WO2014021206A1 - ポリエステル製造用重縮合触媒とその重縮合触媒を用いるポリエステルの製造 - Google Patents
ポリエステル製造用重縮合触媒とその重縮合触媒を用いるポリエステルの製造 Download PDFInfo
- Publication number
- WO2014021206A1 WO2014021206A1 PCT/JP2013/070290 JP2013070290W WO2014021206A1 WO 2014021206 A1 WO2014021206 A1 WO 2014021206A1 JP 2013070290 W JP2013070290 W JP 2013070290W WO 2014021206 A1 WO2014021206 A1 WO 2014021206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester
- coating layer
- polycondensation
- solid base
- production
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/84—Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/81—Preparation processes using solvents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/83—Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/85—Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
Definitions
- the present invention relates to a polycondensation catalyst for producing polyester and production of polyester using the polycondensation catalyst, and further relates to polyester obtained using the polycondensation catalyst.
- Polyesters typified by polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc. have excellent mechanical and chemical properties. Depending on their properties, for example, textiles for clothing and industrial materials, and packaging It is used in a wide range of fields such as films and sheets for magnetic tapes, bottles that are hollow molded products, casings for electrical and electronic components, and other various molded products and components.
- Polyesters mainly comprising an aromatic dicarboxylic acid component and an alkylene glycol component which are typical polyesters, for example, polyethylene terephthalate is an esterification reaction between terephthalic acid and ethylene glycol, or an ester of dimethyl terephthalate and ethylene glycol. It is produced by producing bis (2-hydroxyethyl) terephthalate (BHET) and an oligomer containing the same by exchange, and subjecting this to melt polycondensation in a vacuum at a high temperature in the presence of a polycondensation catalyst.
- BHET bis (2-hydroxyethyl) terephthalate
- polyester biaxially stretched bottle applications known as PET bottles
- PET bottles require higher molecular weight polyesters than fiber and film applications so that the resulting bottles have sufficient strength.
- a high molecular weight polyester obtained by solid-phase polycondensation of the condensate is used.
- antimony trioxide is well known as such a polycondensation catalyst for producing polyester.
- Antimony trioxide is a catalyst that is inexpensive and has excellent catalytic activity, but metal antimony is precipitated during the polycondensation of the polyester raw material, resulting in darkening of the resulting polyester, and foreign matter being mixed into the resulting polyester. is there.
- the above-described titanium-based catalysts have high polymerization activity.
- polyesters obtained using such titanium-based catalysts are colored yellow and are thermally deteriorated even during melt molding. Thus, there is a problem that it is easy to color, and there is a problem that transparency is inferior.
- the titanic acid catalyst having such a particle structure is excellent in color tone and transparency with a polymerization activity equal to or higher than that in the case of using an antimony trioxide catalyst in the production of polyester by melt polycondensation of a polyester raw material.
- the polymerization activity in terms of the polycondensation rate is higher than that of the antimony trioxide catalyst.
- the present inventors have determined that each of them has a predetermined ratio with respect to the weight of the solid base.
- an inner coating layer made of titanic acid on the surface of solid base particles, and an oxide of at least one element selected from aluminum, zirconium and silicon, or at least two elements selected from aluminum, zirconium and silicon By using solid base particles having an outer coating layer made of a composite oxide on the surface of the inner coating layer as a polycondensation catalyst for polyester production, decomposition of the polyester during melt polycondensation is suppressed, and an antimony trioxide catalyst Polyester with excellent color tone with higher polymerization activity, and Also in solid phase polycondensation, high-molecular-weight polyester excellent in color tone is almost equivalent to antimony trioxide catalyst, and can be obtained with higher polymerization activity than the above-mentioned titanic acid catalyst, that is, at a high polycon
- an object of the present invention is to provide a novel polycondensation catalyst for producing a polyester that gives a high molecular weight polyester having an excellent color tone at a high polycondensation rate, and a method for producing such a polycondensation catalyst. It is an object of the present invention to provide a polyester obtained using such a polycondensation catalyst and a method for producing a polyester using such a polycondensation catalyst.
- a polycondensation catalyst for producing a polyester by esterification reaction or transesterification reaction between a dicarboxylic acid or an ester-forming derivative thereof and a glycol, and an inner side made of titanic acid with respect to 100 parts by weight of a solid base.
- the coating layer has 0.1 to 50 parts by weight in terms of TiO 2 on the surface of solid base particles, and is selected from oxides of at least one element selected from aluminum, zirconium and silicon, or from aluminum, zirconium and silicon.
- a polycondensation catalyst comprising solid base particles having 1 to 50 parts by weight of an outer coating layer comprising a composite oxide of at least two elements on the surface of the inner coating layer.
- the surface of the particles has an inner coating layer made of titanic acid and is made of an oxide of at least one element selected from aluminum and zirconium or a composite oxide of aluminum and zirconium.
- the polycondensation catalyst comprising solid base particles having an outer coating layer on the surface of the inner coating layer is obtained by adding an aqueous solution of a titanium compound and an alkaline aqueous solution to a water slurry of solid base particles so that the pH is 5 to 12.
- an inner coating layer made of titanic acid is formed on the surface of the solid base particles, and the water slurry of the solid base particles thus obtained is selected from a water-soluble aluminum salt and a water-soluble zirconium salt.
- At least one aqueous solution and an alkaline aqueous solution, and the surface of the inner coating layer is selected from aluminum and zirconium.
- Forming an outer coating layer comprising an oxide of at least one element or a composite oxide of aluminum and zirconium, and then filtering an aqueous slurry of solid base particles having the inner and outer coating layers, and obtaining the cake Can be obtained by washing with water, drying, and crushing the resulting dried product.
- the overlapping of the solid base particles having an inner coating layer made of titanic acid on the particle surface and an outer coating layer made of silicon oxide on the surface of the inner coating layer In the condensation catalyst, an aqueous solution of a titanium compound and an alkaline aqueous solution are added to an aqueous slurry of solid base particles so as to have a pH of 5 to 12, and an inner coating layer made of titanic acid is formed on the surface of the solid base particles. Then, an aqueous coating solution of water-soluble silicate and an acid are added to the aqueous slurry of solid base particles thus obtained to form an outer coating layer made of silicon oxide on the surface of the inner coating layer. And then filtering the aqueous slurry of solid base particles having the inner and outer coating layers, washing the resulting cake with water, drying, and crushing the resulting dried product.
- the catalyst has an inner coating layer made of titanic acid on the surface of the particles, and an outer coating layer made of a complex oxide of silicon and at least one element selected from aluminum and zirconium.
- the polycondensation catalyst comprising solid base particles on the surface of the inner coating layer is obtained by adding an aqueous solution of a titanium compound and an aqueous alkaline solution to a water slurry of solid base particles so that the pH is 5 to 12, and An inner coating layer made of titanic acid is formed on the surface of the base particles, and then the water slurry of the solid base particles thus obtained is at least one selected from a water-soluble aluminum salt and a water-soluble zirconium salt.
- At least one element selected from aluminum and zirconium is added to the surface of the inner coating layer by adding an aqueous solution and an aqueous solution of a water-soluble silicate.
- An outer coating layer made of a composite oxide of silicon is formed, and then a water slurry of solid base particles having the inner and outer coating layers is filtered, and the resulting cake is washed with water and dried. It can be obtained by crushing things.
- a method for producing a polyester characterized by melt polycondensation of dicarboxylic acid or an ester-forming derivative thereof and glycol in the presence of the polycondensation catalyst described above.
- an oligomer containing the above aromatic dicarboxylic acid bis (hydroxylalkyl) ester is produced by esterification reaction or transesterification reaction between an aromatic dicarboxylic acid or an ester-forming derivative thereof and alkylene glycol,
- a method for producing a polyester wherein the oligomer is melt polycondensed in the presence of the polycondensation catalyst described above.
- a method for producing a polyester characterized in that the polyester obtained as described above is further subjected to solid phase polycondensation in the presence of the polycondensation catalyst described above.
- the polyester manufactured by the manufacturing method mentioned above is provided.
- the polyester In polyester production by esterification reaction or transesterification reaction of a dicarboxylic acid or its ester-forming derivative with glycol, the polyester is regarded as black by melting polycondensation using the polycondensation catalyst for polyester production according to the present invention. Without decomposition, a polyester having an excellent color tone can be obtained with a high polymerization activity. Further, in a solid phase polycondensation, an excellent color tone can be obtained with a high polymerization activity, that is, at a high polycondensation rate. A high molecular weight polyester can be obtained.
- the polycondensation catalyst for producing a polyester according to the present invention is a polycondensation catalyst for producing a polyester by an esterification reaction or transesterification reaction of a dicarboxylic acid or an ester-forming derivative thereof with a glycol, and based on 100 parts by weight of a solid base, An inner coating layer made of titanic acid having 0.1 to 50 parts by weight in terms of TiO 2 on the surface of solid base particles, and an oxide of at least one element selected from aluminum, zirconium and silicon, or aluminum or zirconium And 1 to 50 parts by weight of an outer coating layer made of a complex oxide of at least two elements selected from silicon, on the surface of the inner coating layer.
- the oxide or composite oxide may partially contain a hydroxide.
- oxides or hydroxides of alkali metals or alkaline earth metals various composite oxides, oxides of aluminum, zinc, lanthanum, zirconium, thorium, etc. Can be mentioned. These oxides and composites may be partially substituted with salts such as carbonates. Therefore, in the present invention, as the solid base, more specifically, oxides or hydroxides of magnesium, calcium, strontium, barium, aluminum, zinc, etc., for example, magnesium hydroxide, calcium oxide, strontium oxide, barium oxide Examples thereof include zinc oxide and complex oxides such as hydrotalcite.
- magnesium hydroxide or hydrotalcite is preferably used as the solid base.
- titanic acid is a general formula TiO 2 ⁇ nH 2 O (In the formula, n is a number satisfying 0 ⁇ n ⁇ 2.)
- the hydrous titanium oxide represented by the formula (1), and such titanic acid can be obtained, for example, by decomposing a certain kind of titanium compound as described later.
- the polycondensation catalyst according to the present invention when the ratio of the inner coating layer made of titanic acid is less than 0.1 parts by weight in terms of TiO 2 with respect to 100 parts by weight of the solid base, the polymerization activity of the resulting polycondensation catalyst On the other hand, when the ratio of the inner coating layer made of titanic acid is more than 50 parts by weight in terms of TiO 2 with respect to 100 parts by weight of the solid base, the polyester is easily decomposed during the production of the polyester, When the obtained polyester is melt-molded, coloration due to thermal deterioration tends to occur.
- an outer coating layer comprising an oxide of at least one element selected from silicon, aluminum and zirconium or a composite oxide of at least two elements selected from aluminum, zirconium and silicon with respect to 100 parts by weight of the solid base Is less than 1 part by weight, the resulting polycondensation catalyst has a high polymerization activity, but the obtained polyester does not show an improvement in color tone.
- the ratio of the layer is more than 50 parts by weight in terms of oxide, the polymerization activity of the resulting polycondensation catalyst is lowered, which is not preferable.
- an outer coating comprising an inner coating layer made of titanic acid on the surface of the particles and made of an oxide of at least one element selected from aluminum and zirconium or a composite oxide of aluminum and zirconium.
- the polycondensation catalyst comprising solid base particles having a layer on the surface of the inner coating layer is obtained by adding an aqueous solution of a titanium compound and an alkaline aqueous solution to an aqueous slurry of solid base particles so that the pH is 5 to 12.
- an inner coating layer made of titanic acid on the surface of the solid base particles is selected from a water-soluble aluminum salt and a water-soluble zirconium salt.
- aqueous solution and alkaline aqueous solution are added, and the surface of the inner coating layer is selected from aluminum and zirconium.
- An outer coating layer comprising at least one elemental oxide or a composite oxide of aluminum and zirconium was formed, and then a water slurry of solid base particles having the inner and outer coating layers was filtered and obtained. The cake can be obtained by washing with water, drying, and crushing the resulting dried product.
- the polycondensation catalyst comprising solid base particles having an inner coating layer made of titanic acid on the surface of the particles and having an outer coating layer made of silicon oxide on the surface of the inner coating layer is an aqueous slurry of solid base particles. Then, an aqueous solution of a titanium compound and an alkaline aqueous solution are added so that the pH is 5 to 12, and an inner coating layer made of titanic acid is formed on the surface of the solid base particles, and thus obtained in this manner. A water-soluble silicate aqueous solution and an acid are added to the aqueous slurry of solid base particles to form an outer coating layer made of silicon oxide on the surface of the inner coating layer, and then the inner and outer coating layers are formed. It can be obtained by filtering an aqueous slurry of particles of solid base having, washing the resulting cake with water, drying, and crushing the resulting dried product.
- the polycondensation catalyst composed of the above particles is prepared by adding an aqueous solution of a titanium compound and an alkaline aqueous solution to a water slurry of solid base particles so that the pH thereof is 5 to 12, and the surface of the solid base particles is formed from titanic acid.
- An aqueous coating solution of at least one kind selected from a water-soluble aluminum salt and a water-soluble zirconium salt in an aqueous slurry of the solid base particles thus obtained.
- At least one element selected from aluminum and zirconium and a complex oxide of silicon on the surface of the inner coating layer By forming an outer coating layer, then filtering the aqueous slurry of solid base particles having the inner and outer coating layers, washing the resulting cake with water, drying, and crushing the resulting dried product Obtainable.
- the inner coating layer and the outer coating layer are formed on the surface of the solid base particles in this order, and then the drying temperature is preferably in the range of 60 to 180 ° C. In particular, the range of 100 to 130 ° C. is particularly preferable.
- the crushing of the dried product means that the dried product is lightly dispersed and pulverized to the extent that it is unraveled, and is not limited, but the dried product is treated using a pulverizer such as an air mill. By doing so, the dried product can be crushed.
- the polycondensation catalyst usually has an average particle size of about 0.3 to 0.5 ⁇ m.
- titanium compound for forming the inner coating layer made of titanic acid on the surface of the solid base particles examples include titanium halides such as titanium tetrachloride, titanates such as titanyl ammonium oxalate, Examples include titanium alkoxides such as tetraisopropoxide, but are not limited to these examples.
- examples of the water-soluble aluminum salt for forming the outer coating layer on the surface of the inner coating layer include aluminum salts such as aluminum sulfate and aluminum chloride, and aluminum such as sodium aluminate and potassium aluminate.
- examples of the water-soluble zirconium salt include zirconium oxychloride and zirconium trichloride.
- examples of the water-soluble silicate include sodium silicate and silicate. Mention may be made of potassium.
- the water-soluble aluminum salt, the water-soluble zirconium salt and the water-soluble silicate are not limited to the above examples.
- the acid or alkali used for hydrolyzing the above-described titanium compound and the above-described aluminum salt, zirconium salt or silicate to form the outer coating layer made of a product is not particularly limited.
- examples of the alkali include aqueous solutions of sodium hydroxide and potassium hydroxide
- examples of the acid include sulfuric acid, nitric acid, acetic acid, hydrochloric acid, and phosphoric acid.
- the solid base is preferably magnesium hydroxide or hydrotalcite as described above.
- the aqueous slurry of magnesium hydroxide particles used for preparing the polycondensation catalyst according to the present invention is, for example, neutralizing an aqueous solution of a water-soluble magnesium salt such as magnesium chloride or magnesium nitrate with an alkali such as sodium hydroxide or ammonia.
- An aqueous slurry obtained by precipitating magnesium hydroxide or a slurry obtained by dispersing magnesium hydroxide particles in water is, for example, neutralizing an aqueous solution of a water-soluble magnesium salt such as magnesium chloride or magnesium nitrate with an alkali such as sodium hydroxide or ammonia.
- An aqueous slurry obtained by precipitating magnesium hydroxide or a slurry obtained by dispersing magnesium hydroxide particles in water In the case of obtaining an aqueous slurry of magnesium hydroxide by neutralizing such an aqueous solution of a water-soluble magnesium salt with an alkali, the aqueous solution of the water-soluble magnesium salt
- the origin of the magnesium hydroxide particles is not limited, and for example, powder obtained by pulverizing natural ore, powder obtained by neutralizing magnesium salt aqueous solution with alkali, etc. There may be.
- the hydrotalcite is preferably the following general formula (I): M 2+ 1-x M 3+ x (OH -) 2 A n- x / n ⁇ mH 2 O ... (I) (wherein M 2+ represents at least one divalent metal ion selected from Mg 2+ , Zn 2+ and Cu 2+ , and M 3+ represents at least one trivalent metal selected from Al 3+ , Fe 3+ and Ti 3+.
- An represents an ion
- a n ⁇ represents at least one anion selected from SO 4 2 ⁇ , Cl ⁇ , CO 3 2 ⁇ , and OH ⁇
- n represents the valence of the anion
- x represents 0 ⁇ x ⁇ 0.5 is a number that satisfies 0.5
- m is a number that satisfies 0 ⁇ m ⁇ 2.
- M 2+ is the Mg 2+
- M 3+ is the Al 3+
- Such hydrotalcite can be easily obtained as a commercial product, but if necessary, it can also be produced by a conventionally known method, for example, a hydrothermal method, using appropriate raw materials. .
- the aqueous slurry of hydrotalcite particles used for preparing the polycondensation catalyst according to the present invention refers to a slurry obtained by dispersing hydrotalcite particles as described above in water.
- examples of the dicarboxylic acid include aliphatic dicarboxylic acids exemplified by succinic acid, glutaric acid, adipic acid, dodecanedicarboxylic acid and the like, and ester-forming derivatives thereof such as dialkyl esters, terephthalic acid, Aromatic dicarboxylic acids exemplified by isophthalic acid, naphthalenedicarboxylic acid and the like, and ester-forming derivatives thereof, for example, dialkyl esters can be mentioned.
- examples of the glycol include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, butylene glycol, 1,4-cyclohexanedimethanol and the like.
- aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid are preferably used as the dicarboxylic acid
- alkylene glycols such as ethylene glycol, propylene glycol and butylene glycol are used as the glycol. Is preferably used.
- polyester examples include polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polypropylene naphthalate, poly (1,4-cyclohexanedimethylene terephthalate) and the like. be able to.
- the dicarboxylic acid or its ester-forming derivative or glycol that can be used as a polyester raw material is not limited to the above examples, and the resulting polyester is not limited to the above examples. Absent.
- polyester represented by polyethylene terephthalate is manufactured by the following method. That is, first, a low molecular weight oligomer containing BHET is obtained by a direct esterification reaction between a dicarboxylic acid typified by terephthalic acid and a glycol typified by ethylene glycol, and this oligomer is further used as a polycondensation catalyst. A polyester having a required molecular weight is obtained by melt polycondensation in the presence of high vacuum and high temperature.
- a low molecular weight oligomer containing BHET is obtained in the same manner by transesterification of a dialkyl terephthalate typified by dimethyl terephthalate with a glycol typified by ethylene glycol, and this oligomer is further polycondensed.
- Polyester having a required molecular weight is obtained by melt polycondensation under high vacuum and high temperature in the presence of a catalyst.
- the polycondensation catalyst according to the present invention may be a low molecular weight oligomer (hereinafter, simply referred to as a low molecular weight oligomer) obtained by esterification or transesterification reaction of a dicarboxylic acid or its ester-forming derivative used in the production of polyester with glycol. ) Usually used in the range of 3 ⁇ 10 ⁇ 4 to 3 ⁇ 10 ⁇ 2 parts by weight per 100 parts by weight. When the proportion of the polycondensation catalyst is less than 3 ⁇ 10 ⁇ 4 parts by weight with respect to 100 parts by weight of the low molecular weight oligomer, the catalytic activity is not sufficient, and the desired high molecular weight polyester may not be obtained. On the other hand, when the amount is more than 3 ⁇ 10 ⁇ 2 parts by weight, the resulting polyester may be inferior in thermal stability.
- a low molecular weight oligomer obtained by esterification or transesterification reaction of a dicarboxylic acid or its ester-
- a low molecular weight oligomer containing the BHET is obtained by the direct esterification reaction or transesterification reaction described above, The oligomer can then be melt polycondensed in the presence of the polycondensation catalyst in a high vacuum and at a high temperature to obtain a polyester, and further in vacuum or inert at a temperature below the melting point of the polyester. Polyester having a higher molecular weight can be obtained by solid phase polycondensation in a gas atmosphere.
- a low molecular weight oligomer containing BHET can be obtained by charging in a tank, heating under normal pressure, and reacting at a reflux temperature of ethylene glycol while distilling methanol out of the reaction system.
- the degree of polymerization of the oligomer is usually up to about 10. If necessary, the reaction may be performed under pressure.
- the reaction can be followed by the amount of methanol distilled, and the esterification rate is usually about 95%.
- the low molecular weight oligomer thus obtained is transferred to a polymerization tank, and in the presence of a melt polycondensation catalyst, a temperature higher than the melting point of polyethylene terephthalate (usually 240 to 280 ° C.), for example,
- a melt polycondensation catalyst usually 240 to 280 ° C.
- the oligomer is heated to about 280 to 290 ° C. under reduced pressure, while the unreacted ethylene glycol and the ethylene glycol produced by the reaction are distilled off from the reaction system, while simultaneously monitoring the viscosity of the molten reactant. Let melt polycondensate.
- This polycondensation reaction may be carried out using a plurality of reaction vessels as necessary, while optimally changing the reaction temperature and pressure in each reaction vessel.
- the decompression is stopped, for example, the inside of the polymerization tank is returned to normal pressure with nitrogen gas, and the obtained polyester is discharged from the reaction tank, for example, in the form of a strand, and is cooled rapidly with water. And cut into pellets.
- a polyester having an intrinsic viscosity (IV) of 0.5 to 0.7 dL / g can be usually obtained in this manner.
- polyester for bottles is required to have a higher molecular weight than polyester for fibers and films.
- a polyester having a higher molecular weight can be obtained by solid-phase polycondensation of the polyester as the melt polycondensate, that is, according to the present invention.
- the polyester obtained as the condensate is heated at a temperature lower than its melting point in a vacuum or in an inert gas or carbon dioxide atmosphere to cause solid phase polycondensation, whereby a higher molecular weight as a solid phase polycondensate is obtained. Can be obtained.
- the polyester as the melt polycondensate obtained as described above is subjected to solid phase polycondensation in the presence of a polycondensation catalyst. It is already known to solid-phase polycondensate polyester as a melt polycondensate. Usually, since polyester as a melt polycondensate is used for solid phase polycondensation of polyester, the polyester already contains the catalyst used for the melt polycondensation.
- the solid phase polycondensation of polyester is performed by drying polyester pellets obtained by melt polycondensation at a temperature of 100 to 200 ° C. under a vacuum or under a flow of inert gas or carbon dioxide, and a temperature of 150 to 200 ° C. After the crystallization, the solid phase polycondensation is performed by heating to a temperature lower than the melting point of the polyester, typically about 200 to 230 ° C.
- a polyester having an intrinsic viscosity (IV) of 0.7 to 1.0 dL / g can be usually obtained as a solid phase polycondensate.
- any of the polycondensation catalysts for producing the polyester according to the present invention may be added to the reaction system during the direct esterification reaction or transesterification reaction for the production of the oligomer containing BHET, and a low molecular weight oligomer was obtained. Later, when this is melt polycondensed, it may be added to the reaction system. Further, the polycondensation catalyst according to the present invention may be added to the reaction system as it is, or may be dispersed in glycol used as a raw material and added to the reaction system.
- the polycondensation catalyst according to the present invention can be easily dispersed in glycol, particularly ethylene glycol, it is preferable that the reaction system be used in the direct esterification reaction or transesterification reaction for producing the oligomer containing BHET. In addition it is used.
- the polycondensation catalyst according to the present invention does not contain antimony as a component, it does not give darkening to the resulting polyester, yet has a catalytic activity equal to or higher than that of the catalyst containing antimony, and has excellent color tone. High molecular weight polyesters can be provided. Moreover, the polycondensation catalyst according to the present invention is non-toxic and safe.
- the polycondensation catalyst according to the present invention has high polymerization activity even in the solid phase polycondensation of polyester obtained by melt polycondensation, and in particular, the solid phase polycondensation rate, that is, the increase in intrinsic viscosity per hour.
- the solid phase polycondensation rate that is, the increase in intrinsic viscosity per hour.
- a high molecular weight polyester having a high rate and excellent hue can be obtained.
- a polycondensation catalyst conventionally known, for example, antimony, germanium, cobalt, zinc, manganese, in the range not impairing the advantage of using the polycondensation catalyst according to the present invention.
- You may use together the polycondensation catalyst which consists of compounds, such as titanium, tin, and aluminum.
- polycondensation may be performed in the presence of a phosphoric acid compound, if necessary.
- the phosphoric acid compound can be added to the reaction system at any time before polycondensation.
- the phosphorus compound include phosphoric acid, phosphates such as sodium phosphate and potassium phosphate, phosphate esters such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, phosphorous acid, phosphorous acid Examples thereof include phosphites such as sodium phosphate and potassium phosphite, phosphites such as triphenyl phosphite, polyphosphoric acid and the like. These phosphorus compounds are used as phosphorus in the range of 1 to 100 ppm by weight, preferably 10 to 50 ppm by weight, based on the polyester obtained.
- the polycondensation catalyst according to the present invention has an inner coating layer made of titanic acid and an outer coating layer made of an oxide of at least one element selected from aluminum, zirconium and silicon on the surface of the solid base particles.
- the present invention will be described below with reference to examples, but the present invention is not limited to these examples.
- the parts by weight of titanic acid, aluminum oxide, zirconium oxide and silicon oxide with respect to 100 parts by weight of the solid base were TiO 2 , Al 2 O 3 , ZrO 2 and It is a value in terms of SiO 2 .
- the intrinsic viscosity of the obtained polyester was measured by ISO1628-1, and the color tone was measured using a simultaneous photometric spectrocolorimeter (SQ-2000 manufactured by Nippon Denshoku Industries Co., Ltd.). It was measured.
- the melt polycondensation rate in Table 1 was determined by dividing the intrinsic viscosity (IV) of the polyester obtained by melt polycondensation by the melt polycondensation time. Further, the solid phase polycondensation rate in Table 2 shows the intrinsic viscosity of the polyester (Table 2) obtained by solid phase polycondensation of the polyester by the melt polycondensation and the polyester (Table 1) obtained by melt polycondensation. The difference from the intrinsic viscosity ( ⁇ IV) was obtained by dividing by the solid phase polycondensation time.
- Reference example 2 (Preparation of hydrotalcite water slurry) A mixed solution of 2.6 L of a 3.8 mol / L aqueous magnesium sulfate solution and 2.6 L of a 0.85 mol / L aqueous aluminum sulfate solution, and 2.8 L of a 9.3 mol / L aqueous sodium hydroxide solution A mixed solution of 2.64 mol / L sodium carbonate aqueous solution with a concentration of 2.54 mol / L was simultaneously added to the reactor with stirring, and then hydrothermal reaction was performed at 180 ° C. for 2 hours.
- hydrotalcite having a composition of Mg 0.7 Al 0.3 (OH) 2 (CO 3 ) 0.15 ⁇ 0.48H 2 O 2 . .
- This hydrotalcite was suspended in water to obtain a hydrotalcite water slurry (100 g / L).
- Example 1 (Preparation of polycondensation catalyst A) After charging 9.0 L of magnesium hydroxide aqueous slurry (123 g / L) obtained in Reference Example 1 into a 25 L reactor, titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) 3.2 L And 3.2 L of an aqueous sodium hydroxide solution (99.6 g / L in terms of NaOH) were simultaneously added dropwise over 4 hours so that the pH was 10.0, and after completion of the addition, the mixture was aged for 1 hour. Then, it filtered and washed with water, and obtained the magnesium hydroxide particle which has the inner side coating layer which consists of titanic acids on the surface.
