynihan | Film structure of polyvinyl acetal resin and safety glass thereof |
US5126237A (en) * | 1989-08-18 | 1992-06-30 | Konica Corporation | Silver halide light-sensitive photographic material |
US5340654A (en) | 1992-04-23 | 1994-08-23 | Sekisui Kagaku Kogyo Kabushiki Kaisha | Interlayer film for laminated glass |
JP3154645B2 (ja) | 1995-01-23 | 2001-04-09 | セントラル硝子株式会社 | 自動車用合せガラス |
US5618863A (en) | 1996-03-25 | 1997-04-08 | Monsanto Company | UV stable polyvinyl butyral sheet |
JPH1017337A (ja) | 1996-07-03 | 1998-01-20 | Asahi Denka Kogyo Kk | 合わせガラス用中間膜 |
US6383647B1 (en) * | 1998-09-30 | 2002-05-07 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass and laminated glass |
JP2000154046A (ja) | 1998-11-16 | 2000-06-06 | Nippon Shokubai Co Ltd | 合わせガラスおよびこれに用いる樹脂中間層 |
TW574161B (en) | 2000-03-02 | 2004-02-01 | Sekisui Chemical Co Ltd | Interlayer film for laminated glass and laminated glass |
ATE404361T1 (de) * | 2001-07-26 | 2008-08-15 | Sekisui Chemical Co Ltd | Zwischenfolie für verbundglas und verbundglas |
JP2003055006A (ja) | 2001-08-22 | 2003-02-26 | Asahi Glass Co Ltd | 合わせガラスおよびエッジライト装置 |
JP2003261361A (ja) | 2002-03-11 | 2003-09-16 | Sekisui Chem Co Ltd | 合わせガラス用中間膜及び合わせガラス |
JP2004026547A (ja) | 2002-06-24 | 2004-01-29 | Nippon Sheet Glass Co Ltd | 断熱合わせガラス |
AU2004312250B2 (en) | 2003-12-26 | 2009-09-03 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass and laminated glass |
JP4481728B2 (ja) * | 2004-06-01 | 2010-06-16 | 積水化学工業株式会社 | 遮熱粒子分散液、合わせガラス用中間膜及び合わせガラス |
WO2005118503A1 (ja) | 2004-06-01 | 2005-12-15 | Sekisui Chemical Co., Ltd. | 合わせガラス用中間膜及び合わせガラス |
CA2593832C (en) | 2005-02-03 | 2013-05-14 | Sekisui Chemical Co., Ltd. | Interlayer for laminated glass and laminated glass |
US7678849B2 (en) * | 2005-03-29 | 2010-03-16 | Honda Motor Co., Ltd. | High chroma hals stabilized polymer composition |
JP2008544878A (ja) * | 2005-05-11 | 2008-12-11 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | くさび形プロファイルを有するポリマー中間層 |
JP2007084423A (ja) | 2005-08-24 | 2007-04-05 | Sekisui Chem Co Ltd | 合わせガラス |
US20090237782A1 (en) | 2005-10-26 | 2009-09-24 | Central Glass Company, Limited | Near Infrared Ray Reflective Substrate And Near Infrared Ray Reflective Laminated Glass Employing That Substrate, Near Infrared Ray Reflective Double Layer Glass |
EP2163921A4 (en) * | 2007-06-08 | 2012-08-29 | Bridgestone Corp | PROTECTIVE NON-INFRARED PROTECTIVE MATERIAL, LAMINATE COMPRISING THE SAME, AND OPTICAL FILTER FOR DISPLAY |
US8216683B2 (en) | 2007-08-03 | 2012-07-10 | Solutia Inc. | Interlayers comprising stabilized tungsten oxide agents |
KR101550946B1 (ko) | 2007-12-28 | 2015-09-07 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 태양광 조절 및 그 외의 용도의 적외선 반사 필름 |
JP5588169B2 (ja) | 2008-01-23 | 2014-09-10 | 積水化学工業株式会社 | 合わせガラス用中間膜、及び、合わせガラス |
WO2010074048A1 (ja) | 2008-12-22 | 2010-07-01 | 積水化学工業株式会社 | 合わせガラス用積層体 |
JP5440059B2 (ja) | 2009-04-16 | 2014-03-12 | セントラル硝子株式会社 | プラスチックフィルム挿入合わせガラスの製造方法及びプラスチックフィルム挿入合わせガラス |
SG176271A1 (en) * | 2009-05-28 | 2012-01-30 | Teijin Chemicals Ltd | Polycarbonate resin composition and molded article comprising same |
JP5136519B2 (ja) | 2009-06-26 | 2013-02-06 | 堺化学工業株式会社 | 二酸化チタン粒子とその製造方法 |
CN103641337B (zh) | 2009-08-24 | 2017-01-18 | 积水化学工业株式会社 | 夹层玻璃用中间膜及夹层玻璃 |
JP5685084B2 (ja) | 2009-09-29 | 2015-03-18 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
EP2518032B1 (en) | 2009-12-25 | 2017-11-29 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass, and laminated glass |
JP2011154215A (ja) | 2010-01-27 | 2011-08-11 | Fujifilm Corp | 赤外光反射板、合わせガラス用積層中間膜シート及びその製造方法、並びに合わせガラス |
US20130143049A1 (en) | 2010-08-24 | 2013-06-06 | Hirofumi Kitano | Interlayer film for laminated glass, and laminated glass |
JP2012101999A (ja) | 2010-10-15 | 2012-05-31 | Fujifilm Corp | 合わせガラス体およびそれに用いる積層体 |
CN103261113B (zh) | 2010-12-09 | 2016-10-19 | 积水化学工业株式会社 | 夹层玻璃用中间膜及夹层玻璃 |
JP2012131659A (ja) * | 2010-12-21 | 2012-07-12 | Sekisui Chem Co Ltd | 合わせガラス及び合わせガラスの取り付け方法 |
WO2014021406A1 (ja) | 2012-07-31 | 2014-02-06 | 積水化学工業株式会社 | 合わせガラス及び合わせガラスの取り付け方法 |
-
2013
- 2013-07-31 WO PCT/JP2013/070819 patent/WO2014021406A1/ja active Application Filing
- 2013-07-31 EP EP13825301.8A patent/EP2883848B1/en not_active Revoked
- 2013-07-31 EP EP13825101.2A patent/EP2883847B1/en not_active Revoked
- 2013-07-31 US US14/418,919 patent/US10414130B2/en active Active
- 2013-07-31 WO PCT/JP2013/070820 patent/WO2014021407A1/ja active Application Filing
- 2013-07-31 CN CN201810549314.5A patent/CN108724852B/zh active Active
- 2013-07-31 CN CN201810185093.8A patent/CN108483949B/zh active Active
- 2013-07-31 US US14/418,931 patent/US10654250B2/en active Active
- 2013-07-31 JP JP2013547766A patent/JP6144203B2/ja active Active
- 2013-07-31 CN CN201380036240.0A patent/CN104470869B/zh active Active
- 2013-07-31 CN CN201380036241.5A patent/CN104428267B/zh active Active
- 2013-07-31 JP JP2013547764A patent/JP6144202B2/ja active Active
-
2017
- 2017-05-09 JP JP2017093024A patent/JP2017178781A/ja active Pending
- 2017-05-09 JP JP2017093023A patent/JP2017171576A/ja active Pending
-
2019
- 2019-05-03 US US16/402,694 patent/US10766230B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001025162A1 (en) | 1999-10-01 | 2001-04-12 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass and laminated glass |
WO2005087680A1 (ja) | 2004-03-16 | 2005-09-22 | Sumitomo Metal Mining Co., Ltd. | 日射遮蔽用合わせ構造体 |
JP2010222233A (ja) * | 2009-02-27 | 2010-10-07 | Central Glass Co Ltd | 断熱合わせガラス |
JP2012106931A (ja) * | 2009-08-24 | 2012-06-07 | Sekisui Chem Co Ltd | 合わせガラス用中間膜及び合わせガラス |
WO2011074425A1 (ja) * | 2009-12-16 | 2011-06-23 | 旭硝子株式会社 | 合わせガラス |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016039469A1 (ja) * | 2014-09-11 | 2016-03-17 | 積水化学工業株式会社 | 合わせガラス用中間膜、合わせガラス及び合わせガラスの取り付け方法 |
JP2017124971A (ja) * | 2014-11-10 | 2017-07-20 | 株式会社クラレ | 合わせガラス用中間膜および合わせガラス |
US10899112B2 (en) | 2014-11-10 | 2021-01-26 | Kuraray Co., Ltd. | Interlayer film for laminated glass and laminated glass |
JP2019038727A (ja) * | 2017-08-28 | 2019-03-14 | 怡利電子工業股▲ふん▼有限公司 | 合わせガラス用フィルム挟み作製方法 |
WO2020203278A1 (ja) | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | 車両用合わせガラス及び車両 |
KR20230066342A (ko) | 2020-09-10 | 2023-05-15 | 세키스이가가쿠 고교가부시키가이샤 | 접합 유리용 중간막, 접합 유리, 및 접합 유리용 적층체 |
WO2024204469A1 (ja) * | 2023-03-31 | 2024-10-03 | 積水化学工業株式会社 | 合わせガラス用中間膜、及び合わせガラス |
Also Published As
Publication number | Publication date |
---|---|
WO2014021407A1 (ja) | 2014-02-06 |
US20150210043A1 (en) | 2015-07-30 |
CN108483949A (zh) | 2018-09-04 |
US10654250B2 (en) | 2020-05-19 |
EP2883847A4 (en) | 2016-04-06 |
CN104428267A (zh) | 2015-03-18 |
CN104470869B (zh) | 2018-06-22 |
CN104428267B (zh) | 2019-02-15 |
US20150168619A1 (en) | 2015-06-18 |
JP2017178781A (ja) | 2017-10-05 |
EP2883847A1 (en) | 2015-06-17 |
US20190255814A1 (en) | 2019-08-22 |
CN108724852B (zh) | 2021-03-16 |
US10414130B2 (en) | 2019-09-17 |
JP6144202B2 (ja) | 2017-06-07 |
CN104470869A (zh) | 2015-03-25 |
CN108483949B (zh) | 2021-06-01 |
EP2883847B1 (en) | 2018-03-07 |
JP6144203B2 (ja) | 2017-06-07 |
EP2883848A1 (en) | 2015-06-17 |
JPWO2014021407A1 (ja) | 2016-07-21 |
EP2883848A4 (en) | 2016-04-06 |
JP2017171576A (ja) | 2017-09-28 |
JPWO2014021406A1 (ja) | 2016-07-21 |
CN108724852A (zh) | 2018-11-02 |
EP2883848B1 (en) | 2018-05-23 |
US10766230B2 (en) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6144203B2 (ja) | 合わせガラス及び合わせガラスの取り付け方法 | |
WO2015115627A1 (ja) | 合わせガラス及び合わせガラスの取り付け方法 | |
JP6484033B2 (ja) | 合わせガラス用多層中間膜及び合わせガラス | |
JP5416839B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP6649772B2 (ja) | 合わせガラス用中間膜、合わせガラス及び合わせガラスの取り付け方法 | |
WO2019189740A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP2013163616A (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP2015164892A (ja) | 合わせガラス用中間膜、合わせガラス及び合わせガラスの取り付け方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013547766 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13825301 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2013825301 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14418919 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |