WO2014017081A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2014017081A1
WO2014017081A1 PCT/JP2013/004489 JP2013004489W WO2014017081A1 WO 2014017081 A1 WO2014017081 A1 WO 2014017081A1 JP 2013004489 W JP2013004489 W JP 2013004489W WO 2014017081 A1 WO2014017081 A1 WO 2014017081A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge port
valve body
outflow
hydraulic diameter
discharge
Prior art date
Application number
PCT/JP2013/004489
Other languages
English (en)
French (fr)
Inventor
和貴 堀
孝志 清水
孝一 田中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49996908&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014017081(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP13823006.5A priority Critical patent/EP2886864B1/en
Priority to ES13823006.5T priority patent/ES2672321T3/es
Priority to US14/417,144 priority patent/US20150211508A1/en
Priority to CN201380039340.9A priority patent/CN104487708B/zh
Publication of WO2014017081A1 publication Critical patent/WO2014017081A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • F04B39/1086Adaptations or arrangements of distribution members the members being reed valves flat annular reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • F04B39/108Adaptations or arrangements of distribution members the members being reed valves circular reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1085Valves; Arrangement of valves having means for limiting the opening height
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/06Valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7879Resilient material valve
    • Y10T137/7888With valve member flexing about securement
    • Y10T137/7891Flap or reed

Definitions

  • the present invention relates to a compressor provided with a discharge valve.
  • Patent Document 1 discloses a rotary compressor including a so-called reed valve as a discharge valve.
  • Patent Document 2 discloses a discharge valve similar to Patent Document 1.
  • a discharge valve is provided in the main bearing.
  • the discharge valve includes a plate-like valve body provided so as to cover the outflow end of the discharge port.
  • the valve body blocks the discharge port to prevent the back flow of fluid to the compression chamber.
  • the valve body is elastically deformed and separated from the outflow end of the discharge port. For this reason, the high-pressure fluid in the compression chamber flows out through the clearance between the outlet end of the discharge port and the valve body.
  • JP 2008-101503 A Japanese Patent Laid-Open No. 2002-070768
  • the inventors of the present invention have little pressure loss when the fluid flows out from the discharge port even if the lift amount is further increased. It was found that it did not decrease. The reason will be explained. As will be described in detail later, the larger the lift amount of the valve body of the discharge valve, the larger the vortex generated around the outflow end of the discharge port. This vortex prevents the flow of fluid passing through the gap between the outlet end of the discharge port and the valve body.
  • the present invention has been made in view of the above points, and an object thereof is to improve the efficiency of the compressor by appropriately setting the lift amount of the valve body of the discharge valve.
  • the first invention includes a fixed side member (45) that forms a compression chamber (36), and a movable side member (38) that is driven to rotate and changes the volume of the compression chamber (36), and the fluid is
  • the compressor is designed to be sucked into the compression chamber (36) and compressed.
  • the fixed side member (45) is formed with a discharge port (50) that passes through the fixed side member (45) and guides fluid from the compression chamber (36), and the discharge port (50 ) Is provided, and the discharge valve (60) closes the discharge port (50) by covering the outflow end (52) of the discharge port (50).
  • valve body (61) which opens the discharge port (50) by floating from the outflow end (52) of the discharge port (50), and the area of the inflow end (51) of the discharge port (50) is Ai. 51)
  • the reference lift amount of the valve body (61) is defined as ho, and is formed between the outlet end (52) of the discharge port (50) and the valve body (61).
  • the discharge port (50) The ratio (Do / Di) of the hydraulic diameter Do of the outflow channel (70) to the hydraulic diameter Di of the inflow end (51) is 0.5 or less.
  • the discharge port (50) is formed in the stationary member (45) of the compressor (10).
  • the inflow end (51) of the discharge port (50) communicates with the compression chamber (36).
  • the outflow end (52) of the discharge port (50) is opened and closed by the valve body (61) of the discharge valve (60).
  • the valve body (61) of the discharge valve (60) covers the outflow end (52) of the discharge port (50)
  • the fluid in the compression chamber (36) flows into the outflow end (52) of the discharge port (50). Flows out of the stationary member (45) through the gap between the valve body (61) and the valve body (61).
  • the outflow end (52) of the discharge port (50) and the valve body (61) are parallel.
  • the distance between the outflow end (52) of the discharge port (50) and the valve body (61) that is, the lift amount of the valve body (61)
  • the cross-sectional area Ao of the outflow side flow path (70) formed between the outflow end (52) of the discharge port (50) and the valve body (61) has a circumference of the outflow end of the discharge port (50).
  • the height is equal to the surface area of the cylinder (ie, Lo ⁇ h) equal to the lift amount h of the valve disc (61).
  • the valve body (61) is inclined with respect to the outflow end (52) of the discharge port (50).
  • the distance between the end (52) and the valve body (61) is not uniform throughout the outflow end (52) of the discharge port (50). Therefore, even in such a case, the cross-sectional area Ao of the outflow passage (70) is set in the same manner as when the lift amount of the valve body (61) is uniform over the entire outflow end (52) of the discharge port (50).
  • a value representative of the distance between each part of the outflow end (52) of the discharge port (50) and the valve body (61) is defined as a reference lift amount ho so that it can be calculated.
  • the cross-sectional area Ao of the outflow side channel (70) is expressed by the following expression 02.
  • Ao Lo x ho (Equation 02)
  • the ratio (Do / Di) of the hydraulic diameter Do of the outflow channel (70) to the hydraulic diameter Di of the inflow end (51) of the discharge port (50) is 0.5 or less (Do / Di ⁇ 0.5).
  • the hydraulic diameter Do of the outflow side channel (70) is twice the reference lift amount ho. Therefore, in the present invention, the reference lift amount ho of the valve body (61) of the discharge valve (60) is set to a value corresponding to the hydraulic diameter Di of the inflow end (51) of the discharge port (50).
  • the ratio (Do / Di) of the hydraulic diameter Do of the outflow side passage (70) to the hydraulic diameter Di of the inflow end (51) of the discharge port (50) is set. 0.4 or less.
  • the ratio (Do / Di) of the hydraulic diameter Do of the outflow passage (70) to the hydraulic diameter Di of the inflow end (51) of the discharge port (50) is 0.4 or less (Do / Di ⁇ 0.4).
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is a value corresponding to the hydraulic diameter Di of the inflow end (51) of the discharge port (50).
  • the ratio of the hydraulic diameter Do of the outflow passage (70) to the hydraulic diameter Di of the inflow end (51) of the discharge port (50) (Do / Di) is set to 0.25 or more.
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is set so as to be 0.4).
  • the fixed side member (45) has a chamfered portion (a chamfered portion extending over the entire circumference of the outflow end (52) of the discharge port (50)). 56) is formed.
  • the chamfered portion (56) of the stationary member (45) is formed over the entire circumference of the outflow end (52) of the discharge port (50). For this reason, in the portion near the outflow end (52) of the discharge port (50), the flow path cross-sectional area gradually expands toward the outflow end (52) of the discharge port (50).
  • the chamfered portion (56) is formed on the fixed side member (45), the area of the outflow end (52) of the discharge port (50) is larger than when the chamfered portion (56) is not formed.
  • the area of the outflow end (52) of the discharge port (50) is the area of the portion of the valve body (61) that covers the outflow end (52) of the discharge port (50) where the pressure of the discharge port (50) acts (that is, , Pressure receiving area). For this reason, when the area of the outflow end (52) of the discharge port (50) increases, the pressure receiving area of the valve body (61) increases, and the valve body (61) is removed from the outflow end (52) of the discharge port (50). The force in the pulling direction increases.
  • the width W of the chamfered portion (56) satisfies the relationship 0 ⁇ H / W ⁇ 0.5.
  • the volume of the discharge port (50) is a dead volume that does not change even when the movable member (38) rotates. For this reason, in order to improve the efficiency of the compressor (10), it is desirable that the volume of the discharge port (50) is small.
  • the shape of the chamfered portion (56) formed on the fixed side member (45) is such that the height H and width W of the chamfered portion (56) are 0 ⁇ H / W ⁇ 0.5.
  • the shape will satisfy. That is, the height H of the chamfered portion (56) is suppressed to less than half of the width W of the chamfered portion (56). For this reason, while increasing the pressure receiving area of the valve body (61) covering the outflow end (52) of the discharge port (50), the amount of increase in the volume of the discharge port (50) can be kept low.
  • the sixth invention is the invention according to any one of the first to fifth inventions, wherein the discharge port (50) has an oval or elliptical cross-sectional shape.
  • the discharge port (50) having an oval or elliptical cross-sectional shape is formed in the stationary member (45).
  • the ratio (Do / Di) of the hydraulic diameter Do of the outflow passage (70) to the hydraulic diameter Di of the inflow end (51) of the discharge port (50) is 0.5 or less.
  • the reference lift amount ho of the valve element (61) of the discharge valve (60) is set. If the lift amount of the valve body (61) is set in this way, the reference lift amount ho of the valve body (61) becomes a relatively small value, and the outflow end (52) of the discharge port (50) and the valve body (61) The vortices generated when the fluid passes between them are reduced. Therefore, according to the present invention, the pressure loss when the fluid flows out from the discharge port (50) can be kept low, and the efficiency of the compressor (10) can be improved.
  • the discharge valve (60) By the way, if the discharge valve (60) is not closed at an appropriate timing, the fluid discharged from the compression chamber (36) through the discharge port (50) may flow back to the discharge port (50).
  • the lift amount of the valve body (61) of the discharge valve (60) is increased, the time required for the movement of the valve body (61) becomes longer, so that the valve body (61) is connected to the outflow end ( 52)
  • the closing timing may be delayed from the appropriate timing.
  • the timing for the valve body (61) to close the outflow end (52) of the discharge port (50) is delayed, the amount of fluid that flows back from the outside of the fixed side member (45) to the compression chamber (36) increases, and compression occurs. The efficiency of the machine (10) decreases.
  • the reference lift amount ho of the valve body (61) is set to a relatively small value. For this reason, the delay of the timing when the valve body (61) closes the outflow end (52) of the discharge port (50) can be shortened, and the amount of fluid flowing back from the outside of the stationary member (45) to the compression chamber (36) can be reduced. Can be reduced. Therefore, according to the present invention, the efficiency of the compressor (10) can be improved also in this respect.
  • the ratio (Do / Di) of the hydraulic diameter Do of the outflow side flow path (70) to the hydraulic diameter Di of the inflow end (51) of the discharge port (50) is 0.4 or less.
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is set. For this reason, the delay of the timing which a valve body (61) closes the outflow end (52) of a discharge port (50) can be shortened further. Therefore, according to the present invention, the amount of fluid that flows back from the outside of the stationary member (45) to the compression chamber (36) can be further reduced, and as a result, the efficiency of the compressor (10) can be further improved. .
  • the outflow end (52) of the discharge port (50) is closed at an appropriate timing by the valve body (61) of the discharge valve (60). It is. For this reason, if the lift amount of the valve body (61) of the discharge valve (60) is below a certain level, the efficiency of the compressor (10) can be improved even if the lift amount of the valve body (61) is further reduced. No longer contributes.
  • the reference lift amount ho of the valve body (61) of (60) is set. Therefore, according to the present invention, the reference lift amount ho of the valve body (61) can be set within a range in which the amount of fluid flowing back to the compression chamber (36) can be reduced.
  • the chamfered portion (56) extending over the entire circumference of the outflow end (52) of the discharge port (50) is formed in the fixed side member (45). For this reason, compared with the case where the chamfered part (56) is not formed in the stationary member (45), the area of the outflow end (52) of the discharge port (50) is enlarged. As a result, the pressure receiving area of the valve body (61) covering the outflow end (52) of the discharge port (50) can be increased, and the valve body (61) is pulled away from the outflow end (52) of the discharge port (50). The direction force can be increased.
  • the chamfered portion (56) of the fifth aspect of the invention is shaped so that the height H and width W of the chamfered portion (56) satisfy the relationship of 0 ⁇ H / W ⁇ 0.5. For this reason, while increasing the pressure receiving area of the valve body (61) covering the outflow end (52) of the discharge port (50), the increase amount of the volume of the discharge port (50) can be kept low.
  • FIG. 2 is a cross-sectional view of the compression mechanism showing the AA cross section of FIG.
  • FIG. 3 is a cross-sectional view showing the main part of the cross section of the compression mechanism along the major axis of the discharge port, where (A) shows the state where the discharge valve is closed, and (B) shows the state where the discharge valve is open.
  • FIG. 4 is a cross-sectional view showing the main part of the cross section of the compression mechanism along the minor axis of the discharge port.
  • FIG. 5 is a cross-sectional view of the compression mechanism showing an enlarged main part of FIG.
  • FIG. 6 is a plan view of the front head, and shows a portion of the front head near the outflow end of the discharge port.
  • FIG. 7A is a perspective view showing the shape of an actual outflow side flow path
  • FIG. 7B is a perspective view showing the shape of a virtual outflow side flow path.
  • FIG. 8 is a table showing hydraulic diameter ratios Do / Di and the like for a plurality of reference lift amounts ho.
  • 9 is a cross-sectional view of the main part of the front head showing the flow of the gas refrigerant flowing out from the discharge port.
  • 3 shows the CC cross section of FIG. 3
  • FIG. 3B shows the
  • FIG. 10A shows the compression chamber during one rotation of the drive shaft. The change in the pressure and the lift amount of the valve body is shown, and (B) shows the change in the discharge flow rate of the refrigerant from the discharge port during one rotation of the drive shaft.
  • FIG. 11A shows the compression chamber during one rotation of the drive shaft. The change in the pressure and the lift amount of the valve body is shown, and (B) shows the change in the discharge flow rate of the refrigerant from the discharge port during one rotation of the drive shaft.
  • FIG. 11A shows the compression chamber during one rotation of the drive shaft. The change in the pressure and the lift amount of the valve body is shown, and (B) shows the change in the discharge flow rate of the refrigerant from the discharge port during
  • FIG. 12A shows the compression chamber during one rotation of the drive shaft. The change in the pressure and the lift amount of the valve body is shown, and (B) shows the change in the discharge flow rate of the refrigerant from the discharge port during one rotation of the drive shaft.
  • FIG. 13A shows the compression chamber during one rotation of the drive shaft. The change in the pressure and the lift amount of the valve body is shown, and (B) shows the change in the discharge flow rate of the refrigerant from the discharge port during one rotation of the drive shaft.
  • FIG. 12A shows the compression chamber during one rotation of the drive shaft. The change in the pressure and the lift amount of the valve body is shown, and (B) shows the change in the discharge flow rate of the refrigerant from the discharge port during one
  • FIG. 14 is a graph showing the relationship between the hydraulic diameter ratio Do / Di and the reverse flow rate of the refrigerant to the compression chamber.
  • 15 is a cross-sectional view of the front head showing the shape of the discharge port of Modification 3 of the embodiment, in which (A) shows a cross-section corresponding to the BB cross-section of FIG. 4, and (B) shows FIG. A cross section corresponding to the CC cross section is shown.
  • FIG. 16 is a cross-sectional view of the front head showing the shape of the discharge port of Modification 4 of the embodiment, where (A) shows a cross-section corresponding to the BB cross-section of FIG. A cross section corresponding to the CC cross section is shown.
  • FIG. 17 is a plan view of a front head according to Modification 5 of the embodiment, and shows a portion of the front head near the outflow end of the discharge port.
  • FIG. 18 is a cross-sectional view of a compression mechanism of Modification 6 of the embodiment, and shows a cross-section corresponding to FIG.
  • the compressor (10) of the present embodiment is provided in a refrigerant circuit that performs a vapor compression refrigeration cycle, and sucks and compresses refrigerant evaporated in an evaporator.
  • the compressor (10) of this embodiment is a hermetic compressor in which a compression mechanism (30) and an electric motor (20) are accommodated in a casing (11).
  • Casing (11) is a cylindrical sealed container in an upright state.
  • the casing (11) includes a cylindrical body (12) and a pair of end plates (13, 14) that closes the end of the body (12).
  • a suction pipe (15) is attached to the lower part of the trunk (12).
  • a discharge pipe (16) is attached to the upper end plate (13).
  • the electric motor (20) is disposed above the compression mechanism (30).
  • the electric motor (20) includes a stator (21) and a rotor (22).
  • the stator (21) is fixed to the body (12) of the casing (11).
  • the rotor (22) is attached to a drive shaft (23) of a compression mechanism (30) described later.
  • the compression mechanism (30) is arranged at the lower part in the casing (11).
  • the compression mechanism (30) is a so-called oscillating piston type rotary fluid machine.
  • the compression mechanism (30) includes a front head (31), a cylinder (32), and a rear head (33).
  • the cylinder (32) is a thick disk-shaped member (see FIG. 2).
  • a circular hole that forms a compression chamber (36) together with a piston (38) to be described later is formed at the center of the cylinder (32).
  • the front head (31) is a plate-like member that closes the upper end surface of the cylinder (32).
  • a main bearing (31a) that supports the drive shaft (23) protrudes from the center of the front head (31).
  • the rear head (33) is a plate-like member that closes the lower end surface of the cylinder (32).
  • a sub-bearing (33a) that supports the drive shaft (23) protrudes from the center of the rear head (33).
  • the cylinder (32) is fixed to the body (12) of the casing (11).
  • the front head (31), the cylinder (32), and the rear head (33) are fastened to each other by bolts, and constitute a fixed side member (45).
  • the compression mechanism (30) includes a drive shaft (23).
  • the drive shaft (23) includes a main shaft portion (24) and an eccentric portion (25).
  • the eccentric portion (25) is disposed near the lower end of the main shaft portion (24).
  • the eccentric portion (25) is formed in a cylindrical shape having a larger diameter than the main shaft portion (24), and is eccentric with respect to the main shaft portion (24).
  • an oil supply passage is formed in the drive shaft (23). Lubricating oil collected at the bottom of the casing (11) is supplied to the sliding portions of the bearings (31a, 33a) and the compression mechanism (30) through the oil supply passage.
  • the compression mechanism (30) includes a piston (38) that is a movable member and a blade (43).
  • the piston (38) is formed in a slightly thick cylindrical shape.
  • An eccentric part (25) of the drive shaft (23) is rotatably fitted in the piston (38).
  • the outer peripheral surface (39) of the piston (38) is in sliding contact with the inner peripheral surface (35) of the cylinder (32).
  • a compression chamber (36) is formed between the outer peripheral surface (39) of the piston (38) and the inner peripheral surface (35) of the cylinder (32).
  • the blade (43) is a flat plate-like member protruding from the outer peripheral surface (39) of the piston (38), and is formed integrally with the piston (38).
  • the blade (43) partitions the compression chamber (36) into a high pressure chamber (36a) and a low pressure chamber (36b).
  • the compression mechanism (30) includes a pair of bushes (41).
  • the pair of bushes (41) are fitted into the bush grooves (40) of the cylinder (32), and sandwich the blade (43) from both sides.
  • the blade (43) integrated with the piston (38) is supported by the cylinder (32) through the bush (41).
  • the suction port (42) that penetrates the cylinder (32) in the radial direction is formed in the cylinder (32).
  • the suction port (42) communicates with the low pressure chamber (36b) of the compression chamber (36).
  • One end of the suction port (42) opens to the inner peripheral surface (35) of the cylinder (32).
  • the opening end of the suction port (42) on the inner peripheral surface (35) is provided at a position adjacent to the bush (41) (right next to the bush (41) in FIG. 2).
  • the suction pipe (15) is inserted into the other end of the suction port (42).
  • a discharge port (50) is formed in the front head (31).
  • the discharge port (50) is a through hole that penetrates the front head (31) in the thickness direction (see FIG. 1).
  • the discharge port (50) communicates with the high pressure chamber (36a) of the compression chamber (36).
  • the opening end of the discharge port (50) is located on the opposite side of the bush (41) from the suction port (42) (next to the left of the bush (41) in FIG. 2). Has been placed.
  • the detailed shape of the discharge port (50) will be described later.
  • the front head (31) is provided with a discharge valve (60) consisting of a reed valve. As shown in FIG. 3, the discharge valve (60) is attached to the upper surface of the front head (31).
  • the discharge valve (60) includes a valve body (61), a valve presser (62), and a fixing pin (63).
  • the valve body (61) is a thin and flat thin plate member.
  • the material of the valve body (61) is, for example, spring steel.
  • the valve body (61) is provided such that its tip end covers the outflow end (52) of the discharge port (50).
  • the front surface (61a) of the valve body (61) is in close contact with the peripheral edge (52a) of the outflow end (52) of the discharge port (50).
  • the valve presser (62) is a metal member having a slightly thick wall and high rigidity.
  • the valve presser (62) is formed in an elongated plate shape corresponding to the shape of the valve body (61). Further, the tip of the valve presser (62) has a slightly curved shape upward.
  • the valve presser (62) is disposed so as to overlap the valve body (61).
  • the base end portion of the valve presser (62) and the base end portion of the valve body (61) are fixed to the front head (31) by a fixing pin (63).
  • the compression mechanism (30) of the present embodiment includes the cylinder (32), the front head (31) and the rear head (33) that are closing members for closing the end of the cylinder (32), and the cylinder.
  • a rotary fluid machine provided.
  • the gas pressure (dome pressure) in the internal space of the casing (11) acts on the back surface (61b) of the valve body (61) of the discharge valve (60). For this reason, while the gas pressure in the high pressure chamber (36a) is lower than the pressure in the dome, the discharge valve (60) is closed as shown in FIG.
  • the piston (38) moves and the gas pressure in the high pressure chamber (36a) gradually increases, and the gas pressure in the high pressure chamber (36a) exceeds the pressure in the dome
  • the valve body of the discharge valve (60) ( The tip of 61) moves away from the outflow end (52) of the discharge port (50). As a result, the discharge valve (60) is in the open state shown in FIG.
  • the gas refrigerant in the high pressure chamber (36a) passes through the discharge port (50), and the gap between the outlet end (52) of the discharge port (50) and the valve body (61). And is discharged into the internal space of the casing (11) (that is, outside the compression mechanism (30)).
  • the high-pressure gas refrigerant discharged from the compression mechanism (30) is led out of the casing (11) through the discharge pipe (16).
  • the discharge port (50) is a straight through hole that penetrates the front head (31) in the plate thickness direction (see FIG. 5).
  • the inflow end (51) of the discharge port (50) opens to the front surface of the front head (31) (that is, the surface on the cylinder (32) side).
  • the outflow end (52) of the discharge port (50) opens to the back surface of the front head (31) (that is, the surface opposite to the cylinder (32)).
  • the portion surrounding the outflow end (52) of the discharge port (50) is a sheet portion (55) that is one step higher than the surroundings.
  • the flow path cross section of the discharge port (50) (that is, the cross section orthogonal to the axial direction of the discharge port (50)) is oval (see FIG. 6).
  • the discharge port (50) is arranged so that the minor axis thereof is along the radial direction of the inner peripheral surface (35) of the cylinder (32) (see FIG. 2).
  • the front head (31) is formed with a chamfered portion (56) along the peripheral edge (52a) of the outflow end (52) of the discharge port (50).
  • the chamfered portion (56) is formed over the entire circumference of the outflow end (52) of the discharge port (50) (see FIG. 6).
  • the chamfered portion (56) has an axial height H of the discharge port (50) and a width W in a direction perpendicular to the axial direction of the discharge port (50) over the entire circumference of the chamfered portion (56). It is constant (see FIG. 5).
  • the height H and width W of the chamfered portion (56) satisfy the relationship of 0 ⁇ H / W ⁇ 0.5. That is, the height H of the chamfered portion (56) is less than half the width W of the chamfered portion (56) (0 ⁇ H ⁇ W / 2).
  • a portion below the chamfered portion (56) constitutes a main passage portion (53).
  • the cross section of the flow path of the main passage portion (53) has an elliptical shape in which the radius of curvature of the arc portion is Ri and the length of the straight portion is Ls.
  • the shape of the flow path cross section of the main passage portion (53) is constant over the entire length.
  • the main passage section (53), the major axis of the channel cross section length D 1 and a short diameter length of D 2 has a constant over the entire length of the main passage portion (53). Therefore, the shape of the inflow end (51) of the discharge port (50) is also an oval shape in which the radius of curvature of the arc portion is Ri and the length of the straight portion is Ls.
  • the shape of the outflow end (52) of the discharge port (50) is an oval that is slightly larger than the inflow end (51) of the discharge port (50).
  • the numerical values shown here are merely examples.
  • the area of the outflow end (52) of the discharge port (50) is larger than when the chamfered portion (56) is not formed. Expands.
  • the area of the outflow end (52) of the discharge port (50) is equal to the area of the front surface (61a) of the valve body (61) where the pressure of the discharge port (50) acts (that is, the pressure receiving area). For this reason, when the area of the outflow end (52) of the discharge port (50) increases, the pressure receiving area of the valve body (61) increases, and the valve body (61) is removed from the outflow end (52) of the discharge port (50). The force in the pulling direction increases.
  • the width W of the chamfered portion (56) is the same, the smaller the height H of the chamfered portion (56) is, the more the volume of the discharge port (50) is increased by forming the chamfered portion (56). Get smaller.
  • the volume of the discharge port (50) is a dead volume that does not change even when the piston (38) rotates. For this reason, in order to improve the efficiency of the compressor (10), it is desirable to make the volume of the discharge port (50) as small as possible.
  • the height of the chamfered portion (56) is considered in consideration of the improvement in efficiency due to the reduction in overcompression loss and the reduction in efficiency due to the increase in dead volume.
  • H is less than half the width W of the chamfered portion (56).
  • the pressure loss when the gas refrigerant is discharged from the compression mechanism (30) is suppressed to a low level, and the compressor is caused by the closing delay of the valve body (61) of the discharge valve (60).
  • the lift amount of the valve body (61) of the discharge valve (60) is set so that the efficiency reduction of (10) is suppressed.
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is the hydraulic diameter Di of the inflow end (51) of the discharge port (50). It is set based on.
  • the shape of the inflow end (51) of the discharge port (50) is an oval shape having the radius of curvature Ri of the arc portion and the length Ls of the straight portion. Therefore, the length (periphery length Li) of the peripheral edge (51a) of the inflow end (51) of the discharge port (50) is expressed by the following expression 1, and the area Ai is expressed by the following expression 2.
  • the peripheral length Li of the inflow end (51) of the discharge port (50) is the wet edge length of the inflow end (51) of the discharge port (50). Accordingly, the hydraulic diameter Di of the inflow end (51) of the discharge port (50) is expressed by the following Equation 3.
  • Equation 3 is the same as Equation 01 above.
  • Li 2 ⁇ Ri + 2Ls (Equation 1)
  • Ai ⁇ Ri 2 + 2Ri ⁇ Ls (Equation 2)
  • Di 4 (Ai / Li) (Equation 3)
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is the maximum lift amount of the valve body (61) on the center line CL of the discharge port (50).
  • the reference lift amount ho is the “discharge port (50) on the center line CL of the discharge port (50) when the entire back surface (61b) of the valve body (61) is in contact with the valve presser (62). ) Outflow end (52) "to the" front surface (61a) of the valve body (61) ".
  • the center line CL of the discharge port (50) is the intersection of the major axis and minor axis at the inflow end (51) of the ejection port (50) and the major axis and minor axis at the outflow end (52) of the discharge port (50). A straight line passing through the intersection.
  • the center line CL is orthogonal to the inflow end (51) and the outflow end (52) of the discharge port (50).
  • the front surface (61a) of the valve body (61) is in contact with the outflow end (52) of the discharge port (50). It is inclined. For this reason, as shown in FIG. 5, the distance from the outflow end (52) of the discharge port (50) to the front surface (61a) of the valve body (61) (that is, the lift amount of the valve body (61)) is the maximum.
  • the value is h 1 and the minimum value is h 2 .
  • the shape of the outflow end (52) of the discharge port (50) is an oval.
  • the cross-sectional shape of the outflow side flow path (70) is a shape as shown in FIG. 7A (that is, the same shape as the side surface of the cylindrical body whose upper surface is inclined with respect to the lower surface).
  • the lower peripheral edge (72) of the outflow side channel (70) has the same oval shape as the peripheral edge (52a) of the outflow end (52) of the discharge port (50).
  • the upper peripheral edge (71) of the outflow channel (70) has a shape obtained by projecting the peripheral edge (52a) of the outflow end (52) of the discharge port (50) onto the front surface (61a) of the valve body (61). Become.
  • the height of the outflow-side passage (70), the maximum value of h 1, and the minimum value becomes h 2.
  • the front surface (61a) of the valve body (61) is a flat surface that is not substantially curved.
  • the reference lift amount ho of the valve body (61) is substantially equal to the average value ((h 1 + h 2 ) / 2) of the maximum value h 1 and the minimum value h 2 of the lift amount of the valve body (61). equal.
  • the channel cross-sectional area of the actual outflow side channel (70) shown in FIG. 7 (A) is substantially the same as the channel cross-sectional area of the virtual outflow side channel (75) shown in FIG. 7 (B). Is equal to
  • the front surface (61a) of the valve body (61) is parallel to the outflow end (52) of the discharge port (50), and the discharge port (50) Between the outlet end (52) of the discharge port (50) and the valve body (61) when the distance from the outlet end (52) of the valve to the front surface (61a) of the valve body (61) is the reference lift amount ho It is a channel formed.
  • the cross-sectional shape of this virtual outflow side flow path (75) is the same shape as the side surface of the cylindrical body whose upper surface and lower surface are parallel.
  • the virtual outflow side flow path (75) shown in FIG. 7B is treated as being substantially equivalent to the actual outflow side flow path (70) shown in FIG. 7A.
  • the hydraulic diameter of the actual outflow side channel (70) shown in FIG. 7 (A) is treated as being substantially equal to the hydraulic diameter of the virtual outflow side channel (75) shown in FIG. 7 (B). Calculation is based on the following formulas 4-6.
  • the upper periphery (76) and the lower periphery (77) of the virtual outflow channel (75) are shaped like the lower periphery (72) of the actual outflow channel (70). Is the same as the shape of the outflow end (52) of the discharge port (50).
  • the peripheral length of the virtual outflow side channel (75) is equal to the peripheral length Lo of the outflow end (52) of the discharge port (50). For this reason, the channel cross-sectional area Ao of the virtual outflow side channel (75) is expressed by Equation 5.
  • Expression 5 is the same as Expression 02 described above.
  • Ao Lo x ho (Equation 5)
  • the peripheral length Lo of the outflow end (52) of the discharge port (50) is 30.1 mm.
  • the channel cross-sectional area Ao of the virtual outflow side channel (75) and its hydraulic diameter Do are functions of the reference lift amount ho.
  • FIG. 8 shows the values of the channel cross-sectional area Ao and the hydraulic diameter Do for each case where the reference lift amount ho is 0.8 mm, 1.0 mm, 1.2 mm, 1.4 mm, and 1.6 mm.
  • the ratio (Do / Di) of the hydraulic diameter Do of the outflow side channel (70) to the hydraulic diameter Di of the inflow end (51) of the discharge port (50) is expressed by the following equation (7).
  • FIG. 8 shows the hydraulic diameter Do of the outflow channel (70) and the hydraulic diameter ratio for each case where the reference lift ho is 0.8 mm, 1.0 mm, 1.2 mm, 1.4 mm, and 1.6 mm. Shows the value of Do / Di.
  • the hydraulic diameter ratio Do / Di is a value of 0.25 or more and 0.5 or less.
  • the hydraulic diameter ratio Do / Di is larger than 0.5. Therefore, each case where the reference lift amount ho is 0.8 mm, 1.0 mm, 1.2 mm, and 1.4 mm is an embodiment of the present invention.
  • the reference lift amount ho is 1.6 mm, this is a comparative example that is not an embodiment of the present invention.
  • the value of the hydraulic diameter ratio Do / Di shown in FIG. 8 is a value calculated using the following formula 9.
  • Expression 9 is an expression obtained by substituting Expressions 1 to 3 and Expression 6 into Do / Di.
  • the gas refrigerant discharged from the compression mechanism (30) is first ejected from the outlet end (52) of the discharge port (50) toward the valve body (61) of the discharge valve (60), Next, it collides with the front surface (61a) of the valve body (61) and its flow direction changes, and then flows so as to spread around the outflow end (52) of the discharge port (50).
  • FIG. 10B, FIG. 11B, FIG. 12B, and FIG. 13B show the mass flow rate of the gas refrigerant discharged from the discharge port (50) of the compression mechanism (30) (that is, discharge). Change in flow rate).
  • the discharge valve (60) starts to move away from the outflow end (52) of the discharge port (50) when the rotation angle of the drive shaft (23) is around 230 °
  • the discharge flow rate is It will increase rapidly.
  • the discharge flow rate becomes maximum when the rotation angle of the drive shaft (23) is around 250 °.
  • the discharge flow rate fluctuates relatively greatly despite the lift amount of the valve body (61) being substantially constant.
  • the fluctuation of the discharge flow rate in this discharge stroke is caused by the generation and disappearance of the vertical vortex formed around the outflow end (52) of the discharge port (50).
  • the fluctuation range of the discharge flow rate in the discharge stroke decreases as the reference lift amount ho decreases. Therefore, in the compressor (10) of the present embodiment, the reference lift amount ho of the valve body (61) of the discharge valve (60) is set so that the hydraulic diameter ratio Do / Di is 0.5 or less.
  • the compression chamber (36) in the initial stage of the compression stroke communicates with the internal space of the casing (11) via the discharge port (50), and as a result, the internal space of the casing (11)
  • the existing high-pressure gas refrigerant flows backward through the discharge port (50) to the compression chamber (36).
  • the mass flow rate of the refrigerant discharged from the compression mechanism (30) per unit time decreases, and the efficiency of the compressor (10) decreases.
  • the reference lift ho of the valve body (61) of the discharge valve (60) is set so that the hydraulic diameter ratio Do / Di is 0.25 or more.
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is set so that the hydraulic diameter ratio Do / Di is 0.25 or more and 0.5 or less. .
  • the time required to open and close the valve body (61) can be reduced by suppressing the reference lift amount ho of the valve body (61) without increasing the pressure loss of the refrigerant discharged from the compression mechanism (30).
  • the time required for opening and closing the valve body (61) is shortened, the amount of the refrigerant flowing back to the compression chamber (36) due to the delay in closing the valve body (61) decreases.
  • the compressor (10) is reduced by reducing the amount of refrigerant flowing back to the compression chamber (36) while avoiding the efficiency reduction of the compression chamber (36) due to the increase in pressure loss of the discharged refrigerant. ) Efficiency can be improved.
  • the rotational speed of the compression mechanism (30) increases, the time required for one discharge stroke decreases. For this reason, as the rotational speed of the compression mechanism (30) increases, it is required to shorten the time required to open and close the valve body (61).
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is set so that the hydraulic diameter ratio Do / Di is not less than 0.25 and not more than 0.5, the rotational speed of the compression mechanism (30) is set. Even when the speed is considerably high (for example, 120 revolutions per second or more), adverse effects due to the delay in closing the valve body (61) can be suppressed.
  • the height H and width W of the chamfered portion (56) satisfy the relationship of 0 ⁇ H / W ⁇ 0.5. That is, in the present embodiment, the chamfered portion (56) has a relatively gentle inclination. Therefore, the discharge port resulting from forming the chamfered portion (56) while expanding the area (pressure receiving area) of the discharge port (50) where the pressure of the discharge port (50) acts on the front surface (61a) of the valve body (61).
  • the increase in volume of (50) can be kept small. Therefore, according to this embodiment, the efficiency of the compressor (10) can be improved by reducing the overcompression loss while suppressing the efficiency reduction of the compressor (10) due to the increase in dead volume.
  • the reference lift amount ho of the valve body (61) of the discharge valve (60) is set so that the hydraulic diameter ratio Do / Di is 0.25 or more and 0.4 or less. Is more desirable.
  • the valve body (61) when the valve body (61) is separated from the seat portion (55) when the rotation angle of the drive shaft (23) reaches 360 °, the internal space of the casing (11) becomes the discharge port (50) and There is a possibility that the amount of refrigerant that communicates with the suction port (42) via the compression chamber (36) and flows backward from the internal space of the casing (11) to the compression chamber (36) may be excessive.
  • the compression chamber The amount of refrigerant flowing back to (36) can be further reliably reduced. This point will be described with reference to FIG.
  • V 2 is less than half of ⁇ V 1 ( ⁇ V 2 ⁇ V 1 /2). Accordingly, if the reference lift amount ho of the valve body (61) of the discharge valve (60) is set so that the hydraulic diameter ratio Do / Di is 0.4 or less, the reverse flow rate of the refrigerant to the compression chamber (36) is reduced. It can be greatly reduced. For this reason, according to this modification, the efficiency of a compressor (10) can be improved reliably.
  • the channel cross-sectional area Ao of the virtual outflow side channel (75) is equal to or less than the area Ai of the inflow end (51) of the discharge port (50) (Ao ⁇ Ai). It is desirable to set the reference lift amount ho of the valve body (61) of the discharge valve (60) so that
  • the flow passage cross-sectional area of the main passage portion (53) of the discharge port (50) flows out from the inflow end (51) of the discharge port (50). It may be gradually enlarged toward the end (52).
  • the wall surface forming the main passage portion (53) of the discharge port (50) is a conical surface centered on the center line CL of the discharge port (50).
  • the major axis length D 12 of the upper end of the main passage portion (53) is longer than the major axis length D 11 of the lower end, short necked length D 22 of the upper end of the main passage portion (53) thereof It is longer than the major axis length D 21 at the lower end.
  • the chamfered portion (56) may be omitted.
  • the shape of the flow path cross section of the discharge port (50) of the present modification is a constant oval shape from the inflow end (51) to the outflow end (52) of the discharge port (50).
  • the discharge port (50) may have an elliptical cross-sectional shape.
  • a chamfered portion (56) is formed on the front head (31) over the entire periphery of the peripheral edge (52a) of the outflow end (52) of the discharge port (50). Similar to the chamfered portion (56) shown in FIGS. 5 and 6, the height H and width W of the chamfered portion (56) of the present modified example are the peripheral edge (52a) of the outflow end (52) of the discharge port (50). Is constant over the entire circumference.
  • the cross-sectional shape of the discharge port (50) of the present modification is not limited to a strict ellipse having two focal points. It may be.
  • the compression mechanism (30) of the compressor (10) of this embodiment is a rolling piston type rotary fluid machine in which a blade (43) is formed separately from a piston (38). May be.
  • a flat blade (43) is slidably fitted into a blade groove extending in the radial direction of the cylinder (32), and the bush (41) is omitted.
  • the blade (43) is pressed against the outer peripheral surface (39) of the piston (38) by the spring (44), and the tip thereof is in sliding contact with the outer peripheral surface (39) of the piston (38).
  • the cross-sectional shape of the discharge port (50) is circular, but the cross-sectional shape of the discharge port (50) of this modification is as shown in FIG. It may be oval or elliptical as shown in FIG.
  • the present invention is useful for a compressor provided with a discharge valve.
  • Compressor 30 Compression mechanism 36
  • Compression chamber 38 Piston (movable side member) 45
  • Fixed side member 50 Discharge port 51 Inlet end 52
  • Outlet end 56
  • Discharge valve 61 Disc

Abstract

 吐出ポート(50)の流入端(51)の面積をAiとし、流入端(51)の周縁長をLiとし、流入端(51)の水力直径をDi=4(Ai/Li)とする。また、吐出ポート(50)の流出端(52)の周縁長をLoとし、弁体(61)の基準リフト量をhoとし、吐出ポート(50)の流出端(52)と弁体(61)の間に形成された流出側流路(70)の断面積をAo=Lo×hoとし、流出側流路(70)の水力直径をDo=4(Ao/2Lo)とする。そして、吐出ポート(50)の流入端(51)の水力直径Diに対する流出側流路(70)の水力直径Doの比(Do/Di)を、0.5以下とする。その結果、弁体(61)のリフト量が適正化され、圧縮機の効率が向上する。

Description

圧縮機
 本発明は、吐出弁を備えた圧縮機に関するものである。
 従来より、吐出ポートを開閉するための吐出弁を備えた圧縮機が知られている。例えば、特許文献1には、いわゆるリード弁を吐出弁として備えたロータリ圧縮機が開示されている。また、特許文献2にも、特許文献1と同様の吐出弁が開示されている。
 特許文献1のロータリ圧縮機では、吐出弁が主軸受に設けられる。この吐出弁は、吐出ポートの流出端を覆うように設けられた板状の弁体を備えている。圧縮室の内圧が弁体の背圧よりも低い状態では、弁体が吐出ポートを塞いで圧縮室への流体の逆流を阻止する。一方、圧縮室の内圧が弁体の背圧よりも高い状態になると、弁体が弾性変形して吐出ポートの流出端から離れる。このため、圧縮室内の高圧流体は、吐出ポートの流出端と弁体の隙間を通って流出してゆく。
特開2008-101503号公報 特開2002-070768号公報
 ここで、圧縮機の効率を向上させるためには、吐出ポートから流体が流出する際の圧力損失をできるだけ低く抑えるのが望ましい。そして、これまでは、“吐出ポートから流体が流出する際の圧力損失を低減するには、浮き上がった状態の弁体と吐出ポートの流出端との間隔をなるべく広げるのが望ましく、そのためには吐出弁の弁体のリフト量をできるだけ大きくする必要がある”と考えられてきた。
 これに対し、本願発明の発明者らは、吐出弁の弁体のリフト量がある程度の大きさを超えると、それ以上リフト量を増やしても吐出ポートから流体が流出する際の圧力損失は殆ど低下しなくなることを見出した。その理由を説明する。詳しくは後述するが、吐出弁の弁体のリフト量が大きくなるほど、吐出ポートの流出端の周囲に発生する渦が大きくなる。この渦は、吐出ポートの流出端と弁体の隙間を通過する流体の流れを妨げる。このため、吐出弁の弁体のリフト量がある程度以上になると、それ以上に弁体のリフト量を増やしても、渦の影響が大きくなるため、吐出ポートから流体が流出する際の圧力損失が殆ど低下しなくなる。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、吐出弁の弁体のリフト量を適切に設定して圧縮機の効率を向上させることにある。
 第1の発明は、圧縮室(36)を形成する固定側部材(45)と、回転駆動されて上記圧縮室(36)の容積を変化させる可動側部材(38)とを備え、流体を上記圧縮室(36)へ吸入して圧縮する圧縮機を対象とする。そして、上記固定側部材(45)には、該固定側部材(45)を貫通して上記圧縮室(36)から流体を導出する吐出ポート(50)が形成されると共に、上記吐出ポート(50)を開閉する吐出弁(60)が設けられ、上記吐出弁(60)は、上記吐出ポート(50)の流出端(52)を覆うことによって上記吐出ポート(50)を閉じ、該吐出ポート(50)の流出端(52)から浮き上がることによって上記吐出ポート(50)を開く弁体(61)を備え、上記吐出ポート(50)の流入端(51)の面積をAiとし、該流入端(51)の周縁長をLiとし、該流入端(51)の水力直径をDi=4(Ai/Li)とする一方、上記吐出ポート(50)の流出端(52)の周縁長をLoとし、上記弁体(61)の基準リフト量をhoとし、上記吐出ポート(50)の流出端(52)と上記弁体(61)の間に形成された流出側流路(70)の断面積をAo=Lo×hoとし、該流出側流路(70)の水力直径をDo=4(Ao/2Lo)とした場合に、上記吐出ポート(50)の流入端(51)の水力直径Diに対する上記流出側流路(70)の水力直径Doの比(Do/Di)を0.5以下とするものである。
 第1の発明では、圧縮機(10)の固定側部材(45)に吐出ポート(50)が形成される。吐出ポート(50)の流入端(51)は、圧縮室(36)に連通する。吐出ポート(50)の流出端(52)は、吐出弁(60)の弁体(61)によって開閉される。吐出弁(60)の弁体(61)が吐出ポート(50)の流出端(52)を覆う状態では、固定側部材(45)の外部から吐出ポート(50)への流体の逆流が弁体(61)によって阻止される。吐出弁(60)の弁体(61)が吐出ポート(50)の流出端(52)から浮き上がった状態において、圧縮室(36)内の流体は、吐出ポート(50)の流出端(52)と弁体(61)の隙間を通って固定側部材(45)の外部へ流出してゆく。
 吐出ポート(50)の流入端(51)の周縁長Liは、吐出ポート(50)の流入端(51)の濡れ縁長さである。従って、吐出ポート(50)の流入端(51)の水力直径Diは、下記の式01で表される。
   Di=4(Ai/Li)  ・・・・・・(式01)
 吐出弁(60)の弁体(61)が吐出ポート(50)の流出端(52)から浮き上がった状態において、吐出ポート(50)の流出端(52)と弁体(61)が平行である場合は、吐出ポート(50)の流出端(52)と弁体(61)の距離(即ち、弁体(61)のリフト量)が吐出ポート(50)の流出端(52)の全体で一様である。このため、吐出ポート(50)の流出端(52)と弁体(61)の間に形成された流出側流路(70)の断面積Aoは、周長が吐出ポート(50)の流出端(52)の周縁長Loと等しく、高さが弁体(61)のリフト量hと等しい筒の表面積(即ち、Lo×h)と等しい。ただし、例えば吐出弁(60)がリード弁である場合は、弁体(61)が吐出ポート(50)の流出端(52)に対して傾斜した状態となるため、吐出ポート(50)の流出端(52)と弁体(61)の距離が吐出ポート(50)の流出端(52)の全体で一様ではなくなる。そこで、このような場合でも弁体(61)のリフト量が吐出ポート(50)の流出端(52)の全体で一様である場合と同様に流出側流路(70)の断面積Aoを算出できるように、吐出ポート(50)の流出端(52)の各部と弁体(61)の距離を代表する値を基準リフト量hoとする。そうすると、流出側流路(70)の断面積Aoは、下記の式02で表される。
   Ao=Lo×ho    ・・・・・・(式02)
 弁体(61)が吐出ポート(50)の流出端(52)と平行である場合、吐出ポート(50)の流出端(52)と弁体(61)の間に形成された流出側流路(70)の濡れ縁長さは、吐出ポート(50)の流出端(52)の周縁長Loの2倍となる。一方、基準リフト量hoを用いれば、弁体(61)が吐出ポート(50)の流出端(52)に対して傾斜する場合も、弁体(61)が吐出ポート(50)の流出端(52)と平行である場合と同様に取り扱うことができる。従って、弁体(61)が吐出ポート(50)の流出端(52)に対して傾斜している場合でも、流出側流路(70)の濡れ縁長さを近似的に2Loとすることができる。そうすると、流出側流路(70)の水力直径Doは、下記の式03で表される。
   Do=4(Ao/2Lo)=2ho ・・・・・・(式03)
 第1の発明では、吐出ポート(50)の流入端(51)の水力直径Diに対する流出側流路(70)の水力直径Doの比(Do/Di)が0.5以下(Do/Di≦0.5)となる。式03に示すように、流出側流路(70)の水力直径Doは基準リフト量hoの2倍である。従って、この発明では、吐出弁(60)の弁体(61)の基準リフト量hoが、吐出ポート(50)の流入端(51)の水力直径Diに応じた値に設定される。
 第2の発明は、上記第1の発明において、上記吐出ポート(50)の流入端(51)の水力直径Diに対する上記流出側流路(70)の水力直径Doの比(Do/Di)を0.4以下とするものである。
 第2の発明では、吐出ポート(50)の流入端(51)の水力直径Diに対する流出側流路(70)の水力直径Doの比(Do/Di)が0.4以下(Do/Di≦0.4)となる。この発明では、上記第1の発明と同様に、吐出弁(60)の弁体(61)の基準リフト量hoが、吐出ポート(50)の流入端(51)の水力直径Diに応じた値に設定される。
 第3の発明は、上記第1又は第2の発明において、上記吐出ポート(50)の流入端(51)の水力直径Diに対する上記流出側流路(70)の水力直径Doの比(Do/Di)を0.25以上とするものである。
 第3の発明では、“吐出ポート(50)の流入端(51)の水力直径Di=4(Ai/Li)”に対する“流出側流路(70)の水力直径Do=4(Ao/2Lo)=2ho”の比(Do/Di)が0.25以上0.5以下(0.25≦Do/Di≦0.5)又は0.25以上0.4以下(0.25≦Do/Di≦0.4)となるように、吐出弁(60)の弁体(61)の基準リフト量hoが設定される。
 第4の発明は、上記第1~第3のいずれか一つの発明において、上記固定側部材(45)には、上記吐出ポート(50)の流出端(52)の全周に亘る面取り部(56)が形成されるものである。
 第4の発明において、固定側部材(45)の面取り部(56)は、吐出ポート(50)の流出端(52)の全周に亘って形成されている。このため、吐出ポート(50)の流出端(52)寄りの部分は、その流路断面積が吐出ポート(50)の流出端(52)へ向かって次第に拡大する。固定側部材(45)に面取り部(56)が形成されている場合は、それが形成されていない場合に比べて、吐出ポート(50)の流出端(52)の面積が拡大する。吐出ポート(50)の流出端(52)の面積は、吐出ポート(50)の流出端(52)を覆う弁体(61)のうち吐出ポート(50)の圧力が作用する部分の面積(即ち、受圧面積)と等しい。このため、吐出ポート(50)の流出端(52)の面積が拡大すると、弁体(61)の受圧面積が拡大し、弁体(61)を吐出ポート(50)の流出端(52)から引き離す方向の力が大きくなる。
 第5の発明は、上記第4の発明において、上記吐出ポート(50)の軸方向における上記面取り部(56)の高さHと、該吐出ポート(50)の軸方向と直交する方向における上記面取り部(56)の幅Wとが、0<H/W<0.5の関係を満たすものである。
 ここで、面取り部(56)の幅Wが大きいほど、吐出ポート(50)の流出端(52)を覆っている弁体(61)の受圧面積は大きくなる。一方、面取り部(56)の高さHが小さいほど、面取り部(56)を形成することによる吐出ポート(50)の容積の増加量が小さくなる。吐出ポート(50)の容積は、可動側部材(38)が回転しても変化しない死容積である。このため、圧縮機(10)の効率を向上させるには、吐出ポート(50)の容積は小さい方が望ましい。
 第5の発明において、固定側部材(45)に形成された面取り部(56)の形状は、面取り部(56)の高さHと幅Wが0<H/W<0.5の関係を満たすような形状となる。つまり、面取り部(56)の高さHを、面取り部(56)の幅Wの半分未満に抑えている。このため、吐出ポート(50)の流出端(52)を覆っている弁体(61)の受圧面積を拡大しつつ、吐出ポート(50)の容積の増加量が低く抑えられる。
 第6の発明は、上記第1~第5のいずれか一つの発明において、上記吐出ポート(50)の断面形状を長円形または楕円形とするものである。
 第6の発明では、断面形状が長円形または楕円形の吐出ポート(50)が、固定側部材(45)に形成される。
 本発明の圧縮機(10)では、吐出ポート(50)の流入端(51)の水力直径Diに対する流出側流路(70)の水力直径Doの比(Do/Di)が0.5以下となるように、吐出弁(60)の弁体(61)の基準リフト量hoが設定される。弁体(61)のリフト量をこのように設定すれば、弁体(61)の基準リフト量hoが比較的小さい値となり、吐出ポート(50)の流出端(52)と弁体(61)の間を流体が通過する際に生じる渦が小さくなる。従って、本発明によれば、吐出ポート(50)から流体が流出する際の圧力損失を低く抑えることができ、圧縮機(10)の効率を向上させることができる。
 ところで、吐出弁(60)が適切なタイミングで閉じないと、圧縮室(36)から吐出ポート(50)を通って吐出された流体が、吐出ポート(50)へ逆流するおそれがある。一方、吐出弁(60)の弁体(61)のリフト量を大きくすると、弁体(61)の移動に要する時間が長くなるため、弁体(61)が吐出ポート(50)の流出端(52)を閉じるタイミングが適切なタイミングよりも遅れるおそれがある。そして、弁体(61)が吐出ポート(50)の流出端(52)を閉じるタイミングが遅れると、固定側部材(45)の外部から圧縮室(36)へ逆流する流体の量が増え、圧縮機(10)の効率が低下する。
 これに対し、本発明で弁体(61)が吐出ポート(50)の流出端(52)を閉じるタイミングは、弁体(61)の基準リフト量hoが比較的小さい値に設定される。このため、弁体(61)が吐出ポート(50)の流出端(52)を閉じるタイミングの遅れを短縮でき、固定側部材(45)の外部から圧縮室(36)へ逆流する流体の量を削減することができる。従って、本発明によれば、この点でも圧縮機(10)の効率向上を図ることができる。
 特に、上記第2の発明では、吐出ポート(50)の流入端(51)の水力直径Diに対する流出側流路(70)の水力直径Doの比(Do/Di)が0.4以下となるように、吐出弁(60)の弁体(61)の基準リフト量hoが設定される。このため、弁体(61)が吐出ポート(50)の流出端(52)を閉じるタイミングの遅れを、一層短縮することができる。従って、この発明によれば、固定側部材(45)の外部から圧縮室(36)へ逆流する流体の量を一層削減でき、その結果、圧縮機(10)の効率を更に向上させることができる。
 ここで、圧縮室(36)への流体の逆流を防ぐには、吐出ポート(50)の流出端(52)が吐出弁(60)の弁体(61)によって適切なタイミングで閉じられれば充分である。このため、吐出弁(60)の弁体(61)のリフト量がある程度以下になれば、弁体(61)のリフト量をそれ以上小さくしても、圧縮機(10)の効率向上には寄与しなくなる。
 これに対し、上記第3の発明では、“吐出ポート(50)の流入端(51)の水力直径Di”に対する“流出側流路(70)の水力直径Do”の比(Do/Di)が0.25以上0.5以下(0.25≦Do/Di≦0.5)又は0.25以上0.4以下(0.25≦Do/Di≦0.4)となるように、吐出弁(60)の弁体(61)の基準リフト量hoを設定している。従って、この発明によれば、圧縮室(36)へ逆流する流体の量を削減できる範囲で、弁体(61)の基準リフト量hoを設定できる。
 上記第4の発明では、吐出ポート(50)の流出端(52)の全周に亘る面取り部(56)が、固定側部材(45)に形成される。このため、固定側部材(45)に面取り部(56)が形成されていない場合に比べて、吐出ポート(50)の流出端(52)の面積が拡大する。その結果、吐出ポート(50)の流出端(52)を覆う弁体(61)の受圧面積を拡大することができ、弁体(61)を吐出ポート(50)の流出端(52)から引き離す方向の力を大きくすることができる。このため、弁体(61)が吐出ポート(50)の流出端(52)から離れ始めた時点における圧縮室(36)の内圧と弁体(61)の背圧との差を縮小でき、圧縮室(36)内の流体を必要以上に圧縮する過圧縮を抑制して圧縮機(10)の効率を向上させることができる。
 上記第5の発明の面取り部(56)は、面取り部(56)の高さHと幅Wが0<H/W<0.5の関係を満たすような形状となっている。このため、吐出ポート(50)の流出端(52)を覆っている弁体(61)の受圧面積を確保しつつ、吐出ポート(50)の容積の増加量を低く抑えることができる。
図1は、実施形態の圧縮機の縦断面図である。 図2は、図1のA-A断面を示す圧縮機構の断面図である。 図3は、吐出ポートの長径に沿った圧縮機構の断面の要部を示す断面図であって、(A)は吐出弁が閉じた状態を示し、(B)は吐出弁が開いた状態を示す。 図4は、吐出ポートの短径に沿った圧縮機構の断面の要部を示す断面図である。 図5は、図3(B)の要部を拡大して示す圧縮機構の断面図である。 図6は、フロントヘッドの平面図であって、フロントヘッドのうち吐出ポートの流出端付近の部分を抜き出して示すものである。 図7(A)は実際の流出側流路の形状を示す斜視図であり、図7(B)は仮想の流出側流路の形状を示す斜視図である。 図8は、複数の基準リフト量hoについての水力直径比Do/Di等を示す表である。 図9は、吐出ポートから流出するガス冷媒の流れを示すフロントヘッドの要部の断面図であって、(A)は基準リフト量ho=1.6mmの場合の図4のB-B断面と図3のC-C断面とを示し、(B)は基準リフト量ho=0.8mmの場合の図4のB-B断面と図3のC-C断面とを示す。 図10は、基準リフト量ho=1.4mmの場合と基準リフト量ho=1.6mmの場合のシミュレーション結果を示すグラフであって、(A)は駆動軸が一回転する間における圧縮室の圧力と弁体のリフト量との変化を示し、(B)は駆動軸が一回転する間における吐出ポートからの冷媒の吐出流量の変化を示す。 図11は、基準リフト量ho=1.2mmの場合と基準リフト量ho=1.6mmの場合のシミュレーション結果を示すグラフであって、(A)は駆動軸が一回転する間における圧縮室の圧力と弁体のリフト量との変化を示し、(B)は駆動軸が一回転する間における吐出ポートからの冷媒の吐出流量の変化を示す。 図12は、基準リフト量ho=1.0mmの場合と基準リフト量ho=1.6mmの場合のシミュレーション結果を示すグラフであって、(A)は駆動軸が一回転する間における圧縮室の圧力と弁体のリフト量との変化を示し、(B)は駆動軸が一回転する間における吐出ポートからの冷媒の吐出流量の変化を示す。 図13は、基準リフト量ho=0.8mmの場合と基準リフト量ho=1.6mmの場合のシミュレーション結果を示すグラフであって、(A)は駆動軸が一回転する間における圧縮室の圧力と弁体のリフト量との変化を示し、(B)は駆動軸が一回転する間における吐出ポートからの冷媒の吐出流量の変化を示す。 図14は、水力直径比Do/Diと圧縮室への冷媒の逆流量との関係を示すグラフである。 図15は、実施形態の変形例3の吐出ポートの形状を示すフロントヘッドの断面図であって、(A)は図4のB-B断面に相当する断面を示し、(B)は図3のC-C断面に相当する断面を示す。 図16は、実施形態の変形例4の吐出ポートの形状を示すフロントヘッドの断面図であって、(A)は図4のB-B断面に相当する断面を示し、(B)は図3のC-C断面に相当する断面を示す。 図17は、実施形態の変形例5のフロントヘッドの平面図であって、フロントヘッドのうち吐出ポートの流出端付近の部分を抜き出して示すものである。 図18は、実施形態の変形例6の圧縮機構の断面図であって、図2に相当する断面を示すものである。
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態の圧縮機(10)は、蒸気圧縮式の冷凍サイクルを行う冷媒回路に設けられ、蒸発器で蒸発した冷媒を吸入して圧縮する。
  -圧縮機の全体構造-
 図1に示すように、本実施形態の圧縮機(10)は、圧縮機構(30)と電動機(20)とがケーシング(11)に収容された全密閉型圧縮機である。
 ケーシング(11)は、起立した状態の円筒状の密閉容器である。ケーシング(11)は、円筒状の胴部(12)と、胴部(12)の端部を閉塞する一対の鏡板(13,14)とを備えている。胴部(12)の下部には、吸入管(15)が取り付けられている。上側の鏡板(13)には、吐出管(16)が取り付けられている。
 電動機(20)は、圧縮機構(30)の上方に配置されている。電動機(20)は、ステータ(21)とロータ(22)とを備えている。ステータ(21)は、ケーシング(11)の胴部(12)に固定されている。ロータ(22)は、後述する圧縮機構(30)の駆動軸(23)に取り付けられている。
 圧縮機構(30)は、ケーシング(11)内の下部に配置されている。この圧縮機構(30)は、いわゆる揺動ピストン型のロータリ式流体機械である。この圧縮機構(30)は、フロントヘッド(31)と、シリンダ(32)と、リアヘッド(33)とを備えている。
 シリンダ(32)は、厚肉円板状の部材である(図2を参照)。シリンダ(32)の中央部には、後述するピストン(38)と共に圧縮室(36)を形成する円形孔が形成されている。フロントヘッド(31)は、シリンダ(32)の上端面を閉塞する板状の部材である。フロントヘッド(31)の中央部には、駆動軸(23)を支持する主軸受(31a)が突設されている。リアヘッド(33)は、シリンダ(32)の下端面を閉塞する板状の部材である。リアヘッド(33)の中央部には、駆動軸(23)を支持する副軸受(33a)が突設されている。
 シリンダ(32)は、ケーシング(11)の胴部(12)に固定されている。フロントヘッド(31)、シリンダ(32)、及びリアヘッド(33)は、互いにボルトによって締結されており、固定側部材(45)を構成している。
 圧縮機構(30)は、駆動軸(23)を備えている。駆動軸(23)は、主軸部(24)と、偏心部(25)とを備えている。偏心部(25)は、主軸部(24)の下端寄りに配置されている。また、偏心部(25)は、主軸部(24)よりも大径の円柱状に形成され、主軸部(24)に対して偏心している。図示しないが、駆動軸(23)には、給油通路が形成されている。ケーシング(11)の底部に溜まった潤滑油は、給油通路を通って軸受(31a,33a)や圧縮機構(30)の摺動部分へ供給される。
 図2にも示すように、圧縮機構(30)は、可動側部材であるピストン(38)と、ブレード(43)とを備えている。
 ピストン(38)は、やや厚肉の円筒状に形成されている。ピストン(38)には、駆動軸(23)の偏心部(25)が回転自在に嵌め込まれている。ピストン(38)の外周面(39)は、シリンダ(32)の内周面(35)と摺接する。圧縮機構(30)では、ピストン(38)の外周面(39)とシリンダ(32)の内周面(35)との間に圧縮室(36)が形成される。
 ブレード(43)は、ピストン(38)の外周面(39)に突設された平板状の部材であって、ピストン(38)と一体に形成されている。ブレード(43)は、圧縮室(36)を高圧室(36a)と低圧室(36b)に仕切る。
 圧縮機構(30)は、一対のブッシュ(41)を備えている。一対のブッシュ(41)は、シリンダ(32)のブッシュ溝(40)に嵌め込まれ、ブレード(43)を両側から挟み込んでいる。ピストン(38)と一体のブレード(43)は、このブッシュ(41)を介してシリンダ(32)に支持される。
 シリンダ(32)には、シリンダ(32)を径方向に貫通する吸入ポート(42)が形成されている。吸入ポート(42)は、圧縮室(36)の低圧室(36b)に連通する。吸入ポート(42)の一端は、シリンダ(32)の内周面(35)に開口している。この内周面(35)における吸入ポート(42)の開口端は、ブッシュ(41)に隣接した位置(図2におけるブッシュ(41)の右隣)に設けられている。一方、吸入ポート(42)の他端には、吸入管(15)が挿入されている。
 フロントヘッド(31)には、吐出ポート(50)が形成されている。吐出ポート(50)は、フロントヘッド(31)をその厚さ方向に貫通する貫通孔である(図1を参照)。吐出ポート(50)は、圧縮室(36)の高圧室(36a)に連通する。フロントヘッド(31)の下面において、吐出ポート(50)の開口端は、ブッシュ(41)に対して吸入ポート(42)とは逆側の位置(図2におけるブッシュ(41)の左隣)に配置されている。吐出ポート(50)の詳細な形状については、後述する。
 フロントヘッド(31)には、リード弁からなる吐出弁(60)が設けられている。図3に示すように、吐出弁(60)は、フロントヘッド(31)の上面に取り付けられている。吐出弁(60)は、弁体(61)と、弁押え(62)と、固定ピン(63)とを備えている。
 弁体(61)は、細長くて平坦な薄板状の部材である。弁体(61)の材質は、例えば、ばね鋼である。弁体(61)は、その先端部が吐出ポート(50)の流出端(52)を覆うように設けられる。吐出弁(60)が閉状態の場合は、弁体(61)の前面(61a)が吐出ポート(50)の流出端(52)の周縁(52a)と密着する。弁押え(62)は、やや肉厚で剛性の高い金属性の部材である。この弁押え(62)は、弁体(61)の形状に対応した細長い板状に形成されている。また、弁押え(62)の先端部は、上向きにやや湾曲した形状となっている。弁押え(62)は、弁体(61)の上に重なるように配置されている。弁押え(62)の基端部と弁体(61)の基端部とは、固定ピン(63)によってフロントヘッド(31)に固定されている。
 図3(A)に示すように、弁体(61)が吐出ポート(50)の流出端(52)を覆う状態では、吐出ポート(50)が閉状態となる。一方、図3(B)及び図4に示すように、弁体(61)が吐出ポート(50)の流出端(52)から浮き上がった状態では、吐出ポート(50)が開状態となる。
 このように、本実施形態の圧縮機構(30)は、シリンダ(32)と、シリンダ(32)の端部を閉塞するための閉塞部材であるフロントヘッド(31)及びリアヘッド(33)と、シリンダ(32)に収容されて偏心回転するピストン(38)と、シリンダ(32)とピストン(38)の間に形成された圧縮室(36)を低圧側と高圧側に仕切るブレード(43)とを備えたロータリ式流体機械である。
  -圧縮機の運転動作-
 圧縮機(10)の運転動作について、図2を参照しながら説明する。
 電動機(20)に通電すると、駆動軸(23)は、図2における時計方向に回転する。駆動軸(23)が回転すると、ブレード(43)と一体に形成されたピストン(38)は、揺動しつつ偏心回転する。ピストン(38)が移動すると、圧縮室(36)の低圧室(36b)には吸入ポート(42)を通って低圧ガス冷媒が吸入されると同時に、圧縮室(36)の高圧室(36a)に存在するガス冷媒が圧縮される。
 ここで、吐出弁(60)の弁体(61)の背面(61b)には、ケーシング(11)の内部空間のガス圧(ドーム内圧力)が作用する。このため、高圧室(36a)内のガス圧がドーム内圧力よりも低い間は、吐出弁(60)が図3(A)に示す閉状態となる。そして、ピストン(38)が移動して高圧室(36a)内のガス圧が次第に上昇し、高圧室(36a)内のガス圧がドーム内圧力を超えると、吐出弁(60)の弁体(61)の先端部が吐出ポート(50)の流出端(52)から離れる。その結果、吐出弁(60)は、図3(B)に示す開状態となる。
 吐出弁(60)が開状態になると、高圧室(36a)内のガス冷媒は、吐出ポート(50)を通過し、吐出ポート(50)の流出端(52)と弁体(61)の隙間を通ってケーシング(11)の内部空間(即ち、圧縮機構(30)の外部)へ吐出される。圧縮機構(30)から吐出された高圧ガス冷媒は、吐出管(16)を通ってケーシング(11)の外部へ導出される。
  -吐出ポートの形状-
 吐出ポート(50)の形状について、図5及び図6を参照しながら詳細に説明する。
 吐出ポート(50)は、フロントヘッド(31)をその板厚方向に貫通する真っ直ぐな貫通孔である(図5を参照)。吐出ポート(50)の流入端(51)は、フロントヘッド(31)の前面(即ち、シリンダ(32)側の面)に開口している。一方、吐出ポート(50)の流出端(52)は、フロントヘッド(31)の背面(即ち、シリンダ(32)とは逆側の面)に開口している。フロントヘッド(31)の背面では、吐出ポート(50)の流出端(52)を囲む部分が、周囲よりも一段高くなったシート部(55)となっている。
 吐出ポート(50)の流路断面(即ち、吐出ポート(50)の軸方向と直交する断面)は、長円形である(図6を参照)。なお、吐出ポート(50)は、その短径がシリンダ(32)の内周面(35)の径方向に沿うように配置されている(図2を参照)。
 フロントヘッド(31)には、吐出ポート(50)の流出端(52)の周縁(52a)に沿って面取り部(56)が形成されている。面取り部(56)は、吐出ポート(50)の流出端(52)の全周に亘って形成されている(図6を参照)。面取り部(56)は、吐出ポート(50)の軸方向の高さHと、吐出ポート(50)の軸方向と直交する方向の幅Wとが、面取り部(56)の全周に亘って一定となっている(図5を参照)。本実施形態では、面取り部(56)の高さHと幅Wが、0<H/W<0.5の関係を満たしている。つまり、面取り部(56)の高さHは、面取り部(56)の幅Wの半分未満となっている(0<H<W/2)。
 吐出ポート(50)は、面取り部(56)よりも下側の部分が主通路部(53)を構成している。主通路部(53)の流路断面は、円弧部の曲率半径がRiで直線部の長さがLsの長円形となっている。また、主通路部(53)の流路断面の形状は、その全長に亘って一定となっている。つまり、主通路部(53)は、その流路断面の長径長さDおよび短径長さDが、主通路部(53)の全長に亘って一定となっている。従って、吐出ポート(50)の流入端(51)の形状も、円弧部の曲率半径がRiで直線部の長さがLsの長円形となっている。
 一方、吐出ポート(50)の流出端(52)の形状は、吐出ポート(50)の流入端(51)よりも一回り大きな長円形となっている。具体的に、吐出ポート(50)の流出端(52)の形状は、円弧部の曲率半径がRo=Ri+Wで直線部の長さがLsの長円形となっている。
 なお、本実施形態の吐出ポート(50)の流入端(51)は、円弧部の曲率半径がRi=2.1mmであり、直線部の長さがLs=5.3mmである。また、吐出ポート(50)の流出端(52)は、円弧部の曲率半径がRo=3.1mmであり、直線部の長さがLs=5.3mmである。また、吐出ポート(50)の面取り部(56)は、その幅Wに対する高さHの比(H/W)が0.5となっている(H/W=0.5)。ただし、ここに示した数値は、いずれも単なる一例である。
 ここで、フロントヘッド(31)に面取り部(56)が形成されている場合は、面取り部(56)が形成されていない場合に比べて、吐出ポート(50)の流出端(52)の面積が拡大する。吐出ポート(50)の流出端(52)の面積は、弁体(61)の前面(61a)うち吐出ポート(50)の圧力が作用する部分の面積(即ち、受圧面積)と等しい。このため、吐出ポート(50)の流出端(52)の面積が拡大すると、弁体(61)の受圧面積が拡大し、弁体(61)を吐出ポート(50)の流出端(52)から引き離す方向の力が大きくなる。
 弁体(61)を吐出ポート(50)の流出端(52)から引き離す方向の力が大きくなると、弁体(61)が吐出ポート(50)の流出端(52)から離れ始める時点における“圧縮室(36)内のガス圧”と“弁体(61)の背面(61b)に作用するガス圧”との差が小さくなる。このため、圧縮室(36)内のガス冷媒を必要以上に圧縮することに起因する損失(いわゆる過圧縮損失)が低下する。
 一方、面取り部(56)の幅Wが同じであれば、面取り部(56)の高さHが小さいほど、面取り部(56)を形成することによる吐出ポート(50)の体積の増加量が小さくなる。吐出ポート(50)の容積は、ピストン(38)が回転しても変化しない死容積である。このため、圧縮機(10)の効率を向上させるには、吐出ポート(50)の容積をなるべく小さくするのが望ましい。
 そこで、本実施形態の圧縮機(10)では、過圧縮損失の低減に起因する効率の向上と、死容積の増加に起因する効率の低下とを考慮して、面取り部(56)の高さHを、面取り部(56)の幅Wの半分未満としている。
  -吐出弁の弁体のリフト量-
 本実施形態の圧縮機(10)では、ガス冷媒が圧縮機構(30)から吐出される際の圧力損失が低く抑えられ、且つ吐出弁(60)の弁体(61)の閉じ遅れによる圧縮機(10)の効率低下が抑えられるように、吐出弁(60)の弁体(61)のリフト量が設定されている。詳しくは後述するが、本実施形態の圧縮機(10)では、吐出弁(60)の弁体(61)の基準リフト量hoが、吐出ポート(50)の流入端(51)の水力直径Diに基づいて設定されている。
   〈吐出ポートの流入端の水力直径Di〉
 上述したように、吐出ポート(50)の流入端(51)の形状は、円弧部の曲率半径Ri、直線部の長さLsの長円形である。従って、吐出ポート(50)の流入端(51)の周縁(51a)の長さ(周縁長Li)は下記の式1で表され、その面積Aiは下記の式2で表される。吐出ポート(50)の流入端(51)の周縁長Liは、吐出ポート(50)の流入端(51)の濡れ縁長さである。従って、吐出ポート(50)の流入端(51)の水力直径Diは、下記の式3で表される。なお、式3は、上記の式01と同じである。
   Li=2πRi+2Ls    ・・・・・・(式1)
   Ai=πRi+2Ri・Ls  ・・・・・・(式2)
   Di=4(Ai/Li)     ・・・・・・(式3)
 本実施形態の吐出ポート(50)の流入端(51)は、円弧部の曲率半径がRi=2.1mmで、直線部の長さがLs=5.3mmである。従って、その周縁長Liは23.8mmであり、その面積Aiは36.1mmであり、その水力直径Diは6.1mmである。
   〈吐出弁の弁体の基準リフト量ho〉
 図5に示すように、吐出弁(60)の弁体(61)の基準リフト量hoは、吐出ポート(50)の中心線CL上における弁体(61)の最大リフト量である。つまり、この基準リフト量hoは、弁体(61)の背面(61b)の全体が弁押え(62)に接した状態における、吐出ポート(50)の中心線CL上での“吐出ポート(50)の流出端(52)”から“弁体(61)の前面(61a)”までの距離である。
 なお、吐出ポート(50)の中心線CLは、吐出ポート(50)の流入端(51)における長径と短径の交点と、吐出ポート(50)の流出端(52)における長径と短径の交点とを通る直線である。この中心線CLは、吐出ポート(50)の流入端(51)及び流出端(52)と直交する。
 弁体(61)の背面(61b)の全体が弁押え(62)に接した状態において、弁体(61)の前面(61a)は、吐出ポート(50)の流出端(52)に対して傾斜している。このため、図5に示すように、吐出ポート(50)の流出端(52)から弁体(61)の前面(61a)までの距離(即ち、弁体(61)のリフト量)は、最大値がhとなり、最小値がhとなる。
   〈流出側流路の水力直径Do〉
 吐出弁(60)の弁体(61)が吐出ポート(50)の流出端(52)から浮き上がった状態では、吐出ポート(50)の流出端(52)と弁体(61)の間に流出側流路(70)が形成される。吐出ポート(50)から吐出されたガス冷媒は、この流出側流路(70)を通過する。
 上述したように、吐出ポート(50)の流出端(52)の形状は、長円形である。また、図5に示すように、弁体(61)が吐出ポート(50)の流出端(52)から浮き上がった状態では、弁体(61)の前面(61a)が吐出ポート(50)の流出端(52)に対して傾斜した状態となる。このため、流出側流路(70)の断面形状は、図7(A)に示すような形状(即ち、上面が下面に対して傾斜した筒状体の側面と同じ形状)となる。流出側流路(70)の下側の周縁(72)は、吐出ポート(50)の流出端(52)の周縁(52a)と同じ長円形となる。一方、流出側流路(70)の上側の周縁(71)は、吐出ポート(50)の流出端(52)の周縁(52a)を弁体(61)の前面(61a)に投影した形状となる。また、流出側流路(70)の高さは、最大値がhとなり、最小値がhとなる。
 ところで、弁体(61)の背面(61b)の全体が弁押え(62)に接した状態において、弁体(61)の前面(61a)は、実質的に湾曲しない平面となっている。このため、弁体(61)の基準リフト量hoは、弁体(61)のリフト量の最大値hと最小値hの平均値((h+h)/2)と実質的に等しい。とすると、図7(A)に示す実際の流出側流路(70)の流路断面積は、図7(B)に示す仮想の流出側流路(75)の流路断面積と実質的に等しくなる。
 図7(B)に示す仮想の流出側流路(75)は、弁体(61)の前面(61a)が吐出ポート(50)の流出端(52)と平行であり、吐出ポート(50)の流出端(52)から弁体(61)の前面(61a)までの距離が基準リフト量hoである場合に、吐出ポート(50)の流出端(52)と弁体(61)の間に形成される流路である。また、この仮想の流出側流路(75)の断面形状は、上面と下面が平行な筒状体の側面と同じ形状である。
 本実施形態では、図7(B)に示す仮想の流出側流路(75)を、図7(A)に示す実際の流出側流路(70)と実質的に等価であるとして扱う。そして、図7(A)に示す実際の流出側流路(70)の水力直径を、図7(B)に示す仮想の流出側流路(75)の水力直径と実質的に等しいとして扱い、下記の式4~6に基づいて算出する。
 吐出ポート(50)の流出端(52)の形状は、円弧部の曲率半径Ro、直線部の長さLsの長円形である。従って、吐出ポート(50)の流出端(52)の周縁(52a)の長さ(周縁長Lo)は、下記の式4で表される。
   Lo=2πRo+2Ls ・・・・・・(式4)
 仮想の流出側流路(75)の上側の周縁(76)及び下側の周縁(77)は、実際の流出側流路(70)の下側の周縁(72)と同様に、それぞれの形状が吐出ポート(50)の流出端(52)の形状と同じである。仮想の流出側流路(75)の周縁長は、吐出ポート(50)の流出端(52)の周縁長Loと等しい。このため、仮想の流出側流路(75)の流路断面積Aoは、式5で表される。なお、式5は、上記の式02と同じである。
   Ao=Lo×ho    ・・・・・・(式5)
 仮想の流出側流路(75)の濡れ縁長さは、その上側の周縁長と下側の周縁長との和である。従って、仮想の流出側流路(75)の濡れ縁長さは、2Loとなる。このため、仮想の流出側流路(75)の水力直径Doは、式6で表される。本実施形態では、実際の流出側流路(70)の水力直径を、式6を用いて算出される水力直径Doと等しいとする。なお、式6は、上記の式03と同じである。
   Do=4(Ao/2Lo)=2ho ・・・・・・(式6)
 本実施形態の吐出ポート(50)の流出端(52)は、円弧部の曲率半径がRo=3.1mmで、直線部の長さがLs=5.3mmである。従って、吐出ポート(50)の流出端(52)の周縁長Loは30.1mmである。一方、仮想の流出側流路(75)の流路断面積Aoと、その水力直径Doとは、基準リフト量hoの関数である。図8には、基準リフト量hoが0.8mm、1.0mm、1.2mm、1.4mm、1.6mmの各場合について、流路断面積Ao及び水力直径Doの値を示す。
   〈水力直径比Do/Di〉
 本実施形態の圧縮機(10)では、吐出ポート(50)の流入端(51)の水力直径Diに対する流出側流路(70)の水力直径Doの比(Do/Di)が下記の式7で示す関係を満たすように、吐出弁(60)の弁体(61)の基準リフト量hoが設定される。式6に示すように、Do=2hoである。従って、本実施形態の圧縮機(10)において、吐出弁(60)の弁体(61)の基準リフト量hoは、式8に示す数値範囲内の値に設定される。
   0.25≦Do/Di≦0.5 ・・・・・・(式7)
   Di/8≦ho≦Di/4   ・・・・・・(式8)
 図8には、基準リフト量hoが0.8mm、1.0mm、1.2mm、1.4mm、1.6mmの各場合について、流出側流路(70)の水力直径Doと、水力直径比Do/Diの値を示す。基準リフト量hoが0.8mm、1.0mm、1.2mm、1.4mmの各場合は、水力直径比Do/Diが0.25以上0.5以下の値となる。一方、基準リフト量hoが1.6mmの場合は、水力直径比Do/Diが0.5よりも大きくなる。従って、基準リフト量hoが0.8mm、1.0mm、1.2mm、1.4mmの各場合は、本願発明の実施形態となる。一方、基準リフト量hoが1.6mmの場合は、本願発明の実施形態ではない比較例である。
 なお、図8に示す水力直径比Do/Diの値は、下記の式9を用いて算出した値である。この式9は、Do/Diに式1~式3および式6を代入することによって得られる数式である。
   Do/Di=2ho/4(Ai/Li)=ho・Li/2Ai
       =ho(πRi+Ls)/Ri(πRi+2Ls) ・・・・・・(式9)
  -水力直径比Do/Diの数値範囲-
 水力直径比Do/Diが0.25以上0.5以下となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定するのが望ましい理由を説明する。
   〈吐出冷媒の圧力損失〉
 図9に示すように、圧縮機構(30)から吐出されるガス冷媒は、先ず吐出ポート(50)の流出端(52)から吐出弁(60)の弁体(61)に向かって噴出し、次に弁体(61)の前面(61a)に衝突してその流れ方向が変化し、その後に吐出ポート(50)の流出端(52)の周囲へ広がるように流れる。
 図9(A)に示すように、基準リフト量ho=1.6mm(0.5<Do/Di)の場合は、吐出ポート(50)の流出端(52)の周囲に比較的大きな縦渦が生じる。この縦渦は、流出側流路(70)(即ち、吐出ポート(50)の流出端(52)と弁体(61)の隙間)から流出しようとするガス冷媒の流れを妨げる。従って、流出側流路(70)のうちガス冷媒が通過できる部分は、弁体(61)寄りの僅かな部分だけとなる。このため、流出側流路(70)の流路断面積は比較的広いにも拘わらず、ガス冷媒が流出側流路(70)を通過する際の圧力損失はそれほど小さくならない。
 一方、図9(B)に示すように、基準リフト量ho=0.8mm(0.25≦Do/Di≦0.5)の場合は、吐出ポート(50)の流出端(52)の周囲に縦渦は実質的に生じない。吐出ポート(50)の流出端(52)から噴出したガス冷媒は、その直後に弁体(61)に衝突してその流れ方向が変化し、流出側流路(70)のほぼ全体を通過する。このため、流出側流路(70)の流路断面積は基準リフト量ho=1.6mmの場合よりも狭いにも拘わらず、ガス冷媒が流出側流路(70)を通過する際の圧力損失は、基準リフト量ho=1.6mmの場合と同等程度となる。
   〈吐出冷媒の脈動〉
 図9(A)に示す縦渦は、一回の吐出行程において発生と消滅を数回ほど繰り返す。上述したように、縦渦は、流出側流路(70)から流出しようとするガス冷媒の流れを妨げる。このため、縦渦が発生と消滅を繰り返す毎に、流出側流路(70)から流出するガス冷媒の流量が変化する。
 図10(B)、図11(B)、図12(B)、及び図13(B)は、圧縮機構(30)の吐出ポート(50)から吐出されるガス冷媒の質量流量(即ち、吐出流量)の変化を示している。例えば、図10(B)において、駆動軸(23)の回転角度が230°前後の時点で吐出弁(60)が吐出ポート(50)の流出端(52)から離れ始めると、吐出流量は、急速に増加してゆく。吐出流量は、駆動軸(23)の回転角度が250°前後の時点で最大値となる。その後、吐出流量は、弁体(61)のリフト量が概ね一定であるにも拘わらず、比較的大幅に変動する。この吐出行程における吐出流量の変動は、吐出ポート(50)の流出端(52)の周囲に形成された縦渦の発生と消滅に起因する。
 吐出流量の変動は、圧縮機(10)の振動や騒音の原因となるため、なるべく小さい方が望ましい。そして、図10(B)、図11(B)、図12(B)、及び図13(B)に示すように、吐出行程における吐出流量の変動幅は、基準リフト量ho=0.8mm,1.0mm,1.2mm,1.4mmの各場合の方が、基準リフト量ho=1.6mmの場合に比べて小さくなる。また、吐出行程における吐出流量の変動幅は、基準リフト量hoが小さくなるにつれて減少する。そこで、本実施形態の圧縮機(10)では、水力直径比Do/Diが0.5以下となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定している。
   〈吐出弁の閉じ遅れ〉
 吐出弁(60)が開閉する際には、弁体(61)が弾性変形することによって、弁体(61)の先端部が移動する。そして、弁体(61)の基準リフト量hoが大きいほど、吐出弁(60)が開閉する際の弁体(61)の移動距離が長くなる。弁体(61)の移動距離が長くなると、吐出弁(60)の開閉に要する時間が長くなる。このため、弁体(61)の基準リフト量hoを大きくし過ぎると、吐出弁(60)が閉じるべきタイミングであるにも拘わらず弁体(61)が吐出ポート(50)の流出端(52)から離れたままとなる現象(いわゆる閉じ遅れ現象)が生じる。例えば、図10(A)に示すように、基準リフト量ho=1.6mmの場合は、駆動軸(23)の回転角度が360°に達した時点においても、弁体(61)のリフト量が0.6mm程度となる。
 閉じ遅れ現象が生じると、圧縮行程の初期の圧縮室(36)が吐出ポート(50)を介してケーシング(11)の内部空間と連通してしまい、その結果、ケーシング(11)の内部空間に存在する高圧ガス冷媒が吐出ポート(50)を通って圧縮室(36)へ逆流する。このため、閉じ遅れ現象が生じると、単位時間当たりに圧縮機構(30)から吐出される冷媒の質量流量が減少し、圧縮機(10)の効率が低下する。そして、吐出弁(60)の閉じ遅れ現象に起因する圧縮機(10)の効率低下を抑えるには、吐出弁(60)の弁体(61)の基準リフト量hoをなるべく小さくするのが望ましい。
 しかし、吐出弁(60)の弁体(61)の基準リフト量hoを小さくし過ぎると、冷媒が圧縮機構(30)から吐出される際の圧力損失が大きくなり過ぎるおそれがある。一方、図14に示すように、水力直径比Do/Diが比較的大きい場合は、水力直径比Do/Diが小さくなるにつれて、圧縮室(36)への冷媒の逆流量が次第に減少する。ところが、水力直径比Do/Diが0.25未満になると、水力直径比Do/Diが小さくなっても圧縮室(36)への冷媒の逆流量は殆ど減少しなくなる。そこで、本実施形態の圧縮機(10)では、水力直径比Do/Diが0.25以上となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定している。
  -実施形態の効果-
 本実施形態の圧縮機(10)では、水力直径比Do/Diが0.25以上0.5以下となるように吐出弁(60)の弁体(61)の基準リフト量hoが設定される。このため、圧縮機構(30)から吐出される冷媒(吐出冷媒)の圧力損失を増やさずに、弁体(61)の基準リフト量hoを抑えることによって弁体(61)の開閉に要する時間を短縮できる。弁体(61)の開閉に要する時間が短くなると、弁体(61)の閉じ遅れに起因して圧縮室(36)へ逆流する冷媒の量が減少する。従って、本実施形態によれば、吐出冷媒の圧力損失の増加による圧縮室(36)の効率低下を回避しつつ、圧縮室(36)へ逆流する冷媒の量を削減することによって圧縮機(10)の効率を向上させることができる。
 ここで、圧縮機構(30)の回転速度が高くなると、一回の吐出行程に要する時間が短くなる。このため、圧縮機構(30)の回転速度が高くなるほど、弁体(61)の開閉に要する時間を短縮することが求められる。そして、水力直径比Do/Diが0.25以上0.5以下となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定すれば、圧縮機構(30)の回転速度がかなりの高速(例えば、毎秒120回転以上)になる場合でも、弁体(61)の閉じ遅れによる悪影響を抑えることができる。
 また、本実施形態の圧縮機(10)では、面取り部(56)の高さHと幅Wが、0<H/W<0.5の関係を満たしている。つまり、本実施形態では、面取り部(56)の傾斜が比較的緩やかとなっている。このため、弁体(61)の前面(61a)うち吐出ポート(50)の圧力が作用する部分の面積(受圧面積)を拡大しつつ、面取り部(56)を形成することに起因する吐出ポート(50)の容積の増加を小さく抑えることができる。従って、本実施形態によれば、死容積の増加に起因する圧縮機(10)の効率低下を抑えつつ、過圧縮損失の低減によって圧縮機(10)の効率を向上させることができる。
  -実施形態の変形例1-
 本実施形態の圧縮機(10)では、水力直径比Do/Diを0.25以上0.4以下となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定するのが更に望ましい。
 ここで、駆動軸(23)の回転角度が360°となった時点で弁体(61)がシート部(55)から離れていると、ケーシング(11)の内部空間が吐出ポート(50)及び圧縮室(36)を介して吸入ポート(42)に連通し、ケーシング(11)の内部空間から圧縮室(36)へ逆流する冷媒の量が過多となるおそれがある。
 一方、図11に示すように、水力直径比Do/Di=0.4の場合は、駆動軸(23)の回転角度が360°となった時点で弁体(61)のリフト量がゼロになる。つまり、駆動軸(23)の回転角度が360°となった時点で、吐出ポート(50)が弁体(61)によって完全に塞がれる。また、図12及び図13に示すように、水力直径比Do/Diが小さくなるにつれて、弁体(61)のリフト量がゼロになる時期が早くなる。
 従って、本変形例のように水力直径比Do/Diが0.25以上0.4以下となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定すれば、圧縮室(36)へ逆流する冷媒の量を一層確実に削減できる。この点について、図14を参照しながら説明する。
 図14に示すVminは、圧縮室(36)への冷媒の逆流量の下限値である。つまり、圧縮機(10)の構造上、圧縮室(36)への冷媒の逆流量をゼロにすることはできない。例えば、吐出ポート(50)の容積をゼロにすることは、実際には不可能だからである。そして、この下限値Vminを超える分が、削減可能な圧縮室(36)への冷媒の逆流量となる。同図に示すように、削減可能な圧縮室(36)への冷媒の逆流量は、水力直径比Do/Di=0.53の場合はΔVであり、水力直径比Do/Di=0.4の場合はΔVである。
 ΔVは、ΔVの半分以下である(ΔV<ΔV/2)。従って、水力直径比Do/Diが0.4以下となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定すれば、圧縮室(36)への冷媒の逆流量を大幅に削減できる。このため、本変形例によれば、圧縮機(10)の効率を確実に向上させることができる。
  -実施形態の変形例2-
 図8に示すように、水力直径比Do/Di=0.4となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定した場合、仮想の流出側流路(75)の流路断面積Aoは、吐出ポート(50)の流入端(51)の面積Aiと実質的に等しい。そして、水力直径比Do/Diが0.4未満となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定した場合、仮想の流出側流路(75)の流路断面積Aoは、吐出ポート(50)の流入端(51)の面積Aiよりも小さくなる。このように、本実施形態の圧縮機(10)では、仮想の流出側流路(75)の流路断面積Aoが吐出ポート(50)の流入端(51)の面積Ai以下(Ao≦Ai)となるように吐出弁(60)の弁体(61)の基準リフト量hoを設定するのが望ましい。
  -実施形態の変形例3-
 図15に示すように、本実施形態の圧縮機(10)では、吐出ポート(50)の主通路部(53)の流路断面積が、吐出ポート(50)の流入端(51)から流出端(52)へ向かって次第に拡大していてもよい。本変形例では、吐出ポート(50)の主通路部(53)を形成する壁面が、吐出ポート(50)の中心線CLを中心とする錐面となっている。また、図15において、主通路部(53)の上端の長径長さD12はその下端の長径長さD11よりも長く、主通路部(53)の上端の短径長さD22はその下端の長径長さD21よりも長い。
  -実施形態の変形例4-
 図16に示すように、本実施形態の圧縮機(10)では、面取り部(56)が省略されていてもよい。本変形例の吐出ポート(50)の流路断面の形状は、吐出ポート(50)の流入端(51)から流出端(52)に亘って一定の長円形となっている。
  -実施形態の変形例5-
 図17に示すように、本実施形態の圧縮機(10)では、吐出ポート(50)の断面形状が楕円形であってもよい。本変形例においても、フロントヘッド(31)には、吐出ポート(50)の流出端(52)の周縁(52a)の全周に亘って面取り部(56)が形成されている。図5及び図6に示す面取り部(56)と同様に、本変形例の面取り部(56)の高さHと幅Wは、吐出ポート(50)の流出端(52)の周縁(52a)の全周に亘って一定である。なお、本変形例の吐出ポート(50)の断面形状は、二つの焦点を有する厳密な楕円形に限定されるものではなく、その周縁が曲線で形成されていて一見して楕円形に見えるものであってもよい。
  -実施形態の変形例6-
 図18に示すように、本実施形態の圧縮機(10)の圧縮機構(30)は、ブレード(43)がピストン(38)と別体に形成されたローリングピストン型のロータリ式流体機械であってもよい。本変形例の圧縮機構(30)では、平板状のブレード(43)がシリンダ(32)の径方向へ延びるブレード溝に進退自在に嵌め込まれ、ブッシュ(41)が省略されている。ブレード(43)は、ばね(44)によってピストン(38)の外周面(39)に押圧されており、その先端部がピストン(38)の外周面(39)と摺接する。
 なお、図18に示す圧縮機構(30)では、吐出ポート(50)の断面形状が円形となっているが、本変形例の吐出ポート(50)の断面形状は、図6等に示すような長円形や、図17に示すような楕円形であってもよい。
 以上説明したように、本発明は、吐出弁を備えた圧縮機について有用である。
 10  圧縮機
 30  圧縮機構
 36  圧縮室
 38  ピストン(可動側部材)
 45  固定側部材
 50  吐出ポート
 51  流入端
 52  流出端
 56  面取り部
 60  吐出弁
 61  弁体

Claims (6)

  1.  圧縮室(36)を形成する固定側部材(45)と、回転駆動されて上記圧縮室(36)の容積を変化させる可動側部材(38)とを備え、流体を上記圧縮室(36)へ吸入して圧縮する圧縮機であって、
     上記固定側部材(45)には、該固定側部材(45)を貫通して上記圧縮室(36)から流体を導出する吐出ポート(50)が形成されると共に、上記吐出ポート(50)を開閉する吐出弁(60)が設けられ、
     上記吐出弁(60)は、上記吐出ポート(50)の流出端(52)を覆うことによって上記吐出ポート(50)を閉じ、該吐出ポート(50)の流出端(52)から浮き上がることによって上記吐出ポート(50)を開く弁体(61)を備え、
     上記吐出ポート(50)の流入端(51)の面積をAiとし、該流入端(51)の周縁長をLiとし、該流入端(51)の水力直径をDi=4(Ai/Li)とする一方、
     上記吐出ポート(50)の流出端(52)の周縁長をLoとし、上記弁体(61)の基準リフト量をhoとし、上記吐出ポート(50)の流出端(52)と上記弁体(61)の間に形成された流出側流路(70)の断面積をAo=Lo×hoとし、該流出側流路(70)の水力直径をDo=4(Ao/2Lo)とした場合に、
     上記吐出ポート(50)の流入端(51)の水力直径Diに対する上記流出側流路(70)の水力直径Doの比(Do/Di)が0.5以下である
    ことを特徴とする圧縮機。
  2.  請求項1において、
     上記吐出ポート(50)の流入端(51)の水力直径Diに対する上記流出側流路(70)の水力直径Doの比(Do/Di)が0.4以下である
    ことを特徴とする圧縮機。
  3.  請求項1又は2において、
     上記吐出ポート(50)の流入端(51)の水力直径Diに対する上記流出側流路(70)の水力直径Doの比(Do/Di)が0.25以上である
    ことを特徴とする圧縮機。
  4.  請求項1乃至3のいずれか一つにおいて、
     上記固定側部材(45)には、上記吐出ポート(50)の流出端(52)の全周に亘る面取り部(56)が形成されている
    ことを特徴とする圧縮機。
  5.  請求項4において、
     上記吐出ポート(50)の軸方向における上記面取り部(56)の高さHと、該吐出ポート(50)の軸方向と直交する方向における上記面取り部(56)の幅Wとが、0<H/W<0.5の関係を満たしている
    ことを特徴とする圧縮機。
  6.  請求項1乃至5のいずれか一つにおいて、
     上記吐出ポート(50)の断面形状が、長円形または楕円形である
    ことを特徴とする圧縮機。
PCT/JP2013/004489 2012-07-25 2013-07-23 圧縮機 WO2014017081A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13823006.5A EP2886864B1 (en) 2012-07-25 2013-07-23 Compressor
ES13823006.5T ES2672321T3 (es) 2012-07-25 2013-07-23 Compresor
US14/417,144 US20150211508A1 (en) 2012-07-25 2013-07-23 Compressor
CN201380039340.9A CN104487708B (zh) 2012-07-25 2013-07-23 压缩机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012165128 2012-07-25
JP2012-165128 2012-07-25
JP2012-288002 2012-12-28
JP2012288002A JP5429353B1 (ja) 2012-07-25 2012-12-28 圧縮機

Publications (1)

Publication Number Publication Date
WO2014017081A1 true WO2014017081A1 (ja) 2014-01-30

Family

ID=49996908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004489 WO2014017081A1 (ja) 2012-07-25 2013-07-23 圧縮機

Country Status (6)

Country Link
US (1) US20150211508A1 (ja)
EP (1) EP2886864B1 (ja)
JP (1) JP5429353B1 (ja)
CN (1) CN104487708B (ja)
ES (1) ES2672321T3 (ja)
WO (1) WO2014017081A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108222B1 (ja) 2021-09-30 2022-07-28 ダイキン工業株式会社 圧縮機および冷凍装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072923B (zh) * 2016-04-26 2021-02-09 三菱电机株式会社 压缩机及制冷循环装置
JP6841009B2 (ja) * 2016-11-15 2021-03-10 株式会社富士通ゼネラル ロータリ圧縮機
JP2018091165A (ja) 2016-11-30 2018-06-14 三菱重工サーマルシステムズ株式会社 圧縮機
CN110249131A (zh) * 2017-02-15 2019-09-17 三菱电机株式会社 压缩机
JP7032864B2 (ja) * 2017-03-22 2022-03-09 三菱重工サーマルシステムズ株式会社 圧縮機
CN111120266B (zh) * 2018-10-31 2022-04-15 广东美芝制冷设备有限公司 压缩机的排气结构和具有其的压缩机
WO2021214913A1 (ja) * 2020-04-22 2021-10-28 三菱電機株式会社 圧縮機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106982A (ja) * 1987-10-20 1989-04-24 Matsushita Electric Ind Co Ltd 密閉型圧縮機の弁装置
JPH0295783A (ja) * 1988-09-30 1990-04-06 Hitachi Ltd 圧縮機の吐出弁装置
JP2002070768A (ja) 2000-06-16 2002-03-08 Mitsubishi Heavy Ind Ltd 冷媒圧縮機
JP2004270453A (ja) * 2003-03-05 2004-09-30 Daikin Ind Ltd 圧縮機
JP2008101503A (ja) 2006-10-18 2008-05-01 Hitachi Appliances Inc ロータリ圧縮機
JP2011043084A (ja) * 2009-08-19 2011-03-03 Fujitsu General Ltd ロータリ圧縮機
JP2011179436A (ja) * 2010-03-02 2011-09-15 Mitsubishi Electric Corp 二段圧縮機及びヒートポンプ装置
JP2012140908A (ja) * 2010-12-29 2012-07-26 Daikin Industries Ltd 圧縮機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200154567Y1 (ko) * 1995-06-03 1999-08-16 윤종용 압축기의토출밸브장치
US6318980B1 (en) * 1997-12-26 2001-11-20 Sanden Corporation Shape of suction hole and discharge hole of refrigerant compressor
EP0926345B1 (en) * 1997-12-26 2001-10-24 Sanden Corporation Shape of suction hole and discharge hole of refrigerant compressor
JP2001342961A (ja) * 2000-06-01 2001-12-14 Toyota Industries Corp 圧縮機におけるガス流通構造
JP3832468B2 (ja) * 2003-12-26 2006-10-11 ダイキン工業株式会社 圧縮機
KR100844153B1 (ko) * 2006-03-14 2008-07-04 엘지전자 주식회사 스크롤압축기의 바이패스 장치
EP2441960B1 (en) * 2009-06-11 2017-06-21 Mitsubishi Electric Corporation Refrigerant compressor and heat pump device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106982A (ja) * 1987-10-20 1989-04-24 Matsushita Electric Ind Co Ltd 密閉型圧縮機の弁装置
JPH0295783A (ja) * 1988-09-30 1990-04-06 Hitachi Ltd 圧縮機の吐出弁装置
JP2002070768A (ja) 2000-06-16 2002-03-08 Mitsubishi Heavy Ind Ltd 冷媒圧縮機
JP2004270453A (ja) * 2003-03-05 2004-09-30 Daikin Ind Ltd 圧縮機
JP2008101503A (ja) 2006-10-18 2008-05-01 Hitachi Appliances Inc ロータリ圧縮機
JP2011043084A (ja) * 2009-08-19 2011-03-03 Fujitsu General Ltd ロータリ圧縮機
JP2011179436A (ja) * 2010-03-02 2011-09-15 Mitsubishi Electric Corp 二段圧縮機及びヒートポンプ装置
JP2012140908A (ja) * 2010-12-29 2012-07-26 Daikin Industries Ltd 圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2886864A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108222B1 (ja) 2021-09-30 2022-07-28 ダイキン工業株式会社 圧縮機および冷凍装置
WO2023053552A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 圧縮機および冷凍装置
JP2023051024A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 圧縮機および冷凍装置

Also Published As

Publication number Publication date
US20150211508A1 (en) 2015-07-30
EP2886864A1 (en) 2015-06-24
CN104487708B (zh) 2016-01-20
ES2672321T3 (es) 2018-06-13
EP2886864A4 (en) 2016-09-21
JP2014040827A (ja) 2014-03-06
CN104487708A (zh) 2015-04-01
EP2886864B1 (en) 2018-03-07
JP5429353B1 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5429353B1 (ja) 圧縮機
JP2006300051A (ja) スクロール式圧縮機用の吐出弁
KR100312074B1 (ko) 냉동사이클용 압축기
KR20180116984A (ko) 로터리 압축기
JP5456099B2 (ja) ロータリー圧縮機
JP2014238012A (ja) 圧縮機
JP5644494B2 (ja) 圧縮機
US20160201678A1 (en) Scroll compressor
WO2017002212A1 (ja) スクロール圧縮機
JP3832468B2 (ja) 圧縮機
JP7418190B2 (ja) ロータリ圧縮機
JP2014222060A (ja) 冷媒圧縮装置
JP4215003B2 (ja) 圧縮機のマフラー構造
KR102081943B1 (ko) 유체압축기
JP5355361B2 (ja) 密閉型回転圧縮機
JP2005069084A (ja) 流体機械のリード弁
JP5338275B2 (ja) 吐出弁機構及び回転式圧縮機
JP2008303887A (ja) 圧縮機のマフラー構造
JP2008303887A5 (ja)
JP6298702B2 (ja) 一方向弁およびそれを備える流体システム
JP6321400B2 (ja) 密閉型圧縮機
JP7478992B2 (ja) 密閉型圧縮機
WO2021025033A1 (ja) スクロール圧縮機
JP6556372B1 (ja) 密閉型圧縮機および冷凍サイクル装置
JP2005054745A (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013823006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14417144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE