WO2014020983A1 - ロータリ流体機械及びその組立方法 - Google Patents

ロータリ流体機械及びその組立方法 Download PDF

Info

Publication number
WO2014020983A1
WO2014020983A1 PCT/JP2013/065292 JP2013065292W WO2014020983A1 WO 2014020983 A1 WO2014020983 A1 WO 2014020983A1 JP 2013065292 W JP2013065292 W JP 2013065292W WO 2014020983 A1 WO2014020983 A1 WO 2014020983A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate shaft
crankshaft
crankpin
connection point
separator plate
Prior art date
Application number
PCT/JP2013/065292
Other languages
English (en)
French (fr)
Inventor
小川 真
茂樹 三浦
郁男 江崎
千賀子 笹川
創 佐藤
太一 舘石
章浩 野口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13824733.3A priority Critical patent/EP2881588B1/en
Priority to CN201380022823.8A priority patent/CN104302924B/zh
Publication of WO2014020983A1 publication Critical patent/WO2014020983A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Definitions

  • the present invention relates to a rotary fluid machine and a method for assembling the rotary fluid machine, and more specifically to an intermediate shaft of a crankshaft used in a twin rotary fluid machine.
  • a crankshaft bends due to a gas load at the time of compression and is in a single-contact state with respect to a bearing portion.
  • the bearing support point distance is large, and the crankshaft is bent and easily hits one side.
  • bearing friction loss increases due to contact with one piece, and reliability due to abnormal wear and seizure decreases.
  • the rolling piston is inclined, there is a problem that friction loss with the cylinder inner peripheral surface and the separator plate is increased, and noise and vibration are increased.
  • Patent Document 1 discloses a technique for increasing the cross-sectional area of the intermediate shaft by increasing the thickness of the intermediate shaft connecting the first crankpin and the second crankpin.
  • Patent Document 2 discloses a technique for supporting a load applied to an intermediate shaft by providing a first connection portion and a second connection portion projecting from the intermediate shaft on the intermediate shaft.
  • Patent Document 2 discloses a technique for providing a first connection portion and a second connection portion that project from an intermediate shaft.
  • each connection portion is provided separately from the intermediate shaft, the intermediate shaft is There is a problem that it cannot be integrally formed by casting.
  • the present invention has been made in view of such circumstances, and provides a rotary fluid machine and a method of assembling the rotary fluid machine in which the crankshaft is flexed and reduced from being in a single contact state with respect to the bearing portion. Objective.
  • a rotary fluid machine includes a first crankshaft portion, a first crankpin eccentrically connected to the first crankshaft portion in a first direction, and the first crankshaft portion.
  • a second crankshaft portion having the same axis, a second crankpin eccentrically connected to the second crankshaft portion in a second direction opposite to the first direction, and the first crankpin and the second crankshaft
  • a crankshaft having an intermediate shaft for connecting the crankpin, a first cylinder corresponding to the first crankpin, and a second cylinder corresponding to the second crankpin are partitioned, and the intermediate shaft is inserted and positioned.
  • the first side side first connected to the first crankpin has a first side located on the first direction side in a vertical cross section including two misalignment axes. It is provided so as to continuously connect a connection point and a first side side second connection point connected to the second crankpin, and the first side side first connection point is on the first direction side. It is provided at a position displaced from the first side side second connection point.
  • the first side side first connection point is the first direction side.
  • the first side is provided at a position displaced from the second side connection point, and the first side is inclined in the first direction with respect to the axis of the crankshaft.
  • the cross-sectional area of the intermediate shaft can be increased as compared with the conventional shape which is a side extending substantially parallel to the axis of the crankshaft.
  • the section modulus is proportional to the area, the section modulus of the intermediate shaft is larger than the conventional one.
  • the deflection is inversely proportional to the section modulus, the deflection of the intermediate shaft can be reduced by adopting the above configuration.
  • the intermediate shaft has a second side located on the second direction side in the longitudinal section, and the second side is connected to the first crankpin. It is provided so as to continuously connect the second side side first connection point and the second side side second connection point connected to the second crankpin, the second side side second connection point, It is good also as a structure provided in the position displaced rather than the said 2nd side side 1st connection point in said 2nd direction side.
  • the second side side second connection point is the second direction side.
  • the second side edge is inclined in the first direction with respect to the axis of the crankshaft.
  • the second side of the intermediate shaft located on the second direction side is at a position displaced from the first connection point on the second direction side. It is good also as a structure extended substantially parallel with respect to the axis line of said 2nd crankshaft part from the 2nd connection point.
  • the intermediate shaft cross-sectional area is increased. Can do.
  • the maximum distance between the both sides of the intermediate shaft in the direction perpendicular to the axis of the crankshaft is the diameter of the hole of the separator plate. It is good also as a substantially equal structure.
  • the maximum distance between the both sides of the intermediate shaft orthogonal to the axis of the crankshaft is substantially equal to the diameter of the hole of the separator plate, so that the intermediate shaft can pass through the separator plate. Can be as large as possible.
  • the intermediate shaft may have a surface after molding by casting.
  • the intermediate shaft does not have a sliding portion like a crankpin, it is not necessary to perform surface processing by cutting or the like. Therefore, even when the crankshaft portion, the crankpin, and the intermediate shaft are integrally formed by casting, the surface processing of the intermediate shaft can be omitted, and the cost can be reduced.
  • the assembly method of the rotary fluid machine according to the second aspect of the present invention is such that the first crank pin or the second crank pin and the first crank pin are inserted into the hole of the separator plate from the first crank shaft or the second crank shaft.
  • An intermediate shaft positioning step of releasing and positioning the intermediate shaft in the hole of the separator plate.
  • the intermediate shaft insertion step since the crankshaft and the separator plate are relatively inclined and inserted along the first side, insertion is performed even if the first side is inclined. Can do. Further, the intermediate shaft can be inserted in a shape as large as possible so that it can pass through the separator plate. Further, since the inclination is released in the intermediate shaft positioning step, the intermediate shaft can be positioned at a desired position. Thus, by having the shaft part insertion step, the intermediate shaft insertion step, and the intermediate shaft positioning step, the separator plate and the crankshaft portion are inserted in the insertion method while being kept relatively vertical as in the conventional method. The separator plate can be passed through even in a shape in which the intermediate shaft protrudes from the side surface in the first direction of the second crankpin.
  • the first connection point is provided at a position displaced from the second connection point on the first direction side, and the first side is inclined with respect to the axis of the crankshaft.
  • the cross-sectional area of the intermediate shaft can be increased.
  • the contact of the crankshaft with the bearing can be reduced.
  • an increase in bearing friction loss can be suppressed, and a decrease in reliability due to abnormal wear and seizure can be suppressed.
  • the rolling piston is inclined, so that an increase in friction loss with the inner peripheral surface of the cylinder and the separator plate can be suppressed and an increase in noise and vibration can be suppressed.
  • FIG. 1 shows the intermediate shaft shown in FIG. 1, (a) is a longitudinal sectional view of a conventional intermediate shaft, (b) is a longitudinal sectional view of the intermediate shaft according to the first embodiment, and (c) is an intermediate portion according to the second embodiment.
  • shaft, (d) is a longitudinal cross-sectional view of the intermediate shaft which concerns on 3rd Embodiment. It should be noted that the first direction A and the second direction B are opposite to those in FIG.
  • FIG. 3 is a cross-sectional view of the intermediate shaft shown in FIG.
  • the rotary compressor according to the present embodiment includes a hermetically sealed housing, an electric motor unit, and a compression mechanism unit.
  • the motor part and the compression mechanism part are coupled by a crankshaft.
  • the motor unit accommodated in the hermetic housing includes a motor rotor and a motor stator, and an oil separation plate for suppressing deterioration of the sliding portion lubrication performance of the compressor at the upper part of the motor unit.
  • FIG. 1 shows a longitudinal section around the intermediate shaft 7 of the rotary compressor according to this embodiment.
  • the compression mechanism part mentioned above is provided with the crankshaft 1, the separator plate 13, and the cylinder part.
  • the cylinder part is divided into an upper cylinder 2 and a lower cylinder 4 and has a blade receiving groove.
  • the crankshaft 1 includes an upper crankshaft portion 3 that is positioned upward in FIG. 1 and has an axis L1, and a lower crankshaft portion 11 that is positioned below and has a common axis L1 with the upper crankshaft portion 3. Yes.
  • the upper crankshaft portion 3 is supported by the main bearing 15, and the lower crankshaft portion 11 is supported by the sub bearing 17.
  • An upper crankpin 5 and a lower crankpin 9 are connected between the upper crankshaft portion 3 and the lower crankshaft portion 11.
  • the upper crankpin 5 is positioned such that its axis L2 is eccentric with respect to the axis L1 of the upper crankshaft portion 3.
  • the direction in which the axis L2 of the upper crankpin 5 is eccentric with respect to the axis of the crankshaft 1, that is, the axis L1 of the upper crankshaft portion 3 and the lower crankshaft portion 11 is defined as the first direction A.
  • the opposite direction is a second direction B.
  • the lower crankpin 9 is positioned such that its axis L3 is eccentric in the second direction B with respect to the axis L1 of the lower crankshaft portion 11.
  • An upper piston 22 is fitted on the upper crankpin 5, and a lower crankpin 24 is fitted on the lower crankpin 9.
  • An intermediate shaft 7 is provided between the upper crankpin 5 and the lower crankpin 9, and the upper crankpin 5 and the lower crankpin 9 that are eccentric to each other are connected by the intermediate shaft 7. Further, the surfaces of the upper crankshaft portion 3 and the lower crankshaft portion 11 and the upper crankpin 5 and the lower crankpin 9 are machined, whereas the intermediate shaft 7 has a surface after molding by casting. ing.
  • the separator plate 13 is disposed so as to partition the upper cylinder 2 corresponding to the upper crankpin 5 and the lower cylinder 4 corresponding to the lower crankpin 9.
  • the separator plate 13 is formed with a hole, and the intermediate shaft 7 is inserted into the hole.
  • An upper suction pipe 19 and a lower suction pipe 20 are connected to the respective sides of the upper cylinder 2 and the lower cylinder 4.
  • the refrigerant is sucked into the upper cylinder 2 and the lower cylinder 4 from the upper suction pipe 19 and the lower suction pipe 20, respectively.
  • the rotary compressor described above sucks the refrigerant gas into the lower cylinder 4 through the lower suction pipe 20, and the compression chamber formed in the lower cylinder 4 is reduced with the rotation of the crankshaft 1. Compressed.
  • the refrigerant compressed in the lower cylinder 4 is discharged into the lower muffler, and is discharged into the upper muffler through a communication path connecting the lower cylinder, the separator plate, and the upper cylinder.
  • the refrigerant sucked into the upper cylinder through the upper suction pipe 19 is compressed in the upper cylinder and discharged into the upper muffler.
  • R410A refrigerant is preferably used, but R32 refrigerant and other mixed refrigerants may be used.
  • the intermediate shaft 1 is located on the first direction A side in a longitudinal section including any two axes of the upper crankshaft portion 3, the upper crankpin 5 and the lower crankpin 9.
  • the first side X has a first side X, and is connected to the upper left intermediate point (first side X side first connection point) a connected to the upper crankpin 5 and the lower crankpin 9.
  • the intermediate shaft lower left point (first side X side second connection point) b is continuously connected.
  • the intermediate shaft upper left point a is provided at a position displaced in the first direction A side from the intermediate shaft lower left point b.
  • the second side Y is divided into an upper right point of the intermediate shaft (second side Y side first connection point) c connected to the upper crankpin 5 and a lower right point of the intermediate shaft connected to the lower crankpin 9 ( 2nd side Y side 2nd connection point) d is provided so that it may connect continuously.
  • the lower right point d of the intermediate shaft may be provided at a position displaced from the upper right point c of the intermediate shaft on the second direction B side, that is, both sides may be inclined.
  • FIG. 4A the crankshaft 1 and the separator plate 13 are relatively moved from the lower crankshaft portion 11 to the surface where the lower crankpin 9 and the intermediate shaft 7 are in contact with each other in the hole of the separator plate 13. Is moved and inserted (shaft portion insertion step).
  • FIG. 4B the crankshaft 1 and the separator plate 13 are relatively inclined.
  • the position of the separator plate 13 can be prevented from being shifted by inclining with the upper left end point e of the lower crankpin 9 as a fulcrum.
  • the intermediate shaft 7 and the separator plate 13 are relatively inserted along the first side X along the first side X into the hole portion (axis portion). Insertion process).
  • the intermediate plate 7 and the separator shaft 13 may be inserted with a gap that does not allow the separator plate 13 and the intermediate shaft 7 to contact each other.
  • FIG. 4D the inclination of the crankshaft 1 and the separator plate 13 which are relatively inclined according to FIG.
  • the separator plate When canceling the inclination, the separator plate may be moved so that the end point of the separator plate coincides with the upper left point a of the intermediate shaft. Then, as shown in FIG. 4E, the intermediate shaft 7 is positioned in the hole of the separator plate 13 (intermediate shaft positioning step). When the intermediate shaft 7 is positioned in the hole of the separator plate 13, the separator plate may be moved so as to be substantially perpendicular to the axis L1 of the crankshaft 1. Note that the separator plate 13 may be inserted not from the lower crankshaft portion 11 but from the upper crankshaft portion 3 as described above.
  • An intermediate shaft upper left point a (or intermediate shaft upper right point c) is provided at a position displaced in the first direction A side from the intermediate shaft lower left point b (or intermediate shaft lower right point d), and the first side Since X is inclined with respect to the axis of the crankshaft 1, as compared with the conventional shapes of FIGS. 2 (a) and 3 (a) which are substantially parallel to the crankshaft 1,
  • the cross-sectional area of the intermediate shaft 7 can be increased.
  • the rolling piston is inclined, so that an increase in friction loss with the cylinder inner peripheral surface and the separator plate 13 can be suppressed and an increase in noise and vibration can be suppressed.
  • crankshaft 1 and the separator plate 13 are relatively inclined, and the intermediate shaft 7 and the separator plate 13 are moved along the first side X along the first side X to be relatively in the hole.
  • the separator plate 13 can be inserted and the intermediate shaft 7 can be positioned at a desired position even if the first side X is inclined.
  • the shape that cannot be inserted by the conventional insertion method with the separator plate 13 and the crankshaft 1 kept relatively vertical, that is, the intermediate shaft 7 is viewed from the side surface in the first direction A of the lower crankpin.
  • the separator plate 13 can be passed through even in a protruding shape.
  • FIG. 2 (c) and FIG. 3 (b) a second embodiment of the present invention will be described using FIG. 2 (c) and FIG. 3 (b).
  • the present embodiment differs from the first embodiment described above in the shape of the intermediate shaft 7. Since other points are the same as those in the first embodiment, description thereof will be omitted.
  • the second side Y of the intermediate shaft 7 located on the second direction B side is the lower crankshaft portion 11 starting from the intermediate shaft lower right point d located at a position displaced from the intermediate shaft upper right point c. It extends substantially parallel to the axis of the.
  • the intermediate shaft 7 is disconnected.
  • the area can be increased.
  • the shape of the intermediate shaft 7 is different from the first embodiment and the second embodiment described above. Since other points are the same as those in the first embodiment, description thereof will be omitted.
  • the maximum distance between both sides of the intermediate shaft 7 shape is substantially the same as the diameter of the hole of the separator plate 13.
  • the shape shown by the broken line in FIG. FIG. 5 is a view in which a separator plate is inserted in this embodiment, and the intermediate shaft is enlarged only by the triangular cross-section portion 8.
  • the triangular cross-sectional portion 8 effectively fills the gap between the intermediate shaft shape and the separator plate, and the maximum distance between both sides of the intermediate shaft 7 shape is the diameter of the hole of the separator plate 13.
  • the intermediate shaft 7 can be made as large as possible so that the intermediate shaft 7 can pass through the separator plate 13.
  • the surfaces of the upper crankshaft portion 3 and the lower crankshaft portion 11 and the upper crankpin 5 and the lower crankpin 9 are machined, whereas the intermediate shaft 7 is formed by casting. It demonstrated as having the surface after shaping
  • the present invention is not limited to this, and the intermediate shaft 7 may be machined, for example. Further, machining is not limited to machining.
  • an expander expander
  • this invention is not limited to this, For example, an expander (expander) may be sufficient.
  • the intermediate pressure gas may be sucked by a high-stage compression mechanism and further compressed into a high-pressure gas, and may be applied to a multi-stage rotary compressor.
  • Multistage compressor combined with another type of compression mechanism A second compression mechanism of a different type from the rotary compression mechanism driven by the electric motor is provided above the electric motor in the housing of each of the above-described embodiments.
  • the rotary compression mechanism is the low-stage compression mechanism
  • the second compression mechanism is the high-stage compression mechanism
  • the intermediate-pressure gas compressed by the low-stage rotary compression mechanism is discharged into the housing, and the gas is compressed to the second compression
  • the present invention can also be applied to a multistage compressor of the type that performs suction and two-stage compression by a high-stage compression mechanism that is a mechanism.
  • a scroll compression mechanism as a second compression mechanism has already been put into practical use. Even when applied to these compressors, the same effects as those of the above-described embodiments can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

中間軸のたわみを低減することで、クランク軸の軸受けへの片当たりが低減できるロータリ流体機械を提供する。第一クランク軸部(3)と、第一クランクピン(5)と、第二クランク軸部(11)と、第二クランクピン(9)と、中間軸(7)とを備えたクランク軸(1)において、中間軸(7)の形状を、第一クランク軸部(3)、第一クランクピン(5)または第二クランクピン(9)のいずれか2つの軸線を含む縦断面にて、第一方向(A)側に位置する第一側辺を有し、第一側辺(X)は、第一クランクピン(5)と接続される第一側辺側第一接続点と、第二クランクピン(9)と接続される第一側辺側第二接続点とを連続的に結ぶように設け、第一側辺側第一接続点は、第一方向(A)側に前第一側辺側第二接続点よりも変位した位置に設ける形状とした。

Description

ロータリ流体機械及びその組立方法
 本発明は、ロータリ流体機械及びその組立方法に関し、より具体的には、ツインロータリ流体機械に用いられるクランク軸の中間軸に関する。
 ロータリ流体機械では圧縮時のガス荷重によりクランク軸がたわみ、軸受部に対して片当たり状態となることが一般的に知られている。特にツイン(二気筒)ロータリでは、軸受支持点距離が大きく、クランク軸がたわんで片当たりしやすい。片当たりすることで軸受摩擦損失が増加し、異常摩耗・焼付きによる信頼性が低下するという問題がある。また、ローリングピストンが傾き、シリンダ内周面や、セパレータプレートとの摩擦損失が増加し、かつ騒音及び振動が増加するという問題もある。
 そこで、クランク軸の剛性を高めるために、特許文献1には第一クランクピンと第二クランクピンとを連結している中間軸の肉厚を大きくすることで中間軸断面積を大きくする技術が開示されている。また、特許文献2には中間軸に、中間軸から張り出した第一接続部及び第二接続部を設けることで中間軸に与える荷重を支える技術が開示されている。
特許第3723408号公報 特許第4065654号公報
 しかしながら、特許文献1及び特許文献2に開示されている技術によってもなお中間軸がたわみ、クランク軸が軸受部に対して片当たり状態になるという問題がある。
 また、特許文献2には、中間軸から張り出した第一接続部及び第二接続部を設ける技術が開示されているが、それぞれの接続部は中間軸と別に設けられているため、中間軸を鋳造で一体に成形することができないという問題がある。
 本発明は、このような事情に鑑みてなされたものであって、クランク軸がたわみ、軸受部に対して片当たり状態になることを低減させたロータリ流体機械及びその組立方法を提供することを目的とする。
 本発明の第1の態様にかかるロータリ流体機械は、第一クランク軸部、該第一クランク軸部に対して第一方向に偏心して接続された第一クランクピン、前記第一クランク軸部と同一軸線を有する第二クランク軸部、該第二クランク軸部に対して前記第一方向と反対の第二方向に偏心して接続された第二クランクピン、及び、前記第一クランクピンと前記第二クランクピンとを接続する中間軸を備えたクランク軸と、前記第一クランクピンに対応する第一シリンダと前記第二クランクピンに対応する第二シリンダとを仕切るとともに、前記中間軸が挿通されて位置する孔部が形成されたセパレータプレートと、を備えたロータリ流体機械において、前記中間軸が、前記第一クランク軸部、前記第一クランクピンまたは前記第二クランクピンのいずれか2つの軸線を含む縦断面にて、前記第一方向側に位置する第一側辺を有し、該第一側辺が、前記第一クランクピンと接続される第一側辺側第一接続点と、前記第二クランクピンと接続される第一側辺側第二接続点とを連続的に結ぶように設けられ、前記第一側辺側第一接続点が、前記第一方向側に前記第一側辺側第二接続点よりも変位した位置に設けられていることを特徴とする。
 第1の態様によれば、第一クランク軸部、第一クランクピンまたは第二クランクピンのいずれか2つの軸線を含む縦断面において、第一側辺側第一接続点は、第一方向側に第一側辺側第二接続点よりも変位した位置に設け、第一側辺をクランク軸の軸線に対して第一方向に傾斜させることとした。これにより、クランク軸の軸線に対して略平行に延在する側辺とされた従来形状と比較して、中間軸の断面積を大きくすることができる。ここで、断面係数は面積に比例するため、中間軸の断面係数は従来と比較して大きくなる。また、たわみは断面係数に反比例するため、上記の構成をとることにより中間軸のたわみを低減することができる。
 上記のロータリ流体機械において、前記中間軸は、前記縦断面にて、前記第二方向側に位置する第二側辺を有し、該第二側辺は、前記第一クランクピンと接続される第二側辺側第一接続点と、前記第二クランクピンと接続される第二側辺側第二接続点とを連続的に結ぶように設けられ、前記第二側辺側第二接続点は、前記第二方向側に前記第二側辺側第一接続点よりも変位した位置に設けられている構成としてもよい。
 この構成によれば、第一クランク軸部、第一クランクピンまたは第二クランクピンのいずれか2つの軸線を含む縦断面において、前記第二側辺側第二接続点は、前記第二方向側に前記第二側辺側第一接続点よりも変位した位置に設け、第二側辺をクランク軸の軸線に対して第一方向に傾斜させることとした。このように、第一側辺だけでなく第二側辺もクランク軸の軸線に対して傾斜させることとしたので、クランク軸の軸線に対して略平行に延在する側辺とされた従来形状と比較して、中間軸の断面積を大きくすることができる。
 上記のロータリ流体機械において、前記縦断面にて、前記第二方向側に位置する前記中間軸の第二側辺は、前記第二方向側に前記第一接続点よりも変位した位置にある前記第二接続点を起点として前記第二クランク軸部の軸線に対して略平行に延在する構成としてもよい。
 この構成によれば、中間軸の形状を、従来形状と比較して第二方向側に第二接続点が第一接続点よりも変位した距離だけ引き延ばしているため中間軸断面積を大きくすることができる。
 上記のいずれかのロータリ流体機械においては、前記縦断面にて、前記クランク軸の軸線に直交する方向における前記中間軸の前記両側辺間の最大距離が、前記セパレータプレートの前記孔部の径と略等しい構成としてもよい。
 この構成によれば、クランク軸の軸線に直交する中間軸の両側辺間の最大距離がセパレータプレートの孔部の径と略等しい形状とすることにより、中間軸がセパレータプレートを通過できる程度に可及的に大きくすることができる。
 上記のいずれかのロータリ流体機械において、前記中間軸は、鋳造による成形後の表面を有する構成としてもよい。
 この構成によれば、中間軸は、クランクピンのように摺動部を有していないため、切削等によって表面加工する必要がない。そのため、クランク軸部、クランクピン及び中間軸を鋳造で一体として成形した場合であっても、中間軸の表面加工を省略することができ、コストの低減をすることができる。
 本発明の第2の態様にかかるロータリ流体機械の組立方法は、前記セパレータプレートの前記孔部内に、前記第一クランク軸部又は第二クランク軸部から前記第一クランクピン又は第二クランクピンと前記中間軸が接する面まで前記クランク軸と前記セパレータプレートとを相対的に移動させて挿入する軸部挿入工程と、前記クランク軸と前記セパレータプレートとを相対的に傾斜させて、前記第一側辺に沿って前記中間軸と前記セパレータプレートとを前記第一側辺に沿わせながら相対的に前記孔部内に挿入する中間軸挿入工程と、前記クランク軸と前記セパレータプレートとの相対的な傾斜を解除して、前記セパレータプレートの前記孔部内に前記中間軸を位置させる中間軸位置決め工程と、を有する。
 第2の態様によれば、中間軸挿入工程では、クランク軸とセパレータプレートを相対的に傾斜させて第一側辺に沿って挿入するので、第一側辺が傾斜していても挿入することができる。さらに、中間軸がセパレータプレートを通過できる程度に可及的に大きい形状においても挿入することができる。また、中間軸位置決め工程で傾斜を解除するので、所望の位置に中間軸を位置させることができる。このように、軸部挿入工程、中間軸挿入工程及び中間軸位置決め工程を有することで、従来方法のようにセパレータプレートとクランク軸部を相対的に垂直に保ったままの挿入方法では挿入することができない形状、すなわち、中間軸が第二クランクピンの第一方向の側面から張りだした形状においてもセパレータプレートを通すことができる。
 本発明によれば、第一接続点を、第一方向側に第二接続点よりも変位した位置に設けて、第一側辺をクランク軸の軸線に対して傾斜させることとしたので、クランク軸に対して略平行な側辺とされた従来形状と比較して、中間軸の断面積を大きくすることができる。このように中間軸のたわみを低減することで、クランク軸の軸受けへの片当たりが低減できる。クランク軸の軸受けへの片当たりを低減することで、軸受摩擦損失の増加を抑止し、かつ異常摩耗・焼付きによる信頼性低下を抑止することができる。また、ローリングピストンが傾き、シリンダ内周面や、セパレータプレートとの摩擦損失増加を抑止しかつ騒音及び振動の増加を抑止することができる。
本発明の一実施形態に係るロータリ圧縮機の中間軸周りの縦断面図である。 図1に示す中間軸を示し、(a)は従来の中間軸の縦断面図、(b)は第1実施形態に係る中間軸の縦断面図、(c)は第2実施形態に係る中間軸の縦断面図、(d)は第3実施形態に係る中間軸の縦断面図である。なお、図1とは第一方向A及び第二方向Bが逆であることに留意されるべきである。 図2に示す中間軸を回転軸に垂直な平面に投影した断面図あり、(a)は従来の中間軸、(b)は第2実施形態に係る中間軸、(c)は第3実施形態に係る中間軸を示す。なお、図1とは第一方向A及び第二方向Bが逆であることに留意されるべきである。 本発明の一実施形態におけるセパレータプレートの挿通方法を示した側面図である。 本発明の第3実施形態における中間軸を含むクランク軸の要部を示す側面図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1ないし図5を用いて説明する。
 本実施形態に係るロータリ圧縮機は、密閉ハウジングと電動モータ部と圧縮機構部とを備えている。モータ部と圧縮機構部はクランクシャフトにより結合されている。密閉ハウジングに収容されたモータ部は、モータロータ及びモータステータを有しており、モータ部上部には圧縮機の摺動部潤滑性能低下を抑制するための油分離板を有している。
 図1には、本実施形態に係るロータリ圧縮機の中間軸7周りの縦断面が示されている。
 上述した圧縮機構部は、クランク軸1と、セパレータプレート13と、シリンダ部とを備えている。
 シリンダ部は、上部シリンダ2と下部シリンダ4に分かれ、ブレード収容溝を有している。
 クランク軸1は、図1において上方に位置するとともに軸線L1を有する上部クランク軸部3と、下方に位置するとともに上部クランク軸部3と共通の軸線L1を有する下部クランク軸部11とを備えている。上部クランク軸部3は、主軸受け15に支持されており、また下部クランク軸部11は副軸受け17に支持されている。
 上部クランク軸部3と下部クランク軸部11との間には、上部クランクピン5及び下部クランクピン9が接続されている。上部クランクピン5は、その軸線L2が上部クランク軸部3の軸線L1に対して偏心するように位置している。ここで、クランク軸1の軸線すなわち上部クランク軸部3及び下部クランク軸部11の軸線L1に対して上部クランクピン5の軸線L2が偏心している方向を第一方向A、この第一方向Aに対して反対方向を第二方向Bとする。下部クランクピン9は、その軸線L3が下部クランク軸部11の軸線L1に対して第二方向Bに偏心して位置している。
 また、上部クランクピン5には上部ピストン22が、下部クランクピン9には下部クランクピン24がそれぞれ嵌め合わされている。
 上部クランクピン5と下部クランクピン9との間には、中間軸7が設けられ、この中間軸7によって、互いに偏芯する上部クランクピン5と下部クランクピン9とが接続されている。
 また、上部クランク軸部3及び下部クランク軸部11や上部クランクピン5及び下部クランクピン9の表面は機械加工されているのに対して、中間軸7は、鋳造による成形後の表面を有している。
 セパレータプレート13は、上部クランクピン5に対応する上部シリンダ2及び下部クランクピン9に対応する下部シリンダ4を仕切るように配置されている。セパレータプレート13には、孔部が形成されており、この孔部に中間軸7が挿通されるようになっている。
 上部シリンダ2及び下部シリンダ4のそれぞれの側部には、上部吸込みパイプ19及び下部吸込みパイプ20が接続されている。上部吸込みパイプ19及び下部吸込みパイプ20から冷媒がそれぞれ上部シリンダ2内及び下部シリンダ4内に吸入されるようになっている。
 上述したロータリ圧縮機は、下部吸込みパイプ20を介して下部シリンダ4内に冷媒ガスを吸入し、クランク軸1の回転とともに下部シリンダ4内に形成された圧縮室が縮小することにより、冷媒ガスが圧縮される。そして、下部シリンダ4内にて圧縮された冷媒は、下部マフラ内に吐出され、下部シリンダ、セパレータプレート、上部シリンダをつなぐ連通路をとおって、上部マフラ内に吐出される。上部吸込みパイプ19を介して上部シリンダ内に吸入された冷媒は上部シリンダ内で圧縮され、上部マフラ内に吐出される。冷媒としては、R410A冷媒が好適に用いられるが、R32冷媒及びその他混合冷媒を用いてもよい。
 図2(b)及び図3(b)には、本実施形態に係る中間軸7を含むクランク軸1の要部が示されている。これらの図に示されているように、上部クランク軸部3、上部クランクピン5または下部クランクピン9のいずれか2つの軸線を含む縦断面にて、中間軸は第一方向A側に位置する第一側辺Xを有し、第一側辺Xを、上部クランクピン5と接続される中間軸左上点(第一側辺X側第一接続点)aと、下部クランクピン9と接続される中間軸左下点(第一側辺X側第二接続点)bとを連続的に結ぶように設けている。さらに、中間軸左上点aを、第一方向A側に中間軸左下点bよりも変位した位置に設けている。
 また、第二側辺Yを、上部クランクピン5と接続される中間軸右上点(第二側辺Y側第一接続点)cと、下部クランクピン9と接続される中間軸右下点(第二側辺Y側第二接続点)dとを連続的に結ぶように設けている。さらに、中間軸右下点dを、第二方向B側に中間軸右上点cよりも変位した位置に設ける、つまり両側辺を斜め形状にしてもよい。
 次に、上述したクランク軸1の組立方法、具体的にはクランク軸1にセパレータプレート13を挿通する方法について図4を用いて説明する。図4(a)~(e)の順に組み立てる。
 先ず、図4(a)に示すように、セパレータプレート13の孔部内に、下部クランク軸部11から下部クランクピン9と中間軸7とが接する面まで、クランク軸1とセパレータプレート13とを相対的に移動させて挿入する(軸部挿入工程)。
 次に、図4(b)に示すように、クランク軸1とセパレータプレート13とを相対的に傾斜させる。傾斜の際に下部クランクピン9の左上端点eを支点として傾斜させることによりセパレータプレート13の位置がずれるのを防ぐことができる。
 次に、図4(c)に示すように、第一側辺Xに沿って中間軸7とセパレータプレート13とを第一側辺Xに沿わせながら相対的に孔部内に挿入する(軸部挿入工程)。中間軸7とセパレータプレート13とを第一側辺Xに沿わせながら相対的に孔部内に挿入する際に、セパレータプレート13と中間軸7とが接しない程度の隙間を設けて挿入するとよい。
 次に、図4(d)に示すように、図4(b)により相対的に傾斜させたクランク軸1とセパレータプレート13との傾斜を解除する。傾斜を解除する際は、セパレータプレートの端点が中間軸左上点aと一致するように動かすとよい。
 そして、図4(e)に示すように、セパレータプレート13の孔部内に中間軸7を位置させる(中間軸位置決め工程)。セパレータプレート13の孔部内に中間軸7を位置させる際は、セパレータプレートがクランク軸1の軸線L1に対して略垂直となるように動かすとよい。
 なお、上述のように下部クランク軸部11からではなく上部クランク軸部3からセパレータプレート13を挿入するようにしてもよい。
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 中間軸左上点a(または及び中間軸右上点c)を、第一方向A側に中間軸左下点b(または及び中間軸右下点d)よりも変位した位置に設けて、第一側辺Xをクランク軸1の軸線に対して傾斜させることとしたので、クランク軸1に対して略平行な側辺とされた図2(a)及び図3(a)の従来形状と比較して、中間軸7の断面積を大きくすることができる。このように中間軸7のたわみを低減することで、クランク軸1の主軸受け15及び副軸受け17への片当たりが低減できる。クランク軸1の軸受けへの片当たりを低減することで、軸受摩擦損失の増加を抑止し、かつ異常摩耗・焼付きによる信頼性低下を抑止することができる。また、ローリングピストンが傾き、シリンダ内周面や、セパレータプレート13との摩擦損失増加を抑止しかつ騒音及び振動の増加を抑止することができる。
 また、クランク軸1とセパレータプレート13とを相対的に傾斜させて、第一側辺Xに沿って中間軸7とセパレータプレート13とを第一側辺Xに沿わせながら相対的に孔部内に挿入する中間軸挿入工程を有する組立方法により、第一側辺Xが傾斜していてもセパレータプレート13を挿入及び所望の位置に中間軸7を位置させることができる。さらに、中間軸7がセパレータプレート13を通過できる程度に可及的に大きい形状においても同様である。このように、セパレータプレート13とクランク軸1を相対的に垂直に保ったままの従来の挿入方法では挿入することができない形状、すなわち、中間軸7が下部クランクピンの第一方向Aの側面から張りだした形状においてもセパレータプレート13を通すことができる。
[第2実施形態]
 次に、本発明の第2実施形態について、図2(c)及び図3(b)を用いて説明する。
 本実施形態は、上述した第1実施形態に対して、中間軸7の形状が異なる。その他の点については第1実施形態と同様であるので説明は省略する。
 本実施形態において、第二方向B側に位置する中間軸7の第二側辺Yは、中間軸右上点cよりも変位した位置にある中間軸右下点dを起点として下部クランク軸部11の軸線に対して略平行に延在している。
 このように、中間軸7の形状を、従来形状と比較して第二方向B側に中間軸右下点dが中間軸右上点cよりも変位した距離だけ引き延ばしているため中間軸7の断面積を大きくすることができる。
[第3実施形態]
 次に、本発明の第3実施形態について、図2(d)、図3(c)及び図5を用いて説明する。
 本実施形態は、上述した第1実施形態及び第2実施形態に対して、中間軸7の形状が異なる。その他の点については第1実施形態と同様であるので説明は省略する。
 中間軸7形状の両側辺間の最大距離がセパレータプレート13の孔部の径と略等しい形状となっている。ここで、両側辺間の最大距離であるため、図2の(d)における破線で示した形状であってもよい。また、図5は本実施形態においてセパレータプレートを挿入した図であり、三角形状断面部分8だけ中間軸が大きくなっている。
 このように、三角形状断面部分8があることにより、中間軸形状とセパレータプレートの隙間を有効に埋めており、かつ中間軸7形状の両側辺間の最大距離がセパレータプレート13の孔部の径と略等しい形状とすることで、中間軸7がセパレータプレート13を通過できる程度に可及的に大きくすることができる。
 なお、上述した各実施形態では、上部クランク軸部3及び下部クランク軸部11や上部クランクピン5及び下部クランクピン9の表面が機械加工されているのに対して、中間軸7は、鋳造による成形後の表面を有しているとして説明した。しかし、本発明はこれに限定されるものではなく、例えば中間軸7が機械加工されていても良い。また、加工は機械加工に限られない。
 また、上述した各実施形態では、ロータリ圧縮機であるとして説明したが、本発明はこれに限定されるものではなく、例えば膨張器(エクスパンダ)でもよい。
[その他の実施形態]
 次に、本発明のその他の実施形態について説明する。
 上述した各実施形態では、2気筒ロータリ圧縮機および単気筒ロータリ圧縮機に適用した例について説明したが、以下の圧縮機にも同様に適用することができ、これらの圧縮機も本発明に包含されるものとする。
(1)多気筒ロータリ圧縮機
 上述した各実施形態においては、2気筒ロータリ圧縮機について説明したが、3気筒以上の多気筒ロータリ圧縮機に適用してもよい。
(2)多段ロータリ圧縮機
 上述した各実施形態においては、2気筒ロータリ圧縮機について説明したが、一方の気筒を低段側、他方の気筒を高段側とし、低段側の圧縮機構により圧縮した中間圧のガスを、高段側の圧縮機構により吸入し、更に高圧ガスに圧縮する構成として多段ロータリ圧縮機に適用してもよい。
(3)他型式の圧縮機構と組み合わせた多段圧縮機
 上述した各実施形態のハウジング内の電動モータの上部に、電動モータによって駆動されるロータリ圧縮機構とは他型式の第2の圧縮機構を設け、ロータリ圧縮機構が低段側圧縮機構、第2の圧縮機構を高段側圧縮機構とし、低段側ロータリ圧縮機構で圧縮した中間圧のガスをハウジング内に吐き出し、そのガスを第2の圧縮機構である高段側圧縮機構により吸入して2段圧縮するタイプの多段圧縮機にも適用することができる。
 この多段圧縮機の代表的な例として、第2の圧縮機構をスクロール圧縮機構としたものが既に実用化されている。
 これらの圧縮機に適用した場合においても、上述した各実施形態と同様の効果を得ることができる。
 1 クランク軸
 2 上部シリンダ
 3 上部クランク軸部(第一クランク軸部)
 4 下部シリンダ
 5 上部クランクピン(第一クランクピン)
 7 中間軸
 8 三角形状断面部分
 9 下部クランクピン(第二クランクピン)
 11 下部クランク軸部(第二クランク軸部)
 13 セパレータプレート
 15 主軸受け
 17 副軸受け
 19 上部吸込みパイプ
 20 下部吸込みパイプ
 22 上部ピストン
 24 下部ピストン
 L1,L2,L3 軸線
 A 第一方向
 B 第二方向
 X 第一側辺
 Y 第二側辺
 a 第一側辺X側第一接続点
 b 第一側辺X側第二接続点
 c 第二側辺Y側第一接続点
 d 第二側辺Y側第二接続点
 e 下部クランクピン左上端点 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (6)

  1.  第一クランク軸部、該第一クランク軸部に対して第一方向に偏心して接続された第一クランクピン、前記第一クランク軸部と同一軸線を有する第二クランク軸部、該第二クランク軸部に対して前記第一方向と反対の第二方向に偏心して接続された第二クランクピン、及び、前記第一クランクピンと前記第二クランクピンとを接続する中間軸を備えたクランク軸と、
     前記第一クランクピンに対応する第一シリンダと前記第二クランクピンに対応する第二シリンダとを仕切るとともに、前記中間軸が挿通されて位置する孔部が形成されたセパレータプレートと、
    を備えたロータリ流体機械において、
     前記中間軸は、前記第一クランク軸部、前記第一クランクピンまたは前記第二クランクピンのいずれか2つの軸線を含む縦断面上に、前記第一方向側に位置する第一側辺を有し、
     該第一側辺は、前記第一クランクピンと接続される第一側辺側第一接続点と、前記第二クランクピンと接続される第一側辺側第二接続点とを連続的に結ぶように設けられ、
     前記第一側辺側第一接続点は、前記第一方向側に前記第一側辺側第二接続点よりも変位した位置に設けられているロータリ流体機械。
  2.  前記中間軸は、前記縦断面にて、前記第二方向側に位置する第二側辺を有し、
     該第二側辺は、前記第一クランクピンと接続される第二側辺側第一接続点と、前記第二クランクピンと接続される第二側辺側第二接続点とを連続的に結ぶように設けられ、
     前記第二側辺側第二接続点は、前記第二方向側に前記第二側辺側第一接続点よりも変位した位置に設けられている請求項1に記載のロータリ流体機械。
  3.  前記縦断面にて、前記第二方向側に位置する前記中間軸の第二側辺は、前記第二方向側に前記第一接続点よりも変位した位置にある前記第二接続点を起点として前記第二クランク軸部の軸線に対して略平行に延在する請求項1に記載のロータリ流体機械。
  4.  前記縦断面にて、前記クランク軸の軸線に直交する方向における前記中間軸の前記両側辺間の最大距離が、前記セパレータプレートの前記孔部の径と略等しい請求項1から3のいずれかに記載のロータリ流体機械。
  5.  前記中間軸は、鋳造による成形後の表面を有する請求項1から4のいずれかに記載のロータリ流体機械。
  6.  請求項1から5のいずれかに記載されたロータリ流体機械の組立方法において、
     前記セパレータプレートの前記孔部内に、前記第一クランク軸部又は第二クランク軸部から前記第一クランクピン又は第二クランクピンと前記中間軸が接する面まで前記クランク軸と前記セパレータプレートとを相対的に移動させて挿入する軸部挿入工程と、
     前記クランク軸と前記セパレータプレートとを相対的に傾斜させて、前記第一側辺に沿って前記中間軸と前記セパレータプレートとを前記第一側辺に沿わせながら相対的に前記孔部内に挿入する中間軸挿入工程と、
     前記クランク軸と前記セパレータプレートとの相対的な傾斜を解除して、前記セパレータプレートの前記孔部内に前記中間軸を位置させる中間軸位置決め工程と、
    を有するロータリ流体機械の組立方法。
     
     
PCT/JP2013/065292 2012-07-31 2013-05-31 ロータリ流体機械及びその組立方法 WO2014020983A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13824733.3A EP2881588B1 (en) 2012-07-31 2013-05-31 Rotary fluid machine and method for assembling same
CN201380022823.8A CN104302924B (zh) 2012-07-31 2013-05-31 旋转式流体机械及其组装方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012169931A JP6076643B2 (ja) 2012-07-31 2012-07-31 ロータリ流体機械及びその組立方法
JP2012-169931 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014020983A1 true WO2014020983A1 (ja) 2014-02-06

Family

ID=50027674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065292 WO2014020983A1 (ja) 2012-07-31 2013-05-31 ロータリ流体機械及びその組立方法

Country Status (4)

Country Link
EP (1) EP2881588B1 (ja)
JP (1) JP6076643B2 (ja)
CN (1) CN104302924B (ja)
WO (1) WO2014020983A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017281A1 (ja) * 2014-08-01 2016-02-04 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
JP6643712B2 (ja) * 2016-02-26 2020-02-12 パナソニックIpマネジメント株式会社 2シリンダ型密閉圧縮機
CN106246551B (zh) * 2016-09-18 2018-04-13 珠海格力节能环保制冷技术研究中心有限公司 曲轴、泵体组件和压缩机
JP6350843B1 (ja) * 2017-10-18 2018-07-04 三菱重工サーマルシステムズ株式会社 ロータリ圧縮機の回転軸、及び、ロータリ圧縮機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138979A (ja) * 2000-10-30 2002-05-17 Hitachi Ltd 複数シリンダロータリ圧縮機
JP2004100608A (ja) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc 圧縮機
JP3723408B2 (ja) 1999-08-31 2005-12-07 三洋電機株式会社 2シリンダ型2段圧縮ロータリーコンプレッサ
WO2009028633A1 (ja) * 2007-08-28 2009-03-05 Toshiba Carrier Corporation 多気筒回転式圧縮機及び冷凍サイクル装置
JP2010101169A (ja) * 2008-10-21 2010-05-06 Mitsubishi Electric Corp 2気筒回転圧縮機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548887Y2 (ja) * 1976-11-19 1980-11-14
KR100432115B1 (ko) * 2000-10-30 2004-05-17 가부시키가이샤 히타치세이사쿠쇼 복수 실린더 로터리 압축기
JP2003328972A (ja) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc 密閉形2シリンダロータリ圧縮機及びその製造方法
JP2004124834A (ja) * 2002-10-03 2004-04-22 Mitsubishi Electric Corp 密閉型ロータリ圧縮機
CN2813935Y (zh) * 2005-08-26 2006-09-06 西安庆安制冷设备股份有限公司 一种高刚性双气缸转子式压缩机的曲轴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723408B2 (ja) 1999-08-31 2005-12-07 三洋電機株式会社 2シリンダ型2段圧縮ロータリーコンプレッサ
JP2002138979A (ja) * 2000-10-30 2002-05-17 Hitachi Ltd 複数シリンダロータリ圧縮機
JP4065654B2 (ja) 2000-10-30 2008-03-26 日立アプライアンス株式会社 複数シリンダロータリ圧縮機
JP2004100608A (ja) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc 圧縮機
WO2009028633A1 (ja) * 2007-08-28 2009-03-05 Toshiba Carrier Corporation 多気筒回転式圧縮機及び冷凍サイクル装置
JP2010101169A (ja) * 2008-10-21 2010-05-06 Mitsubishi Electric Corp 2気筒回転圧縮機

Also Published As

Publication number Publication date
JP6076643B2 (ja) 2017-02-08
EP2881588B1 (en) 2019-04-03
JP2014029135A (ja) 2014-02-13
CN104302924B (zh) 2017-08-08
EP2881588A1 (en) 2015-06-10
EP2881588A4 (en) 2016-03-30
CN104302924A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5117503B2 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
KR101375979B1 (ko) 회전 압축기
AU2005261267B2 (en) Rotary fluid machine
US9157437B2 (en) Rotary compressor with oiling mechanism
WO2014020983A1 (ja) ロータリ流体機械及びその組立方法
KR100497924B1 (ko) 밀폐형 로터리 압축기
US7641454B2 (en) Two-stage rotary compressor
JP2005188492A (ja) 水平対向型圧縮機
JP5606422B2 (ja) 回転圧縮機
US7857602B2 (en) Muffler installation structure for compressor
JP4051121B2 (ja) 密閉形圧縮機
JP5561421B1 (ja) ロータリ圧縮機
EP3141754A1 (en) Rotary compressor and method for manufacturing the same
JP4659427B2 (ja) ローリングピストン型圧縮機
EP2685106A2 (en) Two-stage compressor and two-stage compression system
WO2013015215A1 (ja) 流体機械
KR20090103578A (ko) 왕복동식 압축기
KR102538615B1 (ko) 전동압축기의 회전자 조립구조
JP2009115067A (ja) 2段圧縮ロータリー圧縮機
JP2009074464A (ja) 圧縮機
JP2017082841A (ja) 軸受構造、及びスクロール型圧縮機
JP5068359B2 (ja) ローリングピストン型圧縮機
JP2012127200A (ja) 圧縮機
KR20060028615A (ko) 기어 압축기의 축 결합구조
JP2016217225A (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013824733

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE