JP2016217225A - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
JP2016217225A
JP2016217225A JP2015101941A JP2015101941A JP2016217225A JP 2016217225 A JP2016217225 A JP 2016217225A JP 2015101941 A JP2015101941 A JP 2015101941A JP 2015101941 A JP2015101941 A JP 2015101941A JP 2016217225 A JP2016217225 A JP 2016217225A
Authority
JP
Japan
Prior art keywords
cylinder
discharge
hole
head
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015101941A
Other languages
English (en)
Inventor
東 洋文
Hirofumi Azuma
洋文 東
ちひろ 遠藤
Chihiro Endo
ちひろ 遠藤
増田 正典
Masanori Masuda
正典 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2015101941A priority Critical patent/JP2016217225A/ja
Publication of JP2016217225A publication Critical patent/JP2016217225A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】本発明の目的は、信頼性の低下を抑制することができる圧縮機を提供することである。
【解決手段】ロータリ圧縮機101は、ケーシング10と圧縮機構15とを備える。圧縮機構15は、リアシリンダ44と、リアヘッド43と、リアピストン45と、リアブッシュ収容孔44dとを備える。リアシリンダ44は、リアシリンダ孔44aを有する。リアヘッド43は、リアシリンダ孔44aと連通するリア吐出ポート43bを有する。リアピストン45は、リアローラ45aとリアブレード45bとを有する。リアシリンダ44は、回転軸17gを中心に公転するリアローラ45aによってリアシリンダ孔44aで圧縮されリア吐出ポート43bから吐出された冷媒の少なくとも一部が通過するリアシリンダ連通孔44hを有する。リアシリンダ連通孔44hは、圧縮機構15を回転軸17gに沿って見た場合に、リア吐出ポート43bの近傍に形成されている。
【選択図】図8

Description

本発明は、圧縮機に関する。
従来、冷凍装置等に用いられる圧縮機として、特許文献1(特開平10−47278号公報)に開示されているような揺動式圧縮機が用いられている。揺動式圧縮機は、シリンダ室で回転するピストンを有する圧縮機構を備えている。シリンダ室は、シリンダと一対のヘッドとによって囲まれた空間であり、冷媒が圧縮される空間である。ピストンは、円筒形状のローラと、ローラと一体的に形成されたブレードとを有する。シリンダに保持されているブレードが揺動しながらローラが公転することにより、シリンダ室の冷媒が圧縮される。
揺動式圧縮機では、シリンダ室で公転するローラは自転しない。そのため、シリンダおよびピストンの吸入側部位および吐出側部位は確定している。吸入側部位は、シリンダ室に吸入された直後の冷媒が接触する部位である。吐出側部位は、シリンダ室から吐出される直前の冷媒が接触する部位である。圧縮機の定常運転時では、シリンダの吸入側部位とピストンの吸入側部位との温度差、および、シリンダの吐出側部位とピストンの吐出側部位との温度差は小さい。そのため、ローラの公転中心軸方向における、シリンダとピストンとの寸法差が小さい。また、シリンダおよびピストンの吸入側部位が確定しているので、シリンダ室に吸入される冷媒の過熱が抑制される。そのため、揺動式圧縮機は、定常運転時において高い効率を維持することができる。
しかし、従来の揺動式圧縮機では、圧縮機の起動直後等、圧縮機構から吐出される冷媒の温度が急変する過渡運転時において、ピストンと比べて熱容量が大きいシリンダの吐出側部位の温度上昇が、ピストンの吐出側部位の温度上昇より遅れることがある。この場合、シリンダの吐出側部位とピストンの吐出側部位との温度差が大きくなる。ピストンの吐出側部位の温度は、シリンダの吐出側部位の温度より高いので、熱膨張によって、ピストンの吐出側部位の寸法は、シリンダの吐出側部位の寸法より大きくなる。その結果、ローラの公転中にピストンの端面がヘッドと接触して焼き付きが発生し、圧縮機の信頼性が低下するおそれがある。
本発明の目的は、信頼性の低下を抑制することができる圧縮機を提供することである。
本発明の第1観点に係る圧縮機は、ケーシングと、圧縮機構とを備える。圧縮機構は、ケーシングの内部に設置され、冷媒を圧縮する。圧縮機構は、シリンダと、ヘッドと、ピストンと、ブッシュ孔とを備える。シリンダは、円筒形状のシリンダ室を有する。ヘッドは、シリンダ室と連通する吐出孔を有する。ピストンは、シリンダ室に収納され、円筒形状のローラと、ローラと一体的に形成されたブレードとを有する。ブッシュ孔は、ブレードを揺動可能に保持する一対のブッシュが収納される。シリンダは、回転軸を中心に公転するローラによってシリンダ室で圧縮され吐出孔から吐出された冷媒の少なくとも一部が通過する第1吐出流路を有する。第1吐出流路は、圧縮機構を回転軸に沿って見た場合に、吐出孔の近傍に形成されている。
この圧縮機は、過渡運転時において、圧縮機構の吐出孔から吐出された直後の高温の冷媒をシリンダの第1吐出流路に流すことで、シリンダの吐出側部位を加熱して、シリンダの吐出側部位の温度とピストンの吐出側部位の温度との差を小さくする。従って、この圧縮機は、過渡運転時におけるピストンの端面の焼き付きの発生を抑制して、信頼性の低下を抑制することができる。
本発明の第2観点に係る圧縮機は、第1観点に係る圧縮機であって、圧縮機構を回転軸に沿って見た場合において、第1軸と第2軸とによって区画される4つの領域のうち、第1吐出流路は、吐出孔が含まれる領域に形成されている。第1軸は、シリンダ室の中心にある原点と、ブッシュ孔の中心とを結ぶ。第2軸は、第1軸と直交し原点を通過する。
この圧縮機を鉛直方向に沿って見た場合、シリンダの第1吐出流路は、圧縮機構の吐出孔の近傍に位置している。これにより、圧縮機構の吐出孔から吐出された直後の高温の冷媒は、シリンダの第1吐出流路に短時間で流入するので、この圧縮機は、シリンダの吐出側部位と冷媒との熱交換を促進することができる。
本発明の第3観点に係る圧縮機は、第1観点または第2観点に係る圧縮機であって、シリンダは、複数の第1吐出流路を有する。
この圧縮機は、複数の第1吐出流路を有するので、シリンダの吐出側部位と冷媒との熱交換を促進することができる。
本発明の第4観点に係る圧縮機は、第1観点乃至第3観点のいずれか1つに係る圧縮機であって、第1吐出流路は、回転軸に沿って見た場合に、円形である。
この圧縮機は、円柱形状の第1吐出流路を有している。円柱形状は、通路断面積と通路表面積との比が最大となる形状である。そのため、円柱形状の第1吐出流路を通過する冷媒は、シリンダの吐出側部位と効率的に熱交換される。従って、この圧縮機は、シリンダの吐出側部位と冷媒との熱交換を促進することができる。
本発明の第5観点に係る圧縮機は、第1観点乃至第4観点のいずれか1つに係る圧縮機であって、ヘッドは、吐出孔から吐出された冷媒の少なくとも一部が通過する第2吐出流路を有する。第2吐出流路は、第1吐出流路と連通する。
この圧縮機では、圧縮機構の吐出孔から吐出された直後の高温の冷媒は、ヘッドの第2吐出流路を通過して、シリンダの第1吐出流路に流入する。
本発明の第6観点に係る圧縮機は、第5観点に係る圧縮機であって、第2吐出流路は、回転軸に沿って見た場合に、第1吐出流路と異なる位置に形成されている。
この圧縮機では、第1吐出流路および第2吐出流路からなる通路において、冷媒の乱流が発生しやすいので、第1吐出流路における冷媒の滞留時間を長くすることができる。従って、この圧縮機は、シリンダの吐出側部位と冷媒との熱交換を促進することができる。
本発明の第7観点に係る圧縮機は、第5観点または第6観点に係る圧縮機であって、第2吐出流路は、回転軸に沿って見た場合に、第1吐出流路と異なる形状を有している。
この圧縮機では、第1吐出流路および第2吐出流路からなる通路において、冷媒の乱流が発生しやすいので、第1吐出流路における冷媒の滞留時間を長くすることができる。従って、この圧縮機は、シリンダの吐出側部位と冷媒との熱交換を促進することができる。
本発明の第8観点に係る圧縮機は、第1観点乃至第7観点のいずれか1つに係る圧縮機であって、シリンダに含まれ少なくともシリンダ室と接する部分の部材熱容量は、ピストンの部材熱容量より小さい。
この圧縮機は、シリンダの吐出側部位の熱容量を小さくすることで、シリンダの吐出側部位と冷媒との熱交換を促進することができる。
本発明に係る圧縮機は、信頼性の低下を抑制することができる。
第1実施形態に係るロータリ圧縮機の縦断面図である。 図1の線分II−IIにおける圧縮機構の断面図である。 フロントヘッドの平面図である。 ミドルプレートの平面図である。 図1の線分V−Vにおける圧縮機構の断面図である。 リアヘッドの平面図である。 図1に示される圧縮機構の縦断面図である。 リア吐出ポートとリアシリンダ連通孔との間の位置関係を説明するための図である。 第2実施形態に係るロータリ圧縮機の圧縮機構の縦断面図である。
―第1実施形態―
本発明の第1実施形態に係る圧縮機について、図面を参照しながら説明する。圧縮機は、空気調和装置等の冷凍装置に備えられる冷媒回路に取り付けられる。圧縮機は、冷媒回路を流れる冷媒ガスを圧縮する。
(1)ロータリ圧縮機の構成
図1は、本実施形態のロータリ圧縮機101の縦断面図である。ロータリ圧縮機101は、2シリンダタイプかつ揺動式のロータリ圧縮機である。ロータリ圧縮機101は、主として、ケーシング10と、圧縮機構15と、駆動モータ16と、クランクシャフト17と、2つの吸入管19と、吐出管20とを備える。ロータリ圧縮機101で圧縮される冷媒は、例えば、R410A、R22、R32および二酸化炭素である。次に、ロータリ圧縮機101の各構成要素について説明する。
(1−1)ケーシング
ケーシング10は、円筒形の胴部11と、ボウル形の頂部12と、ボウル形の底部13とから構成される。頂部12は、胴部11の上端部と気密状に連結されている。底部13は、胴部11の下端部と気密状に連結されている。
ケーシング10は、ケーシング10の内部空間および外部空間の圧力および温度の変化によって変形および破損が起こりにくい剛性部材で成形されている。ケーシング10は、胴部11の円筒形の軸方向が鉛直方向に沿うように設置されている。ケーシング10の内部空間の下部は、潤滑油が貯留される油貯留部10aである。潤滑油は、ケーシング10の内部空間に存在する摺動部の潤滑性を向上させるために用いられる冷凍機油である。
ケーシング10は、主として、圧縮機構15と、駆動モータ16と、クランクシャフト17とを収容している。圧縮機構15は、クランクシャフト17を介して駆動モータ16と連結されている。吸入管19および吐出管20は、ケーシング10を貫通するように、ケーシング10と気密状に連結されている。
(1−2)圧縮機構
圧縮機構15は、主として、フロントマフラ26と、フロントヘッド23と、フロントシリンダ24と、フロントピストン25と、ミドルプレート31と、リアシリンダ44と、リアピストン45と、リアヘッド43と、リアマフラ46とから構成される。フロントヘッド23、フロントシリンダ24、ミドルプレート31、リアシリンダ44およびリアヘッド43は、複数のボルトによって互いに締結されている。図面において、これらのボルトが通る孔は省略されている。
圧縮機構15は、低圧の冷媒ガスを吸引して圧縮し、高圧の冷媒ガスを吐出する。圧縮機構15の上方の空間は、圧縮機構15によって圧縮された冷媒が吐出される高圧空間S1である。圧縮機構15は、油貯留部10aに貯留されている潤滑油に浸かっている。潤滑油は、圧縮機構15の摺動部に供給される。次に、圧縮機構15の各構成要素について説明する。
(1−2−1)フロントシリンダ
フロントシリンダ24は、フロントヘッド23とミドルプレート31との間に挟まれている。フロントシリンダ24の上面は、フロントヘッド23の下面と接触している。フロントシリンダ24の下面は、ミドルプレート31の上面と接触している。
図2は、図1の高さ位置IIにおける圧縮機構15の断面図である。フロントシリンダ24は、フロントシリンダ孔24aと、フロント吸入孔24bと、フロント吐出路24cと、フロントブッシュ収容孔24dと、フロントブレード収容孔24eとを有している。
フロントシリンダ孔24aは、フロントシリンダ24の上面から下面に向かって、フロントシリンダ24を鉛直方向に貫通する円柱形の孔である。フロント吸入孔24bは、フロントシリンダ24の外周面から内周面に向かって、フロントシリンダ孔24aの径方向に沿ってフロントシリンダ24を貫通する孔である。フロント吐出路24cは、フロントシリンダ24の内周面の上端部に形成される切り欠き部である。フロントブッシュ収容孔24dは、フロントシリンダ24を鉛直方向に貫通する孔である。フロントブッシュ収容孔24dは、鉛直方向に沿って見た場合において、フロント吸入孔24bとフロント吐出路24cとの間に形成されている。フロントブレード収容孔24eは、フロントシリンダ24を鉛直方向に貫通する孔である。フロントブレード収容孔24eは、フロントブッシュ収容孔24dと連通している。
フロントシリンダ24は、3つのフロントシリンダ連通孔24hを有している。フロントシリンダ連通孔24hは、後述するマフラ空間連通路34の一部である。フロントシリンダ連通孔24hは、フロント吐出路24cの近傍に形成されている。
(1−2−2)フロントピストン
フロントピストン25は、フロントヘッド23とミドルプレート31との間に挟まれている。フロントピストン25の上面は、フロントヘッド23の下面と接触している。フロントピストン25の下面は、ミドルプレート31の上面と接触している。
フロントピストン25は、円筒形のフロントローラ25aと、板状のフロントブレード25bとから構成される。フロントブレード25bは、フロントローラ25aの径方向に沿って、フロントローラ25aから突出している。
フロントローラ25aは、フロントシリンダ24のフロントシリンダ孔24aに収容される。フロントローラ25aは、クランクシャフト17のフロント偏心軸部17aが嵌め込まれている。クランクシャフト17が回転すると、フロントローラ25aは、クランクシャフト17の回転軸17gを中心とする公転運動を行う。フロントローラ25aは、鉛直方向に沿って上から見た場合において、時計回りに公転する。
フロントブレード25bは、主として、フロントシリンダ24のフロントブッシュ収容孔24dおよびフロントブレード収容孔24eに収容される。クランクシャフト17が回転すると、フロントブレード25bは、フロントブッシュ22と摺動しながら往復運動を行う。
フロントブッシュ22は、一対の半円柱形の部材である。フロントブッシュ22は、フロントピストン25のフロントブレード25bを挟み込むようにして、フロントシリンダ24のフロントブッシュ収容孔24dに収容される。
圧縮機構15は、フロント圧縮室40を有している。フロント圧縮室40は、冷媒が供給される空間である。フロント圧縮室40は、フロントシリンダ24と、フロントピストン25と、フロントヘッド23と、ミドルプレート31とによって囲まれた空間である。フロント圧縮室40は、フロント吸入孔24bと連通するフロント吸入室40aと、フロント吐出路24cと連通するフロント吐出室40bとに区画されている。フロント吸入室40aおよびフロント吐出室40bの容積は、フロントピストン25の位置に応じて変化する。
(1−2−3)フロントヘッド
図3は、鉛直方向上方から見たフロントヘッド23の平面図である。フロントヘッド23は、フロントシリンダ24の上面と接触している。フロントヘッド23は、フロントシリンダ24のフロントシリンダ孔24aを覆っている。フロントヘッド23は、ケーシング10の内周面に固定されている。フロントヘッド23は、クランクシャフト17を支持するためのフロント軸受23aを有している。フロントヘッド23は、フロント吐出ポート23bを有している。フロント吐出ポート23bは、フロント吐出路24cおよび後述するフロントマフラ空間32と連通している。フロント吐出ポート23bは、フロント圧縮室40で圧縮された冷媒をフロントマフラ空間32に送るための流路である。
フロントヘッド23の上面には、フロント吐出弁23cが取り付けられている。フロント吐出弁23cは、フロント吐出ポート23bの開口に取り付けられる。フロント吐出弁23cは、フロントマフラ空間32からフロント圧縮室40への冷媒の逆流を防ぐ。フロント吐出弁23cの一端は、フロントヘッド23に固定されている。フロント吐出弁23cの他端は、フロント吐出ポート23bの圧力が上昇すると、フロントヘッド23から離れる。これにより、フロント圧縮室40は、フロント吐出ポート23bを介してフロントマフラ空間32と連通する。
フロントヘッド23は、3つのフロントヘッド連通孔23hを有している。フロントヘッド連通孔23hは、マフラ空間連通路34の一部である。フロントヘッド連通孔23hは、フロント吐出ポート23bの近傍に形成されている。
(1−2−4)フロントマフラ
フロントマフラ26は、フロントヘッド23の上面に固定されている。フロントマフラ26は、フロントヘッド23のフロント吐出ポート23bから冷媒が吐出される際に発生する騒音を低減するために取り付けられている。
フロントマフラ26は、フロントヘッド23と共にフロントマフラ空間32を形成する。フロントマフラ26は、フロントヘッド23のフロント軸受23aが貫通するフロント軸受貫通孔を有している。フロントマフラ26は、2つのフロントマフラ吐出孔26dを有している。フロントマフラ吐出孔26dは、フロント軸受貫通孔と接続されている。フロントマフラ吐出孔26dは、フロントマフラ空間32と高圧空間S1とを連通する。
(1−2−5)ミドルプレート
ミドルプレート31は、フロントシリンダ24とリアシリンダ44との間に挟まれている。ミドルプレート31の上面は、フロントシリンダ24の下面と接触している。ミドルプレート31の下面は、リアシリンダ44の上面と接触している。ミドルプレート31は、フロントシリンダ24のフロントシリンダ孔24a、および、リアシリンダ44のリアシリンダ孔44aを覆っている。
図4は、鉛直方向上方から見たミドルプレート31の平面図である。ミドルプレート31は、3つのミドルプレート貫通孔31hを有している。ミドルプレート貫通孔31hは、マフラ空間連通路34の一部である。
(1−2−6)リアシリンダ
リアシリンダ44は、ミドルプレート31とリアヘッド43との間に挟まれている。リアシリンダ44の上面は、ミドルプレート31の下面と接触している。リアシリンダ44の下面は、リアヘッド43の上面と接触している。
図5は、図1の高さ位置Vにおける圧縮機構15の断面図である。リアシリンダ44は、リアシリンダ孔44aと、リア吸入孔44bと、リア吐出路44cと、リアブッシュ収容孔44dと、リアブレード収容孔44eとを有している。
リアシリンダ44は、基本的に、フロントシリンダ24と同じ構成を有している。すなわち、リアシリンダ孔44a、リア吸入孔44b、リア吐出路44c、リアブッシュ収容孔44dおよびリアブレード収容孔44eは、それぞれ、フロントシリンダ孔24a、フロント吸入孔24b、フロント吐出路24c、フロントブッシュ収容孔24dおよびフロントブレード収容孔24eと同じ形状および同じ作用を有している。しかし、リア吐出路44cは、リアシリンダ44の内周面の下端部に形成される切り欠き部である。
リアシリンダ44は、3つのリアシリンダ連通孔44hを有している。リアシリンダ連通孔44hは、マフラ空間連通路34の一部である。リアシリンダ連通孔44hは、リア吐出路44cの近傍に形成されている。
(1−2−7)リアピストン
リアピストン45は、ミドルプレート31とリアヘッド43との間に挟まれている。リアピストン45の上面は、ミドルプレート31の下面と接触している。リアピストン45の下面は、リアヘッド43の上面と接触している。
リアピストン45は、円筒形のリアローラ45aと、板状のリアブレード45bとから構成される。リアブレード45bは、リアローラ45aの径方向に沿って、リアローラ45aから突出している。
リアローラ45aは、リアシリンダ44のリアシリンダ孔44aに収容される。リアローラ45aは、クランクシャフト17のリア偏心軸部17bが嵌め込まれている。鉛直方向に沿って見た場合において、リア偏心軸部17bは、クランクシャフト17の回転軸17gの周りにフロント偏心軸部17aを180°回転させた位置と同じ位置に設けられている。クランクシャフト17が回転すると、リアローラ45aは、クランクシャフト17の回転軸17gを中心とする公転運動を行う。リアローラ45aは、鉛直方向に沿って上から見た場合に、時計回りに公転する。
リアブレード45bは、主として、リアシリンダ44のリアブッシュ収容孔44dおよびリアブレード収容孔44eに収容される。クランクシャフト17が回転すると、リアブレード45bは、リアブッシュ42と摺動しながら往復運動を行う。
リアブッシュ42は、一対の略半円柱形の部材である。リアブッシュ42は、リアピストン45のリアブレード45bを挟み込むようにして、リアシリンダ44のリアブッシュ収容孔44dに収容される。
圧縮機構15は、リア圧縮室41を有している。リア圧縮室41は、冷媒が供給される空間である。リア圧縮室41は、リアシリンダ44と、リアピストン45と、リアヘッド43と、ミドルプレート31とによって囲まれた空間である。リア圧縮室41は、リア吸入孔44bと連通するリア吸入室41aと、リア吐出路44cと連通するリア吐出室41bとに区画されている。リア吸入室41aおよびリア吐出室41bの容積は、リアピストン45の位置に応じて変化する。
(1−2−8)リアヘッド
図6は、鉛直方向下方から見たリアヘッド43の平面図である。リアヘッド43は、リアシリンダ44の下面と接触している。リアヘッド43は、リアシリンダ44のリアシリンダ孔44aを覆っている。リアヘッド43は、クランクシャフト17を支持するためのリア軸受43aを有している。リアヘッド43は、リア吐出ポート43bを有している。リア吐出ポート43bは、リア吐出路44cおよび後述するリアマフラ空間33と連通している。リア吐出ポート43bは、リア圧縮室41で圧縮された冷媒をリアマフラ空間33に送るための流路である。
リアヘッド43の下面には、リア吐出弁43cが取り付けられている。リア吐出弁43cは、リア吐出ポート43bの開口に取り付けられる。リア吐出弁43cは、リアマフラ空間33からリア圧縮室41への冷媒の逆流を防ぐ。リア吐出弁43cの一端は、リアヘッド43に固定されている。リア吐出弁43cの他端は、リア吐出ポート43bの圧力が上昇すると、リアヘッド43から離れる。これにより、リア圧縮室41は、リア吐出ポート43bを介してリアマフラ空間33と連通する。
リアヘッド43は、外壁43dを有している。外壁43dは、リアヘッド43の外縁部に形成される環状の部分である。外壁43dの高さは、リア軸受43aの高さより短い。外壁43dは、複数のマフラ締結孔43eを有している。マフラ締結孔43eは、リアマフラ46をリアヘッド43に固定するボルトが通る孔である。外壁43dは、マフラ締結孔43eが形成されている部分において、リアヘッド43の中心43gに向かって突出している。リアヘッド43の中心43gは、クランクシャフト17の回転軸17gが通過するポイントである。
リアヘッド43は、3つのリアヘッド連通孔43hを有している。リアヘッド連通孔43hは、マフラ空間連通路34の一部である。リアヘッド連通孔43hは、リア吐出ポート43bの近傍に形成されている。リアヘッド連通孔43hは、マフラ底面43fに開口している。マフラ底面43fは、外壁43dとリア軸受43aとの間に位置するリアヘッド43の下面である。
圧縮機構15は、3つのマフラ空間連通路34を有している。マフラ空間連通路34は、フロントマフラ空間32とリアマフラ空間33とを連通する。図1に示されるように、マフラ空間連通路34は、フロントヘッド23、フロントシリンダ24、ミドルプレート31、リアシリンダ44およびリアヘッド43を貫通する。マフラ空間連通路34は、フロントヘッド連通孔23h、フロントシリンダ連通孔24h、ミドルプレート貫通孔31h、リアシリンダ連通孔44hおよびリアヘッド連通孔43hから構成される。
(1−2−9)リアマフラ
リアマフラ46は、リアヘッド43の外壁43dの下面にボルトによって固定されている。リアマフラ46は、板状の部材である。リアマフラ46は、リア吐出ポート43bから冷媒が吐出される際に発生する騒音を低減するために取り付けられている。
リアマフラ46は、リアヘッド43の下面を覆うことで、リアヘッド43と共にリアマフラ空間33を形成する。リアマフラ46は、リアヘッド43のリア軸受43aが貫通するリア軸受貫通孔を有している。
(1−3)駆動モータ
駆動モータ16は、圧縮機構15の上方に設置されるブラシレスDCモータである。駆動モータ16は、主として、ステータ51と、ロータ52とから構成される。ステータ51は、ケーシング10の胴部11の内周面に固定される円筒形の部材である。ロータ52は、ステータ51の内側に設置される円柱形の部材である。ステータ51とロータ52との間には、わずかな隙間が形成されている。
ステータ51は、ステータコア61と、一対のインシュレータ62とを有する。一対のインシュレータ62は、ステータコア61の鉛直方向の両端面に取り付けられる。ステータコア61は、円筒部と、複数のティースとを有する。ティースは、円筒部の内周面から径方向内側に向かって突出している。ステータコア61のティースは、一対のインシュレータ62と共に、導線が巻き付けられている。これにより、ステータコア61の各ティースには、コイル72aが形成されている。
ステータ51の外側面には、ステータ51の上端面から下端面に亘って複数のコアカットが形成されている。コアカットは、ステータ51の周方向に沿って、所定の間隔で形成されている溝である。コアカットは、胴部11とステータ51との間を鉛直方向に延びる通路を形成する。
ロータ52は、ロータコア52aと、複数の磁石52bとを有する。ロータコア52aは、鉛直方向に積層された複数の金属板から構成される。磁石52bは、ロータコア52aに埋め込まれている。磁石52bは、ロータコア52aの周方向に沿って、等間隔に配置されている。
ロータ52は、クランクシャフト17に連結されている。クランクシャフト17は、ロータ52を鉛直方向に貫通する。ロータ52は、クランクシャフト17を介して、圧縮機構15と接続されている。
(1−4)クランクシャフト
クランクシャフト17は、その軸方向が鉛直方向に沿うように配置されている。クランクシャフト17は、駆動モータ16のロータ52、および、圧縮機構15のフロントピストン25およびリアピストン45に連結されている。クランクシャフト17は、フロント偏心軸部17aおよびリア偏心軸部17bを有している。フロント偏心軸部17aは、フロントピストン25のフロントローラ25aと連結されている。リア偏心軸部17bは、リアピストン45のリアローラ45aと連結されている。
クランクシャフト17の上端部は、駆動モータ16のロータ52と連結されている。クランクシャフト17の下端部は、フロントヘッド23のフロント軸受部23a、および、リアヘッド43のリア軸受部43aによって支持されている。
(1−5)吸入管
吸入管19は、ケーシング10の胴部11を貫通する管である。ケーシング10の内部空間において、2つの吸入管19の端部は、それぞれ、フロントシリンダ24のフロント吸入孔24b、および、リアシリンダ44のリア吸入孔44bに嵌め込まれている。ケーシング10の外部空間において、吸入管19の端部は、冷媒回路に接続されている。吸入管19は、冷媒回路から圧縮機構15に冷媒を供給するための管である。
(1−6)吐出管
吐出管20は、ケーシング10の頂部12を貫通する管である。ケーシング10の内部空間において、吐出管20の端部は、駆動モータ16の上方の空間に位置している。ケーシング10の外部空間において、吐出管20の端部は、冷媒回路に接続されている。吐出管20は、圧縮機構15によって圧縮された冷媒を冷媒回路に供給するための管である。
(2)ロータリ圧縮機の動作
ロータリ圧縮機101の動作について説明する。駆動モータ16が始動すると、クランクシャフト17のフロント偏心軸部17aおよびリア偏心軸部17bは、クランクシャフト17の回転軸17gを中心に偏心回転する。
フロント偏心軸部17aに連結されているフロントピストン25は、フロントシリンダ孔24aにおいて回転軸17g周りに公転運動を行う。公転運動の間、フロントピストン25のフロントローラ25aの外周面は、フロントシリンダ24の内周面と接触している。公転運動の間、フロントピストン25のフロントブレード25bは、フロントブッシュ22に挟まれながら往復運動を行う。フロントブッシュ22は、フロントシリンダ24およびフロントブレード25bと摺動しながら、フロントブッシュ収容孔24dで揺動する。
フロントローラ25aの公転運動により、フロント吸入孔24bと連通するフロント吸入室40aの容積は、徐々に増加する。これにより、吸入管19からフロント吸入孔24bを経由してフロント吸入室40aに低圧の冷媒が吸入される。フロントローラ25aの公転運動により、フロント吸入室40aは、フロント吐出路24cと連通するフロント吐出室40bとなり、フロント吐出室40bの容積が徐々に減少して、フロント吐出室40bは、フロント吸入室40aとなる。これにより、フロント吸入室40aに吸入された低圧の冷媒は、フロント吐出室40bで圧縮される。フロント吐出室40bで圧縮された高圧の冷媒は、フロント吐出路24cおよびフロント吐出ポート23bを経由して、フロントマフラ空間32に吐出される。フロントマフラ空間32には、圧縮された冷媒がフロント吐出ポート23bから周期的に吐出される。
一方、リア偏心軸部17bに連結されているリアピストン45は、リアシリンダ孔44aにおいて回転軸17g周りに公転運動を行う。公転運動の間、リアピストン45のリアローラ45aの外周面は、リアシリンダ44の内周面と接触している。公転運動の間、リアピストン45のリアブレード45bは、リアブッシュ42に挟まれながら往復運動を行う。リアブッシュ42は、リアシリンダ44およびリアブレード45bと摺動しながら、リアブッシュ収容孔44dで揺動する。
リアローラ45aの公転運動により、リア吸入孔44bと連通するリア吸入室41aの容積は、徐々に増加する。これにより、吸入管19からリア吸入孔44bを経由してリア吸入室41aに低圧の冷媒が吸入される。リアローラ45aの公転運動により、リア吸入室41aは、リア吐出路44cと連通するリア吐出室41bとなり、リア吐出室41bの容積が徐々に減少して、リア吐出室41bは、リア吸入室41aとなる。これにより、リア吸入室41aに吸入された低圧の冷媒は、リア吐出室41bで圧縮される。リア吐出室41bで圧縮された高圧の冷媒は、リア吐出路44cおよびリア吐出ポート43bを経由して、リアマフラ空間33に吐出される。リアマフラ空間33には、圧縮された冷媒がリア吐出ポート43bから周期的に吐出される。リアマフラ空間33に吐出された冷媒は、リアマフラ空間33を流れて、マフラ空間連通路34に流入する。その後、冷媒は、マフラ空間連通路34を通過して、フロントマフラ空間32に流入する。
フロント吐出ポート23bおよびマフラ空間連通路34からフロントマフラ空間32に流入した冷媒は、フロントマフラ26のフロントマフラ吐出孔26dを通過して、高圧空間S1に供給される。高圧空間S1に供給された冷媒は、上方に向かって流れて、吐出管20に流入する。
(3)ロータリ圧縮機の特徴
図7は、図1に示される圧縮機構15の縦断面図である。本実施形態のロータリ圧縮機101の圧縮機構15では、リアヘッド43のリア吐出ポート43bからリアマフラ空間33に吐出された冷媒は、マフラ空間連通路34を通過する。マフラ空間連通路34は、フロントヘッド連通孔23h、フロントシリンダ連通孔24h、ミドルプレート貫通孔31h、リアシリンダ連通孔44hおよびリアヘッド連通孔43hから構成される。これらの連通孔は、互いに連通している。各連通孔は、回転軸17gに沿って見た場合に円形状を有している。クランクシャフト17の回転軸17gに沿って見た場合、リアヘッド43のリア吐出ポート43bは、リアシリンダ44のリアシリンダ連通孔44hの近傍に位置している。次に、この「近傍」の定義について説明する。
図8は、図5と同様の圧縮機構15の断面図であって、リア吐出ポート43bとリアシリンダ連通孔44hとの間の位置関係を説明するための図である。図8には、参考として、リア吐出ポート43bおよびリア吐出弁43cの位置が点線で示されている。図8には、第1軸Xおよび第2軸Yが示されている。第1軸Xは、リアシリンダ44のリアシリンダ孔44aの中心にある原点Oと、リアブッシュ収容孔44dの中心とを結ぶ。原点Oは、クランクシャフト17の回転軸17gを通過する。リアブッシュ収容孔44dの中心は、回転軸17gに沿ってリアシリンダ44を見た場合に、リアシリンダ孔44aの周方向においてリアブッシュ収容孔44dが占める範囲の中心に相当するポイントである。第2軸Yは、水平面内において第1軸Xと直交し、原点Oを通過する。図8に示されるように、第1軸Xおよび第2軸Yによって区画される4つの領域R1,R2,R3,R4が定義される。図8では、リア吸入孔44bが属している領域R1から反時計回りに領域R2,R3,R4が設定されている。リア吐出ポート43bがリアシリンダ連通孔44hの近傍に位置している場合、リア吐出ポート43bおよびリアシリンダ連通孔44hは、共に、4つの領域R1〜R4のいずれか1つに属している。図8では、リア吐出ポート43bおよびリアシリンダ連通孔44hは、共に、領域R2に属している。
リアシリンダ44のリアシリンダ連通孔44hは、リアヘッド43のリアヘッド連通孔43hと連通しているので、リアヘッド連通孔43hは、リア吐出ポート43bの近傍に位置している。そのため、リア吐出ポート43bから吐出された直後の高温の冷媒は、短時間でリアヘッド連通孔43hに流入するので、リアヘッド連通孔43hと連通するリアシリンダ連通孔44hを通過する冷媒の温度を高くすることができる。これにより、ロータリ圧縮機101は、圧縮機構15から吐出された直後の高温の冷媒とリアシリンダ44との間の熱交換を効率的に行うことができ、過渡運転時において、リアシリンダ連通孔44hの周囲におけるリアシリンダ44の温度の上昇速度を大きくすることができる。過渡運転時は、ロータリ圧縮機101の起動直後等、圧縮機構15から吐出される冷媒の温度が急変する時間帯である。
リアシリンダ44において、リアシリンダ連通孔44hは、リア吐出路44cの近傍に位置している。リア吐出路44cの近傍は、リア圧縮室41から吐出される直前の高温の冷媒が接触する吐出側部位である。揺動式のロータリ圧縮機101では、リアピストン45のリアローラ45aは自転しないので、リアシリンダ44およびリアピストン45の吐出側部位は確定している。リアシリンダ44は、リアピストン45と比較して熱容量が大きい。そのため、従来の揺動式のロータリ圧縮機は、過渡運転時において、シリンダの吐出側部位の温度が、ピストンの吐出側部位の温度よりも上昇しにくいという問題を有している。この場合、ピストンの吐出側部位の温度上昇速度が、シリンダの吐出側部位の温度上昇速度より大きいため、熱膨張によって、ピストンの吐出側部位の寸法が、シリンダの吐出側部位の寸法より大きくなる。その結果、圧縮機の過渡運転時において、ピストンの端面がヘッダ等と接触して焼き付きが発生するおそれがある。
しかし、本実施形態のロータリ圧縮機101は、過渡運転時において、リアシリンダ連通孔44hの近傍に位置する、リアシリンダ44の吐出側部位の温度上昇速度を大きくすることができる。そのため、ロータリ圧縮機101は、過渡運転時において、リアピストン45の吐出側部位の温度と、リアシリンダ44の吐出側部位の温度との差を小さくすることができるので、リアピストン45の吐出側部位の回転軸17g方向の寸法と、リアシリンダ44の吐出側部位の回転軸17g方向の寸法との差も小さくすることができる。その結果、ロータリ圧縮機101は、リアローラ45aの公転中にリアピストン45の端面がリアヘッド43およびミドルプレート31と接触することによる焼き付きの発生を抑制することができる。
同様に、ロータリ圧縮機101では、圧縮機構15から吐出された直後の高温の冷媒は、フロントシリンダ24のフロントシリンダ連通孔24hを通過する。そのため、ロータリ圧縮機101は、過渡運転時において、フロントシリンダ連通孔24hの近傍に位置する、フロントシリンダ24の吐出側部位の温度上昇速度を大きくすることができる。そのため、ロータリ圧縮機101は、過渡運転時において、フロントピストン25の吐出側部位の回転軸17g方向の寸法と、フロントシリンダ24の吐出側部位の回転軸17g方向の寸法との差を小さくすることができる。その結果、ロータリ圧縮機101は、フロントローラ25aの公転中にフロントピストン25の端面がフロントヘッド23およびミドルプレート31と接触することによる焼き付きの発生を抑制することができる。
従って、ロータリ圧縮機101は、過渡運転時において、圧縮機構15から吐出された直後の高温の冷媒をマフラ空間連通路34に流すことで、フロントシリンダ24およびリアシリンダ44の吐出側部位の温度上昇速度を大きくして、フロントピストン25およびリアピストン45の端面の焼き付きの発生を抑制し、圧縮機の信頼性の低下を抑制することができる。
また、ロータリ圧縮機101では、図2および図5に示されるように、フロントシリンダ連通孔24hおよびリアシリンダ連通孔44hは円柱形状を有している。円柱形状は、通路断面積と通路表面積との比が最大となる形状である。そのため、円柱形状のリアシリンダ連通孔44hに高温の冷媒を流すことで、リアシリンダ44と高温の冷媒との熱交換を効率的に行うことができ、円柱形状のフロントシリンダ連通孔24hに高温の冷媒を流すことで、フロントシリンダ24と高温の冷媒との熱交換を効率的に行うことができる。従って、ロータリ圧縮機101は、過渡運転時において、フロントシリンダ24およびリアシリンダ44の吐出側部位の温度を効率的に上昇させて、圧縮機の信頼性の低下を抑制することができる。
また、ロータリ圧縮機101は、図2および図5に示されるように、3つのフロントシリンダ連通孔24h、および、3つのリアシリンダ連通孔44hを有している。リアシリンダ連通孔44hを複数設けることで、リアシリンダ連通孔44hを流れる冷媒と、リアシリンダ44との熱交換を効率的に行うことができ、フロントシリンダ連通孔24hを複数設けることで、フロントシリンダ連通孔24hを流れる冷媒と、フロントシリンダ24との熱交換を効率的に行うことができる。従って、ロータリ圧縮機101は、過渡運転時において、フロントシリンダ24およびリアシリンダ44の吐出側部位の温度を効率的に上昇させて、圧縮機の信頼性の低下を抑制することができる。
また、図7に示されるように、フロントシリンダ連通孔24hは、フロントヘッド連通孔23hおよびミドルプレート貫通孔31hと水平面内において異なる位置に形成されている。また、リアシリンダ連通孔44hは、ミドルプレート貫通孔31hおよびリアヘッド連通孔43hと水平面内において異なる位置に形成されている。すなわち、マフラ空間連通路34全体は、円柱形状を有しておらず、複数の円柱から構成される複雑な形状を有している。そのため、マフラ空間連通路34を通過する冷媒の流れは、乱流になりやすい。マフラ空間連通路34における冷媒の流れが乱流である場合、冷媒の流れが層流である場合に比べて、マフラ空間連通路34における冷媒の滞留時間がより長くなる傾向にある。マフラ空間連通路34における冷媒の滞留時間が長いほど、フロントシリンダ連通孔24hおよびリアシリンダ連通孔44hにおける冷媒の滞留時間が長くなる。そのため、ロータリ圧縮機101は、図7に示されるマフラ空間連通路34を有することで、フロントシリンダ24またはリアシリンダ44と、マフラ空間連通路34を流れる冷媒との熱交換を効率的に行うことができる。従って、ロータリ圧縮機101は、過渡運転時において、フロントシリンダ24およびリアシリンダ44の吐出側部位の温度を効率的に上昇させて、圧縮機の信頼性の低下を抑制することができる。
―第2実施形態―
本発明の第2実施形態に係る圧縮機について、図面を参照しながら説明する。
(1)ロータリ圧縮機の構成
本実施形態の圧縮機は、1シリンダタイプかつ揺動式のロータリ圧縮機である。このロータリ圧縮機は、第1実施形態の圧縮機構15と異なる圧縮機構115を備える。このロータリ圧縮機は、圧縮機構115を除いて、第1実施形態のロータリ圧縮機101と同じ構成要素を有する。以下において、第1実施形態と共通する構成要素には、必要に応じて、第1実施形態で用いられる参照符号と同じ参照符号が用いられる。また、以下において、本実施形態と第1実施形態との相違点を中心に説明する。
圧縮機構115は、第1実施形態の圧縮機構15から、ミドルプレート31、リアシリンダ44およびリアピストン45を取り除いた構成と実質的に同じ構成を有している。図9は、圧縮機構115の縦断面図である。
圧縮機構115は、主として、フロントマフラ126と、フロントヘッド123と、シリンダ124と、ピストン125と、リアヘッド143と、リアマフラ146とから構成される。フロントヘッド123、シリンダ124およびリアヘッド143は、複数のボルトによって互いに締結されている。フロントマフラ126、ピストン125およびリアマフラ146は、それぞれ、第1実施形態のフロントマフラ26、フロントピストン25およびリアマフラ46と同じである。
圧縮機構115は、3つのマフラ空間連通路134を有している。マフラ空間連通路134は、第1実施形態のマフラ空間連通路34と同じ機能を有する。また、圧縮機構115は、クランクシャフト117に接続されている。クランクシャフト117は、偏心軸部117aを有する。偏心軸部117aは、ピストン125に固定され、クランクシャフト117の回転軸117gを中心に偏心回転する。また、圧縮機構115は、1つの吸入管119が接続されている。吸入管119は、第1実施形態の吸入管19と同じである。
(1−1)フロントヘッド
フロントヘッド123は、第1実施形態のフロントヘッド23と基本的に同じ構成を有している。フロントヘッド123の下面は、シリンダ124の上面と接触している。フロントヘッド123の上面には、フロントマフラ126が固定されている。フロントヘッド123は、フロント吐出ポート123bを有している。フロントヘッド123の上面には、フロント吐出弁123cが取り付けられている。フロント吐出弁123cは、フロント吐出ポート123bの開口に取り付けられている。フロント吐出ポート123bは、フロントマフラ空間132と連通している。
フロントヘッド123は、3つのフロントヘッド連通孔123hを有している。フロントヘッド連通孔123hは、マフラ空間連通路134の一部である。フロントヘッド連通孔123hは、フロント吐出ポート123bの近傍に形成されている。
(1−2)シリンダ
シリンダ124は、第1実施形態のリアシリンダ44と基本的に同じ構成を有している。シリンダ124の上面は、フロントヘッド123の下面と接触している。シリンダ124の下面は、リアヘッド143の上面と接触している。
シリンダ124は、第1実施形態のリアシリンダ44と同様に、ピストン125を収容し、かつ、吸入管119が接続されている。シリンダ124およびピストン125は、冷媒が圧縮される圧縮室140を形成する。シリンダ124は、その内周面の上端部および下端部にそれぞれ形成される一対の切り欠き部を有する。この一対の切り欠き部は、第1実施形態のリア吐出路44cに相当し、それぞれ、フロント吐出ポート123b、および、後述するリア吐出ポート143bと連通している。
シリンダ124は、3つのシリンダ連通孔124hを有している。シリンダ連通孔124hは、マフラ空間連通路134の一部である。シリンダ連通孔124hは、シリンダ124の切り欠き部の近傍に形成されている。
(1−3)リアヘッド
リアヘッド143は、第1実施形態のリアヘッド43と基本的に同じ構成を有している。リアヘッド143の上面は、シリンダ124の下面と接触している。リアヘッド143の下面には、リアマフラ146が固定されている。リアヘッド143は、リア吐出ポート143bを有している。リアヘッド143の下面には、リア吐出弁143cが取り付けられている。リア吐出弁143cは、リア吐出ポート143bの開口に取り付けられている。リア吐出ポート143bは、リアマフラ空間133と連通している。
リアヘッド143は、3つのリアヘッド連通孔143hを有している。リアヘッド連通孔143hは、マフラ空間連通路134の一部である。リアヘッド連通孔143hは、リア吐出ポート143bの近傍に形成されている。
圧縮機構115は、3つのマフラ空間連通路134を有している。マフラ空間連通路134は、フロントマフラ空間132とリアマフラ空間133とを連通する。図9に示されるように、マフラ空間連通路134は、フロントヘッド123、シリンダ124およびリアヘッド143を貫通する。マフラ空間連通路134は、フロントヘッド連通孔123h、シリンダ連通孔124hおよびリアヘッド連通孔143hから構成される。
(2)ロータリ圧縮機の特徴
本実施形態の圧縮機構115を備えるロータリ圧縮機は、第1実施形態のロータリ圧縮機101と同じ作用効果を有する。圧縮機構115では、圧縮室140で圧縮された冷媒は、フロントヘッド123のフロント吐出ポート123bからフロントマフラ空間132に吐出され、または、リアヘッド143のリア吐出ポート143bからリアマフラ空間133に吐出される。リア吐出ポート143bからリアマフラ空間133に吐出された冷媒は、マフラ空間連通路134を通過して、フロントマフラ空間132に流入する。リアヘッド連通孔143hは、リア吐出ポート143bの近傍に位置している。そのため、リア吐出ポート143bから吐出された直後の高温の冷媒は、短時間でリアヘッド連通孔143hに流入するので、リアヘッド連通孔143hと連通するシリンダ連通孔124hを通過する冷媒の温度を高くすることができる。
これにより、このロータリ圧縮機は、圧縮機構115から吐出された直後の高温の冷媒とシリンダ124との間の熱交換を効率的に行うことができ、過渡運転時において、シリンダ連通孔124hの周囲におけるシリンダ124の温度の上昇速度を大きくすることができる。その結果、このロータリ圧縮機は、過渡運転時において、ピストン125の吐出側部位の温度と、シリンダ124の吐出側部位の温度との差を小さくすることができるので、ピストン125の吐出側部位の回転軸117g方向の寸法と、シリンダ124の吐出側部位の回転軸117g方向の寸法との差も小さくすることができる。従って、このロータリ圧縮機は、ピストン125の端面がフロントヘッド123およびリアヘッド143と接触することによる焼き付きの発生を抑制し、圧縮機の信頼性の低下を抑制することができる。
また、本実施形態のロータリ圧縮機は、3つの円柱形状のシリンダ連通孔124hを有している。また、図9に示されるように、シリンダ連通孔124hは、フロントヘッド連通孔123hおよびリアヘッド連通孔143hと水平面内において異なる位置に形成されている。そのため、このロータリ圧縮機は、第1実施形態のロータリ圧縮機101と同様に、過渡運転時において、シリンダ連通孔124hを流れる冷媒とシリンダ124との熱交換を効率的に行うことができるので、圧縮機の信頼性の低下を抑制することができる。
―変形例―
実施形態の具体的構成は、本発明の要旨を逸脱しない範囲内で変更可能である。以下、実施形態に適用可能な変形例について説明する。
(1)変形例A
第1実施形態では、圧縮機構15のマフラ空間連通路34全体は、複数の円柱から構成される複雑な形状を有している。そのため、マフラ空間連通路34を通過する冷媒の流れは、乱流になりやすい。具体的には、マフラ空間連通路34において、フロントシリンダ連通孔24hは、フロントヘッド連通孔23hおよびミドルプレート貫通孔31hと水平面内において異なる位置に形成され、リアシリンダ連通孔44hは、ミドルプレート貫通孔31hおよびリアヘッド連通孔43hと水平面内において異なる位置に形成されている。
しかし、マフラ空間連通路34を通過する冷媒の流れが乱流になりやすいのであれば、マフラ空間連通路34は、他の形状を有してもよい。一例として、マフラ空間連通路34を構成する各貫通孔の断面形状は、互いに異なっていてもよい。具体的には、フロントヘッド連通孔23h、ミドルプレート貫通孔31hおよびリアヘッド連通孔43hの断面形状が円形であり、かつ、フロントシリンダ連通孔24hおよびリアシリンダ連通孔44hの断面形状が楕円形であってもよい。また、他の例として、マフラ空間連通路34を構成する各貫通孔の断面形状は全て円形であり、かつ、鉛直方向に隣り合っている貫通孔の径が互いに異なっていてもよい。具体的には、フロントヘッド連通孔23h、ミドルプレート貫通孔31hおよびリアヘッド連通孔43hの断面形状の径より、フロントシリンダ連通孔24hおよびリアシリンダ連通孔44hの断面形状の径が大きくてもよい。
本変形例のロータリ圧縮機は、マフラ空間連通路34を通過する冷媒の流れが乱流になることで、フロントシリンダ連通孔24hおよびリアシリンダ連通孔44hにおける冷媒の滞留時間が長くなるので、過渡運転時において、フロントシリンダ24およびリアシリンダ44の吐出側部位と冷媒との熱交換が促進されて、圧縮機の信頼性の低下を抑制することができる。
本変形例は、第2実施形態のロータリ圧縮機にも適用可能である。
(2)変形例B
第1実施形態において、フロントシリンダ24の部材熱容量は、フロントピストン25の部材熱容量より小さくてもよい。これにより、ロータリ圧縮機101の過渡運転時において、フロントシリンダ24の吐出側部位の温度上昇速度が大きくなり、フロントシリンダ24の吐出側部位と冷媒との熱交換が促進される。同様に、リアシリンダ44の部材熱容量は、リアピストン45の部材熱容量より小さくてもよい。これにより、ロータリ圧縮機101の過渡運転時において、リアシリンダ44の吐出側部位の温度上昇速度が大きくなり、リアシリンダ44の吐出側部位と冷媒との熱交換が促進される。その結果、ロータリ圧縮機101の過渡運転時におけるフロントピストン25およびリアピストン45の端面の焼き付きの発生が抑制され、圧縮機の信頼性の低下が抑制される。
また、本変形例では、フロントシリンダ24の一部であって、フロントシリンダ孔24aと接する部分の部材熱容量が、フロントピストン25の部材熱容量より小さくてもよい。同様に、リアシリンダ44の一部であって、リアシリンダ孔44aと接する部分の部材熱容量が、リアピストン45の部材熱容量より小さくてもよい。
また、本変形例では、フロントシリンダ24の吐出側部位の部材熱容量が、フロントピストン25の部材熱容量より小さく、かつ、リアシリンダ44の吐出側部位の部材熱容量が、リアピストン45の部材熱容量より小さくてもよい。
本変形例は、第2実施形態のロータリ圧縮機にも適用可能である。
(3)変形例C
第1実施形態では、圧縮機構15は、3つのマフラ空間連通路34を有している。しかし、マフラ空間連通路34の数は、圧縮機構15の寸法、および、圧縮機構15から吐出される冷媒の流量等に応じて、適宜に設定されてもよい。同様に、第2実施形態において、圧縮機構115のマフラ空間連通路134の数は、適宜に設定されてもよい。
(4)変形例D
第2実施形態において、圧縮機構115は、フロント吐出ポート123bおよびリア吐出ポート143bを有している。しかし、圧縮機構115は、リア吐出ポート143bのみを有し、フロント吐出ポート123bを有していなくてもよい。この場合においても、圧縮機構115のリア吐出ポート143bから吐出された高温の冷媒がマフラ空間連通路134を通過することで、ピストン125の端面の焼き付きの発生が抑制され、圧縮機の信頼性の低下が抑制される。
本発明に係る圧縮機は、信頼性の低下を抑制することができる。
10 ケーシング
15 圧縮機構
17g 回転軸
42 リアブッシュ(ブッシュ)
43 リアヘッド(ヘッド)
43b リア吐出ポート(吐出孔)
43h リアヘッド連通孔(第2吐出流路)
44 リアシリンダ(シリンダ)
44a リアシリンダ孔(シリンダ室)
44d リアブッシュ収容孔(ブッシュ孔)
44h リアシリンダ連通孔(第1吐出流路)
45 リアピストン(ピストン)
45a リアローラ(ローラ)
45b リアブレード(ブレード)
101 ロータリ圧縮機(圧縮機)
特開平10−47278号公報

Claims (8)

  1. ケーシング(10)と、
    前記ケーシングの内部に設置され、冷媒を圧縮する圧縮機構(15)と、
    を備え、
    前記圧縮機構は、
    円筒形状のシリンダ室(44a)を有するシリンダ(44)と、
    前記シリンダ室と連通する吐出孔(43b)を有するヘッド(43)と、
    前記シリンダ室に収納され、円筒形状のローラ(45a)と、前記ローラと一体的に形成されたブレード(45b)とを有するピストン(45)と、
    前記ブレードを揺動可能に保持する一対のブッシュ(42)が収納されるブッシュ孔(44d)と、
    を備え、
    前記シリンダは、回転軸(17g)を中心に公転する前記ローラによって前記シリンダ室で圧縮され前記吐出孔から吐出された冷媒の少なくとも一部が通過する第1吐出流路(44h)を有し、
    前記第1吐出流路は、前記圧縮機構を前記回転軸に沿って見た場合に、前記吐出孔の近傍に形成されている、
    圧縮機(101)。
  2. 前記圧縮機構を前記回転軸に沿って見た場合において、
    前記シリンダ室の中心にある原点と、前記ブッシュ孔の中心とを結ぶ第1軸と、
    前記第1軸と直交し前記原点を通過する第2軸と、
    によって区画される4つの領域のうち、前記第1吐出流路は、前記吐出孔が含まれる前記領域に形成されている、
    請求項1に記載の圧縮機。
  3. 前記シリンダは、複数の前記第1吐出流路を有する、
    請求項1または2に記載の圧縮機。
  4. 前記第1吐出流路は、前記回転軸に沿って見た場合に、円形である、
    請求項1から3のいずれか1項に記載の圧縮機。
  5. 前記ヘッドは、前記吐出孔から吐出された冷媒の少なくとも一部が通過する第2吐出流路(43h)を有し、
    前記第2吐出流路は、前記第1吐出流路と連通する、
    請求項1から4のいずれか1項に記載の圧縮機。
  6. 前記第2吐出流路は、前記回転軸に沿って見た場合に、前記第1吐出流路と異なる位置に形成されている、
    請求項5に記載の圧縮機。
  7. 前記第2吐出流路は、前記回転軸に沿って見た場合に、前記第1吐出流路と異なる形状を有している、
    請求項5または6に記載の圧縮機。
  8. 前記シリンダに含まれ少なくとも前記シリンダ室と接する部分の部材熱容量は、前記ピストンの部材熱容量より小さい、
    請求項1から7のいずれか1項に記載の圧縮機。
JP2015101941A 2015-05-19 2015-05-19 圧縮機 Pending JP2016217225A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101941A JP2016217225A (ja) 2015-05-19 2015-05-19 圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101941A JP2016217225A (ja) 2015-05-19 2015-05-19 圧縮機

Publications (1)

Publication Number Publication Date
JP2016217225A true JP2016217225A (ja) 2016-12-22

Family

ID=57580581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101941A Pending JP2016217225A (ja) 2015-05-19 2015-05-19 圧縮機

Country Status (1)

Country Link
JP (1) JP2016217225A (ja)

Similar Documents

Publication Publication Date Title
JP5743019B1 (ja) 圧縮機
JP5441982B2 (ja) 回転圧縮機
EP2613053B1 (en) Rotary compressor with dual eccentric portion
US8926295B2 (en) Compressor
JP6548915B2 (ja) 圧縮機
JP2012149545A (ja) ロータリー式圧縮機
JP2016217225A (ja) 圧縮機
WO2016052325A1 (ja) 圧縮機
JP5622474B2 (ja) ロータリー式圧縮機
JP2003269335A (ja) 回転式圧縮機
JP6049270B2 (ja) ロータリー圧縮機
JP2008138591A5 (ja)
JP2008138591A (ja) 圧縮機
JP2020186660A (ja) ロータリ圧縮機
JP2008141805A (ja) 圧縮機
JP2018059434A (ja) 圧縮機
EP3147508A1 (en) Sealed-type electric compressor
JP2019035391A (ja) 圧縮機
KR20180126301A (ko) 로터리 압축기
JP5773922B2 (ja) スクロール圧縮機
JP2015113808A (ja) ロータリ圧縮機
JP2013130185A (ja) 気体圧縮機
JP5575000B2 (ja) 密閉型圧縮機
JP2009074464A (ja) 圧縮機
JP7004901B2 (ja) ロータリー圧縮機