WO2014020891A1 - 耐摩耗鋼板およびその製造方法 - Google Patents

耐摩耗鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014020891A1
WO2014020891A1 PCT/JP2013/004587 JP2013004587W WO2014020891A1 WO 2014020891 A1 WO2014020891 A1 WO 2014020891A1 JP 2013004587 W JP2013004587 W JP 2013004587W WO 2014020891 A1 WO2014020891 A1 WO 2014020891A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
wear
steel sheet
steel plate
Prior art date
Application number
PCT/JP2013/004587
Other languages
English (en)
French (fr)
Other versions
WO2014020891A8 (ja
Inventor
植田 圭治
進一 三浦
石川 信行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US14/412,541 priority Critical patent/US9738957B2/en
Priority to MX2015001232A priority patent/MX2015001232A/es
Priority to AU2013297928A priority patent/AU2013297928B2/en
Priority to CN201380039743.3A priority patent/CN104508166B/zh
Priority to EP13825109.5A priority patent/EP2881482B1/en
Publication of WO2014020891A1 publication Critical patent/WO2014020891A1/ja
Publication of WO2014020891A8 publication Critical patent/WO2014020891A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively

Definitions

  • the present invention is suitable for use in construction machinery, shipbuilding, steel pipes, civil engineering, construction, etc., and is a wear resistant steel sheet having a plate thickness of more than 30 mm and not more than 150 mm.
  • the present invention relates to a steel plate excellent in impact wear resistance when exposed and a method for producing the same.
  • the wear-resistant steel increases the hardness of the martensite structure itself by increasing the amount of dissolved C in order to improve the wear resistance by using a microstructure as a martensite single phase structure.
  • the low-temperature cracking sensitivity and toughness of the steel sheet are inferior. Therefore, wear-resistant steel with improved low temperature toughness and toughness has been developed.
  • Patent Document 1 relates to a thick, high hardness, high toughness wear-resistant steel and a method for producing the same, and 0.20 to 0.40% C-Si-Mn-low so that uniform high hardness and high toughness can be obtained in the thickness direction.
  • Re-harden steel with P-Nb-B composition and containing one or more of Cu, Ni, Cr, Mo, V, Ti, Ca and REM It is described that the martensite main structure is 6 or more in ASTM austenite grain size.
  • Patent Document 2 has a 0.15 to 0.30% C-Si-Mn-low P, S-Nb composition in order to ensure wear resistance and workability in a low temperature range, with respect to the wear-resistant steel sheet and its manufacturing method.
  • the composition satisfies the parameter formula consisting of one or more elements of Cu, Ni, Cr, Mo, V, Ti and B, and reduces the hardness difference between the steel sheet surface layer and the interior, and at -40 ° C Charpy It describes that the absorbed energy is 27 J or more.
  • Patent Document 3 relates to a wear-resistant steel sheet having excellent low-temperature toughness and a method for producing the same, having a 0.23-0.35% C—Si—Mn—low P, S—Nb—Ti—B composition, Cu, Ni, Steel having a composition satisfying the parameter formula consisting of one or more elements of Cr, Mo and V is re-heated and hardened, and the microstructure is a martensite-based structure with a particle size of 15 ⁇ m or less. It describes that Charpy absorbed energy at 20 ° C. is 27 J or more.
  • Patent Document 4 relates to a wear-resistant steel sheet having excellent low-temperature toughness and a method for producing the same, and has a composition of 0.23 to 0.35% C—Si—Mn—low P, S—Cr—Mo—Nb—Ti—B—REM system. Then, after rolling a steel having a composition satisfying the parameter formula consisting of one or more elements of Cu, Ni and V, and directly quenching, the microstructure is a martensitic main structure having a grain size of 25 ⁇ m or less, It describes that the wear resistance and Charpy absorbed energy at ⁇ 20 ° C. are 27 J or more.
  • impact wear resistance may be required.
  • Abrasion is a phenomenon in which a surface layer portion of steel material is scraped off by continuous contact between steel materials or different materials such as rocks in a working part such as a machine or an apparatus.
  • impact wear is an environment in which dissimilar materials of high hardness collide with high loads, such as when steel is used for the liner material of a ball mill, and the impact surface on the steel material side undergoes repeated plastic deformation.
  • the impact resistance of steel is inferior, it may not only cause failure of the machine and equipment, but also there is a risk that the strength of the structure cannot be maintained. Therefore, frequent repair and replacement of wear parts is inevitable. It is. For this reason, the request
  • part which wears in an impact environment is strong.
  • the impact-resistant wear characteristic is often required by a machine, an apparatus, etc., it is required to be provided at the surface layer portion and the cross-sectional portion of the steel plate.
  • Patent Document 1 does not consider the wear resistance performance in the case of receiving an impact load.
  • the central portion of the plate thickness has a reduced impact wear resistance due to the generation of a white layer having a high C martensite structure. There is concern about the occurrence of brittle fracture.
  • Patent Document 2 does not consider the wear resistance performance in the case of receiving an impact load, and has not yet improved the impact wear characteristics of the surface layer portion and the cross-section portion of the steel plate.
  • Patent Documents 3 and 4 also do not describe the wear resistance performance in the case of receiving an impact load.
  • a high-C martensite structure reduces the impact wear resistance and brittle fracture due to the formation of a white layer. It is inevitable to occur.
  • the impact wear characteristics are often required when used in machines, devices, and the like, and therefore are required to be provided in the surface layer portion and the cross-sectional portion of the steel sheet.
  • an object of the present invention is to provide a wear-resistant steel sheet having excellent impact wear characteristics at the surface layer and cross-section of the steel sheet and a method for producing the same.
  • the surface layer portion refers to a portion from the steel surface to a depth of 1 mm.
  • the inventors of the present invention have made it possible to obtain excellent impact-resistant wear characteristics in both the surface layer portion and the cross-sectional portion of the steel sheet, and to obtain excellent toughness as a steel sheet. As a result of earnest research on various factors that determine the manufacturing method and microstructure, the following findings were obtained.
  • the steel plate surface layer portion preferably has a 100% martensite structure, but a martensite structure having an area fraction of 90% or more is sufficient.
  • Other than martensite may include lower bainite, upper bainite, cementite, pearlite, ferrite, retained austenite, or carbides such as Mo, Ti, and Cr. If the area fraction is 10% or less and the Brinell hardness of the surface layer portion can ensure 450HBW10 / 3000 or more, sufficient impact wear resistance can be obtained.
  • the center portion of the plate thickness refers to a region of up to 0.5 mm in the front and back direction with respect to the 1/2 position of the plate thickness.
  • the present invention has been made by further studying the obtained knowledge. That is, the present invention 1. In mass%, C: 0.25 to 0.33%, Si: 0.1 to 1.0%, Mn: 0.40 to 1.3%, P: 0.010% or less, S: 0.004% or less, Al: 0.06% or less, and N: 0.007% or less Furthermore, Cu: 1.5% or less, Ni: 2.0% or less, Cr: 3.0% or less, Mo: 1.5% or less, W: 1.5% or less and B: 0.0030% or less , (1) DI * is 100 to 250, and the balance has a steel composition consisting of Fe and inevitable impurities, The surface layer portion corresponding to the part from the steel plate surface to a depth of 1 mm has martensite of 90% or more in area fraction, the Brinell hardness of the steel plate surface is 450HBW10 / 3000 or more, and is 1/2 of the plate thickness of the steel plate A wear-resistant steel sheet comprising lower bainite having an average crystal grain size of 25 ⁇ m or less with an area fraction of 70%
  • DI * 33.85 ⁇ (0.1 ⁇ C) 0.5 ⁇ (0.7 ⁇ Si + 1) ⁇ (3.33 ⁇ Mn + 1) ⁇ (0.35 ⁇ Cu + 1) ⁇ (0.36 ⁇ Ni + 1) ⁇ (2.16 ⁇ Cr + 1) ⁇ (3 ⁇ Mo + 1) ⁇ (1.75 ⁇ V + 1) ⁇ (1.5 ⁇ W + 1) (1)
  • Each element symbol is content (mass%)
  • the steel slab having the steel composition described in any one of 1 to 3 above is heated to 1000 ° C. to 1200 ° C., hot-rolled and air-cooled to room temperature, and then the obtained steel plate is heated to Ac 3 to 950 ° C.
  • a steel slab having the steel composition described in any one of 1 to 3 above is heated to 1000 ° C. to 1200 ° C., and hot-rolled in a temperature range of Ar 3 or higher, and the obtained steel sheet is converted to Ar 3 to 950.
  • a wear-resistant steel sheet having excellent impact wear resistance at the surface layer and the cross-section can be obtained, which greatly contributes to the improvement of manufacturing efficiency and safety at the time of steel structure production, and has a remarkable industrial effect. Play.
  • the component composition and the microstructure are defined.
  • “Ingredient composition] In the following description,% is mass%.
  • the content exceeds 0.33%, not only the weldability is deteriorated, but also when a shocking repeated load is applied, a white layer is likely to be formed, and the occurrence of wear and cracks due to peeling is promoted, resulting in resistance to damage. Impact wear characteristics deteriorate. For this reason, it is limited to the range of 0.25 to 0.33%.
  • the content is 0.26 to 0.31%.
  • Si acts as a deoxidizer and is not only necessary for steelmaking, but also has an effect of increasing the hardness of the steel sheet by solid solution and solid solution strengthening. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, if the content exceeds 1.0%, the weldability and toughness deteriorate significantly, so the content is limited to the range of 0.1 to 1.0%. Preferably, it is 0.2 to 0.8%.
  • Mn 0.40 to 1.3%
  • Mn has the effect of increasing the hardenability of the steel, and 0.40% or more is necessary to ensure the hardness of the base material.
  • Mn is contained exceeding 1.3%, not only the toughness, ductility and weldability of the base metal are deteriorated, but also the grain boundary segregation of P is promoted at the central segregation portion, and the occurrence of delayed fracture is promoted.
  • the amount of MnS generated in the central part of the plate thickness increases and becomes coarse, and when the cross section of the steel plate is exposed to a shocking wear environment, stress concentrates near the MnS and promotes the formation of a white layer. As a result, the impact wear resistance deteriorates. For this reason, it is limited to a range of 0.40 to 1.3%. Preferably, it is 0.50 to 1.2%.
  • P 0.010% or less
  • P When P is contained in excess of 0.010%, it segregates at the grain boundary, becomes the starting point of delayed fracture, and deteriorates toughness. For this reason, 0.010% is made the upper limit of the content, and it is desirable to reduce it as much as possible. In addition, excessive P reduction raises the refining cost and is economically disadvantageous, so it is desirable to make it 0.002% or more.
  • S 0.004% or less S not only deteriorates the low-temperature toughness and ductility of the base metal, but also increases as the amount of MnS generated in the center of the plate increases and the cross-section of the steel plate becomes a shocking wear environment. When exposed, stress concentrates in the vicinity of MnS, the formation of a white layer is promoted, and the impact wear resistance deteriorates. For this reason, it is desirable to reduce 0.004% as an upper limit.
  • Al acts as a deoxidizer and is most commonly used in the molten steel deoxidation process of steel sheets.
  • it has the effect of suppressing coarsening of crystal grains, and also has the effect of suppressing toughness degradation and delayed fracture due to reduction of solid solution N .
  • Al exceeds 0.06%, the amount of AlN and Al 2 O 3 generated in the central part of the plate thickness increases and becomes coarse, and the steel plate cross-section is exposed to a shocking wear environment. , Stress concentrates in the vicinity of AlN and Al 2 O 3 , the formation of a white layer is promoted, and the impact wear resistance deteriorates. For this reason, it is limited to 0.06% or less.
  • N 0.007% or less N is contained in steel as an unavoidable impurity. If it exceeds 0.007%, the amount of AlN generated in the center of the plate increases and becomes coarse, and the cross section of the steel plate is shocking. When exposed to a wear environment, stress concentrates in the vicinity of AlN, the formation of a white layer is promoted, and the impact wear resistance deteriorates. For this reason, it is limited to 0.007% or less.
  • Cu, Ni, Cr, Mo, W, and B are all elements that improve hardenability and contribute to improving the hardness of steel. , Depending on the desired strength.
  • the content is preferably 0.05% or more. However, if it exceeds 1.5%, hot brittleness is caused to deteriorate the surface properties of the steel sheet, so the content is made 1.5% or less.
  • Ni is added, the content is preferably 0.05% or more. However, if it exceeds 2.0%, the effect is saturated and economically disadvantageous, so the content is made 2.0% or less.
  • Cr is added, the content is preferably 0.05% or more.
  • the content is made 3.0% or less.
  • Mo is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.05% or more. However, if it exceeds 1.5%, the base material toughness, ductility and weld crack resistance are adversely affected.
  • W is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.05% or more. However, if it exceeds 1.5%, the base material toughness, ductility and weld crack resistance are adversely affected. .
  • the content is preferably 0.0003% or more. However, if it exceeds 0.0030%, the base material toughness, ductility and weld crack resistance are adversely affected. .
  • DI * 33.85 ⁇ (0.1 ⁇ C) 0.5 ⁇ (0.7 ⁇ Si + 1) ⁇ (3.33 ⁇ Mn + 1) ⁇ (0.35 ⁇ Cu + 1) ⁇ (0.36 ⁇ Ni + 1) ⁇ (2.16 ⁇ Cr + 1) ⁇ (3 ⁇ Mo + 1) ⁇ (1.75 ⁇ V + 1) ⁇ (1.5 ⁇ W + 1): 100-250 DI * is specified to have excellent wear resistance with 90% or more of the surface layer of the base material being martensite and the structure of the central part of the thickness being the lower bainite with an area fraction of 70% or more. , DI * value is 100-250.
  • the range is 100 to 250.
  • a range of 120 to 230 is preferable.
  • the above is the basic component composition of the present invention, with the balance being Fe and inevitable impurities.
  • Nb 0.005-0.025%
  • Nb is an element that precipitates as carbonitride, refines the microstructure, fixes solute N, and has the effect of improving toughness and suppressing the occurrence of delayed fracture.
  • a content of 0.005% or more is necessary.
  • the content exceeds 0.025%, coarse carbonitride precipitates, the formation of a white layer is promoted, and the impact wear resistance deteriorates. For this reason, it is limited to a range of 0.005 to 0.025%.
  • V 0.01 to 0.1%
  • V is an element that precipitates as carbonitride, refines the microstructure, fixes solute N, and has the effect of improving toughness and suppressing the occurrence of delayed fracture.
  • a content of 0.01% or more is necessary.
  • the content exceeds 0.1%, coarse carbonitride precipitates, promotes the formation of a white layer, and deteriorates the impact wear resistance. For this reason, it is limited to a range of 0.01 to 0.1%.
  • Ti has the effect of suppressing coarsening of crystal grains by fixing solid solution N to form TiN, and also has the effect of suppressing toughness deterioration and delayed fracture due to reduction of solid solution N. In order to obtain these effects, a content of 0.005% or more is necessary. On the other hand, if the content exceeds 0.03%, coarse carbonitride precipitates, the formation of a white layer is promoted, and the impact wear resistance deteriorates. For this reason, it is limited to a range of 0.005 to 0.03%.
  • REM, Ca, and Mg all contribute to the improvement of toughness, and are selected and added according to desired characteristics.
  • the content is preferably 0.002% or more, but the effect is saturated even if it exceeds 0.02%, so 0.02% is made the upper limit.
  • the content is preferably set to 0.0005% or more. However, if the content exceeds 0.005%, the effect is saturated, so 0.005% is made the upper limit.
  • the content is preferably 0.001% or more. However, if the content exceeds 0.005%, the effect is saturated, so 0.005% is made the upper limit.
  • the microstructure of the steel sheet in the central part of the sheet thickness which is a portion from the 1/2 position of the steel sheet thickness to 0.5 mm in the front and back direction
  • Lower bainite having an average crystal grain size of equivalent circle diameter of 25 ⁇ m or less has an area fraction of 70% or more.
  • the average crystal grain diameter exceeds 25 ⁇ m in terms of equivalent circle diameter, toughness is reduced and delayed fracture occurs.
  • martensite is included as a structure other than the lower bainite, the formation of a white layer is promoted through the presence of non-metallic inclusions and the like, and crack generation and impact wear resistance deteriorate.
  • the effect is negligible if it is less than%. Furthermore, when upper bainite, ferrite, pearlite, and the like are present, the hardness is lowered and the impact wear resistance is deteriorated. However, the effect is negligible if it is 20% or less.
  • the surface layer portion corresponding to a portion from the steel surface to a depth of 1 mm has a martensite structure with an area fraction of 90% or more from the viewpoint of impact resistance. Excellent impact wear resistance can be ensured by using a martensite structure of 90% or more and a steel sheet surface hardness of 450HBW10 / 3000 or more in terms of Brinell hardness.
  • the microstructure observation method will be described in detail in Examples.
  • the surface hardness of the steel plate is less than 450HBW10 / 3000 in Brinell hardness, the impact wear resistance is not sufficient and the life as a wear resistant steel is shortened. Therefore, the surface hardness is set to 450HBW10 / 3000 or more in terms of Brinell hardness.
  • the wear-resistant steel according to the present invention can be manufactured under the following manufacturing conditions.
  • the “° C.” display relating to the temperature means the temperature at the 1/2 position of the plate thickness.
  • the molten steel having the above composition is melted by a known melting method, and a steel material such as a slab having a predetermined size is obtained by, for example, a continuous casting method or an ingot-bundling rolling method.
  • the obtained steel material is cooled, immediately after casting, or once cooled and then reheated to 1000 to 1200 ° C., and then hot rolled to obtain a steel plate having a desired thickness. If the reheating temperature is less than 1000 ° C, the deformation resistance in hot rolling becomes high and the amount of reduction per pass cannot be made large, so the number of rolling passes increases and the rolling efficiency decreases, and the steel material
  • the casting defect in (slab) may not be crimped.
  • the reheating temperature of the steel material is set to a range of 1000 to 1200 ° C.
  • the reheated steel material is hot-rolled until the desired thickness is reached.
  • the hot rolling conditions are not particularly limited as long as the intended plate thickness and shape can be satisfied. However, in the case of an extremely thick steel plate having a plate thickness exceeding 70 mm, it is desirable to secure at least one or more rolling passes at which the rolling reduction per pass is 15% or more for zaku pressure bonding.
  • the rolling end temperature is preferably Ar 3 or higher.
  • the rolling resistance increases because the deformation resistance increases, the burden on the rolling mill increases, and in order to reduce the thick material to a rolling temperature of Ar 3 or less, It is necessary to wait in the middle of rolling, which greatly hinders productivity.
  • the holding time is not particularly specified, but if it exceeds 1 hr, the toughness of the base material deteriorates due to the coarsening of austenite grains, so that it is preferably within 1 hr. If soaking in the heat treatment furnace is good, holding for a short time may be possible.
  • the content value of each component of the steel material can be derived by using the relational expression defined by the element symbol (the element symbol represents the content (% by mass) of each element in the steel material).
  • the content value of each component of the steel material can be derived by using the relational expression defined by the element symbol (the element symbol represents the content (% by mass) of each element in the steel material).
  • Quenching may be performed by injecting a high-speed high-speed water stream onto the surface of the steel sheet, or by immersing the steel sheet in water.
  • the cooling rate at the 1/2 position of the plate thickness is about 20 ° C / s when the plate thickness is 35mm, about 10 ° C / s when the plate thickness is 50mm, and 3 ° C / second when the plate thickness is 70mm. It is about s.
  • the central part of the plate thickness can be made to have a structure in which the lower bainite has an area fraction of 70% or more.
  • the plate thickness is 30 mm or less, if quenching is performed by water cooling, the cooling rate becomes too high, and the central portion of the plate thickness cannot have a structure with the lower bainite having an area fraction of 70% or more.
  • the steel sheet after hot rolling and direct quenching may be further subjected to a reheating quenching process in which it is reheated to Ac 3 to 950 ° C.
  • the structure in the thick steel plate is further homogenized and refined, and the strength and toughness of the base material are improved.
  • a steel slab prepared with various components and compositions shown in Table 1 by the converter-ladle refining-continuous casting method was heated to 1000-1200 ° C under the conditions shown in Table 2, and then hot-rolled.
  • the steel sheet of the part was directly quenched (DQ) immediately after rolling.
  • DQ directly quenched
  • RQ quenched
  • RQ quenching
  • the obtained steel sheet was subjected to structure observation, surface hardness measurement, base material toughness, and impact wear test in the following manner.
  • Test specimens were collected from each steel plate, and the structure was observed with an optical microscope and a transmission electron microscope at a position corresponding to 1/2 of the thickness (t) in the thickness direction of the cross section parallel to the rolling direction.
  • Lower bainite fraction) and average grain size of prior austenite grains were determined. Since lower bainite transforms from austenite without long-distance diffusion, the grain size of lower bainite is the same as the prior austenite grain size. Further, lower bainite and martensite can be distinguished from each other by the difference in the precipitation form of cementite using an optical microscope, and more specifically using a transmission electron microscope.
  • the surface hardness measurement was based on JIS Z2243 (1998), and the surface hardness under the surface layer was measured.
  • a tungsten hard ball having a diameter of 10 mm was used, and the load was 3000 kgf.
  • V-notch test specimens were collected from the direction perpendicular to the rolling direction at 1/4 part of the thickness (t) of each steel sheet in accordance with the provisions of JIS Z 2202 (1998).
  • JIS Z 2242 (1998 The Charpy impact test at each temperature was conducted on each steel sheet in accordance with the provisions of (year), the absorbed energy at 0 ° C. was obtained, and the base material toughness was evaluated. The average value of the three absorbed energy (vE 0 ) was 30 J or more, and the base metal toughness was excellent.
  • test pieces of 10 mm ⁇ 25 mm ⁇ 75 mm were taken from 1/2 part of the plate thickness (t) of the steel plate surface and cross section as shown in FIG.
  • the test steel and SS400 test piece are fixed to the rotor of the impact wear test equipment shown in Fig. 2, and after sealing with 1500cm 3 of 100% SiO 2 silica (average particle size 30mm) in the drum, the rotor rotational speed is 600rpm.
  • the drum rotation speed was 45 rpm and the total rotor rotation speed was 10,000.
  • the surface of the test piece after the completion of the test was observed with a projector, and a specimen having no crack of 3 mm or longer was considered to have excellent cracking properties.
  • the present invention example has a surface hardness of 450 HBW 10/3000 or more, a base material toughness of 0 ° C. of 30 J or more, no cracking in the impact wear test, and a wear resistance ratio to SS400. It has 3.0 or more at the steel plate surface layer part and 2.5 or more at 1 / 2t cross section. On the other hand, it was confirmed that one or more of the surface hardness, the base metal toughness, the impact wear test, or a plurality of the comparative examples outside the scope of the present invention cannot satisfy the target performance.

Abstract

 建産機械、造船、鋼管、土木、建築等に供して好適な耐衝撃摩耗特性に優れる耐摩耗鋼板およびその製造方法を提供することを目的とする。 上記課題を鑑みて、本発明は、特定の鋼組成を有し、(1)式のDI*が100~250であり、表層部が面積分率で90%以上のマルテンサイトを有し、ブリネル硬度が450HBW10/3000以上であり、板厚の1/2位置から表裏方向にそれぞれ0.5mmまでの部位にあたる板厚中央部が面積分率で70%以上の下部ベイナイトを有することを特徴とする。 DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) ・・・(1) 各元素記号は含有量(mass%)

Description

耐摩耗鋼板およびその製造方法
 本発明は、建産機械、造船、鋼管、土木、建築等に供して好適な、板厚30mm超え、150mm以下の耐摩耗鋼板、特に、鋼板の表層部および断面部が衝撃的な摩耗環境に曝された場合の耐衝撃摩耗特性に優れる鋼板およびその製造方法に関する。
 耐摩耗鋼は、ミクロ組織をマルテンサイト単相組織として耐摩耗性を向上させるべく、固溶C量を増加してマルテンサイト組織自体の硬さを上昇させることが一般的である。ただし、その場合、鋼板の低温割れ感受性や靭性が劣ることとなる。そのため、低温靭性や靭性を向上させた耐摩耗鋼が開発されてきた。
 例えば、特許文献1には、厚手高硬度高靭性耐摩耗鋼とその製造方法に関し、板厚方向に均一な高硬度と高靭性が得られるように、0.20~0.40%C-Si-Mn-低P-Nb-B系組成を有し、Cu、Ni、Cr、Mo、V、Ti、Ca及びREMの一種又は二種以上を含有する鋼を再加熱焼入れし、板厚中央部のミクロ組織をASTMのオーステナイト粒度で6以上のマルテンサイト主体組織とすることが記載されている。
 特許文献2には、耐摩耗鋼板およびその製造方法に関し、耐摩耗性と低温域での作業性を確保するため、0.15~0.30%C-Si-Mn-低P、S-Nb系組成を有し、Cu、Ni、Cr、Mo、V、TiおよびBの一種または二種以上の元素からなるパラメータ式を満足する組成で、鋼板表層部と内部の硬度差を小さくすると共に-40℃におけるシャルピー吸収エネルギーを27J以上とすることが記載されている。
 特許文献3には、低温靭性に優れた耐摩耗鋼板およびその製造方法に関し、0.23~0.35%C-Si-Mn-低P、S-Nb-Ti-B系組成を有し、Cu、Ni、Cr、MoおよびVの一種又は二種以上の元素からなるパラメータ式を満足する組成を有する鋼を再加熱焼入れし、ミクロ組織を粒径が15μm以下のマルテンサイト主体組織とし、耐摩耗性と-20℃におけるシャルピー吸収エネルギーを27J以上とすることが記載されている。
 特許文献4には、低温靭性に優れた耐摩耗鋼板およびその製造方法に関し、0.23~0.35%C-Si-Mn-低P、S-Cr-Mo-Nb-Ti-B-REM系組成を有し、Cu、NiおよびVの一種又は二種以上の元素からなるパラメータ式を満足する組成を有する鋼を圧延後、直接焼入れし、ミクロ組織を粒径が25μm以下のマルテンサイト主体組織とし、耐摩耗性と-20℃におけるシャルピー吸収エネルギーを27J以上とすることが記載されている。
特許第3273404号公報 特許第4238832号公報 特許第4259145号公報 特許第4645307号公報
 ところで、建産機械、造船、鋼管、土木、建築等の鉄鋼構造物や機械、装置等に熱間圧延鋼板が用いられる際、耐衝撃摩耗特性が要求されることがある。磨耗とは、機械、装置等、稼動する部位において、鋼材同士、あるいは岩石など異種材料との継続的な接触により、鋼材の表層部が削り取られる現象である。一方、衝撃摩耗とは、例えば、ボールミルのライナー材に鋼材が用いられる場合のように、高い荷重で高硬度の異種材料が衝突するような環境となり、鋼材側の衝突面が、繰返しの塑性変形を受けて脆化した後、き裂の発生や連結と共に生じる摩耗現象のことであり、通常の摩耗よりも進展しやすいことが特徴である。
 また、C量の高いマルテンサイト組織を有する鋼材が、衝撃的な繰返し荷重を受けた場合には、白色層と呼ばれる極めて硬質で脆いミクロ組織が形成される。その結果、鋼材の白色層部分が脆性的に剥離して、十分な耐衝撃摩耗性が得られず、更に靭性が低い場合は、白色層を起点に脆性破壊が発生するおそれがある。
 鋼材の耐衝撃摩耗特性が劣ると、機械、装置の故障の原因となるだけでなく、構造物としての強度を維持できなくなる危険性があるため、高頻度での摩耗部位の補修、交換が不可避である。このため、衝撃的な環境で、摩耗する部位に適用される鋼材に対する耐衝撃摩耗特性の向上に対する要求は強い。なお、耐衝撃摩耗特性は機械、装置などで要求されることが多いことから、鋼板の表層部および断面部で備えていることが要求される。
 しかしながら、特許文献1には衝撃荷重を受ける場合の耐摩耗性能に関して考慮されておらず、特に、板厚中央部は高Cのマルテンサイト組織の白色層生成に起因した耐衝撃摩耗性の低下や脆性破壊の発生が懸念される。
 また、特許文献2にも、衝撃荷重を受ける場合の耐摩耗性能に関して考慮されておらず、鋼板の表層部および断面部の耐衝撃摩耗特性を改善するには至っていない。特許文献3、4も衝撃荷重を受ける場合の耐摩耗性能に関して記載されておらず、特に、板厚中央部では高Cのマルテンサイト組織で、白色層生成による耐衝撃摩耗性の低下や脆性破壊の発生が不可避である。なお、耐衝撃摩耗特性は、機械、装置等の中で使用される際に要求されることが多いことから、鋼板の表層部および断面部で備えていることが要求される。
 そこで、本発明は、鋼板の表層部および断面部の耐衝撃摩耗特性に優れる耐摩耗鋼板およびその製造方法を提供することを目的とする。ここで表層部とは鋼材表面から深さ1mmまでの部位をいう。
 本発明者らは、耐摩耗鋼板を対象に、鋼板の表層部および断面部のいずれにおいても優れた耐衝撃摩耗特性が得られ、且つ鋼板として優れた靭性が得られるように、鋼板の化学成分、製造方法およびミクロ組織を決定する各種要因に関して鋭意研究を行った結果、以下の知見を得た。
I.鋼板表層部が衝撃的な摩耗環境に曝された場合、優れた耐衝撃摩耗特性を確保するためには、表層部のブリネル硬度として450HBW10/3000以上を確保することが必要である。また、かかるブリネル硬度を得るためには、鋼板の化学組成とともに焼入れ性指数を厳格に管理することにより、焼入れ性を確保し、鋼板表層部をマルテンサイト組織とすることが重要である。鋼板表層部は100%マルテンサイト組織であることが好ましいが、面積分率で90%以上のマルテンサイト組織であれば十分である。マルテンサイト以外としては下部ベイナイトや上部ベイナイト、セメンタイト、パーライト、フェライト、残留オーステナイト、あるいは、Mo、Ti、Crなどの炭化物などが含まれる可能性があるが、これらのマルテンサイト以外の組織の合計が面積分率で10%以下であり、表層部のブリネル硬度が450HBW10/3000以上を確保することができれば、十分な耐衝撃摩耗特性が得られる。
II.鋼板断面部の耐衝撃摩耗特性を確保するには、特に板厚中央部での耐衝撃磨耗特性を改善することが重要である。板厚中央部では中心偏析によりC、Mn、P、Sなどの元素が濃化するため、硬度の高い高Cマルテンサイト組織となりやすい上、MnSなどの非金属介在物が生成しやすい。中心偏析や非金属介在物を低減するとともに、板厚中央部のミクロ組織を下部ベイナイト主体とすることにより板厚中央部での耐衝撃磨耗特性は向上する。これは、耐衝撃磨耗性を低下させる非金属介在物を介した白色層の生成が抑制されるためであり、これにより白色層の剥離、亀裂を起点とする割れの発生も防止される。ここで、板厚中央部とは、板厚の1/2位置を基準に表裏方向へそれぞれ0.5mmまでの領域のことをいう。
 本発明は、得られた知見に、さらに検討を加えてなされたものである。
 すなわち、本発明は、
1.mass%で、C:0.25~0.33%、Si:0.1~1.0%、Mn:0.40~1.3%、P:0.010%以下、S:0.004%以下、Al:0.06%以下およびN:0.007%以下を含有し、更に、Cu:1.5%以下、Ni:2.0%以下、Cr:3.0%以下、Mo:1.5%以下、W:1.5%以下およびB:0.0030%以下のうちの一種または二種以上を含有し、(1)式で示されるDI*が100~250であり、残部がFeおよび不可避的不純物からなる鋼組成を有し、
 鋼板表面から深さ1mmまでの部位にあたる表層部が面積分率で90%以上のマルテンサイトを有し、該鋼板表面のブリネル硬度が450HBW10/3000以上であり、該鋼板の板厚の1/2位置から表裏方向にそれぞれ0.5mmまでの部位にあたる板厚中央部が面積分率で70%以上の平均結晶粒径25μm以下である下部ベイナイトを有することを特徴とする、耐摩耗鋼板。
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) ・・・(1)
各元素記号は含有量(mass%)
2.前記鋼組成は、更にmass%で、Nb:0.005~0.025%、V:0.01~0.1%およびTi:0.005~0.03%のうちの一種または二種以上を含有することを特徴とする前記1に記載の耐衝撃摩耗特性に優れた耐摩耗鋼板。
3.前記鋼組成は、更にmass%で、REM:0.02%以下、Ca:0.005%以下、Mg:0.005%以下のうちの一種または二種以上を含有することを特徴とする前記1または2に記載の耐衝撃摩耗特性に優れた耐摩耗鋼板。
4.前記1ないし3のいずれかに記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、熱間圧延を行い、室温まで空冷し、その後、得られた鋼板をAc3~950℃に再加熱して焼入れを行うことを特徴とする耐摩耗鋼板の製造方法。
5.前記1ないし3のいずれかに記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、Ar3以上の温度域で熱間圧延を行った後、得られた鋼板をAr3~950℃の温度から焼入れを行うことを特徴とする耐摩耗鋼板の製造方法。
6.前記焼入れ後、更に前記鋼板をAc3~950℃に再加熱して焼入れを行うことを特徴とする前記5に記載の耐摩耗鋼板の製造方法。
 本発明によれば、表層部および断面部の耐衝撃摩耗特性に優れた耐摩耗鋼板が得られ、鋼構造物作製時の製造効率や安全性の向上に大きく寄与し、産業上格段の効果を奏する。
衝撃摩耗試験片の採取位置を説明するための図である。 衝撃摩耗試験機を説明するための図である。
 本発明では成分組成とミクロ組織を規定する。
[成分組成]
 以下の説明において%はmass%とする。
C:0.25~0.33%
 Cは、マルテンサイトの硬度を高め、また、焼入れ性を高めて板厚中央部において所定の組織として優れた耐摩耗性を確保するために重要な元素であり、その効果を得るため、0.25%以上の含有を必要とする。一方、0.33%を超えて含有すると溶接性が劣化するだけでなく、衝撃的な繰返し荷重を受けた場合には、白色層が生成しやすくなり、剥離による摩耗やき裂の発生が促進されて耐衝撃磨耗特性が劣化する。このため、0.25~0.33%の範囲に限定する。好ましくは、0.26~0.31%である。
Si:0.1~1.0%
 Siは、脱酸材として作用し、製鋼上、必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高硬度化する効果を有する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.0%を超えて含有すると、溶接性および靱性が顕著に劣化するため、0.1~1.0%の範囲に限定する。好ましくは、0.2~0.8%である。
Mn:0.40~1.3%
 Mnは、鋼の焼入れ性を増加させる効果を有し、母材の硬度を確保するために0.40%以上は必要である。一方、1.3%を超えてMnを含有すると、母材の靭性、延性および溶接性が劣化するだけでなく、中心偏析部でPの粒界偏析を助長し、遅れ破壊の発生を助長する。さらに、板厚中央部に生成するMnSの量が増加するとともに粗大になり、鋼板断面部が衝撃的な摩耗環境に曝された場合に、MnS近傍に応力が集中し、白色層の生成が促進され、耐衝撃摩耗性が劣化する。このため、0.40~1.3%の範囲に限定する。好ましくは、0.50~1.2%である。
P:0.010%以下
 Pを、0.010%を超えて含有すると、粒界に偏析し、遅れ破壊の発生起点になるとともに、靱性を劣化させる。このため、0.010%を含有量の上限とし、可能なかぎり低減することが望ましい。なお、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.002%以上とすることが望ましい。
S:0.004%以下
 Sは、母材の低温靭性や延性を劣化させるだけでなく、板厚中央部に生成するMnSの量が増加するとともに粗大になり、鋼板断面部が衝撃的な摩耗環境に曝された場合に、MnS近傍に応力が集中し、白色層の生成が促進され、耐衝撃摩耗性が劣化する。このため、0.004%を上限として低減することが望ましい。
Al:0.06%以下
 Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスにおいて、もっとも汎用的に使われる。また、鋼中の固溶Nを固定してAlNを形成することにより、結晶粒の粗大化を抑制する効果を有するとともに、固溶N低減による靱性劣化と遅れ破壊の発生を抑制する効果を有する。一方、0.06%を超えてAlを含有すると、板厚中央部に生成するAlNおよびAl2O3の量が増加するとともに粗大になり、鋼板断面部が衝撃的な摩耗環境に曝された場合に、AlNおよびAl2O3近傍に応力が集中し、白色層の生成が促進され、耐衝撃摩耗性が劣化する。このため、0.06%以下に限定する。
N:0.007%以下
 Nは不可避的不純物として鋼中に含まれ、0.007%を超えて含有すると、板厚中央部に生成するAlNの量が増加するとともに粗大になり、鋼板断面部が衝撃的な摩耗環境に曝された場合に、AlN近傍に応力が集中し、白色層の生成が促進され、耐衝撃摩耗性が劣化する。このため、0.007%以下に限定する。
Cu、Ni、Cr、Mo、WおよびBのうちの一種または二種以上
 Cu、Ni、Cr、Mo、WおよびBは、いずれも焼入れ性を向上し、鋼の硬度向上に寄与する元素であり、所望する強度に応じて適宜含有できる。
 Cuを添加する場合は、含有量を0.05%以上とすることが好ましいが、1.5%を超えると熱間脆性を生じて鋼板の表面性状を劣化させるため、1.5%以下とする。
 Niを添加する場合は、含有量を0.05%以上とすることが好ましいが、2.0%を超えると効果が飽和し、経済的に不利になるため、2.0%以下とする。
 Crを添加する場合は、0.05%以上とすることが好ましいが、3.0%を超えると靭性および溶接性が低下するため、3.0%以下とする。
 Moは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、含有量を0.05%以上とすることが好ましいが、1.5%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.5%以下とする。
 Wは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、含有量を0.05%以上とすることが好ましいが、1.5%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.5%以下とする。
 Bは、微量の添加で焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、含有量を0.0003%以上とすることが好ましいが、0.0030%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、0.0030%以下とする。
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1):100~250
 DI*は母材の表層部の90%以上をマルテンサイトとし、また板厚中央部の組織を面積分率で70%以上の下部ベイナイトとし、優れた耐摩耗性を有するために規定するもので、DI*の値を100~250とする。100未満の場合、板厚表層からの焼入れ深さが浅くなり、板厚中央部において所望のミクロ組織が得られず耐摩耗鋼としての寿命が短くなる。一方、250を超えると、靭性や遅れ破壊特性が顕著に劣化する。このため、100~250の範囲とする。好ましくは、120~230の範囲とする。
 以上が本発明の基本成分組成であり、残部をFe及び不可避的不純物とする。
 また、本発明では、更に特性を向上させるため、上記基本成分系に加えて、Nb、V、Ti、REM、CaおよびMgのうちの一種または二種以上を含有することができる。
Nb:0.005~0.025%
 Nbは、炭窒化物として析出し、ミクロ組織を微細化するとともに、固溶Nを固定して、靱性改善と、遅れ破壊の発生抑制の効果を兼備する元素である。このような効果を得るためには、0.005%以上の含有量が必要である。一方、0.025%を超えて含有すると、粗大な炭窒化物が析出し、白色層の生成が促進され、耐衝撃摩耗性が劣化する。このため、0.005~0.025%の範囲に限定する。
V:0.01~0.1%
 Vは、炭窒化物として析出し、ミクロ組織を微細化するとともに、固溶Nを固定して、靱性改善と、遅れ破壊の発生抑制の効果を兼備する元素である。このような効果を得るためには、0.01%以上の含有量が必要である。一方、0.1%を超えて含有すると、粗大な炭窒化物が析出し、白色層の生成が促進され、耐衝撃摩耗性が劣化する。このため、0.01~0.1%の範囲に限定する。
Ti:0.005~0.03%
 Tiは、固溶Nを固定してTiNを形成することにより、結晶粒の粗大化を抑制する効果を有するとともに、固溶N低減による靱性劣化と遅れ破壊の発生を抑制する効果を有する。これらの効果を得るためには、0.005%以上の含有量が必要である。一方、0.03%を超えて含有すると、粗大な炭窒化物が析出し、白色層の生成が促進され、耐衝撃摩耗性が劣化する。このため、0.005~0.03%の範囲に限定する。
 REM、CaおよびMgは、いずれも靭性向上に寄与し、所望する特性に応じて選択して添加する。
 REMを添加する場合は、含有量を0.002%以上とすることが好ましいが、0.02%を超えても効果が飽和するため、0.02%を上限とする。
 Caを添加する場合は、含有量を0.0005%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。
 Mgを添加する場合は、含有量を0.001%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。
[ミクロ組織]
 本発明では、断面部の耐衝撃摩耗特性を向上させるため、鋼板の板厚の1/2位置から表裏方向にそれぞれ0.5mmまでの部位である板厚中央部での鋼板のミクロ組織については、平均結晶粒径が円相当直径で25μm以下である下部ベイナイトを面積分率で70%以上有する。
 ここで、平均結晶粒径が円相当直径で25μmを超えると、靭性の低下や遅れ破壊の発生を招く。また、下部ベイナイト以外の組織としてマルテンサイトが含まれると、非金属介在物などの存在を介して、白色層の生成を助長し、き裂の発生や、耐衝撃摩耗性が劣化するが、10%以下であればその影響は無視できる。さらに、上部ベイナイト、フェライト、パーライトなどが存在する場合には、硬度が低下し、耐衝撃摩耗性が劣化するが、20%以下であればその影響は無視できる。
 また、前記鋼材表面から深さ1mmまでの部位にあたる表層部は、耐衝撃摩耗特性の観点からマルテンサイト組織を面積分率で90%以上有する。90%以上のマルテンサイト組織とし、鋼板の表面硬度をブリネル硬さで450HBW10/3000以上とすることで優れた耐衝撃摩耗特性を確保できる。なお、ミクロ組織の観察方法は実施例にて詳しく説明する。
[鋼板表層部の硬度]
 鋼板の表面硬度がブリネル硬さで450HBW10/3000未満の場合には、耐衝撃摩耗特性が十分でなく、耐摩耗鋼としての寿命が短くなる。そのため、表面硬度をブリネル硬さで450HBW10/3000以上とする。
[耐摩耗鋼板の製造方法]
 本発明に係る耐摩耗鋼は、以下の製造条件で製造することが可能である。
 説明において、温度に関する「℃」表示は、板厚の1/2位置における温度を意味するものとする。
 まず、上述した組成の溶鋼を、公知の溶製方法で溶製し、例えば、連続鋳造法あるいは造塊-分塊圧延法等によって、所定寸法のスラブ等の鋼素材を得る。
 得られた鋼素材は、冷却することなく鋳造直後に、または、一旦、冷却した後に1000~1200℃に再加熱し、その後、熱間圧延して所望の板厚の鋼板とする。再加熱温度が1000℃未満では、熱間圧延での変形抵抗が高くなり、1パス当たりの圧下量が大きく取れなくなることから、圧延パス数が増加し、圧延能率の低下を招くとともに、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合がある。一方、再加熱温度が1200℃を超えると、加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大する。このため、鋼素材の再加熱温度を1000~1200℃の範囲とする。
 再加熱された鋼素材は、目的の板厚になるまで、熱間圧延を施す。熱間圧延条件は、目的とした板厚および形状を満足できればよく、その条件は特に限定しない。ただし、板厚が70mmを超える極厚鋼板の場合には、ザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。圧延終了温度はAr3以上とすることが好ましい。
 圧延終了温度がAr3未満の場合、変形抵抗が高くなるため圧延荷重が増大し、圧延機への負担が大きくなることや、厚肉材をAr3以下の圧延温度まで低下させるためには、圧延途中で待機する必要があり、生産性を大きく阻害する。
 熱間圧延終了後、空冷し、再加熱焼入れ処理または、熱間圧延終了後、直ちに直接焼入れを行う。
 圧延終了後、再加熱焼入れ処理を行う場合は、Ac3~950℃に再加熱し、一定時間保持後、焼入れを行う。加熱温度が、950℃を超えると鋼板表面性状が劣化するとともに結晶粒が粗大化し、靭性および遅れ破壊特性が劣化する。
 保持時間は特に規定しないが、1hrを超えるとオーステナイト粒の粗大化により、母材の靭性が劣化するので1hr以内が望ましく、熱処理炉内の均熱が良ければ、短時間の保持でも良い。なお、Ac3(℃)は例えば、
Ac3=854-180C+44Si-14Mn-17.8Ni-1.7Cr
(元素記号は鋼材中の各元素の含有量(質量%)を表す)で定義される関係式を用いて鋼材の各成分の含有値を入力して導くことができる。
 圧延終了後、直接焼入れを行う場合は、Ar3以上の温度域で熱間圧延を行い、圧延終了後、Ar3~950℃から焼入れを行う。
 Ar3(℃)は例えば、
 Ar3=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
(元素記号は鋼材中の各元素の含有量(質量%)を表す)で定義される関係式を用いて鋼材の各成分の含有値を入力して導くことができる。
 焼入れは鋼板表面に高圧の高速水流を噴射して行なってもよいし、鋼板を水中に浸漬して行なってもよい。この場合の板厚1/2位置での冷却速度は板厚が35mmの場合、20℃/s程度、板厚50mmの場合には10℃/s程度、板厚70mmの場合には3℃/s程度である。この程度の冷却速度であれば板厚中央部を下部ベイナイトが面積分率で70%以上の組織とすることができる。なお、板厚が30mm以下の場合には水冷により焼入れを行なうと、冷却速度が大きくなりすぎ、板厚中央部を下部ベイナイトが面積分率で70%以上の組織とすることができなくなる。
 熱間圧延、直接焼入れ後の鋼板に、更に、Ac3~950℃に再加熱する再加熱焼入れ処理を施してもよい。厚鋼板内の組織が一層、均質化および微細化され、母材の強度や靭性が向上する。
 以下、実施例について説明する。
 転炉-取鍋精錬-連続鋳造法で、表1に示す種々の成分組成に調製した鋼スラブを、表2に示す条件で、1000~1200℃に加熱した後、熱間圧延を施し、一部の鋼板には圧延直後に直接焼入れ(DQ)をした。直接焼入れ(DQ)した一部の鋼板について、900℃に再加熱後焼入れ(RQ)を行った。また、熱間圧延、冷却後の一部の鋼板については、900℃に再加熱後焼入れ(RQ)を行った。
 得られた鋼板について、組織観察、表面硬度測定、母材靭性、衝撃摩耗試験を下記の要領で実施した。
 各鋼板から試験片を採取し、圧延方向と平行方向断面の板厚方向の板厚(t)の1/2にあたる位置で、光学顕微鏡および透過型電子顕微鏡により組織を観察し、組織分率(下部ベイナイト分率)および旧オーステナイト粒(旧γ粒)の平均粒径を求めた。下部ベイナイトは長距離拡散を伴わずにオーステナイトから変態するため、下部ベイナイトの粒径は旧オーステナイト粒径と同じである。また、下部ベイナイトとマルテンサイトは、大まかには光学顕微鏡を用いて、詳細には透過型電子顕微鏡を用いてセメンタイトの析出形態の差異により判別可能である。
 表面硬度測定は、JIS Z2243(1998)に準拠し、表層下の表面硬度を測定した。測定は直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。
 各鋼板の板厚(t)の1/4部の位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について各温度3本のシャルピー衝撃試験を実施し、0℃での吸収エネルギーを求め、母材靭性を評価した。3本の吸収エネルギー(vE0)の平均値が30J以上を母材靭性に優れるものとした。
 衝撃摩耗試験は、図1に示すように鋼板表面および鋼板断面の板厚(t)の1/2部から10mm×25mm×75mmの試験片を採取した。図2に示す衝撃摩耗試験装置のローターに供試鋼およびSS400の試験片を固定し、ドラム内に100%SiO2珪石(平均粒径30mm)を1500cm3入れて密閉後、ローター回転速度600rpm、ドラム回転速度45rpm、ローター総回転数10000回転行った。
 試験終了後の試験片の表面を投影機にて観察し、長さ3mm以上の割れがないものを、割れ性に優れるとした。さらに、試験前後での試験片重量の減少量を測定した。(SS400の試験片の重量減少量)/(対象材の試験片の重量減少量)を耐摩耗比とし、鋼板表層部で3.0以上、板厚(t)の1/2断面部で2.5以上を有しているものを耐衝撃摩耗特性に優れるものとした。
 得られた結果を表3に示す。
 表3から、本発明例は、表面硬度が450HBW10/3000以上を有し、0℃の母材靭性が30J以上を有し、かつ衝撃摩耗試験で割れが発生せず、SS400に対する耐摩耗比が鋼板表層部で3.0以上、1/2t断面部で2.5以上を有している。
 一方、本発明範囲外の比較例は、表面硬度、母材靭性、および衝撃摩耗試験のいずれか、あるいはその複数が目標性能を満足できないことが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 

