WO2014020790A1 - 実装方法 - Google Patents

実装方法 Download PDF

Info

Publication number
WO2014020790A1
WO2014020790A1 PCT/JP2013/001597 JP2013001597W WO2014020790A1 WO 2014020790 A1 WO2014020790 A1 WO 2014020790A1 JP 2013001597 W JP2013001597 W JP 2013001597W WO 2014020790 A1 WO2014020790 A1 WO 2014020790A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
substrate
chip
metal layer
chips
Prior art date
Application number
PCT/JP2013/001597
Other languages
English (en)
French (fr)
Inventor
孝典 明田
佐名川 佳治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014020790A1 publication Critical patent/WO2014020790A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/8301Cleaning the layer connector, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • H01L2224/83207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/8383Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83905Combinations of bonding methods provided for in at least two different groups from H01L2224/838 - H01L2224/83904
    • H01L2224/83907Intermediate bonding, i.e. intermediate bonding step for temporarily bonding the semiconductor or solid-state body, followed by at least a further bonding step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to a mounting method for mounting a plurality of chips on a substrate.
  • a mounting method for mounting a plurality of chips on a substrate is known (for example, Japanese Patent Publication No. 2009-130293).
  • the substrate mounting step of mounting the substrate on the surface side of the stage of the die bonding apparatus and the bonding surfaces of the chip and the substrate mounted on the surface side of the stage are brought into contact with each other.
  • the substrate is placed on the surface side of the stage in such a manner that a heat insulating layer is interposed between the region where the chip is to be bonded to the substrate and the stage.
  • an LED chip in which electrodes (not shown) are formed on both surfaces in the thickness direction is illustrated.
  • a chip-side bonding electrode composed of an electrode on the back surface side (side closer to the substrate) is formed of AuSn.
  • a substrate formed using a silicon wafer is illustrated as the substrate.
  • a die pad portion is formed as a substrate-side bonding electrode in each bonding planned region (mounting position) of each chip.
  • the die pad portion has a laminated structure of a Ti film and an Au film formed on the Ti film, and a portion on the surface side is formed of Au.
  • a predetermined process is repeated according to the number of LED chips mounted on the wafer.
  • the LED chip is adsorbed and held by the adsorption collet provided in the head of the die bonding apparatus, and the LED chip is heated to a prescribed bonding temperature via the adsorption collet by the head heater, and the chip side bonding electrode
  • the contact surfaces of the substrate side bonding electrode and the substrate side bonding electrode are brought into contact with each other, and an appropriate pressure is applied to the LED chip from the head side for a specified time to eutectically bond the chip side bonding electrode and the substrate side bonding electrode.
  • the prescribed bonding temperature is, for example, a temperature higher than the melting temperature of AuSn that is a material of the chip-side bonding electrode.
  • the appropriate pressure is, for example, 2 kg / cm 2 to 50 kg / cm 2 .
  • the specified time is, for example, about 10 seconds.
  • the chip needs to be recognized with high accuracy by the recognition device of the die bonding apparatus before the chip is sucked by the suction collet. Furthermore, in the mounting method described in the above document, the bonding area on the substrate on the surface side of the stage is highly accurately detected by the recognition device before the contact surfaces of the chip-side bonding electrode and the substrate-side bonding electrode are brought into contact with each other. It is assumed that it is necessary to align the chip and the substrate. Further, in the bonding step of the mounting method described in the above document, it is necessary to repeat the above predetermined process according to the number of LED chips mounted on the wafer.
  • the recognition device is generally configured by a camera, an image processing unit, and a monitor.
  • an object of the present invention is to provide a mounting method capable of shortening tact time.
  • the mounting method of the present invention is a mounting method for mounting a plurality of chips on a substrate, and a temporary bonding step of temporarily bonding each of the plurality of chips to the substrate, and the temporary bonding to the substrate
  • the chip is temporarily bonded to the substrate by pressurizing from the chip side and solid-phase diffusion bonding the second metal layer of the chip and the first metal layer of the substrate.
  • a first basic process comprising two steps is repeated by the number of the plurality of chips to be mounted on the substrate.
  • the main bonding step the first of each of the plurality of chips temporarily bonded to the substrate is performed. Two metal layers and the substrate A first metal layer collectively the plurality of chips by liquid phase diffusion bonding to the bonding to the substrate.
  • the solid phase diffusion bonding is performed at a first specified temperature
  • the liquid phase diffusion bonding is performed at a temperature higher than the first specified temperature by heating from at least one of the chip side and the substrate side. It is preferable to carry out at a high second specified temperature.
  • the first specified temperature is a temperature at which the first metal layer and the second metal layer are not melted
  • the second specified temperature is at which the first metal layer and the second metal layer are melted. It is preferable that it is the temperature to perform.
  • the whole of the plurality of chips is simultaneously performed by using a plate-shaped mounting tool formed to have a size capable of contacting all one surface of the plurality of chips. It is preferable that the plurality of chips are collectively bonded to the substrate by applying pressure.
  • the plurality of chips are collectively bonded to the substrate by heating alone without applying pressure.
  • the solid phase diffusion bonding is preferably ultrasonic bonding or surface activated bonding.
  • the mounting method of the present invention has an effect that the tact time can be shortened.
  • the mounting method of this embodiment is a mounting method in which a plurality of chips 2 are mounted on a substrate 1 as shown in FIGS. 1E and 1F.
  • a temporary bonding step (see FIGS. 1A and 1B) for temporarily bonding each of the plurality of chips 2 to the substrate 1 and each of the plurality of chips 2 temporarily bonded to the substrate 1 are connected to the substrate 1.
  • a main joining step (see FIGS. 1C and 1D) for joining.
  • the bonding strength between the substrate 1 and each of the plurality of chips 2 is higher after the main bonding than after the temporary bonding.
  • the first basic process is repeated by the number of the plurality of chips 2 mounted on the substrate 1. That is, the first basic process is performed individually for the plurality of chips 2 on the substrate 1.
  • the first basic process includes a first step and a second step.
  • the first metal layer 11 of the substrate 1 and the second metal layer 21 of the chip 2 are aligned.
  • the second metal layer 21 of the chip 2 and the first metal layer 11 of the substrate 1 are solid-phased at the first specified temperature by pressing from the chip 2 side.
  • the chip 2 is temporarily bonded to the substrate 1 by diffusion bonding.
  • the solid phase diffusion bonding is a method in which the bonding surfaces of the second metal layer 21 of the chip 2 and the first metal layer 11 of the substrate 1 are bonded in a solid state.
  • the first specified temperature is set to a temperature at which the second metal layer 21 and the first metal layer 11 do not melt.
  • Temporary bonding means bonding for holding the chip 2 in a state where the chip 2 is positioned at a predetermined position of the substrate 1 before the main bonding.
  • the second metal layer 21 of each of the plurality of chips 2 temporarily bonded to the substrate 1 and the first metal layer 11 of the substrate 1 are liquid-phased.
  • a plurality of chips 2 are finally bonded to the substrate 1 by diffusion bonding.
  • this bonding process is not performed individually for the plurality of chips 2 on the substrate 1 but is performed simultaneously for the plurality of chips 2 on the substrate 1.
  • each of the plurality of chips 2 is bonded to the substrate 1 via the bonding layer 31 made of an alloy layer of the second metal layer 21 and the first metal layer 11.
  • the main bonding means a final bonding in which the bonding state between each of the plurality of chips 2 and the substrate 1 is a bonding state having a higher bonding strength and a stable bonding state.
  • the second metal layer 21 of each of the plurality of chips 2 and the first metal layer 11 of the substrate 1 are liquid phase diffusion bonded at a second specified temperature.
  • the second specified temperature is set to a temperature at which the second metal layer 21 and the first metal layer 11 are melted. Therefore, the second specified temperature is set to a temperature that is relatively higher than the first specified temperature.
  • the temporary joining step and the main joining step can be performed using separate facilities.
  • a plurality of substrates 1 are set in a mounting process for mounting a plurality of chips 2 on the substrate 1.
  • the temporary bonding step and the main bonding step can be performed using different equipment, so the temporary bonding step and the main bonding step are performed on two different substrates 1.
  • the temporary bonding process temporarily bonds the second metal layer 21 and the first metal layer 11 by solid phase diffusion bonding in the second step, the liquid phase diffusion bonding is performed after the first step. Compared to the case, the required time (working time) can be shortened.
  • the second metal layer 21 of each of the plurality of chips 2 and the first metal layer 11 of the substrate 1 are liquid phase diffused in a state where the plurality of chips 2 are temporarily bonded to the substrate 1. Since the plurality of chips 2 are finally bonded to the substrate 1 by bonding, it is not necessary to recognize and pick up the chips 2 with high accuracy as in the first step. Thereby, in this joining process, it becomes possible to shorten required time compared with the case where liquid phase diffusion joining is performed after the 1st step. Therefore, in the mounting method of the present embodiment, it is possible to shorten the tact time of the mounting process by performing the temporary bonding process and the main bonding process in parallel, and to improve the throughput of the mounting process. It becomes possible.
  • the chip-side bonding electrode and the substrate are heated in a state where the LED chip is heated to a prescribed bonding temperature by the head heater through the suction collet. Since the bonding surfaces with the side bonding electrodes are brought into contact with each other, there may be a case where it is difficult to position the chip side bonding electrode and the substrate side bonding electrode with high accuracy due to thermal fluctuation or thermal expansion.
  • the temporary bonding is performed at the first specified temperature that is relatively lower than the second specified temperature at which the main bonding is performed.
  • each die bonding device includes a bonding head, a stage, a recognition device, a control device, and the like.
  • the bonding head, stage and recognition device are controlled by a control device.
  • the control device includes a main control unit configured by mounting an appropriate program on the microcomputer, and an individual control unit that controls the bonding head, the stage, and the recognition device based on instructions from the main control unit.
  • the recognition device includes a camera, an image processing unit, and a monitor.
  • the configuration of the die bonding apparatus is not particularly limited.
  • each equipment which performs each of a temporary joining process and a main joining process is not limited to a die-bonding apparatus.
  • the die bonding apparatus that performs the temporary bonding process is referred to as a first die bonding apparatus
  • the die bonding apparatus that performs the main bonding process is referred to as a second die bonding apparatus.
  • the substrate 1 for example, a wafer formed of a silicon wafer and provided with the first metal layer 11 in each of the regions where the plurality of chips 2 are to be mounted can be employed.
  • the substrate 1 is a wafer formed from a silicon wafer, it is preferable that an insulating film made of a silicon oxide film or the like is formed on the surface of the silicon wafer.
  • the first metal layer 11 can be composed of, for example, an Au film.
  • a base layer such as a Ti film may be interposed between the first metal layer 11 and the insulating film.
  • the Ti film can serve as a barrier layer.
  • the material of the underlayer interposed between the first metal layer 11 and the insulating film is not limited to Ti, and may be, for example, Cr, Nb, Zr, TiN, TaN, or the like.
  • the silicon wafer for example, a wafer having a diameter of 50 mm to 300 mm and a thickness of about 200 ⁇ m to 1000 ⁇ m can be used.
  • the material of the substrate 1 is not limited to silicon, and may be, for example, aluminum nitride or alumina.
  • the substrate 1 is preferably provided with the above-described insulating film.
  • an insulating material such as aluminum nitride or alumina is used as the material of the substrate 1, An insulating film is not necessarily provided.
  • an LED chip for example, an LED chip can be adopted.
  • the LED chip for example, a chip having a chip size of 0.3 mm ⁇ (0.3 mm ⁇ 0.3 mm), 0.45 mm ⁇ , or 1 mm ⁇ can be used.
  • the planar shape of the LED chip is not limited to a square shape, and may be a rectangular shape, for example.
  • the chip size of the LED chip can be, for example, 0.5 mm ⁇ 0.24 mm.
  • the emission wavelength of the LED chip is not particularly limited. Therefore, as the LED chip, for example, an ultraviolet LED chip, a purple LED chip, a blue LED chip, a green LED chip, a yellow LED chip, an orange LED chip, or a red LED chip can be employed. Moreover, a white LED chip can also be adopted as the LED chip.
  • an LED chip in which the first electrode 2a is formed on the main surface side and the second electrode 2b is formed on the back surface side can be adopted.
  • the chip 2 may be formed by laminating a second metal layer 21 (not shown in FIG. 3A) on the second electrode 2b, and the outermost surface side of the second electrode 2b is the second metal layer 21 (shown in FIG. 3A).
  • the second electrode 2b may constitute the second metal layer 21 (not shown in FIG. 3A).
  • one of the first electrode 2a and the second electrode 2b is an anode electrode and the other is a cathode electrode.
  • the chip 2 as shown in FIG. 3B, an LED chip in which the first electrode 2a and the second electrode 2b are formed on one surface side in the thickness direction can be adopted. That is, both the first electrode 2a and the second electrode 2b are formed on the lower surface of the chip 2 in FIG. 3B at a predetermined interval.
  • the chip 2 may be formed by laminating a second metal layer 21 (not shown in FIG. 3B) on each of the first electrode 2a and the second electrode 2b, or the first electrode 2a and the second electrode 2b.
  • Each outermost surface side may constitute the second metal layer 21 (not shown in FIG. 3B), or each of the first electrode 2a and the second electrode 2b may be the second metal layer 21 (not shown in FIG. 3B). (Not shown).
  • one of the first electrode 2a and the second electrode 2b is an anode electrode and the other is a cathode electrode.
  • the chip 2 can adopt, for example, fluxless AuSn as the material of the second metal layer 21.
  • the fluxless AuSn layer can be formed by, for example, a plating method or a sputtering method.
  • the combination of the materials of the second metal layer 21 of the chip 2 and the first metal layer 11 of the substrate 1 is not limited to AuSn—Au, and may be, for example, Au—AuSn.
  • the combination of materials of the second metal layer 21 of the chip 2 and the first metal layer 11 of the substrate 1 is AuSn—Au or Au—AuSn, for example, the substrate 1 on which a plurality of chips 2 are mounted.
  • the module divided from the substrate 1 on which the plurality of chips 2 are mounted is secondarily mounted on a mother board or the like using SuAgCu, it is possible to prevent the bonding layer 31 from being remelted.
  • the combination of the material of the second metal layer 21 of the chip 2 and the first metal layer 11 of the substrate 1 is AuGe—Au, Au—AuGe, SnBi—Sn, Sn—SnBi, SnCu—Cu, Cu—SnCu, etc. But you can.
  • the present invention is not limited to the above example.
  • the second metal layer 21 of the chip 2 is an Au layer 21a
  • the first metal layer 11 of the substrate 1 is a first layer 11a composed of an Sn layer or an AuSn layer, and the first layer.
  • a second layer 11b made of an Au layer on 11a As a result, the substrate 1 can suppress oxidation of the Sn layer in the first metal layer 11.
  • the second metal layer 21 of the chip 2 is an Au layer 21a
  • the first metal layer 11 of the substrate 1 is alternately laminated with Sn layers 11c and Au layers 11d, and the outermost layer is Au.
  • a multi-layer structure is formed as the layer 11d.
  • the substrate 1 can suppress oxidation of the Sn layer 11 c in the first metal layer 11. Further, in the main joining step, it is possible to easily form AuSn when Sn is melted.
  • the second metal layer 21 of the chip 2 is the Au layer 21a
  • the first metal layer 11 of the substrate 1 is the planar AuSn layer 11e in which lattice-like slits are formed. It is said.
  • the main bonding step it is possible to suppress the variation of the starting point of the bonding (where the alloying occurs) when the AuSn layer 11e is melted, the variation of the bonding strength, the variation of the bonding area, It is possible to reduce unbonded regions and the like.
  • Chip 2 is not limited to an LED chip.
  • the chip 2 may be, for example, a laser diode chip, a photodiode chip, a GaN-based HEMT (high electron mobility mobility) chip, a MEMS (micro electro mechanical systems) chip, an infrared sensor chip, an IC chip, or the like.
  • MEMS chip for example, an acceleration sensor chip, a pressure sensor chip, or the like can be employed.
  • the chip 2 is not particularly limited with respect to the chip size, and for example, a chip having a size of about 0.2 mm ⁇ to 5 mm ⁇ can be used. Further, the outer peripheral shape of the chip 2 in plan view is not limited to a square shape, and may be, for example, a rectangular shape.
  • the thickness of the chip 2 is not particularly limited, and for example, a chip having a thickness of about 0.1 mm to 1 mm can be used.
  • the temporary bonding step is performed after the first substrate placing step of placing the substrate 1 on the surface side of the stage 3a (see FIGS. 1A and 1B) of the first die bonding apparatus.
  • a plurality of air intake holes (not shown) for adsorbing the substrate 1 and the like placed on the surface side are formed in the peripheral portion.
  • the 1st die-bonding apparatus can hold
  • the chip 2 is aligned with the substrate 1. More specifically, in the first step, for example, before the chip 2 held on a wafer tape (adhesive resin tape) or a chip tray is vacuum picked up by the collet 5a of the first die bonding apparatus and picked up. In addition, the chip 2 to be picked up is recognized with high accuracy by the recognition device (not shown) of the first die bonding apparatus.
  • a wafer tape adheresive resin tape
  • a chip tray is vacuum picked up by the collet 5a of the first die bonding apparatus and picked up.
  • the chip 2 to be picked up is recognized with high accuracy by the recognition device (not shown) of the first die bonding apparatus.
  • the bonding scheduled region in the substrate 1 on the surface side of the stage 3a of the first die bonding apparatus is recognized with high accuracy by the recognition device, and the chip 2 and the substrate 1 vacuum-adsorbed by the collet 5a are aligned (for example, Chip alignment for correcting the posture of the chip 2 is performed).
  • the adhesive resin tape include an ultraviolet curable dicing tape and a thermosetting dicing tape. The adhesive resin tape holds the chip 2 with a strong adhesive force at the time of dicing. However, the pick-up property can be improved by reducing the adhesiveness by ultraviolet irradiation or infrared irradiation after dicing.
  • the bonding surfaces of the chip 2 and the substrate 1 are brought into contact with each other, and the second metal layer 21 of the chip 2 and the first metal layer 11 of the substrate 1 are bonded by pressing from the chip 2 side.
  • Solid phase diffusion bonding at 1 normal temperature In the mounting method of the present embodiment, the chip 2 and the substrate 1 are temporarily bonded by this solid phase diffusion bonding.
  • the chip 2 is heated to the first specified temperature via the collet 5a by a heater (not shown) of the bonding head 4a.
  • the bonding surfaces of the chip 2 and the substrate 1 are brought into contact with each other so that the first specified temperature is reached. You may heat so that it may become 1st specified temperature after making the joining surfaces of the chip
  • the solid phase diffusion bonding is preferably, for example, ultrasonic bonding or surface activated bonding.
  • Ultrasonic bonding is solid phase diffusion bonding performed using ultrasonic vibration.
  • ultrasonic thermocompression bonding is preferable, in which bonding is performed using pressure and ultrasonic vibration under a predetermined heating state.
  • thermocompression bonding using ultrasonic waves it is possible to increase the bonding strength as compared with the case where bonding is performed at normal temperature using pressure and ultrasonic vibration.
  • bonding at a lower temperature is possible as compared with thermocompression bonding.
  • each bonding surface is irradiated with argon plasma, ion beam or atomic beam in vacuum before bonding to clean and activate each bonding surface, and then the bonding surfaces are brought into contact with each other.
  • Direct bonding is performed by applying an appropriate load under the first specified temperature.
  • the first specified temperature can be set, for example, in the range of room temperature to about 100 ° C.
  • the bonding strength can be increased as compared with the case of normal temperature.
  • the surface activated bonding is not limited to argon plasma, ion beam, or atomic beam, but may be plasma such as helium or neon, ion beam, or atomic beam.
  • the bonding conditions when performing solid phase diffusion bonding so that the void ratio (unbonded ratio) of the bonding interface is, for example, 30% or less.
  • the void ratio can be defined, for example, as a ratio of the area of the unjoined region to the area of the desired joined region (for example, the area of the second metal layer 21 of the chip 2).
  • the area of the desired bonded region and the area of the unbonded region can be estimated from, for example, an ultrasonic microscope image obtained by performing observation with an ultrasonic microscope after performing solid phase diffusion bonding.
  • the second step of performing solid phase diffusion bonding it is possible to improve the bonding strength by heating at least one of the chip 2 and the substrate 1 during bonding.
  • the second step is preferably performed in a controlled atmosphere, not in an air atmosphere.
  • the controlled atmosphere include an inert gas atmosphere, a vacuum atmosphere, and a reducing gas atmosphere.
  • the inert gas atmosphere eg, N 2 gas atmosphere, such as argon gas atmosphere and the like.
  • the reducing gas atmosphere include an H 2 gas atmosphere.
  • unnecessary atmosphere can be removed by setting the atmosphere to a reducing gas atmosphere.
  • This bonding process is performed after the second substrate mounting process in which the substrate 1 is mounted on the surface side of the stage 3b (see FIGS. 1C and 1D) of the second die bonding apparatus.
  • a plurality of intake holes (not shown) for adsorbing the substrate 1 and the like placed on the front surface side are formed in the periphery of the stage 3b.
  • the 2nd die-bonding apparatus can hold
  • an alignment mark of the substrate 1 on the specific chip 2 or the stage 3b among the plurality of chips 2 temporarily bonded to the substrate 1 is recognized. More specifically, in this bonding step, first, a specific chip 2 on the substrate 1 adsorbed by the stage 3b of the second die bonding apparatus or an alignment mark of the substrate 1 is recognized by a recognition apparatus (The mounting tool 6 provided in the bonding head (not shown) and the substrate 1 are aligned with each other by simply recognizing it by a not shown. Since the second die bonding apparatus only needs to easily recognize the specific chip 2 or the substrate 1, the image processing in the image processing unit can be simplified as compared with the case where the chip 2 is recognized with high accuracy. And the time required for recognition can be shortened.
  • each of the plurality of chips 2 is finally bonded to the substrate 1 at a second specified temperature at which the second metal layer 21 and the first metal layer 11 are melted. More specifically, in this bonding step, each chip 2 and the substrate 1 are liquid phase diffusion bonded by heating from the chip 2 side with the mounting tool 6.
  • the liquid phase diffusion bonding is a method in which the first metal layer 21 of each chip 2 and the first metal layer 11 of the substrate 1 are temporarily melted and liquefied and then isothermally solidified using diffusion.
  • the second metal layer 21 of the chip 2 and the first metal layer 11 of the substrate 1 are eutectic bonded.
  • Eutectic bonding is a bonding method that utilizes a eutectic reaction for liquefaction among liquid phase diffusion bonding.
  • the whole of the plurality of chips 2 is formed using a plate-like mounting tool 6 formed to have a size capable of contacting all one surface of the plurality of chips 2.
  • a plurality of chips 2 are finally bonded to the substrate 1 at a time.
  • the mounting tool 6 is brought into contact with all the chips 2 on the substrate 1, and each chip 2 is heated to the second specified temperature by a heater (not shown) of the mounting tool 6. From the above, an appropriate specified pressure is applied to the chip 2 for a specified time.
  • the second metal layer 21 of each chip 2 and the first metal layer 11 of the substrate 1 are eutectic bonded.
  • the second specified temperature may be set to a temperature higher than the melting temperature of AuSn.
  • the specified pressure may be appropriately set so that, for example, the load per chip is in the range of about 22 kg / cm 2 to 50 kg / cm 2 .
  • the specified time may be set as appropriate within a range of about 0.5 seconds to 10 seconds, for example.
  • a silicon wafer or a metal plate can be used as the mounting tool 6.
  • This bonding process is preferably performed in a controlled atmosphere, not in an air atmosphere.
  • the controlled atmosphere include an inert gas atmosphere, a vacuum atmosphere, and a reducing gas atmosphere.
  • the inert gas atmosphere eg, N 2 gas atmosphere, such as argon gas atmosphere and the like.
  • the reducing gas atmosphere include an H 2 gas atmosphere.
  • the main bonding step it is possible to suppress oxidation by setting the atmosphere to an inert gas atmosphere or a vacuum atmosphere. Further, in this bonding step, unnecessary oxides can be removed by setting the atmosphere to a reducing gas atmosphere.
  • heating from the substrate 1 side is not performed, but not only heating from each chip 2 side, but also heating from the substrate 1 side via the stage 3b by a heater (not shown) of the stage 3b. You may make it perform.
  • the heater of the bonding head and the stage 3b are set so that the temperature on each chip 2 side becomes higher than the substrate 1. It is preferable to set the temperature of each heater. In addition, it is preferable to set the temperature of the heater of the stage 3b below the melting point of AuSn.
  • the bonding conditions when performing liquid phase diffusion bonding so that the void ratio (unbonded ratio) at the bonding interface is, for example, 20% or less.
  • the void ratio can be defined as, for example, the ratio of the area of the unjoined region to the area of the desired joined region (for example, the area of the desired joined layer 31).
  • the area of the desired bonded region and the unbonded region can be estimated from, for example, an ultrasonic microscope image obtained by performing observation with an ultrasonic microscope after performing liquid phase diffusion bonding.
  • the equipment used in the main joining process is not limited to the second die bonding apparatus described above. Further, in the main bonding process using the second die bonding apparatus described above, the plurality of chips 2 on the substrate 1 are pressed by the mounting tool 6, but the plurality of chips 2 may be pressed as appropriate. The pressurization of the plurality of chips 2 may not be performed. That is, in the above description, the plurality of chips 2 are collectively bonded to the substrate 1 by both pressing and heating using the mounting tool 6, but without applying pressure (without using the mounting tool 6). A plurality of chips 2 may be finally bonded to the substrate 1 by heating alone. In this case, various types of annealing devices, hot plates, etc.
  • the equipment used in this bonding process is not limited to the one that directly heats the substrate 1 and each chip 2, and may be one that heats the atmosphere around the substrate 1 and each chip 2 (atmosphere heating).
  • all the chips 2 are permanently bonded to the substrate 1 by applying pressure and heating in one process using the mounting tool 6, but the process is divided into a plurality of times (for example, 2 to 3 times). May be performed.
  • the mounting method of this embodiment by performing the main bonding after the temporary bonding, it is possible to improve the bonding strength and reduce the voids. Thereby, in the mounting method according to the present embodiment, it is possible to reduce the thermal resistance between each chip 2 and the substrate 1 and to reduce the variation in thermal resistance.
  • the temporary bonding step of temporarily bonding each of the plurality of chips 2 to the substrate 1 and each of the plurality of chips 2 temporarily bonded to the substrate 1 are finally bonded to the substrate 1.
  • a main joining step the first basic process including the first step and the second step is repeated by the number of the plurality of chips 2 mounted on the substrate 1.
  • the first metal layer 11 of the substrate 1 and the second metal layer 21 of the chip 2 are aligned.
  • the second metal layer 21 and the first metal layer 11 are temporarily bonded by solid phase diffusion bonding.
  • the main bonding step is performed by liquid phase diffusion bonding of each second metal layer 21 of each of the plurality of chips 2 temporarily bonded to the substrate 1 and each first metal layer 11 of the substrate 1.
  • the chips 2 are collectively bonded to the substrate 1 at a time. Therefore, in the mounting method of the present embodiment, the temporary bonding step and the main bonding step can be performed using different equipment, so the temporary bonding step and the main bonding step are performed on two different substrates 1. It can be performed in parallel. Therefore, in the mounting method of the present embodiment, it is possible to reduce the tact time of the mounting process.
  • the mounting method of the present embodiment when performing temporary bonding in the temporary bonding process, heating is performed only at room temperature or from the chip 2 side. Thus, it is possible to suppress the occurrence of thermal history differences in the plurality of chips 2 on the substrate 1. Thereby, in the mounting method of the present embodiment, it is possible to reduce the characteristic variation between the chips 2 due to the mounting process, and the lifetime of the chip 2 that is initially bonded to the substrate 1 is the other chip 2. It becomes possible to suppress shortening compared with.
  • solid phase diffusion bonding is performed at a first specified temperature
  • liquid phase diffusion bonding is performed at a second specified temperature higher than the first specified temperature by heating from at least one of the chip 2 side and the substrate 1 side. It is preferable to carry out with. Thereby, in this mounting method, it is possible to suppress the displacement of the position of the chip 2 before and after the main bonding of the chip 2 and the substrate 1, and the thermal history of the plurality of chips 2 on the substrate 1. Can be arranged.
  • the mounting method by employing a wafer formed from a silicon wafer as the substrate 1, it becomes possible to reduce the surface roughness of the base of the first metal layer 11, and the surface roughness of the first metal layer 11. Can be reduced. Therefore, in this mounting method, it is possible to suppress the generation of voids in the temporary bonding and the main bonding due to the surface roughness of the first metal layer 11, and the bonding strength can be improved.
  • the surface roughness of the first metal layer 11 for example, the arithmetic average roughness Ra defined by Japanese Industrial Standard JIS B 0601-2001 (International Organization for Standardization ISO 4287-1997) is preferably 10 nm or less, It is more preferable that it is several nm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Die Bonding (AREA)
  • Led Device Packages (AREA)

Abstract

 基板上に複数個のチップを実装する実装方法は、基板に複数個のチップの各々を仮接合する仮接合工程と、基板に仮接合された複数個のチップの各々を基板に本接合する本接合工程とを備える。仮接合工程は、第1ステップと第2ステップとからなる第1基本工程を、基板に実装する複数個のチップの数だけ繰り返す。第1ステップは、基板の第1金属層とチップの第2金属層とを位置合わせする。第2ステップは、第2金属層と第1金属層とを固相拡散接合することで仮接合する。本接合工程は、基板に仮接合されている複数個のチップの各々の第2金属層と基板の第1金属層とを液相拡散接合することで複数個のチップを一括して基板に本接合する。

Description

実装方法
 本発明は、基板上に複数個のチップを実装する実装方法に関するものである。
 従来から、基板上に複数個のチップを実装する実装方法が知られている(例えば、日本国特許公開2009-130293号公報)。この文献に記載された実装方法は、ダイボンド装置のステージの表面側に基板を載置する基板載置工程と、チップとステージの表面側に載置された基板との互いの接合面を接触させチップ側から加熱することによりチップと基板との互いの接合面を加熱して両者を接合させる接合工程とを備えている。
 基板載置工程においては、基板におけるチップの接合予定領域とステージとの間に断熱層が介在する形で基板をステージの表面側に載置する。チップとしては、厚み方向の両面に電極(図示せず)が形成されたLEDチップが例示されている。このLEDチップは、裏面側(基板に近い側)の電極からなるチップ側接合用電極がAuSnにより形成されている。また、基板としては、シリコンウェハを用いて形成されたものが例示されている。この基板は、各チップそれぞれの接合予定領域(搭載位置)に、基板側接合用電極としてダイパッド部が形成されている。ダイパッド部は、Ti膜と当該Ti膜上に形成されたAu膜との積層構造を有しており、表面側の部位がAuにより形成されている。
 接合工程では、所定の過程を、ウェハに実装するLEDチップの個数に応じて繰り返し行う。所定の過程では、ダイボンド装置のヘッドに設けられた吸着コレットによりLEDチップを吸着保持し、ヘッドのヒータにより吸着コレットを介してLEDチップを規定の接合温度に加熱した状態で、チップ側接合用電極と基板側接合用電極との接合面同士を接触させ、ヘッド側からLEDチップに適宜の圧力を規定時間だけ印加することにより、チップ側接合用電極と基板側接合用電極とを共晶接合させる。規定の接合温度は、例えば、チップ側接合用電極の材料であるAuSnの溶融温度よりも高い温度である。また、適宜の圧力は、例えば、2kg/cm2~50kg/cm2である。また、規定時間は、例えば、10秒程度である。
 ところで、上記文献に記載された実装方法では、チップを吸着コレットにより吸着する前に、ダイボンド装置の認識装置によりチップを高精度に認識する必要があると推考される。さらに、上記文献に記載された実装方法では、チップ側接合用電極と基板側接合用電極との接触面同士を接触させる前に、ステージの表面側の基板における接合予定領域を認識装置により高精度に認識し、チップと基板とを位置合わせする必要があると推考される。また、上記文献に記載された実装方法の接合工程では、上述の所定の過程を、ウェハに実装するLEDチップの個数に応じて繰り返し行う必要がある。このため、上述の実装方法では、生産ラインにおける実装工程のタクトタイムの短縮化が難しく、実装工程のスループットの向上が難しい。なお、認識装置は、カメラ、画像処理部及びモニタにより構成されるのが一般的である。
 そこで、本発明の目的は、タクトタイムの短縮化を図ることが可能な実装方法を提供することにある。
 本発明の実装方法は、基板上に複数個のチップを実装する実装方法であって、前記基板に前記複数個のチップの各々を仮接合する仮接合工程と、前記基板に仮接合された前記複数個のチップの各々を前記基板に本接合する本接合工程とを備え、前記仮接合工程は、前記基板の第1金属層と前記チップの第2金属層とを位置合わせする第1ステップと、前記第1ステップの後に前記チップ側から加圧して前記チップの前記第2金属層と前記基板の前記第1金属層とを固相拡散接合することで前記基板に前記チップを仮接合する第2ステップとからなる第1基本工程を、前記基板に実装する前記複数個のチップの数だけ繰り返し、前記本接合工程では、前記基板に仮接合されている前記複数個のチップの各々の前記第2金属層と前記基板の前記第1金属層とを液相拡散接合することで前記複数個のチップを一括して前記基板に本接合する。
 この実装方法において、前記固相拡散接合は、第1規定温度で行い、前記液相拡散接合は、前記チップ側と前記基板側との少なくとも一方側からの加熱によって、前記第1規定温度よりも高い第2規定温度で行うことが好ましい。
 この実装方法において、前記第1規定温度は、前記第1金属層及び前記第2金属層が溶融しない温度であり、前記第2規定温度は、前記第1金属層及び前記第2金属層が溶融する温度であることが好ましい。
 この実装方法において、前記本接合工程では、前記複数個のチップの全ての一表面に対して接触可能な大きさに形成された板状の実装ツールを用いて前記複数個のチップ全体に一斉に加圧することで、前記複数個のチップを一括して前記基板に本接合することが好ましい。
 この実装方法において、前記本接合工程では、加圧することなく、加熱のみにより前記複数個のチップを一括して前記基板に本接合することが好ましい。
 この実装方法において、前記固相拡散接合は、超音波接合もしくは表面活性化接合であることが好ましい。
 本発明の実装方法は、タクトタイムの短縮化を図ることが可能になるという効果がある。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
実施形態の実装方法を説明する概略斜視図である。 実施形態の実装方法を説明する概略断面図である。 実施形態の実装方法を説明する概略斜視図である。 実施形態の実装方法を説明する概略断面図である。 実施形態の実装方法を説明する概略斜視図である。 実施形態の実装方法を説明する概略断面図である。 実施形態の実装方法における第1ステップの説明図である。 実施形態の実装方法における本接合工程の説明図である。 実施形態の実装方法における基板へのチップの実装形態の説明図である。 実施形態の実装方法における基板へのチップの実装形態の説明図である。 実施形態の実装方法における他の第1基本工程の説明図である。 実施形態の実装方法における更に他の第1基本工程の説明図である。 実施形態の実装方法における別の第1基本工程の説明図である。 実施形態の実装方法における別の第1基本工程の説明図である。
 以下では、本実施形態の実装方法について、図1A~図6Bに基づいて説明する。 本実施形態の実装方法は、図1E及び1Fに示すように、基板1上に複数個のチップ2を実装する実装方法である。この実装方法は、基板1に複数個のチップ2の各々を仮接合する仮接合工程(図1A及び1B参照)と、基板1に仮接合された複数個のチップ2の各々を基板1に本接合する本接合工程(図1C及び1D参照)とを備える。この実装方法では、仮接合の後よりも本接合の後のほうが、基板1と複数個のチップ2の各々との接合強度が高くなる。
 仮接合工程は、第1基本工程を、基板1に実装する複数個のチップ2の数だけ繰り返す。つまり、第1基本工程は、基板1上の複数個のチップ2に対して個別に行われる。第1基本工程は、第1ステップと、第2ステップとからなる。
 第1ステップでは、図2Aに示すように、基板1の第1金属層11とチップ2の第2金属層21とを位置合わせする。
 第2ステップでは、図1Bに示すように、第1ステップの後にチップ2側から加圧してチップ2の第2金属層21と基板1の第1金属層11とを第1規定温度において固相拡散接合することで基板1にチップ2を仮接合する。固相拡散接合は、チップ2の第2金属層21と基板1の第1金属層11との接合面間を固相状態で接合する方法である。第1規定温度は、第2金属層21及び第1金属層11が溶融しない温度に設定する。仮接合は、本接合の前に基板1の定められた位置にチップ2を位置決めした状態で保持するための接合を意味している。
 本接合工程は、図1D及び図2Bに示すように、基板1に仮接合されている複数個のチップ2の各々の第2金属層21と基板1の各第1金属層11とを液相拡散接合することで複数個のチップ2を基板1に本接合する。ただし、本接合工程は、基板1上の複数個のチップ2に対して個別に行われるのではなく、基板1上の複数個のチップ2に対して一斉に行われるものである。これにより、複数個のチップ2の各々は、第2金属層21と第1金属層11との合金層からなる接合層31を介して基板1に接合される。本接合は、複数個のチップ2の各々と基板1との接合状態を、より接合強度が高く且つ安定した接合状態とする最終的な接合を意味している。本接合工程では、複数個のチップ2の各々の第2金属層21と基板1の各第1金属層11とを第2規定温度において液相拡散接合する。第2規定温度は、第2金属層21及び第1金属層11が溶融する温度に設定する。したがって、第2規定温度は、相対的に第1規定温度よりも高い温度に設定する。
 仮接合工程と本接合工程とは、別々の設備を用いて行うことができる。ところで、生産ラインにおいては、基板1に複数個のチップ2を実装する実装工程に複数の基板1が仕掛かることになる。これに対し、本実施形態の実装方法では、仮接合工程と本接合工程とを別々の設備を用いて行うことができるので、互いに異なる2枚の基板1に対して仮接合工程と本接合工程とを並行して行うことができる。ここで、仮接合工程は、第2ステップにおいて第2金属層21と第1金属層11とを固相拡散接合することで仮接合するので、第1ステップの後に続けて液相拡散接合を行う場合に比べて、所要時間(作業時間)を短くすることとが可能となる。また、本接合工程は、基板1に複数個のチップ2が仮接合された状態で複数個のチップ2の各々の第2金属層21と基板1の各第1金属層11とを液相拡散接合することで複数個のチップ2を基板1に本接合するので、第1ステップのようにチップ2を高精度に認識してピックアップする必要がない。これにより、本接合工程では、第1ステップの後に続けて液相拡散接合を行う場合に比べて、所要時間を短くすることが可能となる。よって、本実施形態の実装方法では、仮接合工程と本接合工程とを並行して行うことにより、実装工程のタクトタイムの短縮化を図ることが可能になり、実装工程のスループットの向上を図ることが可能となる。また、上述の日本国特許公開2009-130293号公報に記載される実装方法では、ヘッドのヒータにより吸着コレットを介してLEDチップを規定の接合温度に加熱した状態で、チップ側接合用電極と基板側接合用電極との接合面同士を接触させるので、熱ゆらぎや熱膨張などに起因してチップ側接合用電極と基板側接合用電極との高精度の位置合わせが難しい場合も考えられる。これに対し、本実施形態の実装方法では、本接合を行う第2規定温度よりも相対的に低い第1規定温度で仮接合を行うので、高精度の位置合わせが容易になる。
 仮接合工程と本接合工程とは、別々の設備として、例えば、2つのダイボンド装置を用いることができる。各ダイボンド装置は、ボンディングヘッド、ステージ、認識装置、制御装置などを備えている。ボンディングヘッド、ステージ及び認識装置は、制御装置によって制御される。制御装置は、マイクロコンピュータに適宜のプログラムを搭載することによって構成される主制御部と、主制御部の指示に基づいてボンディングヘッド、ステージ及び認識装置それぞれを制御する個別制御部とを備えている。認識装置は、カメラ、画像処理部及びモニタにより構成される。なお、ダイボンド装置の構成は、特に限定するものではない。また、仮接合工程及び本接合工程それぞれを行う各設備は、ダイボンド装置に限定するものではない。
 以下では説明の便宜上、仮接合工程を行うダイボンド装置を第1ダイボンド装置、本接合工程を行うダイボンド装置を第2ダイボンド装置と称する。
 基板1としては、例えば、シリコンウェハから形成され複数個のチップ2の搭載予定領域の各々に第1金属層11が設けられたウェハを採用することができる。基板1は、シリコンウェハから形成されたウェハの場合、シリコンウェハの表面にシリコン酸化膜などからなる絶縁膜が形成されているのが好ましい。第1金属層11は、例えば、Au膜により構成することができる。第1金属層11と絶縁膜との間には、例えば、Ti膜などの下地層を介在させてもよい。第1金属層11がAu膜であり、絶縁膜がシリコン酸化膜である場合、Ti膜は、バリア層の役割を果たすことができる。第1金属層11と絶縁膜との間に介在させる下地層の材料は、Tiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。
 シリコンウェハとしては、例えば、直径が50mm~300mm、厚みが200μm~1000μm程度のものを用いることができる。
 基板1の材料は、シリコンに限らず、例えば、窒化アルミニウムや、アルミナなどでもよい。基板1の材料としてシリコンを採用する場合には、基板1が上述の絶縁膜を備えるのが好ましいが、基板1の材料として窒化アルミニウムやアルミナなどの絶縁材料を採用する場合には、基板1に絶縁膜を設けなくてもよい。
 チップ2としては、例えば、LEDチップを採用することができる。LEDチップとしては、例えば、チップサイズが0.3mm□(0.3mm×0.3mm)や0.45mm□や1mm□のものなどを用いることができる。また、LEDチップの平面形状は、正方形状に限らず、例えば、長方形状などでもよい。LEDチップの平面形状が、長方形状の場合、LEDチップのチップサイズとしては、例えば、0.5mm×0.24mmのものなどを用いることができる。
 チップ2がLEDチップの場合、LEDチップの発光波長は、特に限定するものではない。よって、LEDチップとしては、例えば、紫外LEDチップ、紫色LEDチップ、青色LEDチップ、緑色LEDチップ、黄色LEDチップ、橙色LEDチップ、赤色LEDチップなどを採用することができる。また、LEDチップとしては、白色LEDチップを採用することもできる。
 チップ2としては、図3Aに示すように、主表面側に第1電極2aが形成され、裏面側に第2電極2bが形成されたLEDチップを採用することができる。このチップ2は、第2電極2bに第2金属層21(図3Aには図示せず)が積層されたものでもよいし、第2電極2bの最表面側が第2金属層21(図3Aには図示せず)を構成するものでもよいし、第2電極2bが第2金属層21(図3Aには図示せず)を構成するものでもよい。なお、図3Aの実装形態において、第1電極2aと第2電極2bとは、一方がアノード電極、他方がカソード電極である。
 また、チップ2としては、図3Bに示すように、厚み方向の一面側に第1電極2a及び第2電極2bが形成されたLEDチップを採用することができる。つまり、図3Bにおけるチップ2の下面に、第1電極2a及び第2電極2bの両方が互いに所定の間隔を空けて形成されている。このチップ2は、第1電極2a及び第2電極2bの各々に第2金属層21(図3Bには図示せず)が積層されたものでもよいし、第1電極2a及び第2電極2bの各々の最表面側が第2金属層21(図3Bには図示せず)を構成するものでもよいし、第1電極2a及び第2電極2bの各々が第2金属層21(図3Bには図示せず)を構成するものでもよい。なお、図3Bの実装形態において、第1電極2aと第2電極2bとは、一方がアノード電極、他方がカソード電極である。
 第2金属層21及び第1金属層11の各材料としては、フラックスレスの材料を採用する。
 チップ2は、第2金属層21の材料として、例えば、フラックスレスのAuSnを採用することができる。フラックスレスのAuSn層は、例えば、めっき法やスパッタ法などにより形成することができる。
 チップ2の第2金属層21と基板1の第1金属層11との材料の組み合わせは、AuSn-Auに限らず、例えば、Au-AuSnでもよい。チップ2の第2金属層21と基板1の第1金属層11との材料の組み合わせをAuSn-AuやAu-AuSnとした場合には、例えば、複数個のチップ2が実装された基板1や、複数個のチップ2が実装された基板1から分割されたモジュールを、マザーボートなどにSuAgCuを用いて2次実装する場合に、接合層31が再溶融するのを防ぐことが可能となる。
 また、チップ2の第2金属層21と基板1の第1金属層11との材料の組み合わせは、AuGe-Au、Au-AuGe、SnBi-Sn、Sn-SnBi、SnCu-Cu、Cu-SnCuなどでもよい。
 チップ2としてLEDチップを採用し、第2金属層21と第1金属層11とを液相拡散接合することで形成される接合層31をAuSn層とする場合には、上述の例に限らず、例えば、図4~図6Bのいずれかの構成例も考えられる。図4に示した構成例では、チップ2の第2金属層21をAu層21aとし、基板1の第1金属層11を、Sn層もしくはAuSn層からなる第1層11aと、この第1層11a上のAu層からなる第2層11bとで構成している。これにより、基板1は、第1金属層11におけるSn層が酸化するのを抑制することが可能となる。
 図5に示した構成例では、チップ2の第2金属層21をAu層21aとし、基板1の第1金属層11を、Sn層11cとAu層11dとが交互に積層され最表層がAu層11dとされた多層構造としている。これにより、基板1は、第1金属層11におけるSn層11cが酸化するのを抑制することが可能となる。また、本接合工程では、Snを溶融させた際のAuSnの形成を容易にすることが可能となる。
 図6A及び図6Bに示した構成例では、チップ2の第2金属層21をAu層21aとし、基板1の第1金属層11を、格子状のスリットが形成された平面形状のAuSn層11eとしている。これにより、本接合工程では、AuSn層11eを溶融させた際に、接合の起点(合金化の起こる箇所)がばらつくのを抑制することが可能となり、接合強度のばらつきや、接合面積のばらつき、未接合領域などを低減させることが可能となる。
 チップ2は、LEDチップに限らない。チップ2は、例えば、レーザダイオードチップ、フォトダイオードチップ、GaN系HEMT(high electron mobility transistor)チップ、MEMS(micro electro mechanical systems)チップ、赤外線センサチップ、ICチップなどでもよい。MEMSチップとしては、例えば、加速度センサチップ、圧力センサチップなどを採用することができる。
 チップ2は、チップサイズについても特に限定するものではなく、例えば0.2mm□~5mm□程度のものを用いることができる。また、チップ2の平面視での外周形状は、正方形状に限らず、例えば、長方形状でもよい。
 チップ2は、厚みについても特に限定するものではなく、例えば0.1mm~1mm程度のものを用いることができる。
 仮接合工程は、第1ダイボンド装置のステージ3a(図1A及び1B参照)の表面側に基板1を載置する第1基板載置工程の後に行う。ステージ3aには、上記表面側に載置される基板1などを吸着するための複数の吸気孔(図示せず)が周部に形成されている。これにより、第1ダイボンド装置は、ステージ3aの上記表面側に載置した基板1を吸着した状態で保持することができる。
 仮接合工程の第1ステップでは、基板1に対してチップ2を位置合わせする。より具体的に説明すれば、第1ステップでは、例えば、ウェハテープ(粘着性樹脂テープ)やチップトレイなどに保持されているチップ2を第1ダイボンド装置のコレット5aにより真空吸着してピックアップする前に、ピックアップ対象のチップ2を第1ダイボンド装置の認識装置(図示せず)により高精度に認識する。その後、第1ダイボンド装置のステージ3aの表面側の基板1における接合予定領域を認識装置により高精度に認識し、コレット5aにより真空吸着しているチップ2と基板1とを位置合わせする(例えば、チップ2の姿勢を修正するチップアライメントを行う)。粘着性樹脂テープとしては、例えば、紫外線硬化型のダイシングテープや熱硬化型のダイシングテープなどがある。なお、粘着性樹脂テープは、ダイシング時に強い粘着力でチップ2を保持しているが、ダイシング後に紫外線照射や赤外線照射により粘着性を低下させることで、ピックアップ性を高めることができる。
 仮接合工程の第2ステップでは、チップ2と基板1との接合面同士を接触させ、チップ2側から加圧してチップ2の第2金属層21と基板1の第1金属層11とを第1規定温度で固相拡散接合する。本実施形態の実装方法では、この固相拡散接合により、チップ2と基板1とが仮接合される。第2ステップでは、ボンディングヘッド4aのヒータ(図示せず)によりコレット5aを介してチップ2を第1規定温度に加熱する。第2ステップでは、チップ2を第1規定温度よりもやや高い温度に加熱してから、チップ2と基板1との接合面同士を接触させることで第1規定温度となるようにしているが、チップ2と基板1との接合面同士を接触させてから第1規定温度となるように加熱してもよい。
 固相拡散接合は、例えば、超音波接合もしくは表面活性化接合であることが好ましい。これにより、第2ステップでは、チップ2や基板1の加熱温度を比較的低温としながらも仮接合することができるので、仮接合前にチップ2と基板1との少なくとも一方を加熱した状態でも、高精度な位置合わせが可能となる。
 超音波接合は、超音波振動を利用して行う固相拡散接合である。超音波接合としては、所定の加熱状態のもとで圧力と超音波振動とを利用して接合する超音波併用熱圧着が好ましい。超音波併用熱圧着では、圧力と超音波振動とを利用して常温で接合する場合に比べて、接合強度を高めることが可能となる。また、超音波併用熱圧着では、熱圧着に比べて、より低温での接合が可能となる。
 表面活性化接合は、接合前に互いの接合表面へアルゴンのプラズマ若しくはイオンビーム若しくは原子ビームを真空中で照射して各接合表面の清浄化・活性化を行ってから、接合表面同士を接触させ、第1規定温度下で適宜の荷重を印加して直接接合する。第1規定温度は、例えば、常温~100℃程度の範囲で設定することができる。ここで、表面活性化接合は、例えば、第1規定温度を例えば80℃~100℃の範囲で設定すれば、常温の場合に比べて、接合強度を高めることが可能となる。なお、表面活性化接合は、アルゴンのプラズマ若しくはイオンビーム若しくは原子ビームに限らず、例えば、ヘリウムやネオンなどのプラズマ若しくはイオンビーム若しくは原子ビームを利用するようにしてもよい。
 固相拡散接合を行う際の接合条件は、接合界面のボイド率(未接合率)が例えば30%以下となるように設定するのが好ましい。ボイド率は、例えば、所望の接合領域の面積(例えば、チップ2の第2金属層21の面積)に占める未接合領域の面積の割合として規定することができる。所望の接合領域の面積及び未接合領域の面積は、例えば、固相拡散接合を行った後に、例えば、超音波顕微鏡による観察を行うことで得られる超音波顕微鏡像図から推測することができる。
 なお、固相拡散接合を行う第2ステップでは、接合時にチップ2と基板1との少なくとも一方を加熱することにより、接合強度を向上させることが可能となる。
 第2ステップは、空気雰囲気中ではなく、制御された雰囲気中で行うことが好ましい。制御された雰囲気としては、例えば、不活性ガス雰囲気、真空雰囲気、還元性ガス雰囲気などが挙げられる。不活性ガス雰囲気としては、例えば、N2ガス雰囲気、アルゴンガス雰囲気などが挙げられる。還元性ガス雰囲気としては、例えば、H2ガス雰囲気が挙げられる。第2ステップでは、雰囲気を不活性ガス雰囲気もしくは真空雰囲気とすることにより、酸化を抑制することが可能となる。また、第2ステップでは、雰囲気を還元性ガス雰囲気とすることにより、不要な酸化物を除去することが可能となる。
 本接合工程は、第2ダイボンド装置のステージ3b(図1C及び1D参照)の表面側に基板1を載置する第2基板載置工程の後に行う。ステージ3bには、上記表面側に載置される基板1などを吸着するための複数の吸気孔(図示せず)が周部に形成されている。これにより、第2ダイボンド装置は、ステージ3bの上記表面側に載置した基板1を吸着した状態で保持することができる。
 本接合工程では、まず、基板1に仮接合されている複数個のチップ2のうちの特定のチップ2或いはステージ3b上の基板1のアライメントマークを認識する。より具体的に説明すれば、本接合工程では、まず、第2ダイボンド装置のステージ3bに吸着されている基板1上の特定のチップ2或いは基板1のアライメントマークを第2ダイボンド装置の認識装置(図示せず)により簡易に認識し、ボンディングヘッド(図示せず)に設けられている実装ツール6と基板1とを位置合わせする。なお、第2ダイボンド装置は、特定のチップ2或いは基板1を簡易に認識すればよいから、チップ2を高精度に認識する場合に比べて、画像処理部での画像処理を簡略化することができ、認識に要する時間を短縮することが可能となる。
 本接合工程では、その後、第2金属層21及び第1金属層11を溶融させる第2規定温度で複数個のチップ2の各々を基板1に対して本接合する。より具体的に説明すれば、本接合工程では、実装ツール6により各チップ2側から加熱して各チップ2と基板1とを液相拡散接合する。液相拡散接合は、各チップ2の第1金属層21と基板1の第1金属層11とを一時的に溶融、液化した後、拡散を利用し等温凝固させる方法である。ここでは、チップ2の第2金属層21と基板1の第1金属層11とを共晶接合させるようにしている。共晶接合は、液相拡散接合のうち液化に対して共晶反応を利用する接合方法である。
 本接合工程では、図1Dに示すように、複数個のチップ2の全ての一表面に対して接触可能な大きさに形成された板状の実装ツール6を用いて複数個のチップ2全体に一斉に加圧することで、複数個のチップ2を一括して基板1に本接合する。具体的には、実装ツール6を基板1上の全てのチップ2に接触させ、実装ツール6のヒータ(図示せず)により各チップ2を第2規定温度に加熱した状態で、実装ツール6側からチップ2に適宜の規定圧力を規定時間だけ印加する。これにより、本接合工程では、各チップ2の第2金属層21と基板1の第1金属層11とを共晶接合させる。第2規定温度は、例えば、第2金属層21の材料がAuSn、第1金属層11の材料がAuの場合、AuSnの溶融温度よりも高い温度に設定すればよい。規定圧力は、例えば、1個のチップ当りの荷重が22kg/cm2~50kg/cm2程度の範囲となるように適宜設定すればよい。また、規定時間は、例えば、0.5秒~10秒程度の範囲で適宜設定すればよい。なお、実装ツール6としては、例えば、シリコンウェハや金属板などを利用することができる。
 本接合工程は、空気雰囲気中ではなく、制御された雰囲気中で行うことが好ましい。制御された雰囲気としては、例えば、不活性ガス雰囲気、真空雰囲気、還元性ガス雰囲気などが挙げられる。不活性ガス雰囲気としては、例えば、N2ガス雰囲気、アルゴンガス雰囲気などが挙げられる。還元性ガス雰囲気としては、例えば、H2ガス雰囲気が挙げられる。本接合工程では、雰囲気を不活性ガス雰囲気もしくは真空雰囲気とすることにより、酸化を抑制することが可能となる。また、本接合工程では、雰囲気を還元性ガス雰囲気とすることにより、不要な酸化物を除去することが可能となる。
 本接合工程では、基板1側からの加熱を行っていないが、各チップ2側からの加熱だけでなく、ステージ3bのヒータ(図示せず)によりステージ3bを介して基板1側からの加熱も行うようにしてもよい。ここで、第2金属層21の材料がAuSn、第1金属層11の材料がAuの場合には、基板1よりも各チップ2側の温度が高くなるように、ボンディングヘッドのヒータ及びステージ3bのヒータそれぞれの温度を設定することが好ましい。なお、ステージ3bのヒータの温度は、AuSnの融点以下に設定するのが好ましい。
 液相拡散接合を行う際の接合条件は、接合界面のボイド率(未接合率)が例えば20%以下となるように設定するのが好ましい。ボイド率は、例えば、所望の接合領域の面積(例えば、所望の接合層31の面積)に占める未接合領域の面積の割合として規定することができる。所望の接合領域の面積及び未接合領域の面積は、例えば、液相拡散接合を行った後に、例えば、超音波顕微鏡による観察を行うことで得られる超音波顕微鏡像図から推測することができる。
 本接合工程で用いる設備は、上述の第2ダイボンド装置に限定するものではない。また、上述の第2ダイボンド装置を用いた本接合工程では、基板1上の複数個のチップ2を実装ツール6により加圧しているが、複数個のチップ2の加圧は適宜行えばよく、複数個のチップ2の加圧を行わないようにしてもよい。つまり、上述では実装ツール6を用いて加圧と加熱の両方により複数個のチップ2を一括して基板1に本接合していたが、加圧することなく(実装ツール6を用いることなく)、加熱のみにより複数個のチップ2を一括して基板1に本接合してもよい。この場合には、本接合工程で用いる設備として、各種のアニール装置やホットプレートなどを採用することもでき(ステージ加熱)、画像認識を利用した位置合わせを不要とすることができる。本接合工程で用いる設備は、基板1や各チップ2を直接的に加熱するものに限らず、基板1及び各チップ2の周囲の雰囲気を加熱するものでもよい(雰囲気加熱)。また、上述では実装ツール6を用いて1回の処理で加圧と加熱とを行い全てのチップ2を基板1に本接合していたが、複数回に分けて(例えば2~3回)処理が行われてもよい。
 本実施形態の実装方法では、仮接合の後に本接合を行うことにより、接合強度を向上させることが可能となるとともに、ボイドを低減することが可能となる。これにより、本実施形態の実装方法では、各チップ2と基板1との間の熱抵抗を低減することが可能となるとともに、熱抵抗のばらつきを低減することが可能となる。
 以上説明した本実施形態の実装方法は、基板1に複数個のチップ2の各々を仮接合する仮接合工程と、基板1に仮接合された複数個のチップ2の各々を基板1に本接合する本接合工程とを備える。ここで、仮接合工程は、第1ステップと第2ステップとからなる第1基本工程を、基板1に実装する複数個のチップ2の数だけ繰り返す。第1ステップは、基板1の第1金属層11とチップ2の第2金属層21とを位置合わせする。第2ステップは、第2金属層21と第1金属層11とを固相拡散接合することで仮接合する。また、本接合工程は、基板1に仮接合されている複数個のチップ2の各々の第2金属層21と基板1の各第1金属層11とを液相拡散接合することで複数個のチップ2を一括して基板1に本接合する。よって、本実施形態の実装方法では、仮接合工程と本接合工程とを別々の設備を用いて行うことができるので、互いに異なる2枚の基板1に対して仮接合工程と本接合工程とを並行して行うことが可能となる。よって、本実施形態の実装方法では、実装工程のタクトタイムの短縮化を図ることが可能となる。また、基板1を加熱した状態でチップ2を一個ずつ液相拡散接合する場合には、最初に液相拡散接合したチップ2と最後に液相拡散接合したチップ2とで熱履歴差が大きい。これに対して、本実施形態の実装方法では、仮接合工程での仮接合を行う際に常温もしくはチップ2側からのみの加熱を行うようにし、本接合工程では複数個のチップ2を一括して基板1に本接合するようにしているので、基板1上の複数個のチップ2に熱履歴差が発生するのを抑制することが可能となる。これにより、本実施形態の実装方法では、実装工程に起因したチップ2間の特性ばらつきを低減することが可能となるとともに、基板1に初期に本接合されたチップ2の寿命が他のチップ2に比べて短くなるのを抑制することが可能となる。
 この実装方法においては、固相拡散接合を第1規定温度で行い、液相拡散接合をチップ2側と基板1側との少なくとも一方側からの加熱によって第1規定温度よりも高い第2規定温度で行うことが好ましい。これにより、この実装方法では、チップ2と基板1との本接合の前後において、チップ2の位置がずれるのを抑制することが可能となり、また、基板1上の複数個のチップ2の熱履歴を揃えることが可能となる。
 また、実装方法では、基板1としてシリコンウェハから形成されたウェハを採用することにより、第1金属層11の下地の表面粗さを小さくすることが可能となり、第1金属層11の表面粗さを小さくすることが可能となる。よって、この実装方法では、第1金属層11の表面粗さに起因した仮接合や本接合でのボイドの発生を抑制することが可能となり、接合強度を向上させることが可能となる。第1金属層11の表面粗さについては、例えば、日本工業規格JIS B 0601-2001(国際標準化機構ISO 4287-1997)で規定されている算術平均粗さRaが10nm以下であることが好ましく、数nm以下であることが、より好ましい。
 本発明を幾つかの好ましい実施形態によって記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。

Claims (8)

  1.  基板上に複数個のチップを実装する実装方法であって、前記基板に前記複数個のチップの各々を仮接合する仮接合工程と、前記基板に仮接合された前記複数個のチップの各々を前記基板に本接合する本接合工程とを備え、前記仮接合工程は、前記基板の第1金属層と前記チップの第2金属層とを位置合わせする第1ステップと、前記第1ステップの後に前記チップ側から加圧して前記チップの前記第2金属層と前記基板の前記第1金属層とを固相拡散接合することで前記基板に前記チップを仮接合する第2ステップとからなる第1基本工程を、前記基板に実装する前記複数個のチップの数だけ繰り返し、前記本接合工程では、前記基板に仮接合されている前記複数個のチップの各々の前記第2金属層と前記基板の前記第1金属層とを液相拡散接合することで前記複数個のチップを一括して前記基板に本接合することを特徴とする実装方法。
  2.  前記固相拡散接合は、第1規定温度で行い、前記液相拡散接合は、前記チップ側と前記基板側との少なくとも一方側からの加熱によって、前記第1規定温度よりも高い第2規定温度で行うことを特徴とする請求項1記載の実装方法。
  3.  前記第1規定温度は、前記第1金属層及び前記第2金属層が溶融しない温度であり、前記第2規定温度は、前記第1金属層及び前記第2金属層が溶融する温度であることを特徴とする請求項2記載の実装方法。
  4.  前記本接合工程では、前記複数個のチップの全ての一表面に対して接触可能な大きさに形成された板状の実装ツールを用いて前記複数個のチップ全体に一斉に加圧することで、前記複数個のチップを一括して前記基板に本接合することを特徴とする請求項1~3のいずれか1項に記載の実装方法。
  5.  前記本接合工程では、加圧することなく、加熱のみにより前記複数個のチップを一括して前記基板に本接合することを特徴とする請求項1~3のいずれか1項に記載の実装方法。
  6.  前記固相拡散接合は、超音波接合もしくは表面活性化接合であることを特徴とする請求項1~3のいずれか1項に記載の実装方法。
  7.  前記固相拡散接合は、超音波接合もしくは表面活性化接合であることを特徴とする請求項4記載の実装方法。
  8.  前記固相拡散接合は、超音波接合もしくは表面活性化接合であることを特徴とする請求項5記載の実装方法。
PCT/JP2013/001597 2012-08-03 2013-03-12 実装方法 WO2014020790A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-173094 2012-08-03
JP2012173094A JP2014033100A (ja) 2012-08-03 2012-08-03 実装方法

Publications (1)

Publication Number Publication Date
WO2014020790A1 true WO2014020790A1 (ja) 2014-02-06

Family

ID=50027508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001597 WO2014020790A1 (ja) 2012-08-03 2013-03-12 実装方法

Country Status (3)

Country Link
JP (1) JP2014033100A (ja)
TW (1) TW201407693A (ja)
WO (1) WO2014020790A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461235B2 (en) 2016-11-08 2019-10-29 Nichia Corporation Method of manufacturing semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6367084B2 (ja) 2014-10-30 2018-08-01 株式会社東芝 半導体チップの接合方法及び半導体チップの接合装置
KR101633872B1 (ko) * 2014-11-27 2016-06-28 한국광기술원 형광체 시트를 이용한 발광다이오드 소자 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111191A (ja) * 2000-10-04 2002-04-12 Hitachi Ltd はんだ接合方法およびこれを用いた電子回路装置
JP2007027549A (ja) * 2005-07-20 2007-02-01 Fujitsu Ltd Icチップ実装方法
JP2011200930A (ja) * 2010-03-26 2011-10-13 Gunma Univ 金属部材の接合方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254244A (ja) * 2004-03-09 2005-09-22 High Energy Accelerator Research Organization 電子・陽電子コライダーの加速管の製造方法
JP5571988B2 (ja) * 2010-03-26 2014-08-13 パナソニック株式会社 接合方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111191A (ja) * 2000-10-04 2002-04-12 Hitachi Ltd はんだ接合方法およびこれを用いた電子回路装置
JP2007027549A (ja) * 2005-07-20 2007-02-01 Fujitsu Ltd Icチップ実装方法
JP2011200930A (ja) * 2010-03-26 2011-10-13 Gunma Univ 金属部材の接合方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461235B2 (en) 2016-11-08 2019-10-29 Nichia Corporation Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2014033100A (ja) 2014-02-20
TW201407693A (zh) 2014-02-16

Similar Documents

Publication Publication Date Title
JP6044885B2 (ja) 実装方法
JP6550971B2 (ja) 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
JP5098165B2 (ja) ウェハの接合方法、接合装置及び積層型半導体装置の製造方法
WO2012133760A1 (ja) 電子部品実装方法、電子部品実装システムおよび基板
TWI629754B (zh) Manufacturing apparatus and manufacturing method of metal-ceramic plate laminate, manufacturing apparatus of substrate for power module, and manufacturing method
TWI670776B (zh) 半導體裝置的製造方法以及封裝裝置
JP2011054827A (ja) 半導体装置の製造方法及び表面保護テープ
JP2003282819A (ja) 半導体装置の製造方法
WO2020196225A1 (ja) チップ転写板ならびに半導体チップ積層方法および半導体装置の製造方法
JP2011096961A (ja) Led素子の製造方法
WO2014020790A1 (ja) 実装方法
WO2016158935A1 (ja) 半導体装置の製造方法、半導体実装装置および半導体装置の製造方法で製造されたメモリデバイス
JP2016162985A (ja) 半導体装置の製造方法
JPWO2013069743A1 (ja) 光集積デバイス
WO2007099759A1 (ja) 部品接合方法、部品積層方法および部品接合構造体
WO2018062423A1 (ja) 半導体装置の製造方法および実装装置
US10607962B2 (en) Method for manufacturing semiconductor chips
JP5022093B2 (ja) 実装方法
WO2016002804A1 (ja) 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置
TWI581363B (zh) Semiconductor manufacturing device
JP2018137262A (ja) 実装装置および実装方法
JP3637438B2 (ja) 配線基板の製造方法
WO2013046992A1 (ja) チップの三次元実装方法
WO2019021527A1 (ja) 光半導体ユニットの製造方法
WO2015105149A1 (ja) 半導体装置の実装方法および実装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826401

Country of ref document: EP

Kind code of ref document: A1