- Aqueous slurry of magnesium hydroxide particles having inner and outer coating layers is filtered, the resulting cake is washed with water and dried, and the resulting dried product is crushed to obtain magnesium hydroxide.
- a polycondensation catalyst A according to the present invention having 20 parts by weight of an inner coating layer made of titanic acid and 40 parts by weight of an outer coating layer made of aluminum oxide with respect to 100 parts by weight was obtained.
- polycondensation catalyst A (3.8 ⁇ 10 ⁇ 3 parts by weight with respect to 100 parts by weight of low molecular weight oligomer) is dispersed in ethylene glycol in advance to form a slurry, and this slurry is added to the polycondensation reaction tank. It was. Furthermore, 0.028 g of phosphoric acid aqueous solution (0.024 g of phosphoric acid, 5.6 ⁇ 10 ⁇ 3 parts by weight with respect to 100 parts by weight of low molecular weight oligomer) was added. Thereafter, the temperature in the reaction vessel was raised from 260 ° C. to 280 ° C.
- melt polycondensation reaction was performed until the load applied to the motor of the stirrer reached a predetermined value.
- the inside of the reaction tank is returned to normal pressure with nitrogen gas, and the obtained polyester is discharged in the form of a strand from the outlet at the bottom of the reaction tank, rapidly cooled, cut, and the polyester a-1 Pellets were obtained.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester a-2 (Production of polyester a-2) 20 g of the polyester a-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream and subjected to solid phase polycondensation of the polyester to obtain polyester a-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Example 2 (Preparation of polycondensation catalyst B) After charging 9.0 L of magnesium hydroxide aqueous slurry (123 g / L) obtained in Reference Example 1 into a 25 L reactor, titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) 3.2 L And 3.2 L of an aqueous sodium hydroxide solution (99.6 g / L in terms of NaOH) are simultaneously added dropwise over 4 hours so that the pH of the magnesium hydroxide aqueous slurry is 10.0. Aged. Then, it filtered and washed with water, and obtained the magnesium hydroxide particle which has the inner side coating layer which consists of titanic acids on the surface.
- a polycondensation catalyst B according to the present invention having 20 parts by weight of an inner coating layer made of titanic acid and 20 parts by weight of an outer coating layer made of zirconium oxide with respect to 100 parts by weight was obtained.
- polycondensation catalyst B (3.8 ⁇ 10 ⁇ 3 parts by weight with respect to 100 parts by weight of low molecular weight oligomer) was previously dispersed in ethylene glycol to form a slurry, and this slurry was added to the polycondensation reaction tank. It was. Furthermore, 0.028 g of phosphoric acid aqueous solution (0.024 g of phosphoric acid, 5.6 ⁇ 10 ⁇ 3 parts by weight with respect to 100 parts by weight of low molecular weight oligomer) was added. Thereafter, the temperature in the reaction vessel was raised from 260 ° C. to 280 ° C.
- the inside of the reaction tank is returned to normal pressure with nitrogen gas, and the obtained polyester is discharged in a strand form from the outlet at the bottom of the reaction tank, quenched, cut, and cut into polyester b-1. Pellets were obtained.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester b-2 (Production of polyester b-2) 20 g of the polyester b-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours in a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets treated in this manner were heated at 225 ° C. for 18 hours under a nitrogen stream and subjected to solid phase polycondensation of the polyester to obtain polyester b-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Example 3 (Preparation of polycondensation catalyst E) After charging 9.0 L of magnesium hydroxide aqueous slurry (123 g / L) obtained in Reference Example 1 into a 25 L reactor, titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) 3.2 L And 3.2 L of an aqueous sodium hydroxide solution (99.6 g / L in terms of NaOH) were simultaneously added dropwise over 4 hours so that the pH was 10.0, and after completion of the addition, the mixture was aged for 1 hour. Then, it filtered and washed with water, and obtained the magnesium hydroxide particle which has the inner side coating layer which consists of titanic acids on the surface.
- a polycondensation catalyst E according to the present invention having 20 parts by weight of an inner coating layer made of titanic acid and 40 parts by weight of an outer coating layer made of silicon oxide with respect to 100 parts by weight was obtained.
- polyester e-1 (Manufacture of polyester e-1) A polyester e-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst E was used. Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester e-2 (Production of polyester e-2) 20 g of the polyester e-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated in a nitrogen stream at 225 ° C. for 18 hours to carry out solid phase polycondensation of the polyester to obtain polyester e-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Example 4 (Preparation of polycondensation catalyst F) After charging 9.0 L of magnesium hydroxide aqueous slurry (123 g / L) obtained in Reference Example 1 into a 25 L reactor, titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) 3.2 L And 3.2 L of an aqueous sodium hydroxide solution (99.6 g / L in terms of NaOH) were simultaneously added dropwise over 4 hours so that the pH was 10.0, and after completion of the addition, the mixture was aged for 1 hour. Then, it filtered and washed with water, and obtained the magnesium hydroxide particle which has the inner side coating layer which consists of titanic acids on the surface.
- a polycondensation catalyst F according to the present invention having 20 parts by weight of an inner coating layer made of titanic acid and 40 parts by weight of an outer coating layer made of a composite oxide of silicon and aluminum with respect to 100 parts by weight was obtained.
- polyester f-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst F was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester f-2 (Production of polyester f-2) 20 g of the polyester f-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream and subjected to solid phase polycondensation of the polyester to obtain polyester f-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Example 5 (Preparation of polycondensation catalyst G) An inner coating made of titanic acid with respect to 100 parts by weight of hydrotalcite in the same manner as in Example 1 except that 11.1 L of the hydrotalcite water slurry (100 g / L) obtained in Reference Example 2 was used. A polycondensation catalyst G according to the present invention having 20 parts by weight of a layer and 40 parts by weight of an outer coating layer made of aluminum oxide was obtained.
- polyester g-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst G was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester g-2 (Production of polyester g-2) 20 g of the above polyester g-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream, and subjected to solid phase polycondensation of the polyester to obtain polyester g-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Example 6 Preparation of polycondensation catalyst H
- polyester h-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst H was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester h-2 (Production of polyester h-2) 20 g of the polyester h-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream to carry out solid phase polycondensation of the polyester to obtain polyester h-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Example 7 (Preparation of polycondensation catalyst I) An inner coating made of titanic acid with respect to 100 parts by weight of hydrotalcite in the same manner as in Example 4 except that 11.1 L of the hydrotalcite water slurry (100 g / L) obtained in Reference Example 2 was used. A polycondensation catalyst I according to the present invention having 20 parts by weight of a layer and 40 parts by weight of an outer coating layer made of a composite oxide of silicon and aluminum was obtained.
- polyester i-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst I was used. Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester i-2 (Production of polyester i-2) 20 g of the polyester i-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream, and subjected to solid phase polycondensation of the polyester to obtain polyester i-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 1 (Preparation of polycondensation catalyst C) 4.8 L of titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) and 4.8 L of sodium hydroxide aqueous solution (99.6 g / L in terms of NaOH) were prepared. After charging 9.0 L of the magnesium hydroxide aqueous slurry (123 g / L) obtained in Reference Example 1 into a 40 L reactor, the pH of the magnesium hydroxide slurry was adjusted to 10.0. The titanium tetrachloride aqueous solution and the sodium hydroxide aqueous solution were added dropwise simultaneously over 6 hours. After completion of the dropping, the mixture was aged for 1 hour to form a coating layer made of titanic acid on the surface of the magnesium hydroxide particles.
- the aqueous slurry of magnesium hydroxide having a coating layer made of titanic acid on the surface thus obtained was filtered, the resulting cake was washed with water, dried, and the resulting dried product was crushed for comparison.
- An example polycondensation catalyst C was obtained.
- the ratio of titanic acid coating in this polycondensation catalyst was 30 parts by weight in terms of TiO 2 with respect to 100 parts by weight of magnesium hydroxide.
- polyester c-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst C was used. Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester c-2 (Production of polyester c-2) 20 g of the polyester c-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream to perform solid phase polycondensation of the polyester to obtain polyester c-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- the aqueous slurry of magnesium hydroxide having a coating layer made of titanic acid on the surface thus obtained was filtered, the resulting cake was washed with water, dried, and the resulting dried product was crushed for comparison.
- An example polycondensation catalyst D was obtained.
- the ratio of titanic acid coating in this polycondensation catalyst was 20 parts by weight in terms of TiO 2 with respect to 100 parts by weight of magnesium hydroxide.
- polyester d-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst D was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester d-2 (Production of polyester d-2) 20 g of the polyester d-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets treated in this manner were heated at 225 ° C. for 18 hours under a nitrogen stream and subjected to solid phase polycondensation of the polyester to obtain polyester d-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 3 (Production of polyester o-1)
- Example 1 instead of the polycondensation catalyst A, 0.098 g of antimony trioxide (2.0 ⁇ 10 ⁇ 2 parts by weight with respect to 100 parts by weight of the low molecular weight oligomer) was used.
- polyester o-1 was obtained.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester o-2 (Production of polyester o-2) 20 g of the polyester o-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream and subjected to solid phase polycondensation of the polyester to obtain polyester o-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 4 (Preparation of polycondensation catalyst J) After charging 9.0 L of the magnesium hydroxide aqueous slurry (123 g / L) obtained in Reference Example 1 into a 25 L reactor, the temperature was raised to 60 ° C. and maintained at 60 ° C., while maintaining a sodium aluminate aqueous solution. It was added (Al 19% by weight 2 O 3) 1981.2g. Further, sulfuric acid was added until the pH reached 8.5, and aging was performed for 1 hour. Then, it filtered and washed with water, and formed the inner side coating layer which consists of aluminum oxides on the surface of magnesium hydroxide particle.
- the slurry of magnesium hydroxide having the inner coating layer was charged with 3.2 L of titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) and 3.2 L of sodium hydroxide aqueous solution (99.6 g / L in terms of NaOH). It was dripped simultaneously over 4 hours so that the pH might be set to 10.0. After the completion of dropping, the mixture was aged for 1 hour to form an outer coating layer made of titanic acid on the inner coating layer.
- aqueous slurry of magnesium hydroxide particles having the inner and outer coating layers thus obtained is filtered, washed with water and dried, and the resulting dried product is crushed to 100 parts by weight of magnesium hydroxide.
- a polycondensation catalyst J as a comparative example having 20 parts by weight of an inner coating layer made of aluminum oxide and 20 parts by weight of an outer coating layer made of titanic acid was obtained.
- polyester j-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst J was used. Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester j-2 (Production of polyester j-2) 20 g of the polyester j-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream, and subjected to solid phase polycondensation of the polyester to obtain polyester j-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 5 Preparation of polycondensation catalyst K
- the temperature was raised to 60 ° C. and maintained while maintaining the zirconium oxychloride aqueous solution (as ZrO 2). 10 wt%) 2214 g was added.
- sodium hydroxide was added until the pH reached 8.5, and aging was performed for 1 hour. Then, it filtered and washed with water, and formed the inner coating layer which consists of zirconium oxides on the surface of magnesium hydroxide particle.
- the slurry of magnesium hydroxide having the inner coating layer was charged with 3.2 L of titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) and 3.2 L of sodium hydroxide aqueous solution (99.6 g / L in terms of NaOH). It was dripped simultaneously over 4 hours so that the pH might be set to 10.0. After the completion of dropping, the mixture was aged for 1 hour to form an outer coating layer made of titanic acid on the inner coating layer.
- aqueous slurry of magnesium hydroxide particles having the inner and outer coating layers thus obtained is filtered, washed with water and dried, and the resulting dried product is crushed to 100 parts by weight of magnesium hydroxide.
- a polycondensation catalyst K as a comparative example having 20 parts by weight of an inner coating layer made of zirconium oxide and 20 parts by weight of an outer coating layer made of titanic acid was obtained.
- polyester k-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst K was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester k-2 (Production of polyester k-2) 20 g of the polyester k-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream and subjected to solid phase polycondensation of the polyester to obtain polyester k-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 6 Preparation of polycondensation catalyst L
- the temperature was raised to 60 ° C. and maintained while maintaining an aqueous sodium silicate solution (as SiO 2). 293.6% by weight) was added. Further, sulfuric acid was added until the pH reached 8.5, and aging was performed for 1 hour. Then, it filtered and washed with water, and formed the inner coating layer which consists of silicon oxides on the surface of magnesium hydroxide particle.
- the slurry of magnesium hydroxide having the inner coating layer was charged with 3.2 L of titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) and 3.2 L of sodium hydroxide aqueous solution (99.6 g / L in terms of NaOH). It was dripped simultaneously over 4 hours so that the pH might be set to 10.0. After the completion of dropping, the mixture was aged for 1 hour to form an outer coating layer made of titanic acid on the inner coating layer.
- a polycondensation catalyst K was obtained as a comparative example having 20 parts by weight of an inner coating layer made of silicon oxide and 20 parts by weight of an outer coating layer made of titanic acid.
- Polyester 1-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst L was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester 1-2 (Production of polyester 1-2) 20 g of the polyester 1-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream, and subjected to solid phase polycondensation of the polyester to obtain polyester 1-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 7 (Preparation of polycondensation catalyst M) After charging 9.0 L of the magnesium hydroxide aqueous slurry (123 g / L) obtained in Reference Example 1 into a 25 L reactor, the temperature was raised to 60 ° C. and maintained while maintaining an aqueous sodium silicate solution (as SiO 2). 29 wt%) 382 g and sodium aluminate aqueous solution (19 wt% as Al 2 O 3 ) 990.4 g were added. Further, sulfuric acid was added until the pH reached 8.5, and aging was performed for 1 hour. Then, it filtered and washed with water, and formed the inner coating layer which consists of a complex oxide of silicon and aluminum on the surface of magnesium hydroxide particles.
- the slurry of magnesium hydroxide having the inner coating layer was charged with 3.2 L of titanium tetrachloride aqueous solution (69.2 g / L in terms of TiO 2 ) and 3.2 L of sodium hydroxide aqueous solution (99.6 g / L in terms of NaOH). It was dripped simultaneously over 4 hours so that the pH might be set to 10.0. After the completion of dropping, the mixture was aged for 1 hour to form an outer coating layer made of titanic acid on the inner coating layer.
- a polycondensation catalyst M was obtained as a comparative example having 20 parts by weight of an inner coating layer made of a composite oxide of silicon and aluminum and 20 parts by weight of an outer coating layer made of titanic acid.
- polyester m-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst M was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester m-2 (Manufacture of polyester m-2) 20 g of the polyester m-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream, and subjected to solid phase polycondensation of the polyester to obtain polyester m-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 8 (Preparation of polycondensation catalyst N) The inside which consists of a silicon oxide with respect to 100 weight part of hydrotalcite similarly to the comparative example 6 except having used 11.1L of the water slurry (100 g / L) of the hydrotalcite obtained in Reference Example 2.
- a polycondensation catalyst N was obtained as a comparative example having 20 parts by weight of a coating layer and 20 parts by weight of an outer coating layer made of titanic acid.
- polyester n-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst N was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester n-2 (Production of polyester n-2) 20 g of the polyester n-1 pellets were charged into a fixed bed flow reactor, dried at 160 ° C. for 4 hours under a nitrogen stream, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream, and subjected to solid phase polycondensation of the polyester to obtain polyester n-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- Comparative Example 9 Preparation of polycondensation catalyst P
- the coating layer which consists of titanic acid with respect to 100 weight part of hydrotalcite similarly to the comparative example 2 except having used 11.1L of the hydrotalcite water slurry (100g / L) obtained in Reference Example 2.
- a polycondensation catalyst P as a comparative example having 20 parts by weight was obtained.
- polyester p-1 was obtained in the same manner as in Example 1 except that the polycondensation catalyst P was used.
- Table 1 shows the melt polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the melt polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- polyester p-2 (Production of polyester p-2) 20 g of the polyester p-1 pellets were charged into a fixed bed flow reactor, dried under a nitrogen stream at 160 ° C. for 4 hours, and further crystallized at 190 ° C. for 1 hour. The polyester pellets thus treated were heated at 225 ° C. for 18 hours under a nitrogen stream and subjected to solid phase polycondensation of the polyester to obtain polyester p-2.
- Table 2 shows the solid phase polycondensation time in the production of the polyester, the intrinsic viscosity of the obtained polyester, the solid phase polycondensation rate in the production of the polyester, and the color tone of the obtained polyester.
- the catalyst of the present invention is almost equivalent to the antimony trioxide catalyst in the polymerization activity in the solid phase polycondensation of the high molecular weight polyester excellent in color tone, that is, the rate of increase in intrinsic viscosity per hour. Gives higher polymerization activity than conventional titanic acid catalysts.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
TiO2 ・nH2O
(式中、nは0<n≦2を満たす数である。)
で表される含水酸化チタンであって、このようなチタン酸は、例えば、後述するように、ある種のチタン化合物を分解することによって得ることができる。
M2+ 1-xM3+ x(OH-)2An- x/n・mH2O …(I)
(式中、M2+はMg2+、Zn2+及びCu2+から選ばれる少なくとも1種の2価金属イオンを示し、M3+はAl3+、Fe3+及びTi3+から選ばれる少なくとも1種の3価金属イオンを示し、An- はSO4 2-、Cl-、CO3 2- 及びOH- から選ばれる少なくとも1種のアニオンを示し、nは上記アニオンの価数を示し、xは0<x<0.5を満足する数であり、mは0≦m<2を満足する数である。)
で表される。
Mg2+ 1-xAl3+ x(OH-)2(CO3 2-)x/2・mH2O …(II)
(式中、x及びmは前記と同じである。)
で表されるものが好ましく用いられる。このようなハイドロタルサイトは市販品として容易に入手することができるが、必要に応じて、適宜の原料を用いて、従来より知られている方法、例えば、水熱法によって製造することもできる。
(水酸化マグネシウムの水スラリーの調製)
水5Lを反応器に仕込み、これに4モル/Lの塩化マグネシウム水溶液16.7Lと14.3モル/Lの水酸化ナトリウム水溶液8.4Lとを撹拌下に同時に加えた後、170℃で0.5時間水熱反応を行った。このようにして得られた水酸化マグネシウムを濾過、水洗し、得られたケーキを水に再び懸濁させて、水酸化マグネシウムの水スラリー(123g/L)を得た。
(ハイドロタルサイトの水スラリーの調製)
3.8モル/L濃度の硫酸マグネシウム水溶液2.6Lと0.85モル/L濃度の硫酸アルミニウム水溶液2.6Lとの混合溶液と9.3モル/L濃度の水酸化ナトリウム水溶液2.8Lと2.54モル/L濃度の炭酸ナトリウム水溶液2.6Lとの混合溶液を攪拌下に同時に反応器に加えた後、180℃で2時間水熱反応を行った。反応終了後、得られたスラリーを濾過、水洗した後、乾燥、粉砕して、Mg0.7 Al0.3 (OH)2 (CO3)0.15・0.48H2O なる組成を有するハイドロタルサイトを得た。このハイドロタルサイトを水に懸濁させて、ハイドロタルサイトの水スラリー(100g/L)を得た。
(重縮合触媒Aの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2LとをそのpHが10.0になるように、同時に4時間かけて滴下し、滴下終了後、1時間熟成した。その後、濾過、水洗して、表面にチタン酸からなる内側被覆層を有する水酸化マグネシウム粒子を得た。
テレフタル酸430gとエチレングリコール190gを反応槽に仕込み、窒素ガス雰囲気下に攪拌して、スラリーとした。この反応槽の温度を250℃、大気圧に対する相対圧力を1.2×105 Paに保ちながら、4時間かけてエステル化反応を行った。このようにして得られた低分子量オリゴマーのうち、500gを窒素ガス雰囲気下、温度250℃、常圧に保持した重縮合反応槽に移した。
上記ポリエステルa-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルa-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Bの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2Lを水酸化マグネシウムの水スラリーのpHが10.0になるように、同時に4時間かけて滴下し、滴下終了後、1時間熟成した。その後、濾過、水洗して、表面にチタン酸からなる内側被覆層を有する水酸化マグネシウム粒子を得た。
テレフタル酸430gとエチレングリコール190gを反応槽に仕込み、窒素ガス雰囲気下に攪拌してスラリーとした。この反応槽の温度を250℃、大気圧に対する相対圧力を1.2×105Paに保ちながら、4時間かけてエステル化反応を行った。このようにして得られた低分子量オリゴマーのうち、500gを窒素ガス雰囲気下、温度250℃、常圧に保持した重縮合反応槽に移した。
上記ポリエステルb-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルb-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Eの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2LとをそのpHが10.0になるように、同時に4時間かけて滴下し、滴下終了後、1時間熟成した。その後、濾過、水洗して、表面にチタン酸からなる内側被覆層を有する水酸化マグネシウム粒子を得た。
上記重縮合触媒Eを用いた以外は、実施例1と同様にして、ポリエステルe-1を得た。 上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルe-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルe-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Fの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2LとをそのpHが10.0になるように、同時に4時間かけて滴下し、滴下終了後、1時間熟成した。その後、濾過、水洗して、表面にチタン酸からなる内側被覆層を有する水酸化マグネシウム粒子を得た。
上記重縮合触媒Fを用いた以外は、実施例1と同様にして、ポリエステルf-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルf-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルf-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Gの調製)
参考例2で得られたハイドロタルサイトの水スラリー(100g/L)11.1Lを用いた以外は、実施例1と同様にして、ハイドロタルサイト100重量部に対してチタン酸からなる内側被覆層20重量部とアルミニウム酸化物からなる外側被覆層40重量部を有する本発明による重縮合触媒Gを得た。
上記重縮合触媒Gを用いた以外は、実施例1と同様にして、ポリエステルg-1を得た。 上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルg-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルg-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Hの調製)
参考例2で得られたハイドロタルサイトの水スラリー(100g/L)11.1Lを用いた以外は、実施例3と同様にして、ハイドロタルサイト100重量部に対してチタン酸からなる内側被覆層20重量部とケイ素酸化物からなる外側被覆層40重量部を有する本発明による重縮合触媒Hを得た。
上記重縮合触媒Hを用いた以外は、実施例1と同様にして、ポリエステルh-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルh-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルh-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Iの調製)
参考例2で得られたハイドロタルサイトの水スラリー(100g/L)11.1Lを用いた以外は、実施例4と同様にして、ハイドロタルサイト100重量部に対してチタン酸からなる内側被覆層20重量部とケイ素とアルミニウムの複合酸化物からなる外側被覆層40重量部を有する本発明による重縮合触媒Iを得た。
上記重縮合触媒Iを用いた以外は、実施例1と同様にして、ポリエステルi-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルi-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルi-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Cの調製)
四塩化チタン水溶液(TiO2 換算で69.2g/L)4.8Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)4.8Lを調製した。参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを40L容量の反応器に仕込んだ後、この水酸化マグネシウムのスラリーにそのpHが10.0になるように、上記四塩化チタン水溶液と水酸化ナトリウム水溶液とを同時に6時間かけて滴下した。滴下終了後、1時間熟成して、水酸化マグネシウム粒子の表面にチタン酸からなる被覆層を形成した。
上記重縮合触媒Cを用いた以外は、実施例1と同様にして、ポリエステルc-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルc-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱して、ポリエステルの固相重縮合を行って、ポリエステルc-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Dの調製)
四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2Lを調製した。参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、この水酸化マグネシウムのスラリーにそのpHが10.0になるように、上記四塩化チタン水溶液と水酸化ナトリウム水溶液とを同時に6時間かけて滴下した。滴下終了後、1時間熟成して、水酸化マグネシウム粒子の表面にチタン酸からなる被覆層を形成した。
上記重縮合触媒Dを用いた以外は、実施例1と同様にして、ポリエステルd-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルd-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルd-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(ポリエステルo-1の製造)
実施例1において、上記重縮合触媒Aに代えて、三酸化アンチモン0.098g(低分子量オリゴマー100重量部に対して、2.0×10-2重量部)を用いた以外は、実施例1と同様にして、ポリエステルo-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルo-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルo-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Jの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、60℃に昇温し、60℃に保持しながら、アルミン酸ナトリウム水溶液(Al2O3として19重量%)1981.2gを加えた。更に、pHが8.5になるまで硫酸を加えて、1時間熟成を行った。その後、濾過、水洗し、水酸化マグネシウム粒子の表面にアルミニウム酸化物からなる内側被覆層を形成した。この内側被覆層を有する水酸化マグネシウムのスラリーに四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2LとをそのpHが10.0になるように、同時に4時間かけて滴下した。滴下終了後、1時間熟成して、上記内側被覆層上にチタン酸からなる外側被覆層を形成した。
上記重縮合触媒Jを用いた以外は、実施例1と同様にして、ポリエステルj-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルj-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルj-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Kの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、60℃に昇温、保持しながら、オキシ塩化ジルコニウム水溶液(ZrO2 として10重量%)2214gを加えた。更に、pHが8.5になるまで水酸化ナトリウムを加え、1時間熟成を行った。その後、濾過、水洗し、水酸化マグネシウム粒子の表面にジルコニウム酸化物からなる内側被覆層を形成した。この内側被覆層を有する水酸化マグネシウムのスラリーに四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2LとをそのpHが10.0になるように、同時に4時間かけて滴下した。滴下終了後、1時間熟成して、上記内側被覆層上にチタン酸からなる外側被覆層を形成した。
上記重縮合触媒Kを用いた以外は、実施例1と同様にして、ポリエステルk-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルk-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルk-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Lの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、60℃に昇温、保持しながら、ケイ酸ナトリウム水溶液(SiO2 として29重量%)763.6gを加えた。更に、pHが8.5になるまで硫酸を加えて、1時間熟成を行った。その後、濾過、水洗し、水酸化マグネシウム粒子の表面にケイ素酸化物からなる内側被覆層を形成した。この内側被覆層を有する水酸化マグネシウムのスラリーに四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2LとをそのpHが10.0になるように、同時に4時間かけて滴下した。滴下終了後、1時間熟成して、上記内側被覆層上にチタン酸からなる外側被覆層を形成した。
(ポリエステルl-1の製造)
上記ポリエステルl-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルl-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Mの調製)
参考例1で得られた水酸化マグネシウムの水スラリー(123g/L)9.0Lを25L容量の反応器に仕込んだ後、60℃に昇温、保持しながら、ケイ酸ナトリウム水溶液(SiO2 として29重量%)382gとアルミン酸ナトリウム水溶液(Al2O3として19重量%)990.4gを加えた。更に、pHが8.5になるまで硫酸を加えて、1時間熟成を行った。その後、濾過、水洗し、水酸化マグネシウム粒子の表面にケイ素とアルミニウムの複合酸化物からなる内側被覆層を形成した。この内側被覆層を有する水酸化マグネシウムのスラリーに四塩化チタン水溶液(TiO2 換算で69.2g/L)3.2Lと水酸化ナトリウム水溶液(NaOH換算で99.6g/L)3.2LとをそのpHが10.0になるように、同時に4時間かけて滴下した。滴下終了後、1時間熟成して、上記内側被覆層上にチタン酸からなる外側被覆層を形成した。
上記重縮合触媒Mを用いた以外は、実施例1と同様にして、ポリエステルm-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルm-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルm-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Nの調製)
参考例2で得られたハイドロタルサイトの水スラリー(100g/L)11.1Lを用いた以外は、比較例6と同様にして、ハイドロタルサイト100重量部に対してケイ素酸化物からなる内側被覆層20重量部とチタン酸からなる外側被覆層20重量部を有する比較例としての重縮合触媒Nを得た。
上記重縮合触媒Nを用いた以外は、実施例1と同様にして、ポリエステルn-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルn-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルn-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
(重縮合触媒Pの調製)
参考例2で得られたハイドロタルサイトの水スラリー(100g/L)11.1Lを用いた以外は、比較例2と同様にして、ハイドロタルサイト100重量部に対してチタン酸からなる被覆層20重量部を有する比較例としての重縮合触媒Pを得た。
上記重縮合触媒Pを用いた以外は、実施例1と同様にして、ポリエステルp-1を得た。上記ポリエステルの製造における溶融重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における溶融重縮合速度及び得られたポリエステルの色調を表1に示す。
上記ポリエステルp-1のペレット20gを固定床流通反応器に仕込んだ後、窒素気流下、160℃で4時間かけて乾燥させ、更に190℃で1時間かけて結晶化させた。このように処理したポリエステルのペレットを窒素気流下、225℃で18時間加熱し、ポリエステルの固相重縮合を行って、ポリエステルp-2を得た。上記ポリエステルの製造における固相重縮合時間、得られたポリエステルの固有粘度、上記ポリエステルの製造における固相重縮合速度及び得られたポリエステルの色調を表2に示す。
Claims (10)
- ジカルボン酸又はそのエステル形成性誘導体とグリコールとのエステル化反応又はエステル交換反応によるポリエステル製造用重縮合触媒であって、固体塩基100重量部に対して、チタン酸からなる内側被覆層をTiO2 換算で0.1~50重量部を固体塩基の粒子の表面に有すると共に、アルミニウム、ジルコニウム及びケイ素から選ばれる少なくとも1種の元素の酸化物又はアルミニウム、ジルコニウム及びケイ素から選ばれる少なくとも2種の元素の複合酸化物からなる外側被覆層1~50重量部を上記内側被覆層の表面に有する固体塩基の粒子からなる重縮合触媒。
- 固体塩基が水酸化マグネシウムである請求項1に記載の重縮合触媒。
- 固体塩基がハイドロタルサイトである請求項1に記載の重縮合触媒。
- ジカルボン酸又はそのエステル形成性誘導体とグリコールとのエステル化反応又はエステル交換反応によるポリエステル製造用重縮合触媒の製造方法であって、固体塩基の粒子の水スラリーにそのpHが5~12となるようにチタン化合物の水溶液とアルカリ水溶液とを加えて、上記固体塩基の粒子の表面にチタン酸からなる内側被覆層を形成し、次いで、このようにして得られた固体塩基の粒子の水スラリーに水溶性アルミニウム塩と水溶性ジルコニウム塩から選ばれる少なくとも1種の水溶液とアルカリ水溶液を加えて、上記内側被覆層の表面にアルミニウムとジルコニウムから選ばれる少なくとも1種の元素の酸化物又はアルミニウムとジルコニウムの複合酸化物からなる外側被覆層を形成し、次いで、上記内側及び外側被覆層を有する固体塩基の粒子の水スラリーを濾過し、得られたケーキを水洗し、乾燥し、得られた乾燥物を解砕することを特徴とする上記内側被覆層と上記外側被覆層を表面に有する固体塩基の粒子からなるポリエステル製造用重縮合触媒の製造方法。
- ジカルボン酸又はそのエステル形成性誘導体とグリコールとのエステル化反応又はエステル交換反応によるポリエステル製造用重縮合触媒の製造方法であって、固体塩基の粒子の水スラリーにそのpHが5~12となるようにチタン化合物の水溶液とアルカリ水溶液とを加えて、上記固体塩基の粒子の表面にチタン酸からなる内側被覆層を形成し、次いで、このようにして得られた固体塩基の粒子の水スラリーに水溶性ケイ酸塩の水溶液と酸を加えて、上記内側被覆層の表面にケイ素酸化物からなる外側被覆層を形成し、次いで、上記内側及び外側被覆層を有する固体塩基の粒子の水スラリーを濾過し、得られたケーキを水洗し、乾燥し、得られた乾燥物を解砕することを特徴とする上記内側被覆層と上記外側被覆層を表面に有する固体塩基の粒子からなるポリエステル製造用重縮合触媒の製造方法。
- ジカルボン酸又はそのエステル形成性誘導体とグリコールとのエステル化反応又はエステル交換反応によるポリエステル製造用重縮合触媒の製造方法であって、固体塩基の粒子の水スラリーにそのpHが5~12となるようにチタン化合物の水溶液とアルカリ水溶液とを加えて、上記固体塩基の粒子の表面にチタン酸からなる内側被覆層を形成し、次いで、このようにして得られた固体塩基の粒子の水スラリーに水溶性アルミニウム塩と水溶性ジルコニウム塩から選ばれる少なくとも1種の水溶液と水溶性ケイ酸塩の水溶液を加えて、上記内側被覆層の表面にアルミニウムとジルコニウムから選ばれる少なくとも1種の元素とケイ素の複合酸化物からなる外側被覆層を形成し、次いで、上記内側及び外側被覆層を有する固体塩基の粒子の水スラリーを濾過し、得られたケーキを水洗し、乾燥し、得られた乾燥物を解砕することを特徴とする上記内側被覆層と上記外側被覆層を表面に有する固体塩基の粒子からなるポリエステル製造用重縮合触媒の製造方法。
- ジカルボン酸又はそのエステル形成性誘導体とグリコールを請求項1~3のいずれかに記載の重縮合触媒の存在下に溶融重縮合させることを特徴とするポリエステルの製造方法。
- 芳香族ジカルボン酸又はそのエステル形成性誘導体とアルキレングリコールとのエステル化反応又はエステル交換反応によって、上記芳香族ジカルボン酸ビス(ヒドロキシルアルキル)エステルを含むオリゴマーを製造し、次いで、請求項1~3のいずれかに記載の重縮合触媒の存在下に上記オリゴマーを溶融重縮合させることを特徴とするポリエステルの製造方法。
- 請求項7又8に記載のポリエステルの製造方法において、得られたポリエステルを更に固相重縮合させることを特徴とするポリエステルの製造方法。
- 請求項7~9のいずれかに記載の製造方法によって製造されたポリエステル。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013551447A JP5477520B1 (ja) | 2012-07-31 | 2013-07-26 | ポリエステル製造用重縮合触媒とその重縮合触媒を用いるポリエステルの製造 |
EP13825519.5A EP2881416B1 (en) | 2012-07-31 | 2013-07-26 | Polycondensation catalyst for polyester production and production of polyester using polycondensation catalyst for polyester production |
IN250KON2015 IN2015KN00250A (ja) | 2012-07-31 | 2013-07-26 | |
BR112015001881A BR112015001881A2 (pt) | 2012-07-31 | 2013-07-26 | catalisador de policondensação para produção de poliéster e produção de poliéster usando catalisador de policondensação |
CA2878927A CA2878927C (en) | 2012-07-31 | 2013-07-26 | Polycondensation catalyst for producing polyester and production of polyester using the polycondensation catalyst |
SG11201500168SA SG11201500168SA (en) | 2012-07-31 | 2013-07-26 | Polycondensation catalyst for producing polyester and production of polyester using the polycondensation catalyst |
ES13825519.5T ES2623135T3 (es) | 2012-07-31 | 2013-07-26 | Catalizador de policondensación para la producción de poliéster y producción de poliéster utilizando catalizador de policondensación para la producción de poliéster |
DK13825519.5T DK2881416T3 (en) | 2012-07-31 | 2013-07-26 | POLYCONDENSATION CATALYST FOR POLYESTER PREPARATION AND PREPARATION OF POLYESTER USING POLYCONDENSATION CATALYST FOR POLYESTER PREPARATION |
CN201380040705.XA CN104508002B (zh) | 2012-07-31 | 2013-07-26 | 聚酯制造用缩聚催化剂以及使用该缩聚催化剂的聚酯的制造 |
KR1020157001205A KR102109994B1 (ko) | 2012-07-31 | 2013-07-26 | 폴리에스테르 제조용 중축합 촉매와 그 중축합 촉매를 이용하는 폴리에스테르의 제조 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012170068 | 2012-07-31 | ||
JP2012-170068 | 2012-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014021206A1 true WO2014021206A1 (ja) | 2014-02-06 |
Family
ID=50027883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070290 WO2014021206A1 (ja) | 2012-07-31 | 2013-07-26 | ポリエステル製造用重縮合触媒とその重縮合触媒を用いるポリエステルの製造 |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP2881416B1 (ja) |
JP (1) | JP5477520B1 (ja) |
KR (1) | KR102109994B1 (ja) |
CN (1) | CN104508002B (ja) |
BR (1) | BR112015001881A2 (ja) |
CA (1) | CA2878927C (ja) |
DK (1) | DK2881416T3 (ja) |
ES (1) | ES2623135T3 (ja) |
IN (1) | IN2015KN00250A (ja) |
PL (1) | PL2881416T3 (ja) |
SG (1) | SG11201500168SA (ja) |
TW (1) | TWI574990B (ja) |
WO (1) | WO2014021206A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017002852A1 (ja) * | 2015-06-30 | 2017-01-05 | 株式会社クラレ | 結晶ポリエステルペレット、その用途及びその製造方法 |
JP2017119794A (ja) * | 2015-12-28 | 2017-07-06 | 株式会社クラレ | ポリエステル重合触媒及びその製造方法並びにそれを用いたポリエステルの製造方法 |
WO2019124166A1 (ja) * | 2017-12-22 | 2019-06-27 | 堺化学工業株式会社 | ポリエステル製造用重縮合触媒とそれを用いるポリエステルの製造 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107513150B (zh) * | 2016-06-15 | 2021-02-19 | 东丽纤维研究所(中国)有限公司 | 一种聚酯组合物的制备方法、聚酯组合物及其用途 |
CN110204700B (zh) * | 2019-06-14 | 2022-07-01 | 华东理工大学 | 一种高效制备聚对苯二甲酸丙二醇酯(ptt)的方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4957092A (ja) | 1972-10-04 | 1974-06-03 | ||
JPH09291141A (ja) | 1996-04-25 | 1997-11-11 | Nippon Ester Co Ltd | ポリエステルの製造方法 |
JP2001064378A (ja) * | 1998-12-25 | 2001-03-13 | Mitsui Chemicals Inc | ポリエステル製造用触媒、この触媒を用いるポリエステルの製造方法およびこの触媒により製造されるポリエチレンテレフタレート |
JP2001064377A (ja) | 1998-12-25 | 2001-03-13 | Mitsui Chemicals Inc | ポリエステル製造用触媒およびそれを用いるポリエステルの製造方法 |
JP2001114885A (ja) | 1999-10-14 | 2001-04-24 | Mitsui Chemicals Inc | ポリエステル製造用触媒およびポリエステルの製造方法 |
JP2004075787A (ja) * | 2002-08-13 | 2004-03-11 | Mitsubishi Chemicals Corp | ポリエステル製造用触媒およびそれを用いるポリエステルの製造方法 |
JP2006188567A (ja) | 2004-12-30 | 2006-07-20 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
JP2007177025A (ja) * | 2005-12-27 | 2007-07-12 | Nippon Ester Co Ltd | ポリエステル系水性分散体用樹脂 |
JP2007217049A (ja) * | 2006-02-20 | 2007-08-30 | Nippon Ester Co Ltd | 延伸ブロー成形容器 |
JP2008007588A (ja) * | 2006-06-28 | 2008-01-17 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
JP2009046593A (ja) * | 2007-08-20 | 2009-03-05 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とその製造方法とこれを用いるポリエステルの製造方法 |
JP2010209358A (ja) * | 2010-06-28 | 2010-09-24 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
WO2011034156A1 (ja) * | 2009-09-15 | 2011-03-24 | 堺化学工業株式会社 | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
JP2012077112A (ja) * | 2010-09-30 | 2012-04-19 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS463395Y1 (ja) | 1969-12-25 | 1971-02-05 | ||
EP1972650B1 (en) * | 2006-06-28 | 2012-04-25 | Sakai Chemical Industry Co., Ltd. | Polycondensation catalyst for polyester production and production of polyester |
JP5326741B2 (ja) * | 2008-09-29 | 2013-10-30 | 東レ株式会社 | ポリエステル重合触媒およびそれを用いるポリエステルの製造方法 |
-
2013
- 2013-07-26 IN IN250KON2015 patent/IN2015KN00250A/en unknown
- 2013-07-26 JP JP2013551447A patent/JP5477520B1/ja active Active
- 2013-07-26 CN CN201380040705.XA patent/CN104508002B/zh active Active
- 2013-07-26 CA CA2878927A patent/CA2878927C/en not_active Expired - Fee Related
- 2013-07-26 DK DK13825519.5T patent/DK2881416T3/en active
- 2013-07-26 WO PCT/JP2013/070290 patent/WO2014021206A1/ja active Application Filing
- 2013-07-26 BR BR112015001881A patent/BR112015001881A2/pt not_active Application Discontinuation
- 2013-07-26 EP EP13825519.5A patent/EP2881416B1/en active Active
- 2013-07-26 PL PL13825519T patent/PL2881416T3/pl unknown
- 2013-07-26 KR KR1020157001205A patent/KR102109994B1/ko active IP Right Grant
- 2013-07-26 ES ES13825519.5T patent/ES2623135T3/es active Active
- 2013-07-26 SG SG11201500168SA patent/SG11201500168SA/en unknown
- 2013-07-30 TW TW102127225A patent/TWI574990B/zh active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4957092A (ja) | 1972-10-04 | 1974-06-03 | ||
JPH09291141A (ja) | 1996-04-25 | 1997-11-11 | Nippon Ester Co Ltd | ポリエステルの製造方法 |
JP2001064378A (ja) * | 1998-12-25 | 2001-03-13 | Mitsui Chemicals Inc | ポリエステル製造用触媒、この触媒を用いるポリエステルの製造方法およびこの触媒により製造されるポリエチレンテレフタレート |
JP2001064377A (ja) | 1998-12-25 | 2001-03-13 | Mitsui Chemicals Inc | ポリエステル製造用触媒およびそれを用いるポリエステルの製造方法 |
JP2001114885A (ja) | 1999-10-14 | 2001-04-24 | Mitsui Chemicals Inc | ポリエステル製造用触媒およびポリエステルの製造方法 |
JP2004075787A (ja) * | 2002-08-13 | 2004-03-11 | Mitsubishi Chemicals Corp | ポリエステル製造用触媒およびそれを用いるポリエステルの製造方法 |
JP2006188567A (ja) | 2004-12-30 | 2006-07-20 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
JP2007177025A (ja) * | 2005-12-27 | 2007-07-12 | Nippon Ester Co Ltd | ポリエステル系水性分散体用樹脂 |
JP2007217049A (ja) * | 2006-02-20 | 2007-08-30 | Nippon Ester Co Ltd | 延伸ブロー成形容器 |
JP2008007588A (ja) * | 2006-06-28 | 2008-01-17 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
JP2009046593A (ja) * | 2007-08-20 | 2009-03-05 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とその製造方法とこれを用いるポリエステルの製造方法 |
WO2011034156A1 (ja) * | 2009-09-15 | 2011-03-24 | 堺化学工業株式会社 | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
JP2010209358A (ja) * | 2010-06-28 | 2010-09-24 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
JP2012077112A (ja) * | 2010-09-30 | 2012-04-19 | Sakai Chem Ind Co Ltd | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2881416A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017002852A1 (ja) * | 2015-06-30 | 2017-01-05 | 株式会社クラレ | 結晶ポリエステルペレット、その用途及びその製造方法 |
JPWO2017002852A1 (ja) * | 2015-06-30 | 2018-04-19 | 株式会社クラレ | 結晶ポリエステルペレット、その用途及びその製造方法 |
JP2017119794A (ja) * | 2015-12-28 | 2017-07-06 | 株式会社クラレ | ポリエステル重合触媒及びその製造方法並びにそれを用いたポリエステルの製造方法 |
WO2019124166A1 (ja) * | 2017-12-22 | 2019-06-27 | 堺化学工業株式会社 | ポリエステル製造用重縮合触媒とそれを用いるポリエステルの製造 |
US11612882B2 (en) | 2017-12-22 | 2023-03-28 | Sakai Chemical Industry Co., Ltd. | Polycondensation catalyst for producing polyester and production of polyester using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014021206A1 (ja) | 2016-07-21 |
TWI574990B (zh) | 2017-03-21 |
CN104508002A (zh) | 2015-04-08 |
KR102109994B1 (ko) | 2020-05-12 |
EP2881416A4 (en) | 2016-03-23 |
CA2878927C (en) | 2020-04-21 |
TW201412818A (zh) | 2014-04-01 |
CN104508002B (zh) | 2016-08-31 |
EP2881416B1 (en) | 2017-04-05 |
SG11201500168SA (en) | 2015-03-30 |
EP2881416A1 (en) | 2015-06-10 |
DK2881416T3 (en) | 2017-06-06 |
KR20150040855A (ko) | 2015-04-15 |
JP5477520B1 (ja) | 2014-04-23 |
IN2015KN00250A (ja) | 2015-06-12 |
ES2623135T3 (es) | 2017-07-10 |
PL2881416T3 (pl) | 2017-09-29 |
BR112015001881A2 (pt) | 2017-07-04 |
CA2878927A1 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2184309B1 (en) | Process for producing a polycondensation catalyst for producing polyester | |
TWI482787B (zh) | 聚酯製造用縮聚合觸媒及使用該觸媒之聚酯製造方法 | |
US10035132B2 (en) | Polycondensation catalyst for producing polyester and method for producing polyester using the same | |
JP5477520B1 (ja) | ポリエステル製造用重縮合触媒とその重縮合触媒を用いるポリエステルの製造 | |
JP4609386B2 (ja) | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 | |
JP6361662B2 (ja) | ポリエステルの製造方法 | |
JP4934962B2 (ja) | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 | |
US9289749B2 (en) | Polycondensation catalyst for producing polyester and production of polyester using the polycondensation catalyst | |
JP5565248B2 (ja) | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 | |
JP5370284B2 (ja) | ポリエステル製造用重縮合触媒とこれを用いるポリエステルの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013551447 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13825519 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2878927 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20157001205 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013825519 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013825519 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201501123 Country of ref document: ID |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015001881 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015001881 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150128 |