WO2014014379A1 - Способ получения глинозема - Google Patents

Способ получения глинозема Download PDF

Info

Publication number
WO2014014379A1
WO2014014379A1 PCT/RU2012/000592 RU2012000592W WO2014014379A1 WO 2014014379 A1 WO2014014379 A1 WO 2014014379A1 RU 2012000592 W RU2012000592 W RU 2012000592W WO 2014014379 A1 WO2014014379 A1 WO 2014014379A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
aluminium
aluminum
solution
ammonium chloride
Prior art date
Application number
PCT/RU2012/000592
Other languages
English (en)
French (fr)
Inventor
Александр Сергеевич СЕНЮТА
Андрей Владимирович ПАНОВ
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to CN201280074790.7A priority Critical patent/CN104507867B/zh
Priority to US14/415,958 priority patent/US9517944B2/en
Priority to RU2013151919/05A priority patent/RU2554136C2/ru
Priority to CA2877650A priority patent/CA2877650C/en
Priority to PCT/RU2012/000592 priority patent/WO2014014379A1/ru
Priority to AU2012385519A priority patent/AU2012385519B2/en
Priority to IN743DEN2015 priority patent/IN2015DN00743A/en
Publication of WO2014014379A1 publication Critical patent/WO2014014379A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • C01F7/306Thermal decomposition of hydrated chlorides, e.g. of aluminium trichloride hexahydrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to metallurgy, in particular to acidic methods for producing alumina and can be used in the processing of low-grade aluminum-containing raw materials.
  • Closest to the claimed method is a method of producing alumina from high-silica bauxite through hydrochloric acid leaching, including calcining an aluminum-containing raw material at temperatures up to 700 ° C, treating it with hydrochloric acid, salting out aluminum chloride by saturating the clarified chloride solution with hydrogen chloride gas, calcining aluminum chloride for for producing alumina and pyrohydrolysis of a mother liquor with the return of hydrogen chloride at the stage of acid treatment and salting out (Eisner D., Jenkins DH and Sinha HN Alumina via hydrochloric acid leaching of high silica bauxites - process development. Light metals, 1984, p. 41 1- 426).
  • the disadvantages of this method should also include the energy-consuming method of maintaining water balance in the technological cycle by a single evaporation of circulating water during pyrohydrolysis of ferric chloride and other impurity chlorides.
  • the basis of the invention is the task of developing a method for producing metallurgical alumina from low-grade raw materials, which allows processing of poor high-siliceous ores and waste.
  • the technical result is to increase the quality of alumina and reduce energy consumption.
  • the solution of ammonium chloride before mixing with aluminum-containing raw materials can be subjected to stage evaporation with repeated use of heating steam.
  • Ammonium chloride released by evaporation can be mixed with aluminum-containing raw materials.
  • the turnover of ammonium chloride can be rationally carried out by adding one stripped off solution immediately before the firing operation. It is also possible the circulation of ammonium chloride in the form of crystals isolated during the evaporation of the solution.
  • ammonium chloride decomposes into gaseous hydrogen chloride and ammonia.
  • Hydrogen chloride reacts with the components of the feedstock, primarily iron, to form the corresponding chlorides.
  • the released ammonia can be absorbed by water and in the form of an aqueous solution is directed to the processing of A1C1 3 -6H 2 O crystals.
  • the circulation of hydrogen chloride (hydrochloric acid) and the circulation of ammonia are realized with minimizing the consumption of reagents and thermal energy.
  • the invention is illustrated by the technological scheme for the production of alumina.
  • the method of producing alumina is as follows.
  • the aluminum-containing raw materials in a mixture with ammonium chloride are sent to firing, where there is a partial thermal activation of the raw materials and decomposition of ammonium chloride.
  • hydrogen chloride interacts with the oxide components of the feed, and free ammonia is absorbed by water to form aqueous ammonia.
  • the raw material goes through the stage of roasting-chlorination.
  • the calcined raw material is treated with hydrochloric acid to obtain pulp, which is separated (for example, by filtration) into a solid phase (a dump systoff containing mainly silica) and a chloride solution, where aluminum is the main target component.
  • Aluminum is isolated by introducing hydrogen chloride gas into the solution, which displaces (salts out) hexahydrate aluminum chloride in the form of crystals, which are further processed (neutralized) with aqueous ammonia coming from the calcination-chlorination stage to form partially dehydrated aluminum hydroxide (boehmite) and chloride solution ammonium Boehmite is sent for calcination to obtain marketable alumina.
  • the mother liquor after salting out of hexahydrate aluminum chloride enters the pyrohydrolysis stage, where the formation of hydroxides and oxides of other metals, mainly hematite, and the regeneration of hydrochloric acid, both in the form of an aqueous solution and gaseous hydrogen chloride, are returned to the acid treatment stage and salting out hexahydrate aluminum chloride.
  • a solution of ammonium chloride is sent to the stage evaporation with repeated use of heating steam.
  • the method for producing alumina is illustrated by a specific example.
  • the calcined material was dissolved in 20% hydrochloric acid at 98 ° C for 3 hours, the resulting pulp was filtered, and hexahydric aluminum chloride was crystallized from the clarified solution by salting out with gaseous hydrogen chloride. The filtered crystals were treated with aqueous ammonia. According to the results of x-ray phase analysis, the solid phase thus obtained was pure boehmite (A1OOH). The boehmite washed with water was calcined in a muffle furnace at 1200 ° ⁇ to obtain alumina, which, in terms of chemical and granulometric composition, fully corresponded to metallurgical alumina of the G-0 grade.
  • the solution was subjected to pyrohydrolysis with the release of iron and titanium and other small impurities in the form of oxides and regeneration of hydrogen chloride in the form of a hydrochloric acid solution and partially in the form of gaseous hydrogen chloride.
  • the chlorammonium solution formed after the treatment of A1C1 3 -6H 2 O crystals with an ammonia solution was evaporated to isolate crystals of ammonium chloride, which was also considered as a circulating product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к металлургии, в частности к кислотным способам получения глинозема и может быть использовано при переработке низкосортного алюминийсодержащего сырья. Способ получения глинозема включает обжиг алюминийсодержащего сырья, обработку его соляной кислотой, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлористого водорода на стадии кислотной обработки и высаливания. Для повышения качества глинозема и снижения энергозатрат осажденный в процессе высаливания хлорид алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, а раствор хлористого аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку хлорида алюминия. Раствор хлористого аммония перед смешиванием с алюминийсодержащим сырьем может быть подвергнут стадийному упариванию при многократном использовании греющего пара. Выделившийся при упаривании хлорид аммония может быть смешан с алюминийсодержащим сырьем.

Description

СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА
Изобретение относится к металлургии, в частности к кислотным способам получения глинозема и может быть использовано при переработке низкосортного алюминийсодержащего сырья.
Известен солянокислотный способ получения глинозема путем кислотной обработки предварительно обожженного сырья, выпаривания осветленного хлоридного раствора с кристаллизацией шестиводного хлорида алюминия (А1С1з'6Н2О) с последующей кальцинацией его до оксида, который ввиду значительного содержания железа и других примесей (за исключением кремния), назван авторами «черновым глиноземом» (Справочник металлурга по цветным металлам. Производство глинозема. М:. Металлургия, 1970, С. 236-237). Далее этот промежуточный продукт перерабатывался по традиционной щелочной схеме Байера для удаления железа и получения глинозема металлургического качества.
К недостаткам данного способа получения глинозема относятся сложность технологической схемы, высокие энергозатраты при ее реализации, попадание хлоридов из кислотного цикла в щелочной, и связанные с этим дополнительные потери щелочи, достигавшие 36-37 кг/т глинозема. По перечисленным причинам этот способ не нашел применения в промышленности.
Наиболее близким к заявленному способу является способ получения глинозема из высококремнистых бокситов через солянокислотное выщелачивание, включающий обжиг алюминийсодержащего сырья при температуре до 700°С, обработку его соляной кислотой, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлористого водорода на стадии кислотной обработки и высаливания (Eisner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites - process development. Light metals, 1984, p. 41 1-426).
Согласно этому способу шестиводный хлорид алюминия выделялся из раствора путем высаливания газообразным хлористым водородом, что позволило упростить технологическую схему, отказаться от процесса Байера и снизить энергозатраты. Однако содержание примесей в конечном продукте, особенно, хлора и железа, в 2-3 раза превышало допустимые для металлургического глинозема пределы.
К недостаткам данного способа следует также отнести энергозатратный прием поддержания водного баланса в технологическом цикле путем однократного испарения оборотной воды при пирогидролизе хлорного железа и прочих примесных хлоридов.
При высаливании А1С13-6Н2О из раствора, содержащего хлориды железа и других примесных металлов практически невозможно обеспечить высокую чистоту целевого продукта, а его кальцинация является самым энергозатратным переделом. Расход тепловой энергии при кальцинации шестиводного хлорида алюминия при 1100-1200°С достигает 15 ГДж/т полученного глинозема. К тому же, при кальцинации очень трудно избавиться от остаточного хлора, который оказывает крайне негативное влияние при электролитическом получении алюминия из глинозема.
В основу изобретения положена задача, заключающаяся в разработке способа получения металлургического глинозема из низкосортного сырья, позволяющего перерабатывать бедные высококремнистые руды и отходы.
Техническим результатом является повышение качества глинозема и снижение энергозатрат.
Достижение вышеуказанного технического результата достигается тем, что в способе получения глинозема, включающем обжиг алюминийсодержащего сырья, обработку его соляной кислотой, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлористого водорода на стадии кислотной обработки и высаливания, осажденный в процессе высаливания хлорид алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, а раствор хлористого аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку хлорида алюминия.
Раствор хлористого аммония перед смешиванием с алюминийсодержащим сырьем может быть подвергнут стадийному упариванию при многократном использовании греющего пара.
Выделившийся при упаривании хлорид аммония может быть смешан с алюминийсодержащим сырьем.
При обработке кристаллов А1С13-6Н20 водным аммиаком происходит псевдоморфное превращение хлорида алюминия в частично дегидратированный гидроксид алюминия - бемит (А1ООН) с десорбцией и вымыванием соединений железа в маточный раствор хлорида аммония, который, в свою очередь, может быть легко удален водной промывкой. Таким образом, осуществляется дополнительная очистка гидроксида алюминия. Размеры частиц твердой фазы при этом практически не изменяются.
Кальцинация бемита требует всего 2,15 ГДж тепловой энергии на 1 т полученного глинозема.
При обработке шестиводного хлорида алюминия водным аммиаком образуется раствор хлорида аммония, который в отличие от солянокислых растворов не проявляет сильного коррозионного воздействия на аппаратуру,
з и может быть постадийно упарен в батарее обычных выпарных аппаратов с паровым нагревом и многократным использованием греющего пара, которые широко используются в промышленности минеральных солей и удобрений и дают 2-3 -кратную экономию потребляемого тепла по сравнению с однократным испарением воды, как это происходит в прототипе, когда вся вода, вводимая в технологический цикл для промывки сиштофа, поступала на пирогидролиз.
Оборот хлорида аммония может быть рационально осуществлен добавкой упаренного раствора непосредственно перед операцией обжига. Возможен также оборот хлорида аммония в виде кристаллов, выделенных в процессе упаривания раствора.
При температуре свыше 196°С происходит разложение хлорида аммония на газообразные хлористый водород и аммиак. Хлористый водород реагирует с компонентами сырья, в первую очередь, с железом, с образованием соответствующих хлоридов. При этом высвобождающийся аммиак может быть абсорбирован водой и в виде водного раствора направлен на обработку кристаллов А1С13-6Н2О.
Извлечение алюминия в раствор, в силу его химических свойств, происходит в основном на стадии солянокислотной обработки. Поскольку частичная хлоринация сырья происходит еще на стадии обжига, нагрузка на передел солянокислотной обработки снижается.
Таким образом, в способе получения глинозема реализуется оборот хлористого водорода (соляной кислоты) и оборот аммиака с минимизацией расхода реагентов и тепловой энергии.
Сущность изобретения поясняется технологической схемой получения глинозема.
Способ получения глинозема осуществляется следующим образом. Алюминийсодержащее сырье в смеси с хлоридом аммония направляют на обжиг, где происходит частичная термическая активация сырья и разложение хлорида аммония. При этом хлористый водород взаимодействует с оксидными компонентами сырья, а свободный аммиак абсорбируется водой с образованием водного аммиака. Таким образом, сырье проходит стадию обжига-хлоринации.
Далее для полного перевода ценных компонентов в раствор обожженное сырье подвергают обработке соляной кислотой с получением пульпы, которую разделяют (например, фильтрованием) на твердую фазу (отвальный сиштоф, содержащий в основном кремнезем) и хлоридный раствор, где главным целевым компонентом является алюминий. Выделение алюминия осуществляют введением в раствор газообразного хлористого водорода, который вытесняет (высаливает) шестиводный хлорид алюминия в виде кристаллов, подвергаемых в дальнейшем обработке (нейтрализации) водным аммиаком, поступающим со стадии обжига-хлоринации с образованием частично дегидратированного гидроксида алюминия (бемита) и раствора хлорида аммония. Бемит направляется на кальцинацию с получением товарного глинозема. Маточный раствор после высаливания шестиводного хлорида алюминия поступает на стадию пирогидролиза, где происходит образование гидроксидов и оксидов других металлов, главным образом, - гематита, а также регенерация соляной кислоты, как в виде водного раствора, так и газообразного хлористого водорода, возвращаемых на стадии кислотной обработки и высаливания шестиводного хлорида алюминия.
Раствор хлорида аммония направляется на стадийное упаривание с многократным использованием греющего пара.
Способ получения глинозема иллюстрируется конкретным примером.
Навеску сырья массой 100 г с содержанием основных компонентов, %: А1203 31,5; Si02 5,7; Fe203 35,2; Ti02 8,5; CaO 0,22; MgO 0,2; Na20 0,25; K20 0,15; V205 0,1 ; Cr203 0,12; SO3 0,25; ППП 17,2 смешали с навеской хлорида аммония массой 200 г. Смесь поместили в трубчатую лабораторную печь, нагретую до 300 °С, и выдержали в ней в течение 3 ч. Выделяющийся газообразный аммиак барботировали через слой воды. Обожженный материал растворяли в 20-процентной соляной кислоте при 98°С в течение 3 ч, образовавшуюся пульпу фильтровали и из осветленного раствора путем высаливания газообразным хлористым водородом кристаллизовали шестиводный хлорид алюминия. Отфильтрованные кристаллы обрабатывали водным раствором аммиака. По результатам рентгенофазового анализа полученная таким образом твердая фаза представляла собой беспримесный бемит (А1ООН). Промытый водой бемит прокаливали в муфельной печи при 1200°С с получением глинозема, который по химическому и гранулометрическому составу полностью отвечал металлургическому глинозему марки Г-0.
Раствор после высаливания шестиводного хлорида алюминия подвергали пирогидролизу с выделением железа и титана и др. малых примесей в виде оксидов и регенерацией хлористого водорода в виде раствора соляной кислоты и частично в виде газообразного хлористого водорода. Хлораммонийный раствор, образовавшийся после обработки кристаллов А1С13-6Н2О раствором аммиака, упаривали с выделением кристаллов хлорида аммония, который также рассматривался в качестве оборотного продукта.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ получения глинозема, включающий обжиг алюминийсодержащего сырья, обработку его соляной кислотой, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлористого водорода на стадии кислотной обработки и высаливания, отличающийся тем, что осажденный в процессе высаливания хлорид алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, а раствор хлористого аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку хлорида алюминия.
2. Способ по п.1, отличающийся тем, что раствор хлористого аммония перед смешиванием с алюминийсодержащим сырьем подвергают стадийному упариванию при многократном использовании греющего пара.
3. Способ по п.2, отличающийся тем, что выделившийся при упаривании хлорид аммония смешивают с алюминийсодержащим сырьем.
PCT/RU2012/000592 2012-07-20 2012-07-20 Способ получения глинозема WO2014014379A1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280074790.7A CN104507867B (zh) 2012-07-20 2012-07-20 生产氧化铝的方法
US14/415,958 US9517944B2 (en) 2012-07-20 2012-07-20 Method for producing alumina
RU2013151919/05A RU2554136C2 (ru) 2012-07-20 2012-07-20 Способ получения глинозема
CA2877650A CA2877650C (en) 2012-07-20 2012-07-20 Alumina production method
PCT/RU2012/000592 WO2014014379A1 (ru) 2012-07-20 2012-07-20 Способ получения глинозема
AU2012385519A AU2012385519B2 (en) 2012-07-20 2012-07-20 Method for producing alumina
IN743DEN2015 IN2015DN00743A (ru) 2012-07-20 2012-07-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000592 WO2014014379A1 (ru) 2012-07-20 2012-07-20 Способ получения глинозема

Publications (1)

Publication Number Publication Date
WO2014014379A1 true WO2014014379A1 (ru) 2014-01-23

Family

ID=49949094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000592 WO2014014379A1 (ru) 2012-07-20 2012-07-20 Способ получения глинозема

Country Status (7)

Country Link
US (1) US9517944B2 (ru)
CN (1) CN104507867B (ru)
AU (1) AU2012385519B2 (ru)
CA (1) CA2877650C (ru)
IN (1) IN2015DN00743A (ru)
RU (1) RU2554136C2 (ru)
WO (1) WO2014014379A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550368C1 (ru) * 2013-02-04 2015-05-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Оксид алюминия
CA2900260C (en) * 2013-02-04 2019-02-19 Aleksandr Sergeevich SENYUTA Method of producing aluminum oxide
WO2016064558A1 (en) * 2014-10-24 2016-04-28 Halliburton Energy Services, Inc. Methods to make ceramic proppants
RU2647041C1 (ru) * 2016-09-30 2018-03-13 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ получения металлургического глинозема (варианты)
CN106800346A (zh) * 2017-02-07 2017-06-06 泰山医学院 一种综合处理含三氯化铝工业废水的方法
RU2705071C1 (ru) * 2018-11-07 2019-11-01 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения металлургического глинозема кислотно-щелочным способом
US11746021B2 (en) 2019-04-18 2023-09-05 Nextchem, Llc High purity aluminum oxide via electrodialysis
CN110217812A (zh) * 2019-07-12 2019-09-10 神华准能资源综合开发有限公司 一种由结晶氯化铝制备氧化铝的方法
AU2021209433A1 (en) * 2020-01-20 2022-07-21 Tianqi Lithium Kwinana Pty Ltd A process for producing alumina and a lithium salt
CN111689508B (zh) * 2020-06-15 2021-12-28 浙江新安化工集团股份有限公司 一种四氯铝酸钠固渣的处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110399A (en) * 1976-04-02 1978-08-29 Institutt For Atomenergi Process for the extraction of alumina from aluminum-containing silicates
GB2042486A (en) * 1979-02-13 1980-09-24 Elkem Spigerverket As Method of producing aluminium-oxide from solutions containing dissolved ions of aluminium and iron
US4237102A (en) * 1978-05-18 1980-12-02 Aluminum Pechiney Process for obtaining pure alumina by the hydrochloric attack of aluminous ores and extraction of the impurities by means of a sulphuric treatment
SU1258815A1 (ru) * 1985-05-22 1986-09-23 Казахский Ордена Трудового Красного Знамени Политехнический Институт Им.В.И.Ленина Способ получени глинозема
RU2153466C1 (ru) * 1999-02-08 2000-07-27 Винокуров Станислав Федорович Способ вскрытия высококремнистого алюминийсодержащего сырья

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU908747A1 (ru) * 1980-01-25 1982-02-28 Институт общей и неорганической химии АН Армянской ССР Способ получени @ -глинозема
SU1161467A1 (ru) * 1983-09-28 1985-06-15 Казахский политехнический институт им.В.И.Ленина Способ получени глинозема из высококремнистого алюминийсодержащего сырь
SU1669864A1 (ru) * 1989-01-03 1991-08-15 Челябинский Государственный Педагогический Институт Способ получени глинозема
CN1040845C (zh) * 1993-07-16 1998-11-25 中国石油化工总公司 微球状γ-氧化铝的制备方法
US6468483B2 (en) * 2000-02-04 2002-10-22 Goldendale Aluminum Company Process for treating alumina-bearing ores to recover metal values therefrom
CN100584755C (zh) * 2008-04-02 2010-01-27 中国高岭土公司 以高岭土为原料制备超细白炭黑和纳米氧化铝的方法
CN101863501B (zh) * 2010-04-27 2012-12-19 中国神华能源股份有限公司 一种用氯化铝溶液生产超细氢氧化铝、氧化铝的方法
CN102502739B (zh) * 2011-11-11 2013-09-04 昆明冶金研究院 一种高纯α-氧化铝的生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110399A (en) * 1976-04-02 1978-08-29 Institutt For Atomenergi Process for the extraction of alumina from aluminum-containing silicates
US4237102A (en) * 1978-05-18 1980-12-02 Aluminum Pechiney Process for obtaining pure alumina by the hydrochloric attack of aluminous ores and extraction of the impurities by means of a sulphuric treatment
GB2042486A (en) * 1979-02-13 1980-09-24 Elkem Spigerverket As Method of producing aluminium-oxide from solutions containing dissolved ions of aluminium and iron
SU1258815A1 (ru) * 1985-05-22 1986-09-23 Казахский Ордена Трудового Красного Знамени Политехнический Институт Им.В.И.Ленина Способ получени глинозема
RU2153466C1 (ru) * 1999-02-08 2000-07-27 Винокуров Станислав Федорович Способ вскрытия высококремнистого алюминийсодержащего сырья

Also Published As

Publication number Publication date
US20150175435A1 (en) 2015-06-25
US9517944B2 (en) 2016-12-13
AU2012385519B2 (en) 2017-01-05
CN104507867B (zh) 2018-02-09
CN104507867A (zh) 2015-04-08
RU2013151919A (ru) 2015-05-27
IN2015DN00743A (ru) 2015-07-10
CA2877650C (en) 2017-08-15
RU2554136C2 (ru) 2015-06-27
AU2012385519A1 (en) 2015-01-22
CA2877650A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
RU2554136C2 (ru) Способ получения глинозема
EP1097247B1 (en) A method for isolation and production of magnesium based products
CN109790045B (zh) 冶炼级氧化铝生产方法(实施方式)
US4548795A (en) Treatment of aluminous materials
CN107128927A (zh) 一种粉煤灰造球氯化电解制备金属铝及综合利用的方法
RU2634017C2 (ru) Способ получения сульфата магния и железоокисных пигментов из отходов производств
CN107128957A (zh) 一种粉煤灰造球氯化电解制备氧化铝及综合利用的方法
CN107235499B (zh) 一种铝土矿造球氯化电解制备氧化铝及综合利用的方法
CN107200342A (zh) 一种粉煤灰氯化电解制备氧化铝及综合利用的方法
RU2572119C1 (ru) Способ переработки алюминийсодержащего сырья
RU2570077C2 (ru) Способ получения глинозема
US2316330A (en) Process of treating chromite ores, particularly masinloc ore to obtain therefrom aluminum, chromium, and other products
US9725785B2 (en) Process for cold hydrochemical decomposition of sodium hydrogen aluminosilicate
RU2562302C2 (ru) Способ получения глинозема из низкосортного алюминийсодержащего сырья
RU2820256C1 (ru) Способ переработки сыннырита с получением калийных удобрений и глинозема
CA3231096A1 (en) A process for producing alumina
WO2023235913A1 (en) A method for producing an aluminous material
WO2023149792A1 (ru) Способ переработки силикатных и алюмосиликатных горных пород
NZ212318A (en) Producing metallurgical grade alumina from aluminous material
Sagarunyan et al. Investigation of the processing of serpentinites
SU1135714A1 (ru) Способ получени магнезиальной шихты
WO2014042549A1 (ru) Способ получения глинозема
NO117979B (ru)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013151919

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2877650

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14415958

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012385519

Country of ref document: AU

Date of ref document: 20120720

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12881300

Country of ref document: EP

Kind code of ref document: A1