Claims (6)

  1.  mass%で、C:0.25~0.33%、Si:0.1~1.0%、Mn:0.40~1.3%、P:0.010%以下、S:0.004%以下、Al:0.06%以下およびN:0.007%以下を含有し、更に、Cu:1.5%以下、Ni:2.0%以下、Cr:3.0%以下、Mo:1.5%以下、W:1.5%以下およびB:0.0030%以下のうちの一種または二種以上を含有し、(1)式で示されるDI*が100~250であり、残部がFeおよび不可避的不純物からなる鋼組成を有し、
     鋼板表面から深さ1mmまでの部位にあたる表層部が面積分率で90%以上のマルテンサイトを有し、該鋼板表面のブリネル硬度が450HBW10/3000以上であり、該鋼板の板厚の1/2位置から表裏方向にそれぞれ0.5mmまでの部位にあたる板厚中央部が面積分率で70%以上の平均結晶粒径25μm以下である下部ベイナイトを有することを特徴とする、耐摩耗鋼板。
    DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) ・・・(1)
    各元素記号は含有量(mass%)
  2.  前記鋼組成は、更にmass%で、Nb:0.005~0.025%、V:0.01~0.1%およびTi:0.005~0.03%のうちの一種または二種以上を含有することを特徴とする請求項1に記載の耐摩耗鋼板。
  3.  前記鋼組成は、更にmass%で、REM:0.02%以下、Ca:0.005%以下、Mg:0.005%以下のうちの一種または二種以上を含有することを特徴とする請求項1または2に記載の耐摩耗鋼板。
  4.  請求項1ないし3のいずれか一項に記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、熱間圧延を行い、室温まで空冷し、その後、得られた鋼板をAc3~950℃に再加熱して焼入れを行うことを特徴とする耐摩耗鋼板の製造方法。
  5.  請求項1ないし3のいずれか一項に記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、Ar3以上の温度域で熱間圧延を行った後、得られた鋼板をAr3~950℃の温度から焼入れを行うことを特徴とする耐摩耗鋼板の製造方法。
  6.  前記焼入れ後、更に前記鋼板をAc3~950℃に再加熱して焼入れを行うことを特徴とする請求項5に記載の耐摩耗鋼板の製造方法。
     
PCT/JP2013/004587 2012-07-30 2013-07-29 耐摩耗鋼板およびその製造方法 WO2014020891A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/412,541 US9738957B2 (en) 2012-07-30 2013-07-29 Wear resistant steel plate and manufacturing process therefor
MX2015001232A MX2015001232A (es) 2012-07-30 2013-07-29 Placa de acero resistente al desgaste y proceso de fabricacion para la misma.
AU2013297928A AU2013297928B2 (en) 2012-07-30 2013-07-29 Wear resistant steel plate and manufacturing process therefor
CN201380039743.3A CN104508166B (zh) 2012-07-30 2013-07-29 耐磨钢板及其制造方法
EP13825109.5A EP2881482B1 (en) 2012-07-30 2013-07-29 Wear resistant steel plate and manufacturing process therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012168396A JP5966730B2 (ja) 2012-07-30 2012-07-30 耐衝撃摩耗特性に優れた耐摩耗鋼板およびその製造方法
JP2012-168396 2012-07-30

Publications (2)

Publication Number Publication Date
WO2014020891A1 true WO2014020891A1 (ja) 2014-02-06
WO2014020891A8 WO2014020891A8 (ja) 2015-01-15

Family

ID=50027598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004587 WO2014020891A1 (ja) 2012-07-30 2013-07-29 耐摩耗鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US9738957B2 (ja)
EP (1) EP2881482B1 (ja)
JP (1) JP5966730B2 (ja)
CN (1) CN104508166B (ja)
AU (1) AU2013297928B2 (ja)
MX (1) MX2015001232A (ja)
WO (1) WO2014020891A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133171A (zh) * 2014-03-31 2016-11-16 杰富意钢铁株式会社 厚钢板及其制造方法
CN110760645A (zh) * 2019-11-18 2020-02-07 运城学院 一种耐磨钢板的热处理工艺

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235221B2 (ja) * 2013-03-28 2017-11-22 Jfeスチール株式会社 低温靭性および耐水素脆性を有する耐磨耗厚鋼板およびその製造方法
US9738334B2 (en) * 2013-05-07 2017-08-22 Arcelormittal Track shoe having increased service life useful in a track drive system
CN105200337A (zh) * 2014-06-23 2015-12-30 鞍钢股份有限公司 一种高强度耐磨钢板及其生产方法
CN104213041B (zh) * 2014-08-28 2016-08-17 南京赛达机械制造有限公司 汽轮机叶片用耐磨损钢及其生产工艺
JP6164193B2 (ja) * 2014-10-20 2017-07-19 Jfeスチール株式会社 曲げ加工性及び耐衝撃摩耗特性に優れた耐摩耗鋼板およびその製造方法
KR101696094B1 (ko) * 2015-08-21 2017-01-13 주식회사 포스코 고 경도 강판 및 그 제조방법
CN105200335A (zh) * 2015-11-07 2015-12-30 李白 风力发电机用风电齿轮
CN105316572A (zh) * 2015-11-25 2016-02-10 怀宁县明月矿山开发有限责任公司 一种矿山机械用耐磨钢板
JP6551224B2 (ja) * 2015-12-25 2019-07-31 日本製鉄株式会社 鋼管の製造方法
JP6597450B2 (ja) * 2016-03-29 2019-10-30 日本製鉄株式会社 耐摩耗鋼板及びその製造方法
BR112018070771B1 (pt) * 2016-04-19 2023-10-31 Jfe Steel Corporation Placa de aço resistente à abrasão e seu método de produção
BR112018068935B1 (pt) * 2016-04-19 2022-08-09 Jfe Steel Corporation Placa de aço resistente à abrasão e métodos para produzir placa de aço resistente à abrasão
AU2016403147B2 (en) * 2016-04-19 2019-09-19 Jfe Steel Corporation Abrasion-Resistant Steel Plate and Method of Producing Abrasion-Resistant Steel Plate
US11111556B2 (en) 2016-04-19 2021-09-07 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
CN105821316A (zh) * 2016-05-23 2016-08-03 安徽鑫宏机械有限公司 一种镍硼硅合金表面改性复合阀体的铸造方法
CN105886917A (zh) * 2016-05-23 2016-08-24 安徽鑫宏机械有限公司 一种高硬度耐冲刷复合截止阀阀体的铸造方法
CN106086637B (zh) * 2016-06-15 2018-03-13 宁波市鄞州海胜机械有限公司 一种耐磨轴
KR101974326B1 (ko) * 2016-09-15 2019-05-02 닛폰세이테츠 가부시키가이샤 내마모강
CN106756530A (zh) * 2016-11-17 2017-05-31 哈尔滨光霞金属材料有限公司 高强度耐磨钢及其在工程机械部件和农业机械部件的应用
CN106399843A (zh) * 2016-12-05 2017-02-15 郑州丽福爱生物技术有限公司 一种耐磨合金材料及其制备方法
WO2018168248A1 (ja) * 2017-03-13 2018-09-20 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
KR102009630B1 (ko) * 2017-06-21 2019-08-09 닛폰세이테츠 가부시키가이샤 강판
KR102031443B1 (ko) * 2017-12-22 2019-11-08 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
KR102031446B1 (ko) * 2017-12-22 2019-11-08 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
CN109280852A (zh) * 2018-11-12 2019-01-29 南京钢铁股份有限公司 一种大厚度nm500耐磨钢及生产方法
CN109385573B (zh) * 2018-11-19 2020-09-29 宁波金汇精密铸造有限公司 高速列车制动盘用合金铸钢材料及其制备方法
WO2020250009A1 (en) * 2019-06-12 2020-12-17 Arcelormittal A cold rolled martensitic steel and a method of martensitic steel thereof
CN112593157B (zh) * 2020-12-09 2021-09-17 暨南大学 一种高硬韧贝氏体耐磨铸钢及其制备方法和应用
KR102498142B1 (ko) * 2020-12-18 2023-02-08 주식회사 포스코 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR102498141B1 (ko) * 2020-12-18 2023-02-08 주식회사 포스코 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR102498144B1 (ko) * 2020-12-18 2023-02-08 주식회사 포스코 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법
KR20230024090A (ko) * 2021-08-11 2023-02-20 주식회사 포스코 저온인성이 우수한 고경도 방탄강 및 그 제조방법
CN114525379A (zh) * 2022-02-15 2022-05-24 南京钢铁股份有限公司 一种煤炭采运用高耐磨性用钢及其生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080930A (ja) * 2000-09-11 2002-03-22 Nkk Corp 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP3273404B2 (ja) 1995-10-24 2002-04-08 新日本製鐵株式会社 厚手高硬度高靱性耐摩耗鋼の製造方法
JP2004300474A (ja) * 2003-03-28 2004-10-28 Jfe Steel Kk 耐摩耗鋼およびその製造方法
JP4238832B2 (ja) 2000-12-27 2009-03-18 Jfeスチール株式会社 耐摩耗鋼板及びその製造方法
JP4259145B2 (ja) 2003-03-11 2009-04-30 Jfeスチール株式会社 低温靭性に優れた耐磨耗鋼板およびその製造方法
JP4645307B2 (ja) 2005-05-30 2011-03-09 Jfeスチール株式会社 低温靭性に優れた耐摩耗鋼およびその製造方法
JP2011214120A (ja) * 2010-04-02 2011-10-27 Jfe Steel Corp 低温焼戻脆化割れ性に優れた耐摩耗鋼板
JP2012031511A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 多層盛溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866820B2 (ja) * 2010-06-30 2016-02-24 Jfeスチール株式会社 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
MX348365B (es) * 2011-03-29 2017-06-08 Jfe Steel Corp Placa de acero o lamina de acero resistente a la abrasion excelente en resistencia al agrietamiento por corrosion y esfuerzo y metodo para la fabricacion de la misma.
CN102560272B (zh) * 2011-11-25 2014-01-22 宝山钢铁股份有限公司 一种超高强度耐磨钢板及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273404B2 (ja) 1995-10-24 2002-04-08 新日本製鐵株式会社 厚手高硬度高靱性耐摩耗鋼の製造方法
JP2002080930A (ja) * 2000-09-11 2002-03-22 Nkk Corp 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP4238832B2 (ja) 2000-12-27 2009-03-18 Jfeスチール株式会社 耐摩耗鋼板及びその製造方法
JP4259145B2 (ja) 2003-03-11 2009-04-30 Jfeスチール株式会社 低温靭性に優れた耐磨耗鋼板およびその製造方法
JP2004300474A (ja) * 2003-03-28 2004-10-28 Jfe Steel Kk 耐摩耗鋼およびその製造方法
JP4645307B2 (ja) 2005-05-30 2011-03-09 Jfeスチール株式会社 低温靭性に優れた耐摩耗鋼およびその製造方法
JP2011214120A (ja) * 2010-04-02 2011-10-27 Jfe Steel Corp 低温焼戻脆化割れ性に優れた耐摩耗鋼板
JP2012031511A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 多層盛溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2881482A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133171A (zh) * 2014-03-31 2016-11-16 杰富意钢铁株式会社 厚钢板及其制造方法
EP3128032A4 (en) * 2014-03-31 2017-02-08 JFE Steel Corporation Thick steel sheet and method for producing same
AU2015242070B2 (en) * 2014-03-31 2018-02-22 Jfe Steel Corporation Thick steel plate and method for manufacturing the same
CN110760645A (zh) * 2019-11-18 2020-02-07 运城学院 一种耐磨钢板的热处理工艺

Also Published As

Publication number Publication date
JP5966730B2 (ja) 2016-08-10
AU2013297928A1 (en) 2015-01-29
AU2013297928B2 (en) 2016-06-02
JP2014025130A (ja) 2014-02-06
WO2014020891A8 (ja) 2015-01-15
EP2881482B1 (en) 2019-07-24
US9738957B2 (en) 2017-08-22
MX2015001232A (es) 2015-04-10
EP2881482A1 (en) 2015-06-10
US20150184270A1 (en) 2015-07-02
CN104508166A (zh) 2015-04-08
EP2881482A4 (en) 2015-10-21
CN104508166B (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2014020891A1 (ja) 耐摩耗鋼板およびその製造方法
JP6721077B2 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
KR101699582B1 (ko) 내응력 부식 균열성이 우수한 내마모 강판 및 그 제조 방법
JP6102072B2 (ja) 耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法
JP5380892B2 (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
JP5145805B2 (ja) ガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP5145803B2 (ja) 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP5145804B2 (ja) 耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP5655356B2 (ja) 低温焼戻脆化割れ性に優れた耐摩耗鋼板
JP5186809B2 (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
WO2012002563A1 (ja) 溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板
JP5439973B2 (ja) 優れた生産性と溶接性を兼ね備えた、pwht後の落重特性に優れた高強度厚鋼板およびその製造方法
JP4899874B2 (ja) 加工性に優れた耐摩耗鋼板およびその製造方法
JP2012031510A (ja) 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
JP6135697B2 (ja) 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐摩耗鋼板およびその製造方法
JP2011179122A (ja) 低温靭性に優れた耐摩耗鋼板
JP2012122111A (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
JP5458624B2 (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
JP4645307B2 (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
JP6394378B2 (ja) 耐摩耗鋼板およびその製造方法
JP5348392B2 (ja) 耐磨耗鋼
JP5217191B2 (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
JP4645306B2 (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
JP2007262429A (ja) 曲げ加工性に優れた耐摩耗鋼板
JP2018131678A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14412541

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013825109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/001232

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013297928

Country of ref document: AU

Date of ref document: 20130729

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE