WO2014010743A1 - パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池 - Google Patents

パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池 Download PDF

Info

Publication number
WO2014010743A1
WO2014010743A1 PCT/JP2013/069222 JP2013069222W WO2014010743A1 WO 2014010743 A1 WO2014010743 A1 WO 2014010743A1 JP 2013069222 W JP2013069222 W JP 2013069222W WO 2014010743 A1 WO2014010743 A1 WO 2014010743A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation layer
composition
forming
alkoxide
semiconductor substrate
Prior art date
Application number
PCT/JP2013/069222
Other languages
English (en)
French (fr)
Inventor
修一郎 足立
吉田 誠人
野尻 剛
倉田 靖
田中 徹
明博 織田
剛 早坂
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR20157002562A priority Critical patent/KR20150036286A/ko
Priority to JP2014524902A priority patent/JPWO2014010743A1/ja
Priority to CN201380036883.5A priority patent/CN104471715B/zh
Publication of WO2014010743A1 publication Critical patent/WO2014010743A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a composition for forming a passivation layer, a semiconductor substrate with a passivation layer and a manufacturing method thereof, a solar cell element and a manufacturing method thereof, and a solar cell.
  • n-type diffusion layer is uniformly formed by performing several tens of minutes at 800 ° C. to 900 ° C.
  • n-type diffusion layers are formed not only on the front surface, which is the light receiving surface, but also on the side surface and the back surface. Therefore, side etching is performed to remove the n-type diffusion layer formed on the side surface.
  • the n-type diffusion layer formed on the back surface needs to be converted into a p + -type diffusion layer.
  • an aluminum paste containing aluminum powder and a binder is applied to the entire back surface, and this is heat-treated (fired) to form an aluminum electrode, so that the n-type diffusion layer becomes a p + -type diffusion layer, Get ohmic contact.
  • the aluminum electrode formed from the aluminum paste has low conductivity. Therefore, in order to reduce the sheet resistance, the aluminum electrode formed on the entire back surface usually must have a thickness of about 10 ⁇ m to 20 ⁇ m after heat treatment (firing). Furthermore, since the thermal expansion coefficient differs greatly between silicon and aluminum, a large internal stress is generated in the silicon substrate during the heat treatment (firing) and cooling in the silicon substrate on which the aluminum electrode is formed, and the grain boundary Cause damage, crystal defect growth, and warping.
  • a SiO 2 film or the like has been proposed as a back-side passivation layer (hereinafter also simply referred to as “passivation layer”) (see, for example, JP-A-2004-6565).
  • passivation layer As a passivation effect by forming such an oxide film, there is an effect of terminating the dangling bonds of silicon atoms in the back surface layer portion of the silicon substrate and reducing the surface state density that causes recombination.
  • Such a passivation effect is generally called a field effect, and an aluminum oxide (Al 2 O 3 ) film or the like has been proposed as a material having a negative fixed charge (see, for example, Japanese Patent No. 4767110).
  • Such a passivation layer is generally formed by a method such as an ALD (Atomic Layer Deposition) method or a CVD (Chemical Vapor Deposition) method (for example, Journal of Applied Physics, 104 (2008), 113703-1). 113703-7).
  • the present invention has been made in view of the above-described conventional problems, and it is possible to form a passivation layer having a sufficiently large refractive index into a desired shape by a simple method and to form a passivation layer having excellent storage stability. It is an object to provide a composition for use. Further, the present invention provides a semiconductor substrate with a passivation layer obtained by using the composition for forming a passivation layer and having a passivation layer having a sufficiently large refractive index, a manufacturing method thereof, a solar cell element, a manufacturing method thereof, and a solar cell. The issue is to provide.
  • a composition for forming a passivation layer comprising an organoaluminum compound represented by the following general formula (I) and at least one alkoxide compound selected from the group consisting of titanium alkoxide, zirconium alkoxide and silicon alkoxide.
  • each R 1 independently represents an alkyl group having 1 to 8 carbon atoms.
  • n represents an integer of 0 to 3.
  • X 2 and X 3 each independently represent an oxygen atom or a methylene group.
  • R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
  • composition for forming a passivation layer according to ⁇ 1> further comprising niobium alkoxide.
  • niobium alkoxide is at least one selected from the group consisting of niobium ethoxide, niobium isopropoxide, niobium n-propoxide, niobium n-butoxide, and niobium phenoxide. Composition.
  • the alkoxide compound contains at least the titanium alkoxide, and the titanium alkoxide is titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium n-propoxide, titanium n-butoxide, titanium t-butoxide, titanium iso Any one of ⁇ 1> to ⁇ 3>, which is at least one selected from the group consisting of butoxide, titanium (diisopropoxide) bis (acetylacetonate), and titanium (tetrakis (2-ethyl-1-hexanolate))
  • the composition for forming a passivation layer according to 1.
  • the alkoxide compound contains at least the zirconium alkoxide, and the zirconium alkoxide is zirconium ethoxide, zirconium isopropoxide, zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium acetylacetone, zirconium trifluoro.
  • the composition for forming a passivation layer according to any one of ⁇ 1> to ⁇ 4>, which is at least one selected from the group consisting of acetylacetonate and zirconium hexafluoroacetylacetonate.
  • ⁇ 6> The passivation layer according to any one of ⁇ 1> to ⁇ 5>, wherein the alkoxide compound includes at least the silicon alkoxide, and the silicon alkoxide is a silicon alkoxide represented by the following general formula (II): Forming composition. (R 5 O) (4-m) SiR 6 m (II) [In General Formula (II), R 5 and R 6 each independently represents an alkyl group having 1 to 8 carbon atoms. m represents an integer of 0 to 3. ]
  • composition for forming a passivation layer according to any one of ⁇ 1> to ⁇ 7>, further comprising a compound represented by the following general formula (III).
  • a step of forming a composition layer by applying the passivation layer forming composition according to any one of ⁇ 1> to ⁇ 8> to the entire surface or a part of a semiconductor substrate, and the composition A method of manufacturing a semiconductor substrate with a passivation layer, comprising: heat-treating the layer to form a passivation layer.
  • a solar cell element comprising: a passivation layer that is a heat-treated product of the composition for use; and an electrode disposed on one or more layers selected from the group consisting of the p-type layer and the n-type layer of the semiconductor substrate.
  • a solar cell element according to, A wiring material disposed on the electrode of the solar cell element;
  • a solar cell having:
  • a passivation layer-forming composition that can form a passivation layer having a sufficiently high refractive index into a desired shape by a simple method and is excellent in storage stability.
  • a semiconductor substrate with a passivation layer obtained by using the composition for forming a passivation layer and having a passivation layer having a sufficiently large refractive index, a manufacturing method thereof, a solar cell element, a manufacturing method thereof, and a solar cell can be provided.
  • FIG. 1A to FIG. 1D are cross-sectional views schematically showing an example of a method for manufacturing a solar cell element having a passivation layer according to an embodiment of the present invention.
  • 2 (a) to 2 (e) are cross-sectional views schematically showing another example of a method for manufacturing a solar cell element having a passivation layer according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a back electrode type solar cell element having a passivation layer according to an embodiment of the present invention.
  • the term “process” is not only an independent process, but is included in this term if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.
  • the composition for forming a passivation layer of the present invention comprises an organoaluminum compound represented by the following general formula (I) (hereinafter also referred to as “specific organoaluminum compound”), a titanium alkoxide, a zirconium alkoxide, and a silicon alkoxide. And at least one alkoxide compound selected from the above (hereinafter also referred to as “specific alkoxide compound”).
  • the composition for forming a passivation layer may further contain other components as necessary.
  • the composition for forming a passivation layer contains a specific organoaluminum compound and a specific alkoxide compound, it is possible to form a passivation layer having a sufficiently high refractive index in a desired shape by a simple method. Further, the composition for forming a passivation layer is excellent in storage stability.
  • each R 1 independently represents an alkyl group having 1 to 8 carbon atoms.
  • n represents an integer of 0 to 3.
  • X 2 and X 3 each independently represent an oxygen atom or a methylene group.
  • R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the plurality of groups represented by the same symbol may be the same or different.
  • a composition for forming a passivation layer containing a specific organoaluminum compound and a specific alkoxide compound is applied to a semiconductor substrate to form a composition layer having a desired shape, and this is heat-treated (fired).
  • a passivation layer having a passivation effect and a sufficiently large refractive index can be formed in a desired shape.
  • the method of the present invention is a simple and highly productive method that does not require a vapor deposition apparatus or the like. Further, the passivation layer can be formed in a desired shape without requiring a complicated process such as mask processing.
  • the composition for forming a passivation layer contains a specific organoaluminum compound and a specific alkoxide compound, so that occurrence of problems such as gelation over time is suppressed, and the storage stability is excellent.
  • the passivation effect of a semiconductor substrate is obtained by reflecting the effective lifetime of minority carriers in a semiconductor substrate on which a passivation layer is formed using a reflection microwave conduction device using a device such as WT-2000PVN (Nihon Semi-Lab Co., Ltd.). It can be evaluated by measuring by the attenuation method.
  • the effective lifetime ⁇ is expressed by the following equation (A) by the bulk lifetime ⁇ b inside the semiconductor substrate and the surface lifetime ⁇ s of the semiconductor substrate surface.
  • ⁇ s becomes long, resulting in a long effective lifetime ⁇ .
  • the bulk lifetime ⁇ b is increased and the effective lifetime ⁇ is increased. That is, by measuring the effective lifetime ⁇ , the interface characteristics between the passivation layer and the semiconductor substrate and the internal characteristics of the semiconductor substrate such as dangling bonds can be evaluated.
  • the composition for forming a passivation layer contains at least one organoaluminum compound represented by the general formula (I) (hereinafter also referred to as “specific organoaluminum compound”).
  • the organoaluminum compound includes compounds called aluminum alkoxide, aluminum chelate and the like, and preferably has an aluminum chelate structure in addition to the aluminum alkoxide structure.
  • a specific organoaluminum compound is converted to aluminum oxide (Al 2 O 3 ) by heat treatment (firing).
  • a passivation layer having an excellent passivation effect can be formed by the composition for forming a passivation layer containing the organoaluminum compound represented by the general formula (I) as follows. . Since the aluminum oxide formed by heat-treating (firing) a passivation layer forming composition containing a specific organoaluminum compound and a specific alkoxide compound is likely to be in an amorphous state, the four-coordinate aluminum oxide layer is formed with a semiconductor substrate. It is considered that it can be easily formed near the interface and can have a large negative fixed charge resulting from four-coordinate aluminum oxide.
  • Tetracoordinated aluminum oxide is considered to have a structure in which the center of silicon dioxide (SiO 2 ) is isomorphously substituted from silicon to aluminum, and is formed as a negative charge source at the interface between silicon dioxide and aluminum oxide like zeolite and clay.
  • the state of the formed aluminum oxide layer can be confirmed by measuring an X-ray diffraction spectrum (XRD, X-ray diffraction). For example, it can be confirmed that the XRD has an amorphous structure by not showing a specific reflection pattern.
  • the negative fixed charge of aluminum oxide can be evaluated by a CV method (Capacitance Voltage measurement).
  • the surface state density obtained by the CV method is higher than that of the aluminum oxide layer formed by the ALD method or the CVD method. , May be a large value.
  • the passivation layer formed from the composition for forming a passivation layer of the present invention has a large electric field effect and a low minority carrier concentration, resulting in an increased surface lifetime ⁇ s . Therefore, the surface state density is not a relative problem.
  • each R 1 independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group represented by R 1 may be linear or branched. Specific examples of the alkyl group represented by R 1 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, hexyl, octyl, 2- Examples thereof include an ethylhexyl group and a 3-ethylhexyl group.
  • the alkyl group represented by R 1 is preferably an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is an unsubstituted alkyl group having 1 to 4 carbon atoms. More preferably.
  • n represents an integer of 0 to 3. n is preferably an integer of 1 to 3 and more preferably 1 or 3 from the viewpoint of storage stability.
  • X 2 and X 3 each independently represent an oxygen atom or a methylene group. From the viewpoint of storage stability, at least one of X 2 and X 3 is preferably an oxygen atom.
  • R 2 , R 3 and R 4 in the general formula (I) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. The alkyl group represented by R 2 , R 3 and R 4 may be linear or branched.
  • the alkyl group represented by R 2 , R 3 and R 4 may have a substituent or may be unsubstituted, and is preferably unsubstituted.
  • the alkyl group represented by R 2 , R 3 and R 4 is an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group represented by R 2 , R 3 or R 4 is an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • R 2 and R 3 in the general formula (I) are each independently preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms. Or it is more preferably an unsubstituted alkyl group having 1 to 4 carbon atoms.
  • R 4 in the general formula (I) is preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is preferably a hydrogen atom or a carbon atom having 1 to 4 carbon atoms. It is more preferably an unsubstituted alkyl group.
  • the organoaluminum compound represented by formula (I) is a compound in which n is 1 to 3 and R 4 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms from the viewpoint of storage stability It is preferable that
  • the organoaluminum compound represented by the general formula (I) is a compound in which n is 0 and R 1 is each independently an alkyl group having 1 to 4 carbon atoms from the viewpoint of storage stability and a passivation effect, and n is an integer of 1 to 3, R 1 is each independently an alkyl group having 1 to 4 carbon atoms, at least one of X 2 and X 3 is an oxygen atom, and R 2 and R 3 are each independently A hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 4 is at least one selected from the group consisting of compounds each independently being a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. preferable.
  • n is 0, R 1 is each independently an unsubstituted alkyl group having 1 to 4 carbon atoms, and n is 1
  • R 2 is an integer of ⁇ 3
  • each R 1 is independently an unsubstituted alkyl group having 1 to 4 carbon atoms
  • at least one of X 2 and X 3 is an oxygen atom
  • R 3 is an alkyl group having 1 to 4 carbon atoms and X 2 or X 3 is a methylene group
  • R 2 or R 3 bonded to the methylene group is a hydrogen atom
  • R 4 is a hydrogen atom
  • it is at least one selected from the group consisting of compounds.
  • Specific examples of the specific organoaluminum compound (aluminum trialkoxide) in which n is 0 in the general formula (I) include trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, trisec-butoxyaluminum, monosec-butoxy -Diisopropoxyaluminum, tri-t-butoxyaluminum, tri-n-butoxyaluminum and the like.
  • n is an integer of 1 to 3
  • n is an integer of 1 to 3
  • n is an integer of 1 to 3
  • n is an integer of 1 to 3
  • n is an integer of 1 to 3
  • n is an integer of 1 to 3
  • n is an integer of 1 to 3
  • Acetoacetate aluminum monoacetylacetonate bis (ethylacetoacetate)
  • aluminum tris acetylacetonate
  • n is an integer of 1 to 3 in the general formula (I)
  • a prepared product or a commercially available product may be used.
  • Commercially available products include, for example, trade names of Kawaken Fine Chemical Co., Ltd., ALCH, ALCH-50F, ALCH-75, ALCH-TR, ALCH-TR-20, aluminum chelate M, aluminum chelate D, and alkylate A (W). Can be mentioned.
  • the specific organoaluminum compound in which n is an integer of 1 to 3 in the general formula (I) can be prepared by mixing the aluminum trialkoxide and the compound having a specific structure having the two carbonyl groups. it can.
  • a commercially available aluminum chelate compound may also be used.
  • the aluminum trialkoxide is mixed with a compound having a specific structure having two carbonyl groups, at least a part of the alkoxide group of the aluminum trialkoxide is substituted with the compound having the specific structure to form an aluminum chelate structure.
  • a solvent may be present, or heat treatment, addition of a catalyst, and the like may be performed.
  • the stability of the specific organoaluminum compound to hydrolysis and polymerization reaction is improved, and the storage stability of the composition for forming a passivation layer is further improved.
  • the compound having a specific structure having two carbonyl groups is at least one selected from the group consisting of ⁇ -diketone compounds, ⁇ -ketoester compounds, and malonic acid diesters from the viewpoints of reactivity and storage stability. preferable.
  • Specific examples of the compound having a specific structure having two carbonyl groups include acetylacetone, 3-methyl-2,4-pentanedione, 2,3-pentanedione, 3-ethyl-2,4-pentanedione, 3- Butyl-2,4-pentanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, 2,6-dimethyl-3,5-heptanedione, 6-methyl-2,4-heptanedione ⁇ -diketone compounds such as: methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, isobutyl acetoacetate, butyl aceto
  • the number of aluminum chelate structures is not particularly limited as long as it is 1 to 3.
  • the number of aluminum chelate structures is preferably 1 or 3 from the viewpoint of storage stability, and more preferably 1 from the viewpoint of solubility.
  • the number of aluminum chelate structures can be controlled, for example, by appropriately adjusting the ratio of mixing the aluminum trialkoxide and a compound capable of forming a chelate with aluminum.
  • organoaluminum compounds represented by the general formula (I) specifically, from the viewpoint of the passivation effect and compatibility with the solvent added as necessary, aluminum ethyl acetoacetate diisopropylate and triisopropoxyaluminum It is preferable to use at least one selected from the group consisting of, and more preferable to use aluminum ethyl acetoacetate diisopropylate.
  • an aluminum chelate structure in the specific organoaluminum compound can be confirmed by a commonly used analysis method. For example, it can be confirmed using an infrared spectrum, a nuclear magnetic resonance spectrum, a melting point, or the like.
  • the content of the specific organoaluminum compound contained in the composition for forming a passivation layer can be appropriately selected as necessary.
  • the content of the organoaluminum compound can be 1% by mass to 70% by mass in the composition for forming a passivation layer and 3% by mass to 60% by mass from the viewpoint of storage stability and a passivation effect. Preferably, it is 5% by mass to 50% by mass, more preferably 10% by mass to 30% by mass.
  • the organoaluminum compound may be liquid or solid and is not particularly limited. From the viewpoint of the passivation effect and storage stability, it is preferable to use a specific organoaluminum compound having good stability at room temperature (25 ° C.) and good solubility or dispersibility in a solvent. By using such a specific organoaluminum compound, the homogeneity of the formed passivation layer is further improved, and a desired passivation effect tends to be stably obtained.
  • the composition for forming a passivation layer of the present invention includes at least one alkoxide compound selected from the group consisting of titanium alkoxide, zirconium alkoxide and silicon alkoxide in addition to the specific organoaluminum compound (hereinafter also referred to as “specific alkoxide compound”). ).
  • specific alkoxide compound selected from the group consisting of titanium alkoxide, zirconium alkoxide and silicon alkoxide in addition to the specific organoaluminum compound (hereinafter also referred to as “specific alkoxide compound”).
  • the passivation layer formed by heat-treating (sintering) the composition for forming a passivation layer of the present invention has a higher refractive index than a passivation layer formed only from an organoaluminum compound.
  • a passivation layer formed only from an organoaluminum compound For example, in a solar cell element in which a passivation layer having a large refractive index is formed on the light receiving surface, the light utilization efficiency is further improved, so that the power generation efficiency is improved.
  • the refractive index of the passivation layer formed from the composition for forming a passivation layer is preferably 1.4 or more, more preferably 1.6 or more, and further preferably 1.6 to 2.5. .
  • titanium alkoxide There is no restriction
  • titanium alkoxide reacts with the organoaluminum compound represented by the general formula (I) to form a more complex composite oxide from the viewpoint that it is difficult to decompose the resin etc. in contact with the formed passivation layer. Those that give are preferred.
  • titanium alkoxide examples include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium n-propoxide, titanium n-butoxide, titanium t-butoxide, titanium isobutoxide, titanium (diisopropoxide) bis ( Acetylacetonate), titanium tetrakis (2-ethyl-1-hexanolate) and the like.
  • titanium oxide obtained by heat treating (baking) titanium alkoxide has a large refractive index.
  • the photocatalytic action of titanium oxide may cause decomposition of the resin that comes into contact with the passivation layer under sunlight. There is.
  • the titanium alkoxide when a titanium alkoxide is applied to the composition for forming a passivation layer, the titanium alkoxide forms a composite oxide together with the organoaluminum compound, and a passivation layer having a large refractive index can be formed while suppressing photocatalysis. it can.
  • the zirconium alkoxide is not particularly limited as long as it reacts with the organoaluminum compound represented by the general formula (I) to give a composite oxide.
  • Specific examples of zirconium alkoxy include zirconium ethoxide, zirconium isopropoxide, zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium acetylacetone, zirconium trifluoroacetylacetonate, zirconium hexafluoroacetylacetonate, etc. Can be mentioned.
  • zirconium oxide obtained by heat treatment (calcination) of zirconium alkoxide is known to have a high refractive index.
  • the photocatalytic action of zirconium oxide may cause degradation of the resin that comes into contact with the passivation layer under sunlight.
  • a zirconium alkoxide is applied to the composition for forming a passivation layer, the zirconium alkoxide forms a composite oxide together with the organoaluminum compound, thereby forming a passivation layer having a high refractive index while suppressing photocatalytic action. it can.
  • the silicon alkoxide will be described.
  • the aluminum oxide formed by heat-treating (firing) the passivation layer-forming composition containing the organoaluminum compound represented by the general formula (I) is likely to be in an amorphous state, and 4-coordinated aluminum oxide is partially generated.
  • silicon alkoxide is contained in the passivation layer forming composition, four-coordinate silicon oxide is also generated by heat treatment (firing).
  • Tetracoordinate silicon oxide is known to have a central atom replaced from silicon to aluminum by isomorphous substitution.
  • the silicon alkoxide is not particularly limited as long as it reacts with the organoaluminum compound represented by the general formula (I), titanium alkoxide, zirconium alkoxide or niobium alkoxide contained as necessary to give a composite oxide.
  • the silicon alkoxide is preferably a compound represented by the following general formula (II).
  • (R 5 O) (4-m) SiR 6 m (II) In the formula, R 5 and R 6 each independently represents an alkyl group having 1 to 8 carbon atoms. n represents an integer of 0 to 3.
  • the plurality of R 5 or R 6 may be the same or different.
  • silicon alkoxide examples include silicon tetramethoxide, silicon tetraethoxide, silicon tetrapropoxide, and the like.
  • alkoxide compounds selected from the group consisting of titanium alkoxides, zirconium alkoxides and silicon alkoxides
  • they are composed of titanium alkoxides and zirconium alkoxides from the viewpoints of reactivity with organoaluminum compounds, the refractive index of the composite oxide to be formed, and the passivation effect.
  • the total content of the specific alkoxide compound selected from the group consisting of titanium alkoxide, zirconium alkoxide and silicon alkoxide is preferably 0.5% by mass to 65% by mass in the composition for forming a passivation layer, and 1% by mass. More preferably, it is ⁇ 65% by mass, and further preferably 2% by mass to 60% by mass.
  • the ratio of the content of the specific alkoxide compound to the content of the organoaluminum compound represented by the general formula (I) is preferably from 0.01 to 1000, more preferably from 0.05 to 500, still more preferably from 0.1 to 100.
  • the composition for forming a passivation layer may contain at least one niobium alkoxide. Since niobium oxide obtained by heat-treating (firing) niobium alkoxide is known to have a high refractive index, heat treatment (firing) the composition for forming a passivation layer further containing niobium alkoxide increases the refractive index. A large passivation layer can be obtained.
  • the niobium alkoxide is not particularly limited as long as it reacts with the organoaluminum compound represented by the general formula (I) to give a composite oxide.
  • niobium alkoxide examples include niobium ethoxide, niobium isopropoxide, niobium n-propoxide, niobium n-butoxide, niobium phenoxide and the like.
  • the content is preferably 0.2% by mass to 50% by mass in the total mass of the composition for forming a passivation layer, and 0.5% by mass. % To 48% by mass is more preferable, and 1% to 46% by mass is even more preferable.
  • the ratio of the content of niobium alkoxide to the content of the organoaluminum compound represented by general formula (I) is preferably from 0.01 to 1000, more preferably from 0.05 to 500, and more preferably from 0.1 to 100, from the viewpoint of the refractive index of the composite oxide to be produced and the passivation effect. More preferably.
  • the ratio of the total content of the specific alkoxide compound and the niobium alkoxide to the content of the organoaluminum compound represented by the general formula (I) is determined by the composite oxidation produced. From the viewpoint of the refractive index of the product and the passivation effect, it is preferably 0.01 to 1000, more preferably 0.05 to 500, and still more preferably 0.1 to 100.
  • the total content of the organoaluminum compound represented by the general formula (I), the specific alkoxide compound and the niobium alkoxide contained as necessary is the total mass of the composition for forming a passivation layer.
  • the content is preferably 1% by mass to 70% by mass, more preferably 3% by mass to 60% by mass, and still more preferably 5% by mass to 50% by mass.
  • the composition for forming a passivation layer may further contain at least one resin.
  • the shape stability of the composition layer formed by applying the composition for forming a passivation layer on a semiconductor substrate is further improved, and the passivation layer is formed in the region where the composition layer is formed. It can be selectively formed in a desired shape.
  • the type of resin is not particularly limited.
  • the resin is preferably a resin whose viscosity can be adjusted within a range in which a good pattern can be formed when the composition for forming a passivation layer is applied onto a semiconductor substrate.
  • Specific examples of the resin include celluloses such as cellulose alcohols such as polyvinyl alcohol, polyacrylamides, polyvinylamides, polyvinylpyrrolidone, polyethylene oxides, polysulfonic acid, polyacrylamide alkylsulfonic acid, cellulose, carboxymethylcellulose, hydroxyethylcellulose, and ethylcellulose.
  • the molecular weight of these resins is not particularly limited, and it is preferable to adjust appropriately in view of the desired viscosity as the composition for forming a passivation layer.
  • the weight average molecular weight of the resin is preferably 1,000 to 10,000,000, more preferably 3,000 to 5,000,000, from the viewpoints of storage stability and pattern formation.
  • the weight average molecular weight of resin is calculated
  • the content of the resin in the composition for forming a passivation layer can be appropriately selected as necessary.
  • the resin content is preferably 0.1% by mass to 30% by mass in the total mass of the composition for forming a passivation layer, for example. From the viewpoint of developing thixotropy that facilitates pattern formation, the content is more preferably 1% by mass to 25% by mass, and more preferably 1.5% by mass to 20% by mass. More preferably, the content is 1.5% by mass to 10% by mass.
  • the content ratio of the organoaluminum compound and the resin in the composition for forming a passivation layer can be appropriately selected as necessary.
  • the content ratio of the resin to the organoaluminum compound is preferably 0.001 to 1000, and preferably 0.01 to 100. More preferably, it is 0.1 to 1.
  • a high boiling point material In the composition for forming a passivation layer, a high boiling point material may be used together with the resin or as a material replacing the resin.
  • the high boiling point material is preferably a compound that is easily vaporized during heating and does not need to be degreased.
  • the high boiling point material is particularly preferably a high boiling point material having a high viscosity capable of maintaining a printed shape after printing and coating.
  • isobornylcyclohexanol represented by the general formula (III) can be mentioned.
  • the isobornyl cyclohexanol represented by the general formula (III) is commercially available as “Telsolve MTPH” (Nippon Terpene Chemical Co., Ltd., trade name). Isobornyl cyclohexanol has a high boiling point of 308 ° C. to 318 ° C. When it is removed from the composition layer, it does not need to be degreased by heat treatment (firing) like a resin, but is vaporized by heating. Can be eliminated.
  • the content of the high-boiling material is preferably 0.5% by mass to 85% by mass in the total mass of the composition for forming a passivation layer.
  • the content is more preferably from 80% by mass to 80% by mass, and particularly preferably from 2% by mass to 80% by mass.
  • the composition for forming a passivation layer may contain a solvent.
  • the viscosity can be easily adjusted, the impartability is further improved, and a more uniform passivation layer tends to be formed.
  • the solvent is not particularly limited and can be appropriately selected as necessary. Among these, a solvent capable of dissolving the organoaluminum compound represented by the general formula (I) and the specific alkoxide compound to give a uniform solution is preferable, and it is more preferable to include at least one organic solvent.
  • the solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, Ketone solvents such as propyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether,
  • the solvent preferably contains at least one selected from the group consisting of a terpene solvent, an ester solvent and an alcohol solvent, from the viewpoint of impartability to a semiconductor substrate and pattern formation, and consists of a terpene solvent. More preferably, it contains at least one selected from the group.
  • the content of the solvent is determined in consideration of the imparting property, the pattern forming property, and the storage stability.
  • the content of the solvent is preferably 5% by mass to 98% by mass with respect to the total mass of the composition for forming a passivation layer, from the viewpoint of the impartability of the composition and the pattern forming property, and 10% by mass to 95% by mass. % Is more preferable.
  • the composition for forming a passivation layer may contain an acidic compound or a basic compound.
  • the content of the acidic compound or the basic compound is 1% by mass or less in the composition for forming a passivation layer, respectively. It is preferable that the content is 0.1% by mass or less.
  • acidic compounds include Bronsted acid and Lewis acid. Specific examples include inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as acetic acid.
  • Examples of basic compounds include Bronsted bases and Lewis bases. Specific examples include inorganic bases such as alkali metal hydroxides and alkaline earth metal hydroxides, and organic bases such as trialkylamine and pyridine.
  • the viscosity of the composition for forming a passivation layer is not particularly limited, and can be appropriately selected depending on a method for applying the composition to a semiconductor substrate.
  • the viscosity of the composition for forming a passivation layer can be 0.01 Pa ⁇ s to 10,000 Pa ⁇ s.
  • the viscosity of the composition for forming a passivation layer is preferably 0.1 Pa ⁇ s to 1000 Pa ⁇ s.
  • the viscosity is measured at 25 ° C. and a shear rate of 1.0 s ⁇ 1 using a rotary shear viscometer.
  • the shear viscosity of the composition for forming a passivation layer is not particularly limited, and the composition for forming a passivation layer preferably has thixotropy.
  • the passivation layer forming composition comprising a resin from the viewpoint of pattern formability is calculated by dividing the shear viscosity eta 1 at a shear rate of 1.0 s -1 at shear viscosity eta 2 at a shear rate of 10s -1
  • the thixo ratio ( ⁇ 1 / ⁇ 2 ) is preferably 1.05 to 100, more preferably 1.1 to 50.
  • the shear viscosity is measured at a temperature of 25 ° C.
  • the thixo ratio ( ⁇ 1 / ⁇ 3 ) calculated by dividing by is preferably 1.05 to 100, more preferably 1.1 to 50.
  • Method for producing a composition for forming a passivation layer There is no restriction
  • it can be produced by mixing an organoaluminum compound represented by the general formula (I), a specific alkoxide compound, and a resin, a solvent and the like contained as necessary by a commonly used mixing method.
  • the resin may be dissolved in a solvent and then mixed with the organoaluminum compound represented by the general formula (I) and the specific alkoxide compound.
  • the organoaluminum compound represented by the general formula (I) may be prepared by mixing an aluminum alkoxide and a compound capable of forming a chelate with aluminum.
  • the composition for forming a passivation layer may be produced by mixing the organoaluminum compound and the specific alkoxide compound represented by the general formula (I) thus prepared and a resin or a solution containing the resin.
  • the components contained in the composition for forming a passivation layer and the content of each component are determined by thermal analysis such as differential thermal-thermogravimetric simultaneous measurement (TG / DTA), nuclear magnetic resonance (NMR), infrared spectroscopy. It can be confirmed by spectral analysis such as method (IR), chromatographic analysis such as high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.
  • the semiconductor substrate with a passivation layer of the present invention includes a semiconductor substrate and a passivation layer that is a heat treatment product (baked product) of the composition for forming a passivation layer of the present invention provided on the entire surface or part of the semiconductor substrate.
  • the said semiconductor substrate with a passivation layer shows the passivation effect which was excellent by having the passivation layer which is the heat processing material layer (baked material layer) of the said composition for passivation layer formation.
  • the semiconductor substrate is not particularly limited, and can be appropriately selected from those usually used according to the purpose.
  • Examples of the semiconductor substrate include those obtained by doping (diffusing) p-type impurities or n-type impurities into silicon, germanium, or the like. Of these, a silicon substrate is preferable.
  • the semiconductor substrate may be a p-type semiconductor substrate or an n-type semiconductor substrate. Among these, from the viewpoint of the passivation effect, it is preferable that the surface on which the passivation layer is formed is a semiconductor substrate having a p-type layer.
  • the p-type layer on the semiconductor substrate is a p-type layer derived from the p-type semiconductor substrate
  • the p-type layer is formed on the n-type semiconductor substrate or the p-type semiconductor substrate as a p-type diffusion layer or a p + -type diffusion layer. It may be.
  • the thickness of the semiconductor substrate is not particularly limited and can be appropriately selected according to the purpose.
  • the thickness of the semiconductor substrate can be 50 ⁇ m to 1000 ⁇ m, preferably 75 ⁇ m to 750 ⁇ m.
  • the average thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected according to the purpose.
  • the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, preferably 10 nm to 30 ⁇ m, and more preferably 15 nm to 20 ⁇ m.
  • the average thickness of the passivation layer can be measured with an interference film thickness meter or the like.
  • the semiconductor substrate with a passivation layer can be applied to a solar cell element, a light emitting diode element or the like.
  • the solar cell element excellent in conversion efficiency can be obtained by applying to a solar cell element.
  • a passivation layer is provided in the light-receiving surface side of a solar cell element.
  • the method for producing a semiconductor substrate with a passivation layer of the present invention comprises a step of forming a composition layer by applying the composition for forming a passivation layer of the present invention over the entire surface or a part of the semiconductor substrate, and the composition layer comprising: And a step of forming a passivation layer by heat treatment (firing).
  • the manufacturing method may further include other steps as necessary.
  • the method for producing a semiconductor substrate with a passivation layer preferably further includes a step of applying an alkaline aqueous solution on the semiconductor substrate before the step of forming the composition layer. That is, it is preferable to wash the surface of the semiconductor substrate with an alkaline aqueous solution before applying the passivation layer forming composition onto the semiconductor substrate. By washing with an alkaline aqueous solution, organic substances, particles, and the like present on the surface of the semiconductor substrate can be removed, and the passivation effect is further improved.
  • RCA cleaning and the like can be exemplified.
  • the organic substance and particles can be removed and washed by immersing the semiconductor substrate in a mixed solution of ammonia water and hydrogen peroxide solution and treating at 60 ° C. to 80 ° C.
  • the washing time is preferably 10 seconds to 10 minutes, and more preferably 30 seconds to 5 minutes.
  • the wafer is first put in a dilute hydrofluoric acid aqueous solution (HF) to dissolve the thin Si oxide film and to remove many foreign substances adhering to the Si oxide film at the same time. Further, with the mixed solution of ammonia water (NH 4 OH) -hydrogen peroxide (H 2 O 2 ) as described above, organic substances and particles are taken, and then with hydrochloric acid (HC1) and hydrogen peroxide (H 2 O 2 ). Take metal. And you may finish with ultrapure water at the end.
  • HF hydrofluoric acid aqueous solution
  • the method for forming the composition layer by applying the composition for forming a passivation layer on a semiconductor substrate there is no particular limitation on the method for forming the composition layer by applying the composition for forming a passivation layer on a semiconductor substrate.
  • the method of providing the said composition for passivation layer formation on a semiconductor substrate using a well-known coating method etc. can be mentioned. Specific examples include immersion method, printing method, spin method, brush coating, spray method, doctor blade method, roll coater method, and ink jet method. Among these, from the viewpoint of pattern formability, various printing methods, ink jet methods, and the like are preferable.
  • the application amount of the composition for forming a passivation layer can be appropriately selected according to the purpose.
  • the thickness of the passivation layer to be formed can be appropriately adjusted so as to be a desired thickness described later.
  • a passivation layer is formed on a semiconductor substrate by heat-treating (baking) the composition layer formed by the composition for forming a passivation layer to form a heat-treated material layer (fired material layer) derived from the composition layer. can do.
  • the heat treatment (firing) conditions of the composition layer are the aluminum oxide (Al 2 O 3 ) that is the heat treated product (firing product) of the organoaluminum compound represented by the general formula (I) and the specific alkoxide compound contained in the composition layer. ) And complex oxides are not particularly limited. Among them, the heat treatment (firing) conditions that can form a layer containing amorphous Al 2 O 3 having no specific crystal structure are preferable.
  • the passivation layer When the passivation layer is composed of a layer containing amorphous Al 2 O 3 , the passivation layer can effectively have a negative charge, and a more excellent passivation effect can be obtained.
  • the heat treatment (firing) temperature is preferably 400 ° C. to 900 ° C., more preferably 450 ° C. to 800 ° C.
  • the heat treatment (firing) time can be appropriately selected according to the heat treatment (firing) temperature and the like. For example, it can be 0.1 to 10 hours, and preferably 0.2 to 5 hours.
  • the thickness of the passivation layer produced by the method for producing a semiconductor substrate with a passivation layer is not particularly limited and can be appropriately selected depending on the purpose.
  • the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, preferably 10 nm to 30 ⁇ m, and more preferably 15 nm to 20 ⁇ m.
  • the average thickness of the formed passivation layer is 3 points by a conventional method using a stylus type step / surface shape measuring device (for example, Ambios), an interference type film thickness meter (for example, Filmetric). Is measured as an arithmetic average value.
  • the method for producing a semiconductor substrate with a passivation layer includes a step of applying a composition layer comprising a composition for forming a passivation layer after applying the composition for forming a passivation layer and before the step of forming the passivation layer by heat treatment (firing). You may have further the process of drying. By having the process of drying the composition layer, a passivation layer having a more uniform passivation effect can be formed.
  • the step of drying the composition layer is not particularly limited as long as at least a part of the solvent that may be contained in the composition for forming a passivation layer can be removed.
  • the drying treatment can be, for example, a heat treatment at 30 ° C. to 250 ° C. for 1 minute to 60 minutes, and is preferably a heat treatment at 40 ° C. to 220 ° C. for 3 minutes to 40 minutes.
  • the drying treatment may be performed under normal pressure or under reduced pressure.
  • the method for producing a semiconductor substrate with a passivation layer includes the step of forming the passivation layer by heat treatment (firing) after applying the composition for forming a passivation layer.
  • the step of degreasing the composition layer is not particularly limited as long as at least part of the resin that may be contained in the composition for forming a passivation layer can be removed.
  • the degreasing treatment can be, for example, a heat treatment at 250 to 400 ° C. for 3 to 120 minutes, preferably a heat treatment at 300 to 450 ° C. for 10 to 60 minutes.
  • the degreasing treatment is preferably performed in the presence of oxygen, and more preferably performed in the air.
  • the solar cell element of the present invention is a heat-treated product of a semiconductor substrate in which a p-type layer and an n-type layer are pn-junction, and a passivation layer forming composition of the present invention provided on the entire surface or a part of the semiconductor substrate ( A passivation layer that is a fired product) and an electrode disposed on one or more layers selected from the group consisting of the p-type layer and the n-type layer of the semiconductor substrate.
  • the solar cell element may further include other components as necessary.
  • the said solar cell element is excellent in conversion efficiency by having the passivation layer formed from the composition for passivation layer formation of this invention.
  • the surface of the semiconductor substrate on which the passivation layer is provided may be a p-type layer or an n-type layer. Among these, a p-type layer is preferable from the viewpoint of conversion efficiency.
  • the p-type layer on the semiconductor substrate is a p-type layer derived from the p-type semiconductor substrate
  • the p-type layer is formed on the n-type semiconductor substrate or the p-type semiconductor substrate as a p-type diffusion layer or a p + -type diffusion layer. It may be.
  • the surface of the semiconductor substrate on which the passivation layer is provided is preferably a light receiving surface in the solar cell element.
  • the thickness of the semiconductor substrate is not particularly limited and can be appropriately selected according to the purpose.
  • the thickness can be 50 ⁇ m to 1000 ⁇ m, and preferably 75 ⁇ m to 750 ⁇ m.
  • the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited, and can be appropriately selected according to the purpose.
  • the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, preferably 10 nm to 30 ⁇ m, and more preferably 15 nm to 20 ⁇ m.
  • the method for producing a solar cell element of the present invention has a pn junction in which a p-type layer and an n-type layer are joined, and an electrode on one or more layers selected from the group consisting of a p-type layer and an n-type layer
  • a step of forming a composition layer by applying the composition for forming a passivation layer of the present invention to at least a part of a surface of the semiconductor substrate having the electrode, and heat-treating (firing) the composition layer.
  • a step of forming a passivation layer may further include other steps as necessary.
  • a solar cell element having an excellent passivation effect By using the composition for forming a passivation layer, a solar cell element having an excellent passivation effect, a passivation layer having a large refractive index, and excellent conversion efficiency can be produced by a simple method. Further, a passivation layer can be formed on the semiconductor substrate on which the electrode is formed so as to have a desired shape, and the productivity of the solar cell element is excellent.
  • a semiconductor substrate having a pn junction in which an electrode is disposed on at least one of a p-type layer and an n-type layer can be manufactured by a commonly used method. For example, it can be manufactured by applying an electrode forming paste such as a silver paste or an aluminum paste to a desired region of a semiconductor substrate and performing a heat treatment (firing) as necessary.
  • an electrode forming paste such as a silver paste or an aluminum paste
  • the surface of the semiconductor substrate on which the passivation layer is provided may be a p-type layer or an n-type layer. Among these, a p-type layer is preferable from the viewpoint of conversion efficiency.
  • the details of the method for forming a passivation layer using the composition for forming a passivation layer are the same as the method for manufacturing a semiconductor substrate with a passivation layer described above, and the preferred embodiments are also the same.
  • the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, preferably 10 nm to 30 ⁇ m, and more preferably 15 nm to 20 ⁇ m.
  • FIG. 1A to FIG. 1D are cross-sectional views schematically showing an example of a method for manufacturing a solar cell element having a passivation layer according to the present embodiment.
  • this process diagram does not limit the present invention.
  • an n + -type diffusion layer 2 is formed in the vicinity of the surface, and an antireflection film 3 is formed on the outermost surface.
  • the antireflection film 3 include a silicon nitride film and a titanium oxide film.
  • a surface protective film such as silicon oxide may further exist between the antireflection film 3 and the p-type semiconductor substrate 1.
  • the passivation layer according to the present invention has a high refractive index, it is preferably formed between the antireflection film 3 and the p-type semiconductor substrate 1 (not shown).
  • a material for forming the back electrode 5 such as an aluminum electrode paste is applied to a partial region of the back surface of the p-type semiconductor substrate 1 and then heat-treated (fired), so that the back electrode 5 And p + type diffusion layer 4 is formed by diffusing aluminum atoms in p type semiconductor substrate 1.
  • the electrode-forming paste is applied to the light-receiving surface side of the p-type semiconductor substrate 1 and then heat-treated (fired) to form the light-receiving surface electrode 7.
  • those containing glass powder having a fire-through property as an electrode forming paste, reaches through the antireflective film 3, as shown in FIG. 1 (c), on the n + -type diffusion layer 2, the light-receiving surface
  • the electrode 7 can be formed to obtain an ohmic contact.
  • FIGS. 1 (a) to 1 (d) show FIGS. 1 (b) and 1 (c) as separate steps, the steps of FIGS. 1 (b) and 1 (c) are shown. It is good also as one process in total.
  • a material for forming the back electrode 5 such as an aluminum electrode paste
  • heat treatment (firing) for forming the back electrode 5 is performed.
  • an electrode forming paste may be applied to the light receiving surface side, and heat treatment (firing) may be performed at this stage.
  • the electrodes on the back surface and the light receiving surface are formed by one heat treatment, and the process is simplified.
  • the composition for passivation layer formation is provided on the p-type layer of the back surface other than the area
  • the application can be performed by a method such as screen printing.
  • the passivation layer 6 is formed by heat-treating (baking) the composition layer formed on the p-type layer.
  • the back electrode formed from aluminum or the like can have a point contact structure, and the warp of the substrate, etc. Can be reduced. Furthermore, by using the composition for forming a passivation layer, the passivation layer can be formed with excellent productivity only at a specific position (specifically, on the p-type layer other than the region where the electrode is formed).
  • the passivation layer forming composition is applied to the side surface.
  • the passivation layer 6 may be further formed on the side surface (edge) of the semiconductor substrate 1 by heat treatment (baking) (not shown). Thereby, the solar cell element excellent in power generation efficiency can be manufactured.
  • the passivation layer may be formed by applying the composition for forming a passivation layer of the present invention only on the side surface and not heat-treating (firing) without forming the passivation layer on the back surface portion. When the composition for forming a passivation layer of the present invention is used in a portion having many crystal defects such as side surfaces, the effect is particularly great.
  • 1 (a) to 1 (d) describe an embodiment in which the passivation layer is formed after the electrode is formed, but an electrode such as aluminum may be further formed in a desired region by vapor deposition or the like after the passivation layer is formed.
  • FIGS. 2 (a) to 2 (e) are cross-sectional views schematically showing another example of a method for manufacturing a solar cell element having a passivation layer according to an embodiment of the present invention. is there.
  • FIG. 2 (a) ⁇ FIG 2 (e) is p + -type diffusion layer by using the p + -type diffusion layer capable of forming p-type diffusion layer forming composition by aluminum electrode paste or thermal diffusion treatment
  • the process drawing including the process of removing the heat-treated material of the aluminum electrode paste or the heat-treated material of the p + -type diffusion layer forming composition after forming the film will be described as a cross-sectional view.
  • the p-type diffusion layer forming composition include a composition containing an acceptor element-containing substance and a glass component.
  • an n + -type diffusion layer 2 is formed in the vicinity of the surface of the p-type semiconductor substrate 1, and an antireflection film 3 is formed on the surface.
  • the antireflection film 3 include a silicon nitride film and a titanium oxide film.
  • the p + -type diffusion layer 4 is formed by applying a p + -type diffusion layer forming composition to a partial region of the back surface and then performing heat treatment.
  • a heat treatment product 8 of a composition for forming a p + type diffusion layer is formed on the p + type diffusion layer 4.
  • an aluminum electrode paste may be used instead of the p-type diffusion layer forming composition.
  • an aluminum electrode 8 is formed on the p + type diffusion layer 4.
  • the heat-treated product 8 or the aluminum electrode 8 of the p-type diffusion layer forming composition formed on the p + -type diffusion layer 4 is removed by a technique such as etching.
  • the electrode forming paste is selectively applied to the light receiving surface (front surface) and a part of the back surface of the semiconductor substrate 1 and then heat-treated to receive light on the light receiving surface (front surface).
  • the surface electrode 7 and the back electrode 5 are formed on the back surface, respectively.
  • the n + type diffusion layer 2 penetrates the antireflection film 3 as shown in FIG.
  • a light receiving surface electrode 7 is formed on the surface to obtain an ohmic contact.
  • the electrode forming paste for forming the back electrode 5 is not limited to the aluminum electrode paste, but may be a silver electrode paste or the like. An electrode paste capable of forming a lower resistance electrode can also be used. As a result, the power generation efficiency can be further increased.
  • the composition for passivation layer formation is provided on the p-type layer of the back surface other than the area
  • the application can be performed by a method such as screen printing.
  • the passivation layer 6 is formed by heat-treating (baking) the composition layer formed on the p-type layer.
  • FIG. 2E shows a method of forming a passivation layer only on the back surface portion of the semiconductor substrate 1, but in addition to the back surface side of the p-type semiconductor substrate 1, a passivation layer forming material is applied to the side surface.
  • a passivation layer may be further formed on the side surface (edge) of the p-type semiconductor substrate 1 by heat treatment (firing) (not shown). Thereby, the solar cell element which was further excellent in power generation efficiency can be manufactured.
  • the passivation layer may be formed by applying the composition for forming a passivation layer of the present invention only to the side surface of the semiconductor substrate and heat-treating (firing) it without forming the passivation layer on the back surface portion.
  • the composition for forming a passivation layer of the present invention is used in a portion having many crystal defects such as side surfaces, the effect is particularly great.
  • 2 (a) to 2 (e) describe the mode in which the passivation layer is formed after the electrode is formed, but an electrode such as aluminum may be further formed in a desired region by vapor deposition or the like after the passivation layer is formed.
  • a p-type semiconductor substrate having an n + -type diffusion layer formed on the light-receiving surface has been described.
  • an n-type semiconductor substrate having a p + -type diffusion layer formed on the light-receiving surface is described.
  • a solar cell element can be produced.
  • an n + type diffusion layer is formed on the back side.
  • the composition for forming a passivation layer can also be used to form a passivation layer 6 on the light receiving surface side or the back surface side of a back electrode type solar cell element in which an electrode is disposed only on the back surface side as shown in FIG.
  • a passivation layer 6 and an antireflection film 3 are formed on the surface.
  • the antireflection film 3 a silicon nitride film, a titanium oxide film, or the like is known.
  • the passivation layer 6 is formed by applying the passivation layer forming composition of the present invention and heat-treating (firing) it. Since the passivation layer according to the present invention exhibits a good refractive index, it is considered that the power generation efficiency can be increased by being provided on the light receiving surface side.
  • a back electrode 5 is provided on each of the p + -type diffusion layer 4 and the n + -type diffusion layer 2, and a passivation layer 6 is provided in a region where no back-side electrode is formed.
  • the p + -type diffusion layer 4 can be formed by applying a heat treatment after applying the p-type diffusion layer forming composition or the aluminum electrode paste to a desired region as described above.
  • the n + -type diffusion layer 2 can be formed, for example, by applying a composition for forming an n-type diffusion layer capable of forming an n + -type diffusion layer by thermal diffusion treatment to a desired region and then performing a heat treatment. Examples of the composition for forming an n-type diffusion layer include a composition containing a donor element-containing material and a glass component.
  • the back electrode 5 provided on each of the p + type diffusion layer 4 and the n + type diffusion layer 2 can be formed using a commonly used electrode forming paste such as a silver electrode paste.
  • the back electrode 5 provided on the p + -type diffusion layer 4 may be an aluminum electrode formed with the p + -type diffusion layer 4 using aluminum electrode paste.
  • the passivation layer 6 provided on the back surface can be formed by applying a composition for forming a passivation layer to a region where the back electrode 5 is not provided and heat-treating (baking) the composition. Further, the passivation layer 6 may be formed not only on the back surface of the semiconductor substrate 1 but also on the side surface (not shown).
  • the power generation efficiency is excellent. Furthermore, since the passivation layer is formed in the region where the back electrode is not formed, the conversion efficiency is further improved.
  • the solar cell element has a general square of 125 mm to 156 mm on one side.
  • a solar cell has the solar cell element of this invention and the wiring material arrange
  • a plurality of solar cell elements may be connected via a wiring material such as a tab wire as necessary, and further sealed with a sealing material.
  • the wiring material and the sealing material are not particularly limited, and can be appropriately selected from those usually used in the industry. There is no restriction
  • the size of the solar cell is preferably 0.5 m 2 to 3 m 2 .
  • composition 1 for forming a passivation layer 5.00 g of ethyl cellulose (Nihon Kasei Co., Ltd., trade name: ETHOCEL 200 cps) and 95.02 g of terpineol (Nippon Terpene Chemical Co., Ltd.) were mixed and stirred at 150 ° C. for 1 hour to prepare an ethyl cellulose solution.
  • ethyl cellulose Nihon Kasei Co., Ltd., trade name: ETHOCEL 200 cps
  • terpineol Nippon Terpene Chemical Co., Ltd.
  • composition 1 for forming a passivation layer was prepared by mixing 5.0 g of Kojunkaku Kogyo Co., Ltd., 35.2 g of the ethyl cellulose solution, and 30.2 g of terpineol (Nippon Terpene Chemical Co., Ltd.).
  • a single crystal p-type silicon substrate (manufactured by SUMCO Corporation, 50 mm square, thickness: 625 ⁇ m) having a mirror-shaped surface was used as the semiconductor substrate.
  • the silicon substrate was pre-treated by dip cleaning at 70 ° C. for 5 minutes using an RCA cleaning solution (Kanto Chemical Co., Inc., trade name: Frontier Cleaner-A01). Then, it applied to the whole surface so that the film thickness after drying might be set to 5 micrometers on the silicon substrate which pretreated the composition 1 for passivation layer formation obtained above using a screen printing method, and 5 degreeC was 150 degreeC. Dried for a minute. Next, the substrate was heat-treated (fired) at 700 ° C. for 10 minutes and then allowed to cool at room temperature to produce an evaluation substrate.
  • Table 1 shows the evaluation results of the following evaluation performed on the composition for forming a passivation layer obtained above and the evaluation substrate produced using the same.
  • the shear viscosity of the composition 1 for forming a passivation layer prepared above was measured immediately after preparation (within 12 hours) on a rotary shear viscometer (AntonPaar, trade name: MCR301) and a cone plate (diameter 50 mm, cone angle 1). ) And a temperature of 25 ° C. and shear rates of 1.0 s ⁇ 1 and 10 s ⁇ 1 were measured respectively.
  • the shear viscosity ( ⁇ 1 ) at a shear rate of 1.0 s ⁇ 1 was 44.0 Pa ⁇ s
  • the shear viscosity ( ⁇ 2 ) at a shear rate of 10 s ⁇ 1 was 35.0 Pa ⁇ s. .
  • the thixo ratio ( ⁇ 1 / ⁇ 2 ) was 1.3 when the shear viscosity was 1.0 s ⁇ 1 and 10 s ⁇ 1 .
  • the shear viscosity of the composition 1 for forming a passivation layer prepared above was measured immediately after preparation (within 12 hours) and after storage at 25 ° C. for 30 days, respectively.
  • the shear viscosity was measured by attaching a cone plate (diameter 50 mm, cone angle 1 °) to MCR301 (trade name, Anton Paar) at a temperature of 25 ° C. and a shear rate of 1.0 s ⁇ 1 .
  • the shear viscosity ( ⁇ 0 ) at 25 ° C. immediately after preparation was 44.0 Pa ⁇ s, and the shear viscosity ( ⁇ 30 ) at 25 ° C. after storage at 25 ° C.
  • the effective lifetime ( ⁇ s) of the evaluation substrate obtained as described above is reflected at a room temperature (25 ° C.) using a lifetime measurement apparatus (Nippon Semi-Lab Co., Ltd., trade name: WT-2000PVN). It was measured by.
  • substrate was 300 microseconds.
  • the average thickness and refractive index of the passivation layer on the evaluation substrate obtained above were measured using an interference film thickness meter (Filmmetrics Corporation, F20 film thickness measurement system).
  • the thickness of the passivation layer was 220 nm and the refractive index was 1.71.
  • composition 2 for forming a passivation layer was prepared by mixing 14.9 g of aluminum ethyl acetoacetate diisopropylate, 9.8 g of titanium tetraisopropoxide, 35.1 g of the above ethyl cellulose solution, and 29.7 g of terpineol. . Evaluation was performed in the same manner as in Example 1 except that the passivation layer forming composition 2 was used, and the results are shown in Table 1.
  • Example 3> (Preparation of composition 3 for forming a passivation layer) 15.0 g of aluminum ethyl acetoacetate diisopropylate, 10.2 g of zirconium ethoxide (Wako Pure Chemical Industries, Ltd.), 35.1 g of the above ethyl cellulose solution, and 30.4 g of terpineol were mixed to form a passivation layer. Composition 3 was prepared. Evaluation was performed in the same manner as in Example 1 except that the passivation layer forming composition 3 was used, and the results are shown in Table 1.
  • Example 4> (Preparation of passivation layer forming composition 4) 15.2 g of aluminum ethyl acetoacetate diisopropylate, 10.0 g of niobium ethoxide, 5.1 g of titanium ethoxide, 4.8 g of tetraethyl orthosilicate (Wako Pure Chemical Industries, Ltd.), 34.7 g of the above ethyl cellulose solution And 30.3 g of terpineol were mixed to prepare a composition 4 for forming a passivation layer. Evaluation was performed in the same manner as in Example 1 except that the passivation layer forming composition 4 was used, and the results are shown in Table 1.
  • composition 5 for forming a passivation layer Composition for forming a passivation layer by mixing 14.9 g of aluminum ethyl acetoacetate diisopropylate, 15.2 g of titanium ethoxide, 5.2 g of tetraethyl orthosilicate, 34.8 g of the above ethyl cellulose solution, and 30.6 g of terpineol.
  • Product 5 was prepared. Evaluation was performed in the same manner as in Example 1 except that the composition 5 for forming a passivation layer was used, and the results are shown in Table 1.
  • Example 6> (Preparation of passivation layer forming composition 6) Composition for forming a passivation layer by mixing 15.0 g of aluminum ethyl acetoacetate diisopropylate, 15.1 g of zirconium ethoxide, 5.1 g of tetraethyl orthosilicate, 35.3 g of the above ethyl cellulose solution, and 29.6 g of terpineol. Product 6 was prepared. Evaluation was performed in the same manner as in Example 1 except that the passivation layer forming composition 6 was used, and the results are shown in Table 1.
  • Example 7> (Preparation of Passivation Layer-Forming Composition 7) 15.1 g of aluminum ethyl acetoacetate diisopropylate, 5.0 g of niobium ethoxide, 5.0 g of titanium isopropoxide, and 35 g of isobornylcyclohexanol (Nippon Terpene Chemical Co., Ltd., trade name: Tersolve MTPH). 2 g and 14.9 g of terpineol were mixed to prepare composition 7 for forming a passivation layer. Evaluation was performed in the same manner as in Example 1 except that the composition 7 for forming a passivation layer was used, and the results are shown in Table 1.
  • thixotropic index is the shear rate was calculated as the ratio ( ⁇ 1 / ⁇ 3) and shear viscosity (eta 1) and when the shear viscosity of the shear rate 1000 s -1 in the case of 1.0s -1 ( ⁇ 3) .
  • Example 8> (Preparation of passivation layer forming composition 8) A composition 8 for forming a passivation layer is prepared by mixing 15.2 g of aluminum ethyl acetoacetate diisopropylate, 10.2 g of titanium isopropoxide, 34.8 g of isobornylcyclohexanol, and 15.2 g of terpineol. did. Evaluation was performed in the same manner as in Example 1 except that the passivation layer forming composition 8 was used, and the results are shown in Table 1.
  • thixotropic index is the shear rate was calculated as the ratio ( ⁇ 1 / ⁇ 3) and shear viscosity (eta 1) and when the shear viscosity of the shear rate 1000 s -1 in the case of 1.0s -1 ( ⁇ 3) .
  • composition 9 for forming a passivation layer was prepared by mixing 14.8 g of aluminum ethyl acetoacetate diisopropylate, 9.8 g of zirconium ethoxide, 35.5 g of isobornylcyclohexanol, and 15.2 g of terpineol. . Evaluation was performed in the same manner as in Example 1 except that the composition 9 for forming a passivation layer was used, and the results are shown in Table 1.
  • thixotropic index is the shear rate was calculated as the ratio ( ⁇ 1 / ⁇ 3) and shear viscosity (eta 1) and when the shear viscosity of the shear rate 1000 s -1 in the case of 1.0s -1 ( ⁇ 3) .
  • composition 10 for forming a passivation layer was prepared by mixing 15.0 g of aluminum ethyl acetoacetate diisopropylate, 35.0 g of the ethyl cellulose solution, and 30.2 g of terpineol. Evaluation was performed in the same manner as in Example 1 except that the composition 10 for forming a passivation layer was used, and the results are shown in Table 1.
  • thixotropic index is the shear rate was calculated as the ratio ( ⁇ 1 / ⁇ 3) and shear viscosity (eta 1) and when the shear viscosity of the shear rate 1000 s -1 in the case of 1.0s -1 ( ⁇ 3) .
  • a passivation layer having an excellent passivation effect and a large refractive index can be formed by using the composition for forming a passivation layer of the present invention. Moreover, it turns out that the composition for forming a passivation layer of the present invention is excellent in storage stability. Furthermore, it turns out that a passivation layer can be formed in a desired shape by a simple process by using the composition for forming a passivation layer of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明のパッシベーション層形成用組成物は、下記一般式(I)で表される有機アルミニウム化合物と、チタンアルコキシド、ジルコニウムアルコキシド及びシリコンアルコキシドからなる群より選ばれる少なくとも1種のアルコキシド化合物と、を含む。下記一般式(I)中、Rはそれぞれ独立して炭素数1~8のアルキル基を表す;nは0~3の整数を表す;X及びXはそれぞれ独立して酸素原子又はメチレン基を表す;R、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す。

Description

パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池
 本発明は、パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池に関する。
 従来のシリコン太陽電池素子の製造工程について説明する。
 まず、光閉じ込め効果を促して高効率化を図るよう、受光面側にテクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において800℃~900℃で数十分の処理を行って一様にn型拡散層を形成する。
 この従来の方法では、混合ガスを用いてリンの拡散を行うため、受光面である表面のみならず、側面及び裏面にもn型拡散層が形成される。そのため、側面に形成されたn型拡散層を除去するためのサイドエッチングを行っている。また、裏面に形成されたn型拡散層はp型拡散層へ変換する必要がある。このため、裏面全体にアルミニウム粉末及びバインダを含むアルミニウムペーストを塗布し、これを熱処理(焼成)してアルミニウム電極を形成することで、n型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。
 しかしながら、アルミニウムペーストから形成されるアルミニウム電極は導電率が低い。そのためシート抵抗を下げるために、通常裏面全面に形成したアルミニウム電極は熱処理(焼成)後において10μm~20μmほどの厚みを有していなければならない。更に、シリコンとアルミニウムとでは熱膨張率が大きく異なることから、アルミニウム電極が形成されたシリコン基板において、熱処理(焼成)及び冷却の過程で、シリコン基板中に大きな内部応力が発生し、結晶粒界へのダメージ、結晶欠陥の増長及び反りの原因となる。
 この問題を解決するために、アルミニウムペーストの塗布量を減らし、裏面電極層の厚さを薄くする方法がある。しかしながら、アルミニウムペーストの塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不十分となる。その結果、所望のBSF(Back Surface Field)効果(p型拡散層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。
 上記に関連して、アルミニウムペーストをシリコン基板表面の一部に付与して部分的にp型拡散層とアルミニウム電極とを形成するポイントコンタクトの手法が提案されている(例えば、特許第3107287号公報参照)。
 このような受光面とは反対側(以下、「裏面側」ともいう)にポイントコンタクト構造を有する太陽電池の場合、アルミニウム電極以外の部分の表面において、少数キャリアの再結合速度を抑制する必要がある。そのための裏面側用のパッシベーション層(以下、単に「パッシベーション層」ともいう)として、SiO膜等が提案されている(例えば、特開2004-6565号公報参照)。このような酸化膜を形成することによるパッシベーション効果としては、シリコン基板の裏面表層部におけるケイ素原子の未結合手を終端させ、再結合の原因となる表面準位密度を低減させる効果がある。
 また、少数キャリアの再結合を抑制する別の方法として、パッシベーション層内の固定電荷が発生する電界によって少数キャリア密度を低減する方法がある。このようなパッシベーション効果は一般に電界効果と呼ばれ、負の固定電荷を有する材料として酸化アルミニウム(Al)膜等が提案されている(例えば、特許第4767110号公報参照)。
 このようなパッシベーション層は、一般的にはALD(Atomic Layer Deposition)法又はCVD(Chemical Vapor Deposition)法等の方法で形成される(例えば、Journal of Applied Physics、104(2008)、113703-1~113703-7.を参照)。また半導体基板上に酸化アルミニウム膜を形成する簡便な手法として、ゾルゲル法による手法が提案されている(例えば、Thin Solid Films、517(2009)、6327~6330.、及びChinese Physics Letters、26(2009)、088102-1~088102-4.を参照)。
 一方、シリコン基板の受光面側に屈折率が大きく、パッシベーション効果も大きな層を形成すると、光閉じ込め効果の向上と少数キャリアの再結合速度を抑制することが可能となり、太陽電池の発電効率を上げることができる。例えばチタン等の金属とアルミニウムとを複合させた酸化膜をゾルゲル法で形成して、膜の屈折率を大きくする手法が提案されている(例えば、Japanese Journal of Applied Physics、45(2006)、5894~5901.を参照)。
 Journal of Applied Physics、104(2008)、113703-1~113703-7.に記載の手法は、蒸着等の複雑な製造工程を含むため、生産性を向上させることが困難な場合があった。また、Thin Solid Films、517(2009)、6327~6330.、及びChinese Physics Letters、26(2009)、088102-1~088102-4.に記載の手法に用いるパッシベーション層形成用組成物では、経時的にゲル化等の不具合が発生してしまい保存安定性が充分とは言い難い。更に、Japanese Journal of Applied Physics、45(2006)、5894~5901.に記載の手法によるパッシベーション層は屈折率が充分に大きいとは言い難く、酸化チタン由来の光触媒作用の懸念があり、太陽電池素子の封止樹脂にダメージを与える可能性があった。
 本発明は、以上の従来の問題点に鑑みなされたものであり、屈折率が充分に大きいパッシベーション層を簡便な手法で所望の形状に形成することが可能で、保存安定性に優れるパッシベーション層形成用組成物を提供することを課題とする。また、本発明は該パッシベーション層形成用組成物を用いて得られ、屈折率が充分に大きいパッシベーション層を有するパッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池を提供することを課題とする。
 前記課題を解決するための具体的手段は以下の通りである。
<1> 下記一般式(I)で表される有機アルミニウム化合物と、チタンアルコキシド、ジルコニウムアルコキシド及びシリコンアルコキシドからなる群より選ばれる少なくとも1種のアルコキシド化合物と、を含むパッシベーション層形成用組成物。
Figure JPOXMLDOC01-appb-C000003
[一般式(I)中、Rはそれぞれ独立して炭素数1~8のアルキル基を表す。nは0~3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す]
<2> 更にニオブアルコキシドを含む<1>に記載のパッシベーション層形成用組成物。
<3> 前記ニオブアルコキシドが、ニオブエトキシド、ニオブイソプロポキシド、ニオブn-プロポキシド、ニオブn-ブトキシド及びニオブフェノキシドからなる群より選ばれる少なくとも1種である<2>に記載のパッシベーション層形成用組成物。
<4> 前記アルコキシド化合物が少なくとも前記チタンアルコキシドを含み、前記チタンアルコキシドが、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンn-プロポキシド、チタンn-ブトキシド、チタンt-ブトキシド、チタンイソブトキシド、チタン(ジイソプロポキシド)ビス(アセチルアセトナート)及びチタン(テトラキス(2-エチル-1-ヘキサノラート)からなる群より選ばれる少なくとも1種である<1>~<3>のいずれか1つに記載のパッシベーション層形成用組成物。
<5> 前記アルコキシド化合物が少なくとも前記ジルコニウムアルコキシドを含み、前記ジルコニウムアルコキシドが、ジルコニウムエトキシド、ジルコニウムイソプロポキシド、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニウムt-ブトキシド、ジルコニウムアセチルアセトン、ジルコニウムトリフルオロアセチルアセトナート及びジルコニウムヘキサフルオロアセチルアセトナートからなる群より選ばれる少なくとも1種である<1>~<4>のいずれか1つに記載のパッシベーション層形成用組成物。
<6> 前記アルコキシド化合物が少なくとも前記シリコンアルコキシドを含み、前記シリコンアルコキシドが、下記一般式(II)で表されるシリコンアルコキシドである<1>~<5>のいずれか1つに記載のパッシベーション層形成用組成物。
 (RO)(4-m)SiR  (II)
[一般式(II)中、R及びRはそれぞれ独立して炭素数1~8のアルキル基を表す。mは0~3の整数を表す。]
<7> 更に樹脂を含む<1>~<6>のいずれか1つに記載のパッシベーション層形成用組成物。
<8> 更に下記一般式(III)で表される化合物を含む<1>~<7>のいずれか1つに記載のパッシベーション層形成用組成物。
Figure JPOXMLDOC01-appb-C000004
<9> 半導体基板と、前記半導体基板上の全面又は一部に設けられる<1>~<8>のいずれか1つに記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、を有するパッシベーション層付半導体基板。
<10> 半導体基板上の全面又は一部に、<1>~<8>のいずれか1つに記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理して、パッシベーション層を形成する工程と、を有するパッシベーション層付半導体基板の製造方法。
<11> p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる<1>~<8>のいずれか1つに記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、前記半導体基板の前記p型層及びn型層からなる群より選択される1以上の層上に配置される電極と、を有する太陽電池素子。
<12> p型層及びn型層が接合されてなるpn接合を有し、前記p型層及び前記n型層からなる群より選択される1以上の層上に電極を有する半導体基板の、前記電極を有する面の少なくとも一部に、<1>~<8>のいずれか1つに記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、
 前記組成物層を熱処理して、パッシベーション層を形成する工程と、
を有する太陽電池素子の製造方法。
 <13>に記載の太陽電池素子と、
 前記太陽電池素子の電極上に配置される配線材料と、
を有する太陽電池。
 本発明によれば、屈折率が充分に大きいパッシベーション層を簡便な手法で所望の形状に形成することが可能で、保存安定性に優れるパッシベーション層形成用組成物を提供することができる。また本発明によれば該パッシベーション層形成用組成物を用いて得られ、屈折率が充分に大きいパッシベーション層を有するパッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池を提供することができる。
図1(a)~図1(d)は、本発明の一実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の一例を模式的に示す断面図である。 図2(a)~図2(e)は、本発明の一実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の他の一例を模式的に示す断面図である。 図3は、本発明の一実施形態にかかるパッシベーション層を有する裏面電極型太陽電池素子を模式的に示す断面図である。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
<パッシベーション層形成用組成物>
 本発明のパッシベーション層形成用組成物は、下記一般式(I)で表される有機アルミニウム化合物(以下、「特定の有機アルミニウム化合物」ともいう)と、チタンアルコキシド、ジルコニウムアルコキシド及びシリコンアルコキシドからなる群より選ばれる少なくとも1種のアルコキシド化合物(以下、「特定のアルコキシド化合物」ともいう)と、を含む。前記パッシベーション層形成用組成物は必要に応じてその他の成分を更に含んでいてもよい。パッシベーション層形成用組成物が特定の有機アルミニウム化合物と特定のアルコキシド化合物とを含むことで、屈折率が充分に大きいパッシベーション層を簡便な手法で所望の形状に形成することが可能である。また該パッシベーション層形成用組成物は保存安定性に優れる。
Figure JPOXMLDOC01-appb-C000005
 一般式(I)中、Rはそれぞれ独立して炭素数1~8のアルキル基を表す。nは0~3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す。ここでR、R、R、R、X及びXのいずれかが複数存在する場合、複数存在する同一の記号で表される基は、それぞれ同一でも異なっていてもよい。
 特定の有機アルミニウム化合物と特定のアルコキシド化合物とを含むパッシベーション層形成用組成物を、半導体基板に付与して所望の形状の組成物層を形成し、これを熱処理(焼成)することで、優れたパッシベーション効果を有し、充分に大きい屈折率を有するパッシベーション層を所望の形状に形成することができる。本発明の手法は、蒸着装置等を必要としない簡便で生産性の高い方法である。更にマスク処理等の煩雑な工程を要することなく、所望の形状にパッシベーション層を形成できる。また前記パッシベーション層形成用組成物は特定の有機アルミニウム化合物と特定のアルコキシド化合物とを含むことで、経時的にゲル化等の不具合が発生することが抑制されて保存安定性に優れる。
 本明細書において、半導体基板のパッシベーション効果は、パッシベーション層が形成された半導体基板内の少数キャリアの実効ライフタイムを、WT-2000PVN(日本セミラボ株式会社)等の装置を用いて、反射マイクロ波導電減衰法によって測定することで評価することができる。
 ここで、実効ライフタイムτは、半導体基板内部のバルクライフタイムτと、半導体基板表面の表面ライフタイムτとによって下記式(A)のように表される。半導体基板表面の表面準位密度が小さい場合にはτが長くなる結果、実効ライフタイムτが長くなる。また、半導体基板内部のダングリングボンド等の欠陥が少なくなっても、バルクライフタイムτが長くなって実効ライフタイムτが長くなる。すなわち、実効ライフタイムτの測定によってパッシベーション層と半導体基板との界面特性、及び、ダングリングボンド等の半導体基板の内部特性を評価することができる。
  1/τ=1/τ+1/τ (A) 
 尚、実効ライフタイムが長いほど少数キャリアの再結合速度が遅いことを示す。また実効ライフタイムが長い半導体基板を用いて太陽電池素子を構成することで、変換効率が向上する。
(特定の有機アルミニウム化合物)
 前記パッシベーション層形成用組成物は前記一般式(I)で表される有機アルミニウム化合物(以下、「特定の有機アルミニウム化合物」ともいう)の少なくとも1種を含む。前記有機アルミニウム化合物は、アルミニウムアルコキシド、アルミニウムキレート等と呼ばれる化合物を包含し、アルミニウムアルコキシド構造に加えてアルミニウムキレート構造を有していることが好ましい。また、Nippon Seramikkusu Kyokai Gakujitsu Ronbunshi、97(1989)369-399にも記載されているように、特定の有機アルミニウム化合物は熱処理(焼成)により酸化アルミニウム(Al)となる。
 パッシベーション層形成用組成物が一般式(I)で表される有機アルミニウム化合物を含有することで、優れたパッシベーション効果を有するパッシベーション層を形成できる理由について、発明者らは以下のように考えている。
 特定の有機アルミニウム化合物と特定のアルコキシド化合物とを含有するパッシベーション層形成組成物を熱処理(焼成)することにより形成される酸化アルミニウムはアモルファス状態となりやすいため、4配位酸化アルミニウム層が半導体基板との界面付近に形成されやすく、4配位酸化アルミニウムに起因する大きな負の固定電荷を有することができると考えられる。この大きな負の固定電荷が半導体基板の界面近辺で電界を発生することで少数キャリアの濃度を低下させることができ、結果的に界面でのキャリア再結合速度が抑制されるため、優れたパッシベーション効果を有するパッシベーション層を形成することができると考えられる。更に有機アルミニウム化合物に加えて特定のアルコキシド化合物を含むことで、形成されるパッシベーション層の屈折率が大きくなると考えられる。
 ここで、半導体基板表面上で負の固定電荷の原因種である4配位酸化アルミニウム層の状態は半導体基板の断面を走査型透過電子顕微鏡(STEM、Scanning Transmission electron Microscope)による電子エネルギー損失分光法(EELS、Electron Energy Loss Spectroscopy)の分析で結合様式を調べることにより確認できる。4配位酸化アルミニウムは二酸化ケイ素(SiO)の中心がケイ素からアルミニウムに同形置換した構造と考えられ、ゼオライト及び粘土のように二酸化ケイ素と酸化アルミニウムの界面で負の電荷源として形成される。
 なお、形成された酸化アルミニウム層の状態はX線回折スペクトル(XRD、X-ray diffraction)を測定することにより確認できる。例えば、XRDが特定の反射パターンを示さないことでアモルファス構造であることが確認できる。また、酸化アルミニウムが有する負の固定電荷は、CV法(Capacitance Voltage measurement)で評価することが可能である。ただし、本発明のパッシベーション層形成用組成物から形成された酸化アルミニウムの熱処理層について、CV法から得られるその表面準位密度は、ALD法又はCVD法で形成される酸化アルミニウム層の場合と比べ、大きな値となる場合がある。しかし本発明のパッシベーション層形成用組成物から形成されたパッシベーション層は、電界効果が大きく少数キャリアの濃度が低下して表面ライフタイムτが大きくなる。そのため、表面準位密度は相対的に問題にはならない。
 一般式(I)において、Rはそれぞれ独立して炭素数1~8のアルキル基を表し、炭素数1~4のアルキル基であることが好ましい。Rで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、3-エチルヘキシル基等を挙げることができる。中でもRで表されるアルキル基は、保存安定性とパッシベーション効果の観点から、炭素数1~8の無置換のアルキル基であることが好ましく、炭素数1~4の無置換のアルキル基であることがより好ましい。
 一般式(I)において、nは0~3の整数を表わす。nは保存安定性の観点から、1~3の整数であることが好ましく、1又は3であることがより好ましい。またX及びXはそれぞれ独立して酸素原子又はメチレン基を表す。保存安定性の観点から、X及びXの少なくとも一方は酸素原子であることが好ましい。
 一般式(I)におけるR、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す。R、R及びRで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。R、R及びRで表されるアルキル基は、置換基を有していても、無置換であってもよく、無置換であることが好ましい。R、R及びRで表されるアルキル基としては、炭素数1~8のアルキル基であり、炭素数1~4のアルキル基であることが好ましい。R、R又はRで表されるアルキル基としては、炭素数1~8のアルキル基であり、炭素数1~4のアルキル基であることが好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、3-エチルヘキシル基等を挙げることができる。
 中でも保存安定性とパッシベーション効果の観点から、一般式(I)におけるR及びRはそれぞれ独立して、水素原子又は炭素数1~8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1~4の無置換のアルキル基であることがより好ましい。
 また一般式(I)におけるRは、保存安定性及びパッシベーション効果の観点から、水素原子又は炭素数1~8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1~4の無置換のアルキル基であることがより好ましい。
 一般式(I)で表される有機アルミニウム化合物は、保存安定性の観点から、nが1~3であり、Rがそれぞれ独立して水素原子又は炭素数1~4のアルキル基である化合物であることが好ましい。
 一般式(I)で表される有機アルミニウム化合物は、保存安定性及びパッシベーション効果の観点から、nが0であり、Rがそれぞれ独立して炭素数1~4のアルキル基である化合物、並びにnが1~3の整数であり、Rがそれぞれ独立して炭素数1~4のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、R及びRがそれぞれ独立して水素原子又は炭素数1~4のアルキル基であり、Rがそれぞれ独立して水素原子又は炭素数1~4のアルキル基である化合物からなる群より選ばれる少なくとも1種であることが好ましい。
 より好ましくは、一般式(I)で表される有機アルミニウム化合物は、nが0であり、Rがそれぞれ独立して炭素数1~4の無置換のアルキル基である化合物、並びにnが1~3の整数であり、Rがそれぞれ独立して炭素数1~4の無置換のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、前記酸素原子に結合するR又はRが炭素数1~4のアルキル基であり、X又はXがメチレン基の場合、前記メチレン基に結合するR又はRが水素原子であり、Rが水素原子である化合物からなる群より選ばれる少なくとも1種であることがより好ましい。
 一般式(I)においてnが0である特定の有機アルミニウム化合物(アルミニウムトリアルコキシド)として具体的には、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリsec-ブトキシアルミニウム、モノsec-ブトキシ-ジイソプロポキシアルミニウム、トリt-ブトキシアルミニウム、トリn-ブトキシアルミニウム等を挙げることができる。
 また一般式(I)で表され、nが1~3の整数である特定の有機アルミニウム化合物として具体的には、アルミニウムエチルアセトアセテートジイソプロピレート、アルミニウムメチルアセトアセテートジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等を挙げることができる。
 また一般式(I)においてnが1~3の整数である特定の有機アルミニウム化合物は、調製したものを用いても、市販品を用いてもよい。市販品としては例えば、川研ファインケミカル株式会社の商品名、ALCH、ALCH-50F、ALCH-75、ALCH-TR、ALCH-TR-20、アルミキレートM、アルミキレートD、アルキミレートA(W)等を挙げることができる。
 また一般式(I)においてnが1~3の整数である特定の有機アルミニウム化合物は、前記アルミニウムトリアルコキシドと、前記2つのカルボニル基を有する特定構造の化合物とを混合することで調製することができる。また市販されているアルミニウムキレート化合物を用いてもよい。
 前記アルミニウムトリアルコキシドと、2つのカルボニル基を有する特定構造の化合物とを混合すると、アルミニウムトリアルコキシドのアルコキシド基の少なくとも一部が特定構造の化合物と置換して、アルミニウムキレート構造を形成する。このとき必要に応じて、溶媒が存在してもよく、また加熱処理、触媒の添加等を行ってもよい。アルミニウムアルコキシド構造の少なくとも一部がアルミニウムキレート構造に置換されることで、特定の有機アルミニウム化合物の加水分解及び重合反応に対する安定性が向上し、パッシベーション層形成用組成物の保存安定性がより向上する。また、後述するニオブアルコキシド、チタンアルコキシド、ジルコニアアルコキシド及びシリコンアルコキシドと反応性が近いものほど、緻密で光触媒作用が小さく、屈折率が大きい複合酸化物を生成しやすくなる。
 前記2つのカルボニル基を有する特定構造の化合物としては、反応性と保存安定性の観点から、β―ジケトン化合物、β―ケトエステル化合物及びマロン酸ジエステルからなる群より選ばれる少なくとも1種であることが好ましい。前記2つのカルボニル基を有する特定構造の化合物として具体的には、アセチルアセトン、3-メチル-2,4-ペンタンジオン、2,3-ペンタンジオン、3-エチル-2,4-ペンタンジオン、3-ブチル-2,4-ペンタンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、2,6-ジメチル-3,5-ヘプタンジオン、6-メチル-2,4-ヘプタンジオン等のβ―ジケトン化合物;アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸イソブチル、アセト酢酸ブチル、アセト酢酸t-ブチル、アセト酢酸ペンチル、アセト酢酸イソペンチル、アセト酢酸ヘキシル、アセト酢酸n-オクチル、アセト酢酸ヘプチル、アセト酢酸3-ペンチル、2-アセチルヘプタン酸エチル、2-ブチルアセト酢酸エチル、4,4-ジメチル-3-オキソ吉草酸エチル、4-メチル-3-オキソ吉草酸エチル、2-エチルアセト酢酸エチル、ヘキシルアセト酢酸エチル、4-メチル-3-オキソ吉草酸メチル、アセト酢酸イソプロピル、3-オキソヘキサン酸エチル、3-オキソ吉草酸エチル、3-オキソ吉草酸メチル、3-オキソヘキサン酸メチル、2-メチルアセト酢酸エチル、3-オキソヘプタン酸エチル、3-オキソヘプタン酸メチル、4,4-ジメチル-3-オキソ吉草酸メチル等のβ―ケトエステル化合物;マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジ-t-ブチル、マロン酸ジヘキシル、マロン酸t-ブチルエチル、メチルマロン酸ジエチル、エチルマロン酸ジエチル、イソプロピルマロン酸ジエチル、ブチルマロン酸ジエチル、sec-ブチルマロン酸ジエチル、イソブチルマロン酸ジエチル、1-メチルブチルマロン酸ジエチル等のマロン酸ジエステルなどを挙げることができる。
 前記特定の有機アルミニウム化合物がアルミニウムキレート構造を有する場合、アルミニウムキレート構造の数は1~3であれば特に制限されない。中でも、保存安定性の観点から、アルミニウムキレート構造の数は1又は3であることが好ましく、溶解度の観点から、1であることがより好ましい。アルミニウムキレート構造の数は、例えば前記アルミニウムトリアルコキシドと、アルミニウムとキレートを形成し得る化合物とを混合する比率を適宜調整することで制御することができる。また市販のアルミニウムキレート化合物から所望の構造を有する化合物を適宜選択してもよい。
 一般式(I)で表される有機アルミニウム化合物のうち、パッシベーション効果及び必要に応じて添加される溶剤との相溶性の観点から、具体的にはアルミニウムエチルアセトアセテートジイソプロピレート及びトリイソプロポキシアルミニウムからなる群より選ばれる少なくとも1種を用いることが好ましく、アルミニウムエチルアセトアセテートジイソプロピレートを用いることがより好ましい。
 前記特定の有機アルミニウム化合物におけるアルミニウムキレート構造の存在は、通常用いられる分析方法で確認することができる。例えば、赤外分光スペクトル、核磁気共鳴スペクトル、融点等を用いて確認することができる。
 前記パッシベーション層形成用組成物に含まれる前記特定の有機アルミニウム化合物の含有率は、必要に応じて適宜選択することができる。有機アルミニウム化合物の含有率は、保存安定性とパッシベーション効果の観点から、パッシベーション層形成用組成物中に1質量%~70質量%とすることができ、3質量%~60質量%であることが好ましく、5質量%~50質量%であることがより好ましく、10質量%~30質量%であることが更に好ましい。
 有機アルミニウム化合物は、液状であっても固体であってもよく、特に制限はない。パッシベーション効果と保存安定性の観点から、常温(25℃)での安定性、及び溶媒を用いる場合には溶媒への溶解性又は分散性が良好な特定の有機アルミニウム化合物を用いることが好ましい。このような特定の有機アルミニウム化合物を用いるで、形成されるパッシベーション層の均質性がより向上し、所望のパッシベーション効果を安定的に得ることができる傾向にある。
(特定のアルコキシド化合物)
 本発明のパッシベーション層形成用組成物は、特定の有機アルミニウム化合物に加えて、チタンアルコキシド、ジルコニウムアルコキシド及びシリコンアルコキシドからなる群より選ばれる少なくとも1種のアルコキシド化合物(以下、「特定アルコキシド化合物」ともいう)を含有する。特定アルコキシド化合物から選択される少なくとも1種を含有することで、有機アルミニウム化合物とともに屈折率の大きな複合酸化物を生成することが可能になり、更にパッシベーション効果もより向上させることができる。
 本発明のパッシベーション層形成用組成物を熱処理(焼成)することで形成されるパッシベーション層は、有機アルミニウム化合物のみから形成されるパッシベーション層に比べて屈折率が大きくなる。例えば、屈折率が大きいパッシベーション層が受光面上に形成された太陽電池素子は、光の利用効率がより向上するため、発電効率が向上する。パッシベーション層形成用組成物から形成されるパッシベーション層の屈折率は、1.4以上であることが好ましく、1.6以上であることがより好ましく、1.6~2.5であること更に好ましい。
 チタンアルコキシドとしては特に制限はなく、通常用いられるチタンアルコキシドから適宜選択して用いることができる。中でもチタンアルコキシドは、形成されるパッシべーション層と接触する樹脂等を分解しにくいという観点から、一般式(I)で表される有機アルミニウム化合物と反応して複合化し、より緻密な複合酸化物を与えるものが好ましい。チタンアルコキシドとして具体的には、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンn-プロポキシド、チタンn-ブトキシド、チタンt-ブトキシド、チタンイソブトキシド、チタン(ジイソプロポキシド)ビス(アセチルアセトナート) 、チタンテトラキス(2-エチル-1-ヘキサノラート)等を挙げることができる。一般に、チタンアルコキシドを熱処理(焼成)して得られる酸化チタンは屈折率が大きいことが知られている。しかし酸化チタン自体をパッシベーション層形成用組成物に添加して用いた場合には、酸化チタンが有する光触媒作用により、太陽光等の下で、パッシベーション層と接触する樹脂等を分解してしまう可能性がある。一方、パッシベーション層形成用組成物にチタンアルコキシドを適用する場合には、チタンアルコキシドが有機アルミニウム化合物と共に複合酸化物を形成し、光触媒作用が抑制されると共に屈折率の大きいパッシベーション層を形成することができる。
 ジルコニウムアルコキシドとしては、一般式(I)で表される有機アルミニウム化合物と反応して複合酸化物を与えるものであれば特に制限はない。ジルコニウムアルコキシとして具体的には、ジルコニウムエトキシド、ジルコニウムイソプロポキシド、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニウムt-ブトキシド、ジルコニウムアセチルアセトン、ジルコニウムトリフルオロアセチルアセトナート、ジルコニウムヘキサフルオロアセチルアセトナート等を挙げることができる。一般にジルコニウムアルコキシドを熱処理(焼成)して得られる酸化ジルコニウムは屈折率が大きいことで知られている。しかし酸化ジルコニウム自体をパッシベーション層形成用組成物に添加して用いた場合には、酸化ジルコニウムが有する光触媒作用により、太陽光等の下で、パッシベーション層と接触する樹脂等を分解してしまう可能性がある。一方、パッシベーション層形成用組成物にジルコニウムアルコキシドを適用する場合には、ジルコニウムアルコキシドが有機アルミニウム化合物と共に複合酸化物を形成し、光触媒作用が抑制されると共に屈折率の大きいパッシベーション層を形成することができる。
 シリコンアルコキシドについて説明する。一般式(I)で表される有機アルミニウム化合物を含有するパッシベーション層形成組成物を熱処理(焼成)することにより形成される酸化アルミニウムはアモルファス状態となりやすく、部分的に4配位酸化アルミニウムが生成される。4配位酸化アルミニウムが生成すると負の固定電荷が得られる。ここでパッシベーション層形成組成物にシリコンアルコキシドが含まれると熱処理(焼成)により4配位酸化シリコンが併せて生成する。4配位酸化シリコンは同形置換によって中心原子がシリコンからアルミニウムに置き換わることが知られている。従って4配位酸化シリコンが酸化アルミニウム層中に形成されると、結果的に負の固定電荷を有する4配位の酸化アルミニウムが生成しやすくなる。シリコンアルコキシドを熱処理(焼成)して得られる酸化シリコン自体の屈折率は酸化アルミニウムより小さいものの、複合化によって負の固定電荷源となる4配位の酸化アルミニウムが生成しやすくなるため、屈折率を大きく落とさない程度にシリコンアルコキシドを使用することで、より優れたパッシベーション効果が得られることになる。
 シリコンアルコキシドとしては、一般式(I)で表される有機アルミニウム化合物、チタンアルコキシド、ジルコニウムアルコキシド又は必要に応じて含まれるニオブアルコキシドと反応して複合酸化物を与えるものであれば特に制限はない。中でもシリコンアルコキシドは、下記一般式(II)で表される化合物であることが好ましい。
  (RO)(4-m)SiR  (II)
 式中、R及びRはそれぞれ独立して炭素数1~8のアルキル基を表す。nは0~3の整数を表す。ここでR及びRのいずれかが複数存在する場合、複数存在するR又はRはそれぞれ同一でも異なっていてもよい。
 シリコンアルコキシドとして具体的には、シリコンテトラメトキシド、シリコンテトラエトキシド、シリコンテトラプロポキシド等を挙げることができる。
 チタンアルコキシド、ジルコニウムアルコキシド及びシリコンアルコキシドからなる群より選ばれるアルコキシド化合物の中では、有機アルミニウム化合物との反応性、生成する複合酸化物の屈折率及びパッシベーション効果の観点から、チタンアルコキシド及びジルコニウムアルコキシドからなる群より選ばれる少なくとも1種を用いることが好ましく、チタンイソプロポキシド、ジルコニウムエトキシド及びジルコニウムイソプロポキシドからなる群より選ばれる少なくとも1種を用いることがより好ましく、チタンイソプロポキシド及びジルコニウムエトキシドからなる群より選ばれる少なくとも1種を用いることが更に好ましい。
 チタンアルコキシド、ジルコニウムアルコキシド及びシリコンアルコキシドからなる群より選ばれる特定アルコキシド化合物の含有率は、その総量がパッシベーション層形成用組成物中0.5質量%~65質量%であることが好ましく、1質量%~65質量%であることがより好ましく、2質量%~60質量%であることが更に好ましい。
 また一般式(I)で表される有機アルミニウム化合物の含有量に対する前記特定アルコキシド化合物の含有量の比(特定アルコキシド化合物/一般式(I)で表される有機アルミニウム化合物)は、生成する複合酸化物の屈折率及びパッシベーション効果の観点から、0.01~1000であることが好ましく、0.05~500であることがより好ましく0.1~100であることが更に好ましい。
(ニオブアルコキシド)
 パッシベーション層形成用組成物は、ニオブアルコキシドの少なくとも1種を含有してもよい。ニオブアルコキシドを熱処理(焼成)して得られる酸化ニオブは屈折率が大きいことで知られているため、ニオブアルコキシドを更に含むパッシベーション層形成用組成物を熱処理(焼成)することにより、屈折率がより大きいパッシベーション層を得ることができる。
 ニオブアルコキシドとしては、一般式(I)で表される有機アルミニウム化合物と反応して複合酸化物を与えるものであれば特に制限はない。ニオブアルコキシドとして具体的には、ニオブエトキシド、ニオブイソプロポキシド、ニオブn-プロポキシド、ニオブn-ブトキシド、ニオブフェノキシド等を挙げることができる。
 パッシベーション層形成用組成物がニオブアルコキシドを含有する場合、その含有率は、パッシベーション層形成用組成物の総質量中に、0.2質量%~50質量%であることが好ましく、0.5質量%~48質量%であることがより好ましく、1質量%~46質量%であることが更に好ましい。
 またパッシベーション層形成用組成物がニオブアルコキシドを含有する場合、一般式(I)で表される有機アルミニウム化合物の含有量に対するニオブアルコキシドの含有量の比(ニオブアルコキシド/一般式(I)で表される有機アルミニウム化合物)は、生成する複合酸化物の屈折率及びパッシベーション効果の観点から、0.01~1000であることが好ましく、0.05~500であることがより好ましく、0.1~100であることが更に好ましい。
 更にパッシベーション層形成用組成物がニオブアルコキシドを含有する場合、また一般式(I)で表される有機アルミニウム化合物の含有量に対する特定アルコキシド化合物及びニオブアルコキシドの総含有量の比は、生成する複合酸化物の屈折率及びパッシベーション効果の観点から、0.01~1000であることが好ましく、0.05~500であることがより好ましく、0.1~100であることが更に好ましい。
 パッシベーション層形成用組成物において、一般式(I)で表される有機アルミニウム化合物、特定アルコキシド化合物及び必要に応じて含まれるニオブアルコキシドの総含有率は、パッシベーション層形成用組成物の総質量中に1質量%~70質量%であることが好ましく、3質量%~60質量%であることがより好ましく、5質量%~50質量%であることが更に好ましい。
(樹脂)
 パッシベーション層形成用組成物は、樹脂の少なくとも1種を更に含有してもよい。樹脂を含むことで、前記パッシベーション層形成用組成物が半導体基板上に付与されて形成される組成物層の形状安定性がより向上し、パッシベーション層を前記組成物層が形成された領域に、所望の形状で選択的に形成することができる。
 樹脂の種類は特に制限されない。樹脂は、パッシベーション層形成用組成物を半導体基板上に付与する際に、良好なパターン形成ができる範囲に粘度調整が可能な樹脂であることが好ましい。樹脂として具体的には、ポリビニルアルコール、ポリアクリルアミド類、ポリビニルアミド類、ポリビニルピロリドン、ポリエチレンオキサイド類、ポリスルホン酸、ポリアクリルアミドアルキルスルホン酸、セルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース等のセルロースエーテルなどのセルロース誘導体、ゼラチン及びゼラチン誘導体、澱粉及び澱粉誘導体、アルギン酸ナトリウム及びアルギン酸ナトリウム誘導体、キサンタン及びキサンタン誘導体、グアーガム及びグアーガム誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、(メタ)アクリル酸樹脂、(メタ)アクリル酸エステル樹脂(例えば、アルキル(メタ)アクリレート樹脂、ジメチルアミノエチル(メタ)アクリレート樹脂等)、ブタジエン樹脂、スチレン樹脂、シロキサン樹脂、これらの共重合体などを挙げることができる。これら樹脂は1種類を単独で又は2種類以上を組み合わせて使用される。
 これらの樹脂のなかでも、保存安定性とパターン形成性の観点から、酸性及び塩基性の官能基を有さない中性樹脂を用いることが好ましく、含有量が少量の場合においても容易に粘度及びチキソ性を調節できる観点から、セルロース誘導体を用いることがより好ましい。
 またこれら樹脂の分子量は特に制限されず、パッシベーション層形成用組成物としての所望の粘度を鑑みて適宜調整することが好ましい。前記樹脂の重量平均分子量は、保存安定性とパターン形成性の観点から、1,000~10,000,000であることが好ましく、3,000~5,000,000であることがより好ましい。なお、樹脂の重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。
 パッシベーション層形成用組成物が樹脂を含有する場合、樹脂のパッシベーション層形成用組成物中の含有率は、必要に応じて適宜選択することができる。樹脂の含有率は、例えばパッシベーション層形成用組成物の総質量中に0.1質量%~30質量%であることが好ましい。パターン形成をより容易にするようなチキソ性を発現させる観点から、前記含有率は1質量%~25質量%であることがより好ましく、1.5質量%~20質量%であることがより好ましく、1.5質量%~10質量%であることが更に好ましい。
 パッシベーション層形成用組成物が樹脂を含有する場合、前記パッシベーション層形成用組成物における前記有機アルミニウム化合物と前記樹脂の含有比率は、必要に応じて適宜選択することができる。中でも、パターン形成性と保存安定性の観点から、有機アルミニウム化合物に対する樹脂の含有比率(樹脂/有機アルミニウム化合物)は、0.001~1000であることが好ましく、0.01~100であることがより好ましく、0.1~1であることが更に好ましい。
(高沸点材料) 
 パッシベーション層形成用組成物には、樹脂と共に又は樹脂に替わる材料として、高沸点材料を用いてもよい。高沸点材料は、加熱時に容易に気化して脱脂処理する必要のない化合物であることが好ましい。また高沸点材料は特に、印刷塗布後に印刷形状が維持できる高粘度の高沸点材料であることが好ましい。これらを満たす材料として、例えば一般式(III)で表わされるイソボルニルシクロヘキサノールが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 この一般式(III)で表わされるイソボルニルシクロヘキサノールは「テルソルブ MTPH」(日本テルペン化学株式会社、商品名)として商業的に入手可能である。イソボルニルシクロヘキサノールは沸点が308℃~318℃と高く、また組成物層から除去する際には、樹脂のように熱処理(焼成)による脱脂処理を行うまでもなく、加熱により気化させることによって消失させることができる。このため、パッシベーション層形成用組成物を半導体基板上に塗布した後の乾燥工程で、組成物中に必要に応じて含まれる溶剤とイソボルニルシクロヘキサノールの大部分を取り除くことができ、熱処理(焼成)後の黒色残渣を抑制することができる。
 パッシベーション層形成用組成物が高沸点材料を含有する場合、高沸点材料の含有率は、パッシベーション層形成用組成物の総質量中に0.5質量%~85質量%であることが好ましく、1質量%~80質量%であることがより好ましく、2質量%~80質量%であることが特に好ましい。
(溶媒)
 前記パッシベーション層形成用組成物は溶媒を含んでいてもよい。パッシベーション層形成用組成物が溶媒を含有することで、粘度の調整がより容易になり、付与性がより向上すると共により均一なパッシベーション層を形成することができる傾向にある。前記溶媒としては特に制限されず、必要に応じて適宜選択することができる。中でも一般式(I)で表される有機アルミニウム化合物及び特定アルコキシド化合物を溶解して均一な溶液を与えることができる溶媒が好ましく、有機溶剤の少なくとも1種を含むことがより好ましい。
 溶媒として具体的には、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル系溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;塩化メチレン、クロロホルム、ジクロロエタン、ベンゼン、トルエン、キシレン、ヘキサン、オクタン、エチルベンゼン、2-エチルヘキサン酸、メチルイソブチルケトン、メチルエチルケトン等の疎水性有機溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α-テルピネン、α-テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水などが挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
 中でも前記溶媒は、半導体基板への付与性及びパターン形成性の観点から、テルペン系溶剤、エステル系溶剤及びアルコール系溶剤からなる群より選ばれる少なくとも1種を含むことが好ましく、テルペン系溶剤からなる群より選ばれる少なくとも1種を含むことがより好ましい。
 パッシベーション層形成用組成物が溶媒を含む場合、溶媒の含有率は、付与性、パターン形成性、及び保存安定性を考慮して決定される。例えば溶媒の含有率は、組成物の付与性とパターン形成性の観点から、パッシベーション層形成用組成物の総質量中に5質量%~98質量%であることが好ましく、10質量%~95質量%であることがより好ましい。
(その他添加剤)
 前記パッシベーション層形成用組成物は、酸性化合物又は塩基性化合物を含有してもよい。パッシベーション層形成用組成物が酸性化合物又は塩基性化合物を含有する場合、保存安定性の観点から、酸性化合物又は塩基性化合物の含有率が、パッシベーション層形成用組成物中にそれぞれ1質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。
 酸性化合物としては、ブレンステッド酸及びルイス酸を挙げることができる。具体的には塩酸、硝酸等の無機酸、酢酸等の有機酸などを挙げることができる。また塩基性化合物としては、ブレンステッド塩基及びルイス塩基を挙げることができる。具体的にはアルカリ金属水酸化物、アルカリ土類金属水酸化物等の無機塩基、トリアルキルアミン、ピリジン等の有機塩基などを挙げることができる。
(物性値)
 パッシベーション層形成用組成物の粘度は特に制限されず、半導体基板への付与方法等に応じて適宜選択することができる。例えば、パッシベーション層形成用組成物の粘度は0.01Pa・s~10000Pa・sとすることができる。中でもパターン形成性の観点から、パッシベーション層形成用組成物の粘度は0.1Pa・s~1000Pa・sであることが好ましい。なお、前記粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s-1で測定される。
 またパッシベーション層形成用組成物のせん断粘度は特に制限されず、パッシベーション層形成用組成物がチキソ性を有していることが好ましい。特にパッシベーション層形成用組成物が樹脂を含む場合、パターン形成性の観点から、せん断速度1.0s-1におけるせん断粘度ηをせん断速度10s-1におけるせん断粘度ηで除して算出されるチキソ比(η/η)が1.05~100であることが好ましく、1.1~50であることがより好ましい。なお、せん断粘度は、コーンプレート(直径50mm、コーン角1°)を装着した回転式のせん断粘度計を用いて、温度25℃で測定される。
 一方、パッシベーション層形成用組成物が樹脂の代わりに高沸点材料を含む場合、パターン形成性の観点から、せん断速度1.0s-1におけるせん断粘度ηをせん断速度1000s-1におけるせん断粘度ηで除して算出されるチキソ比(η/η)が1.05~100であることが好ましく、1.1~50であることがより好ましい。
(パッシベーション層形成用組成物の製造方法)
 前記パッシベーション層形成用組成物の製造方法には特に制限はない。例えば、一般式(I)で表される有機アルミニウム化合物と、特定アルコキシド化合物と、必要に応じて含まれる樹脂、溶媒等とを、通常用いられる混合方法で混合することで製造することができる。また樹脂を溶媒に溶解した後、これと一般式(I)で表される有機アルミニウム化合物及び特定アルコキシド化合物を混合することで製造してもよい。
 更に一般式(I)で表される有機アルミニウム化合物は、アルミニウムアルコキシドと、アルミニウムとキレートを形成可能な化合物とを混合して調製してもよい。その際、必要に応じて溶媒を用いてもよく、加熱処理を行ってもよい。このようにして調製した一般式(I)で表される有機アルミニウム化合物及び特定アルコキシド化合物と、樹脂又は樹脂を含む溶液とを混合してパッシベーション層形成用組成物を製造してもよい。
 なお、前記パッシベーション層形成用組成物中に含まれる成分、及び各成分の含有量は、示差熱-熱重量同時測定(TG/DTA)等の熱分析、核磁気共鳴(NMR)、赤外分光法(IR)等のスペクトル分析、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフィー(GPC)等のクロマトグラフ分析などを用いて確認することができる。
<パッシベーション層付半導体基板>
 本発明のパッシベーション層付半導体基板は、半導体基板と、前記半導体基板上の全面又は一部に設けられる本発明のパッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層とを有する。前記パッシベーション層付半導体基板は、前記パッシベーション層形成用組成物の熱処理物層(焼成物層)であるパッシベーション層を有することで優れたパッシベーション効果を示す。
 半導体基板は特に制限されず、目的に応じて通常用いられるものから適宜選択することができる。半導体基板としては、シリコン、ゲルマニウム等にp型不純物又はn型不純物をドープ(拡散)したものが挙げられる。中でもシリコン基板であることが好ましい。また半導体基板は、p型半導体基板であっても、n型半導体基板であってもよい。中でもパッシベーション効果の観点から、パッシベーション層が形成される面がp型層である半導体基板であることが好ましい。前記半導体基板上のp型層は、p型半導体基板に由来するp型層であっても、p型拡散層又はp型拡散層として、n型半導体基板又はp型半導体基板上に形成されたものであってもよい。
 また前記半導体基板の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば、半導体基板の厚みは、50μm~1000μmとすることができ、75μm~750μmであることが好ましい。
 前記半導体基板上に形成されるパッシベーション層の平均厚みは特に制限されず、目的に応じて適宜選択することができる。例えば、パッシベーション層の平均厚みは5nm~50μmであることが好ましく、10nm~30μmであることが好ましく、15nm~20μmであることが更に好ましい。パッシベーション層の平均厚みは、干渉式膜厚計等で測定することができる。
 前記パッシベーション層付半導体基板は、太陽電池素子、発光ダイオード素子等に適用することができる。例えば、太陽電池素子に適用することで変換効率に優れた太陽電池素子を得ることができる。前記パッシベーション層付半導体基板を太陽電池素子に適用する場合、パッシべーション層は太陽電池素子の受光面側に設けられることが好ましい。
<パッシベーション層付半導体基板の製造方法>
 本発明のパッシベーション層付半導体基板の製造方法は、半導体基板上の全面又は一部に、本発明のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理(焼成)してパッシベーション層を形成する工程とを有する。前記製造方法は必要に応じてその他の工程を更に含んでいてもよい。
 前記パッシベーション層形成用組成物を用いることで、優れたパッシベーション効果と大きな屈折率を有するパッシベーション層を所望の形状に、簡便な方法で形成することができる。
 前記パッシベーション層付半導体基板の製造方法は、前記組成物層を形成する工程の前に、半導体基板上にアルカリ水溶液を付与する工程を更に有することが好ましい。すなわち、半導体基板上に前記パッシベーション層形成用組成物を付与する前に、半導体基板の表面をアルカリ水溶液で洗浄することが好ましい。アルカリ水溶液で洗浄することで、半導体基板表面に存在する有機物、パーティクル等を除去することができ、パッシベーション効果がより向上する。アルカリ水溶液による洗浄の方法としては、一般的に知られているRCA洗浄等を例示することができる。例えばアンモニア水-過酸化水素水の混合溶液に半導体基板を浸し、60℃~80℃で処理することで、有機物及びパーティクルを除去及び洗浄することできる。洗浄時間は、10秒~10分間であることが好ましく、30秒~5分間であることが更に好ましい。
 RCA洗浄では、まずウェーハを希フッ酸水溶液(HF)の中に入れ、表面の薄いSi酸化膜を溶かすと共に、その上に付着していた多くの異物も同時に取り去る。更に、上記のようにアンモニア水(NHOH)-過酸化水素(H)の混合溶液で、有機物及びパーティクルを取り、次いで塩酸(HC1)及び過酸化水素(H)で、金属類を取る。そして、最後は超純水で仕上げてもよい。
 半導体基板上に、前記パッシベーション層形成用組成物を付与して組成物層を形成する方法には特に制限はない。例えば、公知の塗布方法等を用いて、半導体基板上に前記パッシベーション層形成用組成物を付与する方法を挙げることができる。具体的には、浸漬法、印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法等を挙げることができる。これらの中でもパターン形成性の観点から、各種の印刷法、インクジェット法等が好ましい。
 前記パッシベーション層形成用組成物の付与量は、目的に応じて適宜選択することができる。例えば、形成されるパッシベーション層の厚みが、後述する所望の厚みとなるように適宜調整することができる。
 パッシベーション層形成用組成物によって形成された組成物層を熱処理(焼成)して、前記組成物層に由来する熱処理物層(焼成物層)を形成することで、半導体基板上にパッシベーション層を形成することができる。
 組成物層の熱処理(焼成)条件は、組成物層に含まれる一般式(I)で表される有機アルミニウム化合物及び特定アルコキシド化合物をその熱処理物(焼成物)である酸化アルミニウム(Al)及び複合酸化物に変換可能であれば特に制限されない。中でも特定の結晶構造を持たないアモルファス状のAlを含む層を形成可能な熱処理(焼成)条件であることが好ましい。パッシベーション層がアモルファス状のAlを含む層で構成されることで、パッシベーション層により効果的に負電荷を持たせることができ、より優れたパッシベーション効果を得ることができる。具体的に、熱処理(焼成)温度は400℃~900℃が好ましく、450℃~800℃がより好ましい。また熱処理(焼成)時間は熱処理(焼成)温度等に応じて適宜選択できる。例えば、0.1時間~10時間とすることができ、0.2時間~5時間であることが好ましい。
 前記パッシベーション層付半導体基板の製造方法によって製造されるパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択できる。例えばパッシベーション層の平均厚みは、5nm~50μmであることが好ましく、10nm~30μmであることが好ましく、15nm~20μmであることが更に好ましい。
 尚、形成されたパッシベーション層の平均厚みは、触針式段差・表面形状測定装置(例えば、Ambios社)、干渉式膜厚計(例えば、フィルメトリック社)等を用いて常法により、3点の厚みを測定し、その算術平均値として算出される。
 前記パッシベーション層付半導体基板の製造方法は、パッシベーション層形成用組成物を付与した後、かつ熱処理(焼成)によってパッシベーション層を形成する工程の前に、パッシベーション層形成用組成物からなる組成物層を乾燥処理する工程を更に有していてもよい。組成物層を乾燥処理する工程を有することで、より均一なパッシベーション効果を有するパッシベーション層を形成することができる。
 組成物層を乾燥処理する工程は、パッシベーション層形成用組成物に含まれることがある溶媒の少なくとも一部を除去することができれば、特に制限されない。乾燥処理は例えば30℃~250℃で1分間~60分間の加熱処理とすることができ、40℃~220℃で3分間~40分間の加熱処理であることが好ましい。また乾燥処理は、常圧下で行なっても減圧下で行なってもよい。
 パッシベーション層形成用組成物が樹脂を含む場合、前記パッシベーション層付半導体基板の製造方法は、パッシベーション層形成用組成物を付与した後、かつ熱処理(焼成)によってパッシベーション層を形成する工程の前に、パッシベーション層形成用組成物からなる組成物層を脱脂処理する工程を更に有していてもよい。組成物層を脱脂処理する工程を有することで、より均一な半導体基板パッシベーション効果を有するパッシベーション層を形成することができる。
 組成物層を脱脂処理する工程は、パッシベーション層形成用組成物に含まれることがある樹脂の少なくとも一部を除去することができれば、特に制限されない。脱脂処理は例えば250℃~400℃で3分間~120分間の加熱処理とすることができ、300℃~450℃で10分間~60分間の加熱処理であることが好ましい。また脱脂処理は、酸素存在下で行うことが好ましく、大気中で行なうことがより好ましい。
<太陽電池素子>
 本発明の太陽電池素子は、p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる本発明のパッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層と、前記半導体基板の前記p型層及びn型層からなる群より選択される1以上の層上に配置される電極とを有する。前記太陽電池素子は、必要に応じてその他の構成要素を更に有していてもよい。
 前記太陽電池素子は、本発明のパッシベーション層形成用組成物から形成されたパッシベーション層を有することで、変換効率に優れる。
 パッシベーション層形成用組成物を付与する半導体基板としては特に制限されず、目的に応じて通常用いられるものから適宜選択することができる。半導体基板としては、パッシベーション層付半導体基板で説明したものを使用することができ、好適に使用できるものも同様である。前記パッシベーション層が設けられる半導体基板の面は、p型層であっても、n型層であってもよい。中でも変換効率の観点からp型層であることが好ましい。前記半導体基板上のp型層は、p型半導体基板に由来するp型層であっても、p型拡散層又はp型拡散層として、n型半導体基板又はp型半導体基板上に形成されたものであってもよい。また前記パッシベーション層が設けられる半導体基板の面は、太陽電池素子における受光面であることが好ましい。
 前記半導体基板の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば50μm~1000μmとすることができ、75μm~750μmであることが好ましい
 また前記半導体基板上に形成されたパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えばパッシベーション層の平均厚みは、5nm~50μmであることが好ましく、10nm~30μmであることが好ましく、15nm~20μmであることが更に好ましい。
 前記太陽電池素子の形状、大きさ等に制限はない。例えば、一辺が125mm~156mmの正方形であることが好ましい。
<太陽電池素子の製造方法>
 本発明の太陽電池素子の製造方法は、p型層及びn型層が接合されてなるpn接合を有し、p型層及びn型層からなる群より選択される1以上の層上に電極を有する半導体基板の、前記電極を有する面の少なくとも一部に、本発明のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理(焼成)して、パッシベーション層を形成する工程とを有する。前記太陽電池素子の製造方法は、必要に応じてその他の工程を更に有していてもよい。
 前記パッシベーション層形成用組成物を用いることで、優れたパッシベーション効果を有し、屈折率の大きいパッシベーション層を備え、変換効率に優れる太陽電池素子を簡便な方法で製造することができる。更に電極が形成された半導体基板上に、所望の形状となるようにパッシベーション層を形成することができ、太陽電池素子の生産性に優れる。
 p型層及びn型層の少なくとも一方の層上に電極が配置されたpn接合を有する半導体基板は、通常用いられる方法で製造することができる。例えば半導体基板の所望の領域に、銀ペースト、アルミニウムペースト等の電極形成用ペーストを付与し、必要に応じて熱処理(焼成)することで製造することができる。
 前記パッシベーション層が設けられる半導体基板の面は、p型層であっても、n型層であってもよい。中でも変換効率の観点からp型層であることが好ましい。
 前記パッシベーション層形成用組成物を用いてパッシベーション層を形成する方法の詳細は、既述のパッシベーション層付半導体基板の製造方法と同様であり、好ましい態様も同様である。
 前記半導体基板上に形成されるパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えばパッシベーション層の平均厚みは、5nm~50μmであることが好ましく、10nm~30μmであることが好ましく、15nm~20μmであることが更に好ましい。
 次に図面を参照しながら本発明の実施形態について説明する。
 図1(a)~図1(d)は、本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の一例を模式的に示す工程図を断面図として示したものである。但し、この工程図は本発明をなんら制限するものではない。
 図1(a)に示すように、p型半導体基板1には、表面近傍にn型拡散層2が形成され、最表面に反射防止膜3が形成されている。反射防止膜3としては、窒化ケイ素膜、酸化チタン膜等が挙げられる。反射防止膜3とp型半導体基板1との間に酸化ケイ素等の表面保護膜(図示せず)が更に存在していてもよい。また、本発明にかかるパッシベーション層は屈折率が大きいため、反射防止膜3とp型半導体基板1との間に形成することが好ましい(図示せず)。図1(a)~図1(d)では図示しないが、パッシベーション層を受光面側に有する太陽電池素子の製造方法については、図3を用いて後述する。
 次いで図1(b)に示すように、p型半導体基板1の裏面の一部の領域にアルミニウム電極ペースト等の裏面電極5を形成する材料を塗布した後に熱処理(焼成)して、裏面電極5を形成し、かつp型半導体基板1中にアルミニウム原子を拡散させてp型拡散層4を形成する。
 次いで図1(c)に示すように、p型半導体基板1の受光面側に電極形成用ペーストを塗布した後に熱処理(焼成)して受光面電極7を形成する。電極形成用ペーストとしてファイヤースルー性を有するガラス粉末を含むものを用いることで、図1(c)に示すように反射防止膜3を貫通して、n型拡散層2の上に、受光面電極7を形成してオーミックコンタクトを得ることができる。
 なお、図1(a)~図1(d)では図1(b)及び図1(c)を別個の工程として図示しているが、図1(b)及び図1(c)の工程を合わせて、1つの工程としてもよい。具体的には、上記図1(b)において、裏面の一部の領域にアルミニウム電極ペースト等の裏面電極5を形成する材料を塗布した後、裏面電極5を形成するための熱処理(焼成)を行う前に、受光面側に電極形成用ペーストを塗布し、そして、この段階で熱処理(焼成)を行ってもよい。この方法の場合には、1回の熱処理により裏面と受光面の電極が形成され、工程が簡略化される。
 そして、図1(d)に示すように、裏面電極5が形成された領域以外の裏面のp型層上に、パッシベーション層形成用組成物を付与して組成物層を形成する。付与は例えばスクリーン印刷等の方法により行うことができる。p型層上に形成された組成物層を熱処理(焼成)してパッシベーション層6を形成する。裏面のp型層上に、前記パッシベーション層形成用組成物から形成されたパッシベーション層6を形成することで、発電効率に優れた太陽電池素子を製造することができる。
 図1(a)~図1(d)に示す製造工程を含む製造方法で製造される太陽電池素子では、アルミニウム等から形成される裏面電極をポイントコンタクト構造とすることができ、基板の反り等を低減することができる。更に前記パッシベーション層形成用組成物を用いることで、特定の位置(具体的には、電極形成された領域以外のp型層上)にのみ優れた生産性でパッシベーション層を形成することができる。
 また図1(d)では、半導体基板1の裏面部分にのみパッシベーション層を形成する方法を示したが、半導体基板1の裏面側に加えて、側面にもパッシベーション層形成用組成物を付与し、これを熱処理(焼成)することで半導体基板1の側面(エッジ)にパッシベーション層6を更に形成してもよい(図示せず)。これにより、発電効率により優れた太陽電池素子を製造することができる。
 更にまた、裏面部分にパッシベーション層を形成せず、側面のみに本発明のパッシベーション層形成用組成物を付与し、熱処理(焼成)してパッシベーション層を形成してもよい。本発明のパッシベーション層形成用組成物は、側面のような結晶欠陥が多い箇所に使用すると、その効果が特に大きい。
 図1(a)~図1(d)では電極形成後にパッシベーション層を形成する態様について説明したが、パッシベーション層形成後に、更にアルミニウム等の電極を蒸着等によって所望の領域に形成してもよい。
 図2(a)~図2(e)は、本発明の一実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の別の一例を模式的に示す工程図を断面図として示したものである。具体的には、図2(a)~図2(e)はアルミニウム電極ペースト又は熱拡散処理によりp型拡散層を形成可能なp型拡散層形成用組成物を用いてp型拡散層を形成後、アルミニウム電極ペーストの熱処理物又はp型拡散層形成用組成物の熱処理物を除去する工程を含む工程図を断面図として説明するものである。ここでp型拡散層形成用組成物としては例えば、アクセプタ元素含有物質とガラス成分とを含む組成物を挙げることができる。
 図2(a)に示すように、p型半導体基板1には、表面近傍にn型拡散層2が形成され、表面に反射防止膜3が形成されている。反射防止膜3としては、窒化ケイ素膜、酸化チタン膜等が挙げられる。
 次いで図2(b)に示すように、裏面の一部の領域にp型拡散層形成用組成物を付与した後に熱処理して、p型拡散層4を形成する。p型拡散層4上にはp型拡散層形成用組成物の熱処理物8が形成されている。
 ここでp型拡散層形成用組成物に代えて、アルミニウム電極ペーストを用いてもよい。アルミニウム電極ペーストを用いた場合には、p型拡散層4上にはアルミニウム電極8が形成される。
 次いで図2(c)に示すように、p型拡散層4上に形成されたp型拡散層形成用組成物の熱処理物8又はアルミニウム電極8をエッチング等の手法により除去する。
 次いで図2(d)に示すように、半導体基板1の受光面(表面)及び裏面の一部の領域に選択的に電極形成用ペーストを塗布した後に熱処理して、受光面(表面)に受光面電極7を、裏面に裏面電極5をそれぞれ形成する。受光面側に塗布する電極形成用ペーストとしてファイヤースルー性を有するガラス粉末を含むものを用いることで、図2(c)に示すように反射防止膜3を貫通して、n型拡散層2の上に、受光面電極7が形成されてオーミックコンタクトを得ることができる。
 また裏面電極が形成される領域にはすでにp型拡散層4が形成されているため、裏面電極5を形成する電極形成用ペーストには、アルミニウム電極ペーストに限定されず、銀電極ペースト等のより低抵抗な電極を形成可能な電極用ペーストを用いることもできる。これにより、更に発電効率を高めることも可能になる。
 そして、図2(e)に示すように、裏面電極5が形成された領域以外の裏面のp型層上に、パッシベーション層形成用組成物を付与して組成物層を形成する。付与は例えばスクリーン印刷等の方法により行うことができる。p型層上に形成された組成物層を熱処理(焼成)してパッシベーション層6を形成する。裏面のp型層上に、本発明のパッシベーション層形成用組成物から形成されたパッシベーション層6を形成することで、発電効率に優れた太陽電池素子を製造することができる。
 また図2(e)では半導体基板1の裏面部分にのみパッシベーション層を形成する方法を示したが、p型半導体基板1の裏面側に加えて、側面にもパッシベーション層形成用材料を付与し、熱処理(焼成)することでp型半導体基板1の側面(エッジ)にパッシベーション層を更に形成してもよい(図示せず)。これにより、発電効率が更に優れた太陽電池素子を製造することができる。
 更にまた、裏面部分にパッシベーション層を形成せず、半導体基板の側面のみに本発明のパッシベーション層形成用組成物を付与し、これを熱処理(焼成)してパッシベーション層を形成してもよい。本発明のパッシベーション層形成用組成物は、側面のような結晶欠陥が多い箇所に使用すると、その効果が特に大きい。
 図2(a)~図2(e)では電極形成後にパッシベーション層を形成する態様について説明したが、パッシベーション層形成後に、更にアルミ等の電極を蒸着等によって所望の領域に形成してもよい。
 上述した実施形態では、受光面にn型拡散層が形成されたp型半導体基板を用いた場合について説明を行ったが、受光面にp型拡散層が形成されたn型半導体基板を用いた場合にも同様にして、太陽電池素子を製造することができる。尚、その場合は裏面側にn型拡散層を形成することとなる。
 更にパッシベーション層形成用組成物は、図3に示すような裏面側のみに電極が配置された裏面電極型太陽電池素子の受光面側又は裏面側のパッシベーション層6を形成することにも使用できる。
 図3に概略断面図を示すように、p型半導体基板1の受光面側には、表面近傍にn型拡散層2が形成され、その表面にパッシベーション層6及び反射防止膜3が形成されている。反射防止膜3としては、窒化ケイ素膜、酸化チタン膜等が知られている。またパッシベーション層6は、本発明のパッシベーション層形成用組成物を付与し、これを熱処理(焼成)して形成される。本発明にかかるパッシベーション層は良好な屈折率を示すため、受光面側に設けられることで、発電効率を上げることができると考えられる。
 p型半導体基板1の裏面側には、p型拡散層4及びn型拡散層2上にそれぞれ裏面電極5が設けられ、更に裏面の電極が形成されていない領域にはパッシベーション層6が設けられている。
 p型拡散層4は、上述のようにp型拡散層形成用組成物又はアルミニウム電極ペーストを所望の領域に塗布した後に熱処理することで形成することができる。またn型拡散層2は、例えば熱拡散処理によりn型拡散層を形成可能なn型拡散層形成用組成物を所望の領域に塗布した後に熱処理することで形成することができる。
 ここでn型拡散層形成用組成物としては例えば、ドナー元素含有物質とガラス成分とを含む組成物を挙げることができる。
 p型拡散層4及びn型拡散層2上にそれぞれ設けられる裏面電極5は、銀電極ペースト等の通常用いられる電極形成用ペーストを用いて形成することができる。
 また、p型拡散層4上に設けられる裏面電極5は、アルミニウム電極ペーストを用いてp型拡散層4と共に形成されるアルミニウム電極であってもよい。
 裏面に設けられるパッシベーション層6は、パッシベーション層形成用組成物を裏面電極5が設けられていない領域に付与し、これを熱処理(焼成)することで形成することができる。
 またパッシベーション層6は半導体基板1の裏面のみならず、更に側面にも形成してよい(図示せず)。
 図3に示すような裏面電極型太陽電池素子においては、受光面側に電極がないため発電効率に優れる。更に裏面の電極が形成されていない領域にパッシベーション層が形成されているため、更に変換効率に優れる。
 上記では半導体基板としてp型半導体基板を用いた例を示したが、n型半導体基板を用いた場合も、上記に準じて変換効率に優れる太陽電池素子を製造することができる。太陽電池素子の形状や大きさに制限はないが、一般的な一辺が125mm~156mmの正方形であることが好ましい。
<太陽電池>
 太陽電池は、本発明の太陽電池素子と、前記太陽電池素子の電極上に配置される配線材料とを有する。太陽電池は更に必要に応じて、タブ線等の配線材料を介して複数の太陽電池素子が連結され、更に封止材で封止されていてもよい。
 前記配線材料及び封止材としては特に制限されず、当業界で通常用いられているものから適宜選択することができる。
 前記太陽電池の大きさに制限はない。太陽電池の大きさは0.5m~3mであることが好ましい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「%」は質量基準である。
<実施例1>
(パッシベーション層形成用組成物1の調製)
 エチルセルロース(日進化成株式会社、商品名:ETHOCEL200cps)を5.00g、及びテルピネオール(日本テルペン化学株式会社)を95.02g混合し、150℃で1時間攪拌してエチルセルロース溶液を調製した。
 次に、アルミニウムエチルアセトアセテートジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)を15.1g、ニオブエトキシド(和光純薬工業株式会社)を5.1g、チタンテトライソプロポキシド(和光純薬工業株式会社)を5.0g、前記エチルセルロース溶液を35.2g、及びテルピネオール(日本テルペン化学株式会社)を30.2g混合して、パッシベーション層形成用組成物1を調製した。
(パッシベーション層の形成)
 半導体基板として、表面がミラー形状の単結晶型p型シリコン基板(株式会社SUMCO製、50mm角、厚さ:625μm)を用いた。シリコン基板をRCA洗浄液(関東化学株式会社、商品名:Frontier Cleaner-A01)を用いて70℃にて5分間、浸漬洗浄し、前処理を行った。
 その後、上記で得られたパッシベーション層形成用組成物1を前処理したシリコン基板上に、スクリーン印刷法を用いて、乾燥後の膜厚が5μmとなるように全面に付与し、150℃で5分間乾燥処理した。次いで700℃で10分間熱処理(焼成)した後、室温で放冷して評価用基板を作製した。
<評価>
 上記で得られたパッシベーション層形成用組成物及びこれを用いて作製した評価用基板について以下のような評価を行った、評価結果を表1に示した。
(チキソ比の評価)
 上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)に、回転式せん断粘度計(AntonPaar社、商品名:MCR301)に、コーンプレート(直径50mm、コーン角1°)を装着し、温度25℃で、せん断速度1.0s-1及び10s-1の条件でそれぞれ測定した。
 せん断速度が1.0s-1の条件でのせん断粘度(η)は44.0Pa・s、せん断速度が10s-1の条件でのせん断粘度(η)は35.0Pa・sとなった。せん断粘度が1.0s-1と10s-1の場合でのチキソ比(η/η)は1.3となった。
(保存安定性の評価)
 上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)及び25℃で30日間保存した後にそれぞれ測定した。せん断粘度の測定は、MCR301(商品名、AntonPaar社)に、コーンプレート(直径50mm、コーン角1°)を装着し、温度25℃で、せん断速度1.0s-1で行った。
 調製直後の25℃におけるせん断粘度(η)は44.0Pa・s、25℃で30日間保存した後の25℃におけるせん断粘度(η30)は44.6Pa・sであった。
 25℃で30日間保存した後のせん断粘度の変化率を下式(B)により算出し、下記評価基準に従って保存安定性について評価した。
  せん断粘度の変化率(%)=(η30-η)/(η)×100  (B)
[評価基準]
 A:せん断粘度の変化率が10%未満であった。
 B:せん断粘度の変化率が10%以上30%未満であった。
 C:せん断粘度の変化率が30%以上であった。
 評価がA又はBであれば、パッシベーション層形成用組成物として良好である。
(実効ライフタイムの測定)
 上記で得られた評価用基板の実効ライフタイム(μs)を、ライフタイム測定装置(日本セミラボ株式会社、商品名:WT-2000PVN)を用いて、室温(25℃)で反射マイクロ波光電導減衰法により測定した。得られた評価用基板のパッシベーション層形成用組成物1を付与した領域の実効ライフタイムは、300μsであった。
(パッシベーション層の厚みと屈折率の測定)
 上記で得られた評価用基板上のパッシベーション層の平均厚み及び屈折率を干渉式膜厚計(フィルメトリックス株式会社、F20膜厚測定システム)を用いて測定した。パッシベーション層の厚みは220nmであり、屈折率は1.71となった。
<実施例2>
(パッシベーション層形成用組成物2の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを14.9g、チタンテトライソプロポキシドを9.8g、上記エチルセルロース溶液を35.1g、及びテルピネオールを29.7g混合して、パッシベーション層形成用組成物2を調製した。
 パッシベーション層形成用組成物2を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。
<実施例3>
(パッシベーション層形成用組成物3の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを15.0g、ジルコニウムエトキシド(和光純薬工業株式会社)を10.2g、上記エチルセルロース溶液を35.1g、及びテルピネオールを30.4g混合して、パッシベーション層形成用組成物3を調製した。
 パッシベーション層形成用組成物3を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。
<実施例4>
(パッシベーション層形成用組成物4の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを15.2g、ニオブエトキシドを10.0g、チタンエトキシドを5.1g、オルトケイ酸テトラエチル(和光純薬工業株式会社)4.8g、上記エチルセルロース溶液を34.7g、及びテルピネオールを30.3g混合して、パッシベーション層形成用組成物4を調製した。
 パッシベーション層形成用組成物4を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。
<実施例5>
(パッシベーション層形成用組成物5の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを14.9g、チタンエトキシドを15.2g、オルトケイ酸テトラエチル5.2g、上記エチルセルロース溶液を34.8g、及びテルピネオールを30.6g混合して、パッシベーション層形成用組成物5を調製した。
 パッシベーション層形成用組成物5を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。
<実施例6>
(パッシベーション層形成用組成物6の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを15.0g、ジルコニウムエトキシドを15.1g、オルトケイ酸テトラエチル5.1g、上記エチルセルロース溶液を35.3g、及びテルピネオールを29.6g混合して、パッシベーション層形成用組成物6を調製した。
 パッシベーション層形成用組成物6を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。
<実施例7>
(パッシベーション層形成用組成物7の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを15.1g、ニオブエトキシドを5.0g、チタンイソプロポキシドを5.0g、イソボルニルシクロヘキサノール(日本テルペン化学株式会社、商品名:テルソルブMTPH)を35.2g、及びテルピネオールを14.9g混合して、パッシベーション層形成用組成物7を調製した。
 パッシベーション層形成用組成物7を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。なお、チキソ比は、せん断速度が1.0s-1の場合のせん断粘度(η)とせん断速度1000s-1の場合せん断粘度(η)との比(η/η)として算出した。
<実施例8>
(パッシベーション層形成用組成物8の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを15.2g、チタンイソプロポキシドを10.2g、イソボルニルシクロヘキサノールを34.8g、及びテルピネオールを15.2g混合して、パッシベーション層形成用組成物8を調製した。
 パッシベーション層形成用組成物8を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。なお、チキソ比は、せん断速度が1.0s-1の場合のせん断粘度(η)とせん断速度1000s-1の場合せん断粘度(η)との比(η/η)として算出した。
<実施例9>
(パッシベーション層形成用組成物9の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを14.8g、ジルコニウムエトキシドを9.8g、イソボルニルシクロヘキサノールを35.5g、及びテルピネオールを15.2g混合して、パッシベーション層形成用組成物9を調製した。
 パッシベーション層形成用組成物9を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。なお、チキソ比は、せん断速度が1.0s-1の場合のせん断粘度(η)とせん断速度1000s-1の場合せん断粘度(η)との比(η/η)として算出した。
<比較例1>
(パッシベーション層形成用組成物10の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを15.0g、上記エチルセルロース溶液を35.0g、及びテルピネオールを30.2g混合して、パッシベーション層形成用組成物10を調製した。
 パッシベーション層形成用組成物10を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。
<比較例2>
(パッシベーション層形成用組成物11の調製)
 アルミニウムエチルアセトアセテートジイソプロピレートを15.1g、イソボルニルシクロヘキサノールを34.9g、及びテルピネオールを15.2g混合して、パッシベーション層形成用組成物11を調製した。
 パッシベーション層形成用組成物11を用いたこと以外は実施例1と同様に評価を行ない、結果を表1に示した。なお、チキソ比は、せん断速度が1.0s-1の場合のせん断粘度(η)とせん断速度1000s-1の場合せん断粘度(η)との比(η/η)として算出した。
Figure JPOXMLDOC01-appb-T000007
 以上から、本発明のパッシベーション層形成用組成物を用いることで優れたパッシベーション効果を有し、屈折率が大きいパッシベーション層を形成できることが分かる。また本発明のパッシベーション層形成用組成物は保存安定性に優れることが分かる。更に本発明のパッシベーション層形成用組成物を用いることで、簡便な工程で所望の形状にパッシベーション層を形成できることがわかる。
 なお、日本出願2012-156472及び日本出願2012-218389の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1.  下記一般式(I)で表される有機アルミニウム化合物と、
     チタンアルコキシド、ジルコニウムアルコキシド及びシリコンアルコキシドからなる群より選ばれる少なくとも1種のアルコキシド化合物と、
    を含むパッシベーション層形成用組成物。
    Figure JPOXMLDOC01-appb-C000001

    [一般式(I)中、Rはそれぞれ独立して炭素数1~8のアルキル基を表す。nは0~3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1~8のアルキル基を表す]
  2.  更にニオブアルコキシドを含む請求項1に記載のパッシベーション層形成用組成物。
  3.  前記ニオブアルコキシドが、ニオブエトキシド、ニオブイソプロポキシド、ニオブn-プロポキシド、ニオブn-ブトキシド及びニオブフェノキシドからなる群より選ばれる少なくとも1種である請求項2に記載のパッシベーション層形成用組成物。
  4.  前記アルコキシド化合物が少なくとも前記チタンアルコキシドを含み、前記チタンアルコキシドが、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンn-プロポキシド、チタンn-ブトキシド、チタンt-ブトキシド、チタンイソブトキシド、チタン(ジイソプロポキシド)ビス(アセチルアセトナート)及びチタン(テトラキス(2-エチル-1-ヘキサノラート)からなる群より選ばれる少なくとも1種である請求項1~請求項3のいずれか1項に記載のパッシベーション層形成用組成物。
  5.  前記アルコキシド化合物が少なくとも前記ジルコニウムアルコキシドを含み、前記ジルコニウムアルコキシドが、ジルコニウムエトキシド、ジルコニウムイソプロポキシド、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニウムt-ブトキシド、ジルコニウムアセチルアセトン、ジルコニウムトリフルオロアセチルアセトナート及びジルコニウムヘキサフルオロアセチルアセトナートからなる群より選ばれる少なくとも1種である請求項1~請求項4のいずれか1項に記載のパッシベーション層形成用組成物。
  6.  前記アルコキシド化合物が少なくとも前記シリコンアルコキシドを含み、前記シリコンアルコキシドが、下記一般式(II)で表されるシリコンアルコキシドである請求項1~請求項5のいずれか1項に記載のパッシベーション層形成用組成物。
     (RO)(4-m)SiR  (II)
    [一般式(II)中、R及びRはそれぞれ独立して炭素数1~8のアルキル基を表す。mは0~3の整数を表す。]
  7.  更に樹脂を含む請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物。
  8.  更に下記一般式(III)で表される化合物を含む請求項1~請求項7のいずれか1項に記載のパッシベーション層形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
  9.  半導体基板と、前記半導体基板上の全面又は一部に設けられる請求項1~請求項8のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、を有するパッシベーション層付半導体基板。
  10.  半導体基板上の全面又は一部に、請求項1~請求項8のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、
     前記組成物層を熱処理して、パッシベーション層を形成する工程と、
    を有するパッシベーション層付半導体基板の製造方法。
  11.  p型層及びn型層がpn接合されてなる半導体基板と、
     前記半導体基板上の全面又は一部に設けられる請求項1~請求項8のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、
     前記半導体基板の前記p型層及びn型層からなる群より選択される1以上の層上に配置される電極と、
    を有する太陽電池素子。
  12.  p型層及びn型層が接合されてなるpn接合を有し、前記p型層及び前記n型層からなる群より選択される1以上の層上に電極を有する半導体基板の、前記電極を有する面の少なくとも一部に、請求項1~請求項8のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、
     前記組成物層を熱処理して、パッシベーション層を形成する工程と、
    を有する太陽電池素子の製造方法。
  13.  請求項11に記載の太陽電池素子と、
     前記太陽電池素子の電極上に配置される配線材料と、
    を有する太陽電池。
PCT/JP2013/069222 2012-07-12 2013-07-12 パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池 WO2014010743A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20157002562A KR20150036286A (ko) 2012-07-12 2013-07-12 패시베이션층 형성용 조성물, 패시베이션층이 형성된 반도체 기판 및 그 제조 방법, 태양 전지 소자 및 그 제조 방법, 및 태양 전지
JP2014524902A JPWO2014010743A1 (ja) 2012-07-12 2013-07-12 パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池
CN201380036883.5A CN104471715B (zh) 2012-07-12 2013-07-12 钝化层形成用组合物、带钝化层的半导体基板及其制造方法、太阳能电池元件及其制造方法、以及太阳能电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-156472 2012-07-12
JP2012156472 2012-07-12
JP2012218389 2012-09-28
JP2012-218389 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014010743A1 true WO2014010743A1 (ja) 2014-01-16

Family

ID=49916181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069222 WO2014010743A1 (ja) 2012-07-12 2013-07-12 パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池

Country Status (5)

Country Link
JP (1) JPWO2014010743A1 (ja)
KR (1) KR20150036286A (ja)
CN (2) CN104471715B (ja)
TW (1) TWI615395B (ja)
WO (1) WO2014010743A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144243A (ja) * 2013-12-25 2015-08-06 東京応化工業株式会社 表面被覆膜の形成方法及び表面被覆膜を有する太陽電池
CN111809214A (zh) * 2019-04-12 2020-10-23 平顶山市美伊金属制品有限公司 一种氧化后基材表面毛孔的封闭方法
CN115826284A (zh) * 2022-09-20 2023-03-21 京东方科技集团股份有限公司 反射式显示面板和显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036286A (ko) * 2012-07-12 2015-04-07 히타치가세이가부시끼가이샤 패시베이션층 형성용 조성물, 패시베이션층이 형성된 반도체 기판 및 그 제조 방법, 태양 전지 소자 및 그 제조 방법, 및 태양 전지
CN106169537A (zh) * 2016-08-18 2016-11-30 苏州大学 一种太阳能电池的制备方法
CN109304951B (zh) * 2017-07-26 2021-06-25 天津环鑫科技发展有限公司 一种gpp丝网印刷钝化层的方法
CN108336181B (zh) * 2018-01-24 2019-11-01 南通鸿图健康科技有限公司 一种太阳能电池及其制备方法
CN108847428B (zh) * 2018-06-08 2020-07-10 海门名驰工业设计有限公司 一种基于硅纳米线阵列的太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178778A (ja) * 1983-03-30 1984-10-11 Toshiba Corp 太陽電池及びその製造方法
JPS63178532A (ja) * 1987-01-02 1988-07-22 ダウ コーニング コーポレーション 珪酸エステルおよび金属酸化物から多層セラミック被膜を形成する方法
JPH06125103A (ja) * 1991-08-26 1994-05-06 Canon Inc 太陽電池モジュール
WO2007046432A1 (ja) * 2005-10-19 2007-04-26 Matsushita Electric Industrial Co., Ltd. 金属酸化膜の形成方法、金属酸化膜及び光学電子デバイス
JP2011501442A (ja) * 2007-10-17 2011-01-06 フエロ コーポレーション 片側裏面コンタクト太陽電池用誘電体コーティング

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294817A (ja) * 1999-04-09 2000-10-20 Dainippon Printing Co Ltd 太陽電池モジュ−ル用表面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP5633346B2 (ja) * 2009-12-25 2014-12-03 株式会社リコー 電界効果型トランジスタ、半導体メモリ、表示素子、画像表示装置及びシステム
JP5557662B2 (ja) * 2010-09-10 2014-07-23 日揮触媒化成株式会社 コアシェル型無機酸化物微粒子の分散液、その製造方法および該分散液を含む塗料組成物
KR20150036286A (ko) * 2012-07-12 2015-04-07 히타치가세이가부시끼가이샤 패시베이션층 형성용 조성물, 패시베이션층이 형성된 반도체 기판 및 그 제조 방법, 태양 전지 소자 및 그 제조 방법, 및 태양 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178778A (ja) * 1983-03-30 1984-10-11 Toshiba Corp 太陽電池及びその製造方法
JPS63178532A (ja) * 1987-01-02 1988-07-22 ダウ コーニング コーポレーション 珪酸エステルおよび金属酸化物から多層セラミック被膜を形成する方法
JPH06125103A (ja) * 1991-08-26 1994-05-06 Canon Inc 太陽電池モジュール
WO2007046432A1 (ja) * 2005-10-19 2007-04-26 Matsushita Electric Industrial Co., Ltd. 金属酸化膜の形成方法、金属酸化膜及び光学電子デバイス
JP2011501442A (ja) * 2007-10-17 2011-01-06 フエロ コーポレーション 片側裏面コンタクト太陽電池用誘電体コーティング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VITANOV, P. ET AL.: "Optical properties of (A12O3) x (TiO2) 1-x films deposited by the sol-gel method", VACUUM, vol. 76, no. 2-3, 5 November 2004 (2004-11-05), pages 219 - 222 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144243A (ja) * 2013-12-25 2015-08-06 東京応化工業株式会社 表面被覆膜の形成方法及び表面被覆膜を有する太陽電池
CN111809214A (zh) * 2019-04-12 2020-10-23 平顶山市美伊金属制品有限公司 一种氧化后基材表面毛孔的封闭方法
CN115826284A (zh) * 2022-09-20 2023-03-21 京东方科技集团股份有限公司 反射式显示面板和显示装置
CN115826284B (zh) * 2022-09-20 2024-06-04 京东方科技集团股份有限公司 反射式显示面板和显示装置

Also Published As

Publication number Publication date
CN104471715B (zh) 2016-12-07
TWI615395B (zh) 2018-02-21
JPWO2014010743A1 (ja) 2016-06-23
KR20150036286A (ko) 2015-04-07
CN104471715A (zh) 2015-03-25
CN106935664A (zh) 2017-07-07
TW201412761A (zh) 2014-04-01

Similar Documents

Publication Publication Date Title
WO2014010743A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池
JP6295952B2 (ja) 太陽電池素子及びその製造方法、並びに太陽電池モジュール
JPWO2014014109A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池
WO2014014110A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP2017076802A (ja) パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
WO2014014111A1 (ja) 太陽電池素子、太陽電池素子の製造方法及び太陽電池モジュール
JP2015135858A (ja) パッシベーション膜付半導体基板及びその製造方法、並びにそれを用いた太陽電池素子及びその製造方法
JP2018082211A (ja) パッシベーション膜形成用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JPWO2014014108A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP2015026666A (ja) 両面受光型太陽電池素子、その製造方法及び両面受光型太陽電池モジュール
JP5522328B1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP6330661B2 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JP2014157871A (ja) パッシベーション膜形成用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
TWI619261B (zh) 太陽能電池元件及其製造方法及太陽能電池模組
JP2015115488A (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP6107033B2 (ja) 半導体基板パッシベーション膜形成用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JP6176249B2 (ja) パッシベーション層付半導体基板及びその製造方法
JP2014072450A (ja) 半導体基板パッシベーション膜形成用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JP2015106589A (ja) パッシベーション層付半導体基板の製造方法、パッシベーション層付半導体基板、太陽電池素子の製造方法及び太陽電池素子
JP2014167961A (ja) パッシベーション膜用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JP2014072449A (ja) 半導体基板パッシベーション膜形成用組成物、パッシベーション膜付半導体基板及びその製造方法、並びに太陽電池素子
JP2017045834A (ja) 太陽電池用パッシベーション膜の製造方法
WO2016002902A1 (ja) パッシベーション層形成用組成物の製造方法、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池
JP2016225349A (ja) 太陽電池素子及びその製造方法、並びに太陽電池モジュール
JP2016201443A (ja) パッシベーション層付半導体基板とその製造方法、それを用いた太陽電池素子とその製造方法、及び太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524902

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157002562

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13816918

Country of ref document: EP

Kind code of ref document: A1