JP6330661B2 - パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法 - Google Patents

パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法 Download PDF

Info

Publication number
JP6330661B2
JP6330661B2 JP2014525891A JP2014525891A JP6330661B2 JP 6330661 B2 JP6330661 B2 JP 6330661B2 JP 2014525891 A JP2014525891 A JP 2014525891A JP 2014525891 A JP2014525891 A JP 2014525891A JP 6330661 B2 JP6330661 B2 JP 6330661B2
Authority
JP
Japan
Prior art keywords
passivation
passivation layer
composition
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014525891A
Other languages
English (en)
Other versions
JPWO2014014107A1 (ja
Inventor
修一郎 足立
修一郎 足立
吉田 誠人
誠人 吉田
野尻 剛
剛 野尻
倉田 靖
靖 倉田
田中 徹
徹 田中
明博 織田
明博 織田
剛 早坂
剛 早坂
服部 孝司
孝司 服部
三江子 松村
三江子 松村
敬司 渡邉
敬司 渡邉
真年 森下
真年 森下
浩孝 濱村
浩孝 濱村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2014014107A1 publication Critical patent/JPWO2014014107A1/ja
Application granted granted Critical
Publication of JP6330661B2 publication Critical patent/JP6330661B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法に関する。
従来のシリコン太陽電池素子の製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、受光面側にテクスチャー構造を形成したp型シリコン基板を準備する。続いてオキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において800℃〜900℃で数十分の処理を行って一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面及び裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチングを行う必要がある。また、裏面に形成されたn型拡散層はp型拡散層へ変換する必要があり、裏面全体にアルミニウム粉末及びバインダを含むアルミニウムペーストを塗布し、これを熱処理(焼成)してアルミニウム電極を形成することで、n型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。
アルミニウムペーストから形成されるアルミニウム電極は導電率が低い。そのためシート抵抗を下げるために、通常裏面全体に形成したアルミニウム電極は熱処理(焼成)後において10〜20μmほどの厚みを有していなければならない。更に、シリコンとアルミニウムとでは熱膨脹率が大きく異なることから、熱処理(焼成)及び冷却の過程で、シリコン基板中に大きな内部応力を発生させ、結晶粒界へのダメージ、結晶欠陥増長及び反りの原因となる。
この問題を解決するために、アルミニウムペーストの塗布量を減らし、裏面電極層を薄くする方法がある。しかしながら、アルミニウムペーストの塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不充分となる。その結果、所望のBSF(Back Surface Field)効果(P型拡散層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。
上記に関連して、アルミニウムペーストをシリコン基板表面の一部に付与して部分的にp層とアルミニウム電極とを形成するポイントコンタクトの手法が提案されている(例えば、特許第3107287号公報参照)。
このような受光面とは反対側(以下、「裏面側」ともいう)にポイントコンタクト構造を有する太陽電池の場合、アルミ電極以外の部分の表面において、少数キャリアの再結合速度を抑制する必要がある。そのための裏面側用のパッシベーション層(以下、単に「パッシベーション層」ともいう)として、SiO膜等が提案されている(例えば、特開2004−6565号公報参照)。このような酸化物の膜を形成することによるパッシベーション効果としては、シリコン基板の裏面表層部のケイ素原子の未結合手を終端させ、再結合の原因となる表面準位密度を低減させる効果がある。
また、少数キャリアの再結合を抑制する別の方法として、パッシベーション層内の固定電荷が発生する電界によって少数キャリア密度を低減する方法がある。このようなパッシベーション効果は一般に電界効果と呼ばれ、負の固定電荷をもつ材料として酸化アルミニウム(Al)膜等が提案されている(例えば、特許第4767110号公報参照)。
このようなパッシベーション層は、一般的にはALD(Atomic Layer Deposition)法CVD(Chemical Vapor Deposition)法等の方法で形成される(例えば、Journal of Applied Physics,104(2008),113703−1〜113703−7参照)。また半導体基板上に酸化アルミニウム膜を形成する簡便な手法として、ゾルゲル法による手法が提案されている(例えば、Thin Solid Films,517(2009),6327−6330;Chinese Physics Letters,26(2009),088102−1〜088102−4;及びNippon Seramikkusu Kyokai Gakujtsu Ronbunshi,97(1989)369−399参照)。
一方、シリコン基板の受光面側に屈折率が大きく、パッシベーション効果も大きな膜を形成すると、光閉じ込め効果と少数キャリアの再結合速度を抑制することが可能となり、太陽電池の発電効率を向上させることができる。例えばチタン等の金属とアルミニウムとを複合させた酸化膜をゾルゲル法で形成して、膜の屈折率を大きくする手法も提案されている(例えば、Japanese Journal of Applied Physics、45(2006)、5894−5901参照)。
Journal of Applied Physics、104(2008)、113703−1〜113703−7に記載の手法は、蒸着等の複雑な製造工程を含むため、生産性を向上させることが困難な場合がある。また、Thin Solid Films,517(2009),6327−6330;Chinese Physics Letters,26(2009),088102−1〜088102−4;及びNippon Seramikkusu Kyokai Gakujtsu Ronbunshi,97(1989)369−399に記載の手法に用いるパッシベーション層形成用組成物では、経時的にゲル化等の不具合が発生してしまい保存安定性が充分とは言い難い。更に、Japanese Journal of Applied Physics、45(2006)、5894−5901に記載の手法によるパッシベーション層は屈折率が充分に大きいとは言い難く、酸化チタン由来の光触媒作用の懸念があり、太陽電池素子の封止樹脂にダメージを与える可能性がある。
本発明は、以上の従来の問題点に鑑みなされたものであり、屈折率が充分に大きいパッシベーション層を簡便な手法で所望の形状に形成することが可能で、保存安定性に優れるパッシベーション層形成用組成物を提供することを課題とする。また、本発明は該パッシベーション層形成用組成物を用いて得られ、屈折率が充分に大きいパッシベーション層を有するパッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法を提供することを課題とする。
前記課題を解決するための具体的手段は以下の通りである。
<1> 下記一般式(I)で表されるアルコキシドの少なくとも1種と、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物と、溶剤と、樹脂と、を含むパッシベーション層形成用組成物。

[一般式(I)中、Mは、Nb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rは炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。]
<2> 前記一般式(I)で表されるアルコキシドの少なくとも1種が、MがNbを含むアルコキシドである、<1>に記載のパッシベーション層形成用組成物。
<3> 前記一般式(I)で表されるアルコキシドの少なくとも1種が、MがTa、V、Y又はHfを含むアルコキシドである、<1>に記載のパッシベーション層形成用組成物。
<4> さらに、下記一般式(II)で表されるアルミニウム化合物の少なくとも1種を含む、上記<1>〜<3>のいずれか1項に記載のパッシベーション層形成用組成物。
[一般式(II)中、Rはそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。]
<5> 前記チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物が、少なくとも前記チタン化合物を含み、前記チタン化合物が、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンn−プロポキシド、チタンn−ブトキシド、チタンt−ブトキシド、チタンイソブトキシド、チタン(ジイソプロポキシド)ビス(アセチルアセトナート)及びチタン(テトラキス(2−エチル−1−ヘキサノラート))からなる群より選択される少なくとも1種である、上記<1>〜<4>のいずれか1項に記載のパッシベーション層形成用組成物。
<6> 前記チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物が、少なくとも前記ジルコニウム化合物を含み、前記ジルコニウム化合物が、ジルコニウムエトキシド、ジルコニウムイソプロポキシド、ジルコニウムn−プロポキシド、ジルコニウムn−ブトキシド、ジルコニウムt−ブトキシド、ジルコニウムアセチルアセトン、ジルコニウムトリフルオロアセチルアセトナート及びジルコニウムヘキサフルオロアセチルアセトナートからなる群より選択される少なくとも1種である、上記<1>〜<5>のいずれか1項に記載のパッシベーション層形成用組成物。
<7> 前記チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物が少なくとも前記シリコンアルコキシドを含み、前記シリコンアルコキシドが下記一般式(III)で表されるシリコンアルコキシドである、上記<1>〜<6>のいずれか1項に記載のパッシベーション層形成用組成物。

[一般式(III)中、R及びRはそれぞれ独立して炭素数1〜8のアルキル基を表す。mは0〜3の整数を表す。]
<8> 一般式(I)で表される化合物の少なくとも1種と、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物と、一般式(II)で表される化合物の少なくとも1種の総含有率が前記パッシベーション層形成用組成物の総質量中に0.1質量%〜80質量%である、上記<1>〜<7>のいずれか1項に記載のパッシベーション層形成用組成物。
<9> 前記溶剤及び樹脂の総含有率が、前記パッシベーション層形成用組成物の総質量中に5質量%〜98質量%である、上記<1>〜<8>のいずれか1項に記載のパッシベーション層形成用組成物。
<10> 半導体基板上の全面又は一部にパッシベーション層を形成するために用いられる、上記<1>〜<9>のいずれか1項に記載のパッシベーション層形成用組成物。
<11> 半導体基板と、前記半導体基板上の全面又は一部に設けられる、上記<1>〜<10>のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物層と、を有するパッシベーション層付半導体基板。
<12> 半導体基板上の全面又は一部に、上記<1>〜<10>のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理してパッシベーション層を形成する工程と、を有するパッシベーション層付半導体基板の製造方法。
<13> p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる上記<1>〜<10>のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物層であるパッシベーション層と、前記p型層及びn型層の少なくとも一方の層上に設けられる電極と、を有する太陽電池素子。
<14> p型層及びn型層がpn接合されてなる半導体基板の全面又は一部に<1>〜<10>のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理して、パッシベーション層を形成する工程と、前記p型層及びn型層の少なくとも一方の層上に、電極を形成する工程と、を有する太陽電池素子の製造方法。
本発明によれば、屈折率が充分に大きいパッシベーション層を簡便な手法で所望の形状に形成することが可能で、保存安定性に優れるパッシベーション層形成用組成物を提供することができる。また本発明によれば該パッシベーション層形成用組成物を用いて得られ、屈折率が充分に大きいパッシベーション層を有するパッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法を提供することができる。
本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の一例を模式的に示す断面図である。 本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の他の一例を模式的に示す断面図である。 本実施形態にかかるパッシベーション層を有する裏面電極型太陽電池素子を模式的に示す断面図である。 本実施形態にかかる電極形成用のスクリーンマスク版の一例を示す平面図である。 両面電極型の太陽電池素子の構造を示した断面図である。 参考実施形態にかかる太陽電池素子の第1構成例を示す断面図である。 参考実施形態にかかる太陽電池素子の第2構成例を示す断面図である。 参考実施形態にかかる太陽電池素子の第3構成例を示す断面図である。 参考実施形態にかかる太陽電池素子の第4構成例を示す断面図である。 参考実施形態にかかる太陽電池素子の別の構成例を示す断面図である。
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
<パッシベーション層形成用組成物>
本発明のパッシベーション層形成用組成物は、下記一般式(I)で表されるアルコキシド(以下、「特定の金属アルコキシド化合物」ともいう)の少なくとも1種と、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物と、溶剤と、樹脂と、を含む。前記パッシベーション層形成用組成物は必要に応じてその他の成分を更に含んでいてもよい。パッシベーション層形成用組成物が上記成分を含むことで、屈折率が充分に大きいパッシベーション層を簡便な手法で所望の形状に形成することが可能である。また該パッシベーション層形成用組成物は保存安定性に優れる。

[一般式(I)中、Mは、Nb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rは炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。]
特定の金属アルコキシド化合物の少なくとも1種と、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物とを含むパッシベーション層形成用組成物を、半導体基板に付与して所望の形状の組成物層を形成し、これを熱処理(焼成)することで、優れたパッシベーション効果を有し、充分に大きい屈折率を有するパッシベーション層を所望の形状に形成することができる。本発明の手法は、蒸着装置等を必要としない簡便で生産性の高い方法である。更にマスク処理等の煩雑な工程を要することなく、所望の形状にパッシベーション層を形成できる。また前記パッシベーション層形成用組成物は特定の金属アルコキシド化合物と、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物とを含むことで、経時的にゲル化等の不具合が発生することが抑制されて保存安定性に優れる。
本明細書において、半導体基板のパッシベーション効果は、パッシベーション層が形成された半導体基板内の少数キャリアの実効ライフタイムを、日本セミラボ株式会社、WT−2000PVN等の装置を用いて、反射マイクロ波導電減衰法によって測定することで評価することができる。
ここで、実効ライフタイムτは、半導体基板内部のバルクライフタイムτと、半導体基板表面の表面ライフタイムτとによって下記式(A)のように表される。半導体基板表面の表面準位密度が小さい場合にはτが長くなる結果、実効ライフタイムτが長くなる。また、半導体基板内部のダングリングボンド等の欠陥が少なくなっても、バルクライフタイムτが長くなって実効ライフタイムτが長くなる。すなわち、実効ライフタイムτの測定によってパッシベーション層/半導体基板の界面特性、及び、ダングリングボンド等の半導体基板の内部特性を評価することができる。
1/τ=1/τ+1/τ (A)
尚、実効ライフタイムが長いほど少数キャリアの再結合速度が遅いことを示す。また実効ライフタイムが長い半導体基板を用いて太陽電池素子を構成することで、変換効率が向上する。
(一般式(I)で表されるアルコキシド)
前記パッシベーション層形成用組成物は前記一般式(I)で表される化合物(以下、「特定の金属アルコキシド化合物」ともいう)の少なくとも1種を含む。ここで、前記特定の金属アルコキシド化合物はNb、Ta、V、Y又はHfのアルコキシド(アルコキシド化合物)であり、パッシベーション層形成用組成物がこれらアルコキシド化合物の少なくとも1種を含むことで、優れたパッシベーション効果を有するパッシベーション層を形成することができる。これについて発明者らは以下のように考えている。
特定の金属アルコキシド化合物の少なくとも1種を含有するパッシベーション層形成用組成物を熱処理(焼成)することにより形成される金属酸化物は、金属原子または酸素原子の欠陥を生じるため、大きな固定電荷を生じやすくなると考えられる。この固定電荷が半導体基板の界面付近で電荷を発生することで少数キャリアの濃度を低下させることができ、結果的に界面でのキャリア再結合速度が抑制されるため、優れたパッシベーション効果を有するパッシベーション層を形成することができると考えられる。更にチタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物を含むことで、形成されるパッシベーション層の屈折率が大きくなると考えられる。
ここで、半導体基板上で固定電荷を発生させるパッシベーション層の状態は、半導体基板の断面を走査型透過電子顕微鏡(STEM、Scanning Transmission Electron Microscope)による電子エネルギー損失分光法(EELS、Electron Energy Loss Spectroscopy)の分析で結合様式を調べることができる。またX線回折スペクトル(XRD、X−ray diffraction)を測定することにより、パッシベーション層の界面付近の結晶相を確認できる。更にパッシベーション層がもつ固定電荷は、CV法(Capacitance Voltage measurement)で評価することが可能である。
一般式(I)において、Mは、Nb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。パッシベーション効果の観点から、MとしてはNb、Ta及びYからなる群より選択される少なくとも1種の金属元素を含むことが好ましく、Nbを含むことがより好ましい。また、パッシベーション層の固定電荷密度を負にする観点からは、MはNb、Ta、V及びHfからなる群より選択される少なくとも1種の金属元素を含むことが好ましく、Nb、Ta、VO及びHfからなる群より選択される少なくとも1種であることがより好ましい。
一般式(I)において、Rはそれぞれ独立に、炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表し、炭素数1〜4のアルキル基であることが好ましい。Rで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、3−エチルヘキシル基等を挙げることができる。Rで表されるアリール基として具体的には、フェニル基等を挙げることができる。Rで表されるアルキル基及びアリール基は、置換基を有していてもよく、前記置換基としては、ハロゲン元素、アミノ基、ヒドロキシル基、カルボキシル基、スルホン基、ニトロ基等が挙げられる。アリール基の置換基としては、メチル基、エチル基、イソプロピル基、アミノ基、ヒドロキシル基、カルボキシル基、スルホン基、ニトロ基等が挙げられる。
中でもRは、保存安定性とパッシベーション効果の観点から、炭素数1〜8の無置換のアルキル基であることが好ましく、炭素数1〜4の無置換のアルキル基であることがより好ましい。
一般式(I)において、mは1〜5の整数を表す。ここで、保存安定性の観点から、MがNbである場合にはmが5であることが好ましく、MがTaである場合にはmが5であることが好ましく、MがVOである場合にはmが3であることが好ましく、MがYである場合にはmが3であることが好ましく、MがHfである場合にはmが4であることが好ましい。
一般式(I)で表される化合物は、パッシベーション効果の観点から、MがNb、Ta又はYであることが好ましく、保存安定性とパッシベーション効果の観点から、Rが炭素数1〜4の無置換のアルキル基であることがより好ましく、保存安定性の観点から、mが1〜5の整数であることが好ましい。
具体的には、ニオブメトキシド、ニオブエトキシド、ニオブイソプロポキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、ニオブt−ブトキシド、ニオブイソブトキシド、タンタルメトキシド、タンタルエトキシド、タンタルイソプロポキシド、タンタルn−プロポキシド、タンタルn−ブトキシド、タンタルt−ブトキシド、タンタルイソブトキシド、イットリウムメトキシド、イットリウムエトキシド、イットリウムイソプロポキシド、イットリウムn−プロポキシド、イットリウムn−ブトキシド、イットリウムt−ブトキシド、イットリウムイソブトキシド、バナジウムメトキシドオキシド、バナジウムエトキシドオキシド、バナジウムイソプロポキシドオキシド、バナジウムn−プロポキシドオキシド、バナジウムn−ブトキシドオキシド、バナジウムt−ブトキシドオキシド、バナジウムイソブトキシドオキシド、ハフニウムメトキシド、ハフニウムエトキシド、ハフニウムイソプロポキシド、ハフニウムn−プロポキシド、ハフニウムn−ブトキシド、ハフニウムt−ブトキシド、ハフニウムイソブトキシド等を挙げることができ、中でもニオブエトキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、タンタルエトキシド、タンタルn−プロポキシド、タンタルn−ブトキシド、イットリウムイソプロポキシド及びイットリウムn−ブトキシドが好ましい。負の固定電荷密度を得る観点からは、ニオブエトキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、タンタルエトキシド、タンタルn−プロポキシド、タンタルn−ブトキシド、バナジウムエトキシドオキシド、バナジウムn−プロポキシドオキシド、バナジウムn−ブトキシドオキシド、ハフニウムエトキシド、ハフニウムn−プロポキシド及びハフニウムn−ブトキシドが好ましい。
(その他の化合物)
本発明のパッシベーション層形成用組成物は、特定の金属アルコキシド化合物に加えて、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物を含有する。チタン化合物、ジルコニウム化合物及びシリコンアルコキシドから選択される少なくとも1種を含有することで、上記特定の金属アルコキシド化合物とともに屈折率の大きな複合酸化物を生成することが可能になり、更にパッシベーション効果もより向上させることができる。
本発明のパッシベーション層形成用組成物を熱処理(焼成)することで、形成されるパッシベーション層は、特定の金属アルコキシド化合物のみから形成されるパッシベーション層に比べて、屈折率が大きくなる。例えば、屈折率が大きいパッシベーション層が受光面上に形成された太陽電池素子は、光の利用効率がより向上するため、発電効率が向上する。パッシベーション層形成用組成物から形成されるパッシベーション層の屈折率は、1.4以上であることが好ましく、1.5以上であることがより好ましく、1.5〜2.5であることが更に好ましい。
チタン化合物としては特に制限はなく、通常用いられるチタン化合物から適宜選択して用いることができる。中でもチタン化合物は、形成されるパッシべーション層と接触する樹脂等を分解しにくいという観点から、一般式(I)で表される特定の金属アルコキシド化合物と反応して複合化し、より緻密な複合酸化物を生成するものが好ましい。チタン化合物として具体的には、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンn−プロポキシド、チタンn−ブトキシド、チタンt−ブトキシド、チタンイソブトキシド、チタン(ジイソプロポキシド)ビス(アセチルアセトナート) 、チタンテトラキス(2−エチル−1−ヘキサノラート)等を挙げることができる。本発明で用いるチタン化合物としては、チタンアルコキシドが特に好ましい。一般に、チタン化合物を熱処理(焼成)して得られる酸化チタンは屈折率が大きいことが知られている。しかし酸化チタン自体をパッシベーション層形成用組成物に添加した場合には、酸化チタンが有する光触媒作用により、太陽光等の下で、パッシベーション層と接触する樹脂等を分解してしまう可能性がある。一方、パッシベーション層形成用組成物にチタン化合物を併用する場合には、チタン化合物が有機アルミニウム化合物とともに複合酸化物を生成し、光触媒作用が抑制されるとともに屈折率の大きいパッシベーション層を形成することができる。
ジルコニウム化合物としては、一般式(I)で表される特定の金属アルコキシド化合物と反応して複合酸化物を生成するものであれば特に制限はない。ジルコニウム化合物として具体的には、ジルコニウムエトキシド、ジルコニウムイソプロポキシド、ジルコニウムn−プロポキシド、ジルコニウムn−ブトキシド、ジルコニウムt−ブトキシド、ジルコニウムアセチルアセトン、ジルコニウムトリフルオロアセチルアセトナート、ジルコニウムヘキサフルオロアセチルアセトナート等を挙げることができる。本発明で用いるジルコニウム化合物としては、ジルコニウムアルコキシドが特に好ましい。一般にジルコニウム化合物を熱処理(焼成)して得られる酸化ジルコニウムは屈折率が大きいことで知られている。しかし酸化ジルコニウム自体をパッシベーション層形成用組成物に添加した場合には、酸化ジルコニウムが有する光触媒作用により、太陽光等の下で、パッシベーション層と接触する樹脂等を分解してしまう可能性がある。一方、パッシベーション層形成用組成物にジルコニウム化合物を併用する場合には、ジルコニウム化合物が有機アルミニウム化合物とともに複合酸化物を生成し、光触媒作用が抑制されるとともに屈折率の大きいパッシベーション層を形成することができる。
シリコンアルコキシドとしては、一般式(I)で表される特定の金属アルコキシド化合物及び、必要に応じて添加されるチタン化合物やジルコニウム化合物と反応して複合酸化物を生成するものであれば特に制限はない。中でもシリコンアルコキシドは、下記一般式(III)で表される化合物であることが好ましい。


一般式(III)中、R及びRはそれぞれ独立して炭素数1〜8のアルキル基を表す。mは0〜3の整数を表す。
シリコンアルコキシドとして具体的には、シリコンメトキシド、シリコンエトキシド、シリコンテトラプロポキシドを挙げることができる。
チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される化合物の中では、特定の金属アルコキシド化合物との反応性、生成する複合酸化物の屈折率及びパッシベーション効果の観点から、チタン化合物及びジルコニウム化合物からなる群より選択される少なくとも1種を用いることが好ましく、チタンイソプロポキシド、ジルコニウムエトキシド及びジルコニウムイソプロポキシドからなる群より選択される少なくとも1種を用いることがより好ましく、チタンイソプロポキシド及びジルコニウムエトキシドからなる群より選択される少なくとも1種を用いることが更に好ましい。
チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物の総含有率は、パッシベーション層形成用組成物の総質量中に0.1質量%〜80質量%とすることができ、0.5質量%〜65質量%であることが好ましく、1質量%〜65質量%であることがより好ましく、2質量%〜60質量%であることが更に好ましい。
また一般式(I)で表される特定の金属アルコキシド化合物の含有量に対するチタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物の含有量の比(特定の金属アルコキシド化合物/チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物)は、生成する複合酸化物の屈折率及びパッシベーション効果の観点から、0.01〜1000であることが好ましく、0.05〜500であることがより好ましく、0.1〜100であることが更に好ましい。
(一般式(II)で表されるアルミニウム化合物)
本発明のパッシベーション層形成用組成物は、下記一般式(II)で表される化合物(以下、「有機アルミニウム化合物」という)の少なくとも1種を含有してもよい。
一般式(II)中、Rはそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。
パッシベーション層形成用組成物が上記有機アルミニウム化合物の少なくとも1種を含むことで、パッシベーション効果を更に向上させることができる。これは、以下のようにして考えることができる。
前記有機アルミニウム化合物は、アルミニウムアルコキシド、アルミニウムキレート等と呼ばれる化合物を包含し、アルミニウムアルコキシド構造に加えてアルミニウムキレート構造を有していることが好ましい。また、Nippon Seramikkusu Kyokai Gakujtsu Ronbunshi、97(1989)369−399にも記載されているように、前記有機アルミニウム化合物は熱処理(焼成)により酸化アルミニウム(Al)となる。このとき、形成された酸化アルミニウムはアモルファス状態となりやすいため、4配位酸化アルミニウム層が半導体基板との界面付近に形成されやすく、4配位酸化アルミニウムに起因する大きな負の固定電荷を持つことができると考えられる。このとき、固定電荷を持つ特定の金属アルコキシド化合物由来の酸化物と複合化することで、結果として優れたパッシベーション効果を有するパッシベーション層を形成することができるものと考えられる。
一般式(II)において、Rはそれぞれ独立して炭素数1〜8のアルキル基を表し、炭素数1〜4のアルキル基であることが好ましい。Rで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、ヘキシル基、オクチル基、エチルヘキシル基等を挙げることができる。中でもRで表されるアルキル基は、保存安定性とパッシベーション効果の観点から、炭素数1〜8の無置換のアルキル基であることが好ましく、炭素数1〜4の無置換のアルキル基であることがより好ましい。
一般式(II)において、nは0〜3の整数を表わす。nは保存安定性の観点から、1〜3の整数であることが好ましく、1又は3であることがより好ましい。またX及びXはそれぞれ独立して酸素原子又はメチレン基を表す。保存安定性の観点から、X及びXの少なくとも一方は酸素原子であることが好ましい。
一般式(II)におけるR、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。R、R及びRで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。R、R及びRで表されるアルキル基は、置換基を有していても、無置換であってもよく、無置換であることが好ましい。R、R及びRで表されるアルキル基としては、炭素数1〜8のアルキル基であり、炭素数1〜4のアルキル基であることが好ましい。R、R及びRで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、ヘキシル基、オクチル基、2−エチルヘキシル基等を挙げることができる。
中でも保存安定性とパッシベーション効果の観点から、一般式(II)におけるR及びRはそれぞれ独立して、水素原子又は炭素数1〜8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1〜4の無置換のアルキル基であることがより好ましい。
また一般式(II)におけるRは、保存安定性とパッシベーション効果の観点から、水素原子又は炭素数1〜8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1〜4の無置換のアルキル基であることがより好ましい。
一般式(II)で表される化合物は、保存安定性の観点から、nが1〜3であり、Rがそれぞれ独立して水素原子又は炭素数1〜4のアルキル基である化合物であることが好ましい。
一般式(II)で表される化合物は、保存安定性とパッシベーション効果の観点から、nが0であり、Rがそれぞれ独立して炭素数1〜4のアルキル基である化合物、並びにnが1〜3であり、Rがそれぞれ独立して炭素数1〜4のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、R及びRがそれぞれ独立して水素原子又は炭素数1〜4のアルキル基であり、Rが水素原子又は炭素数1〜4のアルキル基である化合物からなる群より選択される少なくとも1種であることが好ましい。一般式(II)で表される化合物は、nが0であり、Rがそれぞれ独立して炭素数1〜4の無置換のアルキル基である化合物、及びnが1〜3であり、Rがそれぞれ独立して炭素数1〜4の無置換のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、前記酸素原子に結合するR又はRが炭素数1〜4のアルキル基であり、X又はXがメチレン基の場合、前記メチレン基に結合するR又はRが水素原子であり、Rが水素原子である化合物からなる群より選択される少なくとも1種であることがより好ましい。
一般式(II)で表され、nが0の有機アルミニウム化合物であるアルミニウムトリアルコキシドとして具体的には、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリsec−ブトキシアルミニウム、モノsec-ブトキシ−ジイソプロポキシアルミニウム、トリt−ブトキシアルミニウム、トリn−ブトキシアルミニウム等を挙げることができる。
また一般式(II)で表され、nが1〜3である有機アルミニウム化合物として具体的には、アルミニウムエチルアセトアセテートジイソプロピレート、トリス(エチルアセトアセタト)アルミニウム等を挙げることができる。
また一般式(II)で表され、nが1〜3である有機アルミニウム化合物は、調製したものを用いても、市販品を用いてもよい。市販品としては例えば、川研ファインケミカル株式会社の商品名、ALCH、ALCH−50F、ALCH−75、ALCH-TR、ALCH−TR−20等を挙げることができる。
また一般式(II)で表され、nが1〜3である有機アルミニウム化合物は、前記アルミニウムトリアルコキシドと、2つのカルボニル基を有する特定構造の化合物とを混合することで調製することができる。また市販されているアルミニウムキレート化合物を用いてもよい。
前記アルミニウムトリアルコキシドと、2つのカルボニル基を有する特定構造の化合物とを混合すると、アルミニウムトリアルコキシドのアルコキシド基の少なくとも一部が特定構造の化合物と置換して、アルミニウムキレート構造を形成する。このとき必要に応じて、溶剤が存在してもよく、また加熱処理や触媒の添加を行ってもよい。アルミニウムアルコキシド構造の少なくとも一部がアルミニウムキレート構造に置換されることで、有機アルミニウム化合物の加水分解や重合反応に対する安定性が向上し、これを含むパッシベーション層形成用組成物の保存安定性がより向上する。また、上述した特定の金属アルコキシド化合物や、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドと反応性が近いものほど、緻密で光触媒作用が小さく、屈折率が大きい複合酸化物を生成しやすくなる。
前記2つのカルボニル基を有する特定構造の化合物としては、反応性と保存安定性の観点から、β−ジケトン化合物、β−ケトエステル化合物及びマロン酸ジエステルからなる群より選択される少なくとも1種であることが好ましい。
β−ジケトン化合物として具体的には、アセチルアセトン、3−メチル−2,4−ペンタンジオン、2,3−ペンタンジオン、3−エチル−2,4−ペンタンジオン、3−ブチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、2,6−ジメチル−3,5−ヘプタンジオン、6−メチル−2,4−ヘプタンジオン等を挙げることができる。
β−ケトエステル化合物として具体的には、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸イソブチル、アセト酢酸ブチル、アセト酢酸t−ブチル、アセト酢酸ペンチル、アセト酢酸イソペンチル、アセト酢酸ヘキシル、アセト酢酸n−オクチル、アセト酢酸ヘプチル、アセト酢酸3−ペンチル、2−アセチルヘプタン酸エチル、2−ブチルアセト酢酸エチル、4,4−ジメチル−3−オキソ吉草酸エチル、4−メチル−3−オキソ吉草酸エチル、2−エチルアセト酢酸エチル、ヘキシルアセト酢酸エチル、4−メチル−3−オキソ吉草酸メチル、アセト酢酸イソプロピル、3−オキソヘキサン酸エチル、3−オキソ吉草酸エチル、3−オキソ吉草酸メチル、3−オキソヘキサン酸メチル、2−メチルアセト酢酸エチル、3−オキソヘプタン酸エチル、3−オキソヘプタン酸メチル、4,4−ジメチル−3−オキソ吉草酸メチル等を挙げることができる。
マロン酸ジエステルとして具体的には、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジ−t−ブチル、マロン酸ジヘキシル、マロン酸t−ブチルエチル、メチルマロン酸ジエチル、エチルマロン酸ジエチル、イソプロピルマロン酸ジエチル、ブチルマロン酸ジエチル、sec−ブチルマロン酸ジエチル、イソブチルマロン酸ジエチル、1−メチルブチルマロン酸ジエチル等のマロン酸ジエステル等を挙げることができる。
前記有機アルミニウム化合物がアルミニウムキレート構造を有する場合、アルミニウムキレート構造の数は1〜3であれば特に制限されない。中でも、保存安定性の観点から、1又は3であることが好ましく、溶解度の観点から、1であることがより好ましい。アルミニウムキレート構造の数は、例えば前記アルミニウムトリアルコキシドと、アルミニウムとキレートを形成し得る化合物とを混合する比率を適宜調整することで制御することができる。また市販のアルミニウムキレート化合物から所望の構造を有する化合物を適宜選択してもよい。
一般式(II)で表される化合物のうち、パッシベーション効果及び必要に応じて添加される溶剤との相溶性の観点から、具体的にはアルミニウムエチルアセトアセテートジイソプロピレート及びトリイソプロポキシアルミニウムからなる群より選択される少なくとも1種を用いることが好ましく、アルミニウムエチルアセトアセテートジイソプロピレートを用いることがより好ましい。
前記有機アルミニウム化合物におけるアルミニウムキレート構造の存在は、通常用いられる分析方法で確認することができる。例えば、赤外分光スペクトル、核磁気共鳴スペクトル、融点等を用いて確認することができる。
前記パッシベーション層形成用組成物に含まれる前記有機アルミニウム化合物の含有率は、必要に応じて適宜選択することができる。有機アルミニウム化合物の含有率は、保存安定性とパッシベーション効果の観点から、パッシベーション層形成用組成物の総質量中に0.5質量%〜65質量%とすることができ、1質量%〜65質量%であることが好ましく、2質量%〜60質量%であることがより好ましく、3質量%〜60質量%であることが更に好ましい。
有機アルミニウム化合物は、液状であっても固体であってもよく、特に制限はない。パッシベーション効果と保存安定性の観点から、常温での安定性、溶解性又は分散性等が良好な有機アルミニウム化合物を用いることで、形成されるパッシベーション層の均一性がより向上し、所望のパッシベーション効果を安定的に得ることができる。
(樹脂)
パッシベーション層形成用組成物は、樹脂を含有する。樹脂を含むことで、前記パッシベーション層形成用組成物が半導体基板上に付与されて形成される組成物層の形状安定性がより向上し、パッシベーション層を前記組成物層が形成された領域に、所望の形状で選択的に形成することができる。
樹脂の種類は特に制限されない。樹脂は、パッシベーション層形成用組成物を半導体基板上に付与する際に、良好なパターン形成ができる範囲に粘度調整が可能な樹脂であることが好ましい。樹脂として具体的には、ポリビニルアルコール;ポリアクリルアミド類;ポリビニルアミド類;ポリビニルピロリドン;ポリエチレンオキサイド類;ポリスルホン酸;ポリアクリルアミドアルキルスルホン酸;セルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース等のセルロースエーテルなどのセルロース誘導体;ゼラチン及びゼラチン誘導体;澱粉及び澱粉誘導体;アルギン酸ナトリウム及びアルギン酸ナトリウム誘導体;キサンタン及びキサンタン誘導体;グアーガム及びグアーガム誘導体;スクレログルカン及びスクレログルカン誘導体;トラガカント及びトラガカント誘導体;デキストリン及びデキストリン誘導体;(メタ)アクリル酸樹脂;(メタ)アクリル酸エステル樹脂(例えば、アルキル(メタ)アクリレート樹脂、ジメチルアミノエチル(メタ)アクリレート樹脂等);ブタジエン樹脂;スチレン樹脂;シロキサン樹脂;これらの樹脂の共重合体などを挙げることができる。これら樹脂は1種類を単独で又は2種類以上を組み合わせて使用される。
これらの樹脂のなかでも、保存安定性とパターン形成性の観点から、酸性及び塩基性の官能基を有さない中性樹脂を用いることが好ましく、含有量が少量の場合においても容易に粘度及びチキソ性を調節できる観点から、セルロース誘導体を用いることがより好ましい。
またこれら樹脂の分子量は特に制限されず、パッシベーション層形成用組成物としての所望の粘度を鑑みて適宜調整することが好ましい。前記樹脂の重量平均分子量は、保存安定性とパターン形成性の観点から、1,000〜10,000,000であることが好ましく、1,000〜5,000,000であることがより好ましい。なお、樹脂の重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP−H、PStQuick B[東ソー(株)製、商品名])を用いて3次式で近似する。GPCの測定条件を以下に示す。
装置:(ポンプ:L−2130型[株式会社日立ハイテクノロジーズ])
(検出器:L−2490型RI[株式会社日立ハイテクノロジーズ])
(カラムオーブン:L−2350[株式会社日立ハイテクノロジーズ])
カラム:Gelpack GL−R440 + Gelpack GL−R450 + Gelpack GL−R400M(計3本)(日立化成株式会社、商品名)
カラムサイズ:10.7mm(内径)×300mm
溶離液:テトラヒドロフラン
試料濃度:10mg/2mL
注入量:200μL
流量:2.05mL/分
測定温度:25℃
パッシベーション層形成用組成物が樹脂を含有する場合、樹脂のパッシベーション層形成用組成物中の含有率は、必要に応じて適宜選択することができる。例えばパッシベーション層形成用組成物の総質量中に0.1質量%〜50質量%であることが好ましい。パターン形成をより容易にするようなチキソ性を発現させる観点から、前記含有率は0.2質量%〜25質量%であることがより好ましく、0.5質量%〜20質量%であることが更に好ましく、0.5質量%〜15質量%であることが特に好ましい。
(溶剤)
前記パッシベーション層形成用組成物は溶剤を含んでいてもよい。パッシベーション層形成用組成物が溶剤を含有することで、粘度の調整がより容易になり、付与性がより向上し、より均一なパッシベーション層を形成することができる。前記溶剤は特に制限されず、必要に応じて適宜選択することができる。中でも一般式(I)で表される特定の金属アルコキシド化合物、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物、及び必要に応じて添加される一般式(II)で表される有機アルミニウム化合物を溶解して溶液を得ることができる溶剤が好ましく、有機溶剤の少なくとも1種を含むことがより好ましい。
溶剤として具体的には、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチルイソプロピルケトン、メチル−n−ブチルケトン、メチルイソブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル−n−プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテ等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン等のエステル系溶剤;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、イソペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α−テルピネン、α−テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水などが挙げられる。これらの溶剤は1種類を単独で又は2種類以上を組み合わせて使用される。
中でも前記溶剤は、半導体基板への付与性及びパターン形成性の観点から、テルペン系溶剤、エステル系溶剤及びアルコール系溶剤からなる群より選択される少なくとも1種を含むことが好ましく、テルペン系溶剤からなる群より選択される少なくとも1種を含むことがより好ましい。
パッシベーション層形成用組成物が溶剤を含む場合、溶剤の含有率は、付与性、パターン形成性、保存安定性を考慮して決定される。例えば溶剤の含有率は、組成物の付与性とパターン形成性の観点から、パッシベーション層形成用組成物の総質量中に5質量%〜98質量%であることが好ましく、10質量%〜95質量%であることがより好ましい。
前記パッシベーション層形成用組成物は、酸性化合物又は塩基性化合物を含有してもよい。パッシベーション層形成用組成物が酸性化合物又は塩基性化合物を含有する場合、保存安定性の観点から、酸性化合物又は塩基性化合物の含有率が、パッシベーション層形成用組成物中にそれぞれ1質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。
酸性化合物としては、ブレンステッド酸及びルイス酸を挙げることができる。具体的には塩酸、硝酸等の無機酸、酢酸等の有機酸などを挙げることができる。また塩基性化合物としては、ブレンステッド塩基及びルイス塩基を挙げることができる。具体的にはアルカリ金属水酸化物、アルカリ土類金属水酸化物等の無機塩基、トリアルキルアミン、ピリジン等の有機塩基などを挙げることができる。
パッシベーション層形成用組成物の粘度は特に制限されず、半導体基板への付与方法等に応じて適宜選択することができる。例えば、パッシベーション層形成用組成物の粘度は0.01Pa・s〜10000Pa・sとすることができる。中でもパターン形成性の観点から、パッシベーション層形成用組成物の粘度は0.1Pa・s〜1000Pa・sであることが好ましい。なお、前記粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s−1で測定される。
またパッシベーション層形成用組成物は、チキソ性を有していることが好ましい。特にパッシベーション層形成用組成物が樹脂を含む場合、パターン形成性の観点から、せん断速度1.0s−1におけるせん断粘度ηをせん断速度10s−1におけるせん断粘度ηで除して算出されるチキソ比(η/η)が1.05〜100であることが好ましく、1.1〜50であることがより好ましい。なお、せん断粘度は、コーンプレート(直径50mm、コーン角1°)を装着した回転式のせん断粘度計を用いて、温度25℃で測定される。
一方、パッシベーション層形成用組成物が樹脂の代わりに高沸点材料を含む場合、パターン形成性の観点から、せん断速度1.0s−1におけるせん断粘度ηをせん断速度1000s−1におけるせん断粘度ηで除して算出されるチキソ比(η/η)が1.05〜100であることが好ましく、1.1〜50であることがより好ましい。
前記パッシベーション層形成用組成物の製造方法には特に制限はない。例えば、一般式(I)で表される特定の化合物と、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物と、溶剤と、樹脂と、必要に応じて含まれる一般式(II)で表される化合物等とを、通常用いられる混合方法で混合することで製造することができる。
なお、前記パッシベーション層形成用組成物中に含まれる成分、及び各成分の含有量は示差熱−熱重量同時測定(TG/DTA)等の熱分析、核磁気共鳴(NMR)、赤外分光法(IR)等のスペクトル分析、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフィー(GPC)等のクロマトグラフ分析などを用いて確認することができる。
<パッシベーション層付半導体基板>
本発明のパッシベーション層付半導体基板は、半導体基板と、前記半導体基板上の全面又は一部に設けられる前記パッシベーション層形成用組成物の熱処理物(焼成物)層とを有する。前記パッシベーション層付半導体基板は、前記パッシベーション層形成用組成物の熱処理物(焼成物)からなる層であるパッシベーション層を有することで優れたパッシベーション効果を示す。
前記半導体基板は、p型半導体基板であっても、n型半導体基板であってもよい。中でもパッシベーション効果の観点から、パッシベーション層が形成される面がp型層である半導体基板であることが好ましい。前記半導体基板上のp型層は、p型半導体基板に由来するp型層であっても、p型拡散層又はp型拡散層として、n型半導体基板又はp型半導体基板上に形成されたものであってもよい。
また前記半導体基板の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば50μm〜1000μmとすることができ、75μm〜750μmであることが好ましい。
前記半導体基板上に形成されたパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば、5nm〜50μmであることが好ましく、10nm〜30μmであることがより好ましく、15nm〜20μmであることが更に好ましい。
前記パッシベーション層付半導体基板は、太陽電池素子、発光ダイオード素子等に適用することができる。例えば、太陽電池素子に適用することで変換効率に優れた太陽電池素子を得ることができる。前記パッシベーション層付半導体基板を太陽電池素子に適用する場合、パッシべーション層は太陽電池素子の受光面側に設けられることが好ましい。
<パッシベーション層付半導体基板の製造方法>
本発明のパッシベーション層付半導体基板の製造方法は、半導体基板上の全面又は一部に、前記パッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理(焼成)してパッシベーション層を形成する工程とを有する。前記製造方法は必要に応じてその他の工程を更に含んでいてもよい。
前記パッシベーション層形成用組成物を用いることで、優れたパッシベーション効果と良好な屈折率を有するパッシベーション層を所望の形状に、簡便な方法で形成することができる。
前記パッシベーション層形成用組成物を付与する半導体基板としては特に制限されず、目的に応じて通常用いられるものから適宜選択することができる。前記半導体基板としては、シリコン、ゲルマニウム等にp型不純物又はn型不純物をドープしたものであれば特に制限されない。中でもシリコン基板であることが好ましい。また半導体基板は、p型半導体基板であっても、n型半導体基板であってもよい。中でもパッシベーション効果の観点から、パッシベーション層が形成される面がp型層である半導体基板であることが好ましい。前記半導体基板上のp型層は、p型半導体基板に由来するp型層であっても、p型拡散層又はp型拡散層として、n型半導体基板又はp型半導体基板上に形成されたものであってもよい。
また前記半導体基板の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば50μm〜1000μmとすることができ、75μm〜750μmであることが好ましい。
前記パッシベーション層付半導体基板の製造方法は、前記組成物層を形成する工程の前に、半導体基板上にアルカリ水溶液を付与する工程を更に有することが好ましい。すなわち、半導体基板上に前記パッシベーション層形成用組成物を付与する前に、半導体基板の表面をアルカリ水溶液で洗浄することが好ましい。アルカリ水溶液で洗浄することで、半導体基板表面に存在する有機物、パーティクル等を除去することができ、パッシベーション効果がより向上する。アルカリ水溶液による洗浄の方法としては、一般的に知られているRCA洗浄等を例示することができる。例えば60℃〜80℃のアンモニア水と過酸化水素水の混合溶液に半導体基板を浸漬することで、有機物及びパーティクルを除去することできる。洗浄時間は、10秒〜10分間であることが好ましく、30秒〜5分間であることが更に好ましい。
半導体基板上に、前記パッシベーション層形成用組成物を付与して組成物層を形成する方法には特に制限はない。例えば、公知の塗布方法等を用いて、半導体基板上に前記パッシベーション層形成用組成物を付与する方法を挙げることができる。具体的には、浸漬法、印刷法、スピンコート法、刷毛塗り、スプレー法、ドクターブレード法、ロールコー法、インクジェット法等を挙げることができる。これらの中でもパターン形成性の観点から、各種の印刷法、インクジェット法等が好ましい。
前記パッシベーション層形成用組成物の付与量は、目的に応じて適宜選択することができる。例えば、形成されるパッシベーション層の厚みが、後述する所望の厚みとなるように適宜調整することができる。
パッシベーション層形成用組成物によって形成された組成物層を熱処理(焼成)して、前記組成物層に由来する熱処理物(焼成物)層を形成することで、半導体基板上にパッシベーション層を形成することができる。
組成物層の熱処理(焼成)条件は、組成物層に含まれる一般式(I)で表されるアルコキシド、チタン化合物、ジルコニウム化合物及びシリコンアルコキシドからなる群より選択される少なくとも1種の化合物、及び必要に応じて含まれる一般式(II)で表される有機アルミニウム化合物を、その熱処理物(焼成物)である金属酸化物又は複合酸化物に変換可能であれば特に制限されない。パッシベーション層に効果的に固定電荷を与え、より優れたパッシベーション効果を得るために、具体的には、熱処理(焼成)温度は300℃〜900℃が好ましく、450℃〜800℃がより好ましい。また熱処理(焼成)時間は熱処理(焼成)温度等に応じて適宜選択できる。例えば、0.1時間〜10時間とすることができ、0.2時間〜5時間であることが好ましい。
前記パッシベーション層付半導体基板の製造方法によって製造されるパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択できる。例えばパッシベーション層の平均厚みは、5nm〜50μmであることが好ましく、10nm〜30μmであることがより好ましく、15nm〜20μmであることが更に好ましい。
尚、形成されたパッシベーション膜の平均厚みは、触針式段差・表面形状測定装置(例えば、Ambios社)を用いて常法により、3点の厚みを測定し、その算術平均値として算出される。
前記パッシベーション層付半導体基板の製造方法は、パッシベーション層形成用組成物を付与した後、熱処理(焼成によってパッシベーション層を形成する工程の前に、パッシベーション層形成用組成物からなる組成物層を乾燥処理する工程を更に有していてもよい。組成物層を乾燥処理する工程を有することで、より均一なパッシベーション効果を有するパッシベーション層を形成することができる。
組成物層を乾燥処理する工程は、パッシベーション層形成用組成物に含まれる溶剤の少なくとも一部を除去することができれば、特に制限されない。乾燥処理は例えば30℃〜250℃で1分間〜60分間の加熱処理とすることができ、40℃〜220℃で3分間〜40分間の加熱処理であることが好ましい。また乾燥処理は、常圧下で行なっても減圧下で行なってもよい。
前記パッシベーション層付半導体基板の製造方法は、パッシベーション層形成用組成物を付与した後、熱処理(焼成によってパッシベーション層を形成する工程の前に、パッシベーション層形成用組成物からなる組成物層を脱脂処理する工程を更に有していてもよい。組成物層を脱脂処理する工程を有することで、より均一なパッシベーション効果を有するパッシベーション層を形成することができる。
組成物層を脱脂処理する工程は、パッシベーション層形成用組成物に含まれる樹脂の少なくとも一部を除去することができれば、特に制限されない。脱脂処理は、例えば250℃〜450℃で10分間〜120分間の熱処理とすることができ、300℃〜400℃で3分間〜60分間の熱処理であることが好ましい。また脱脂処理は、酸素存在下で行うことが好ましく、大気中で行うことがより好ましい。
<太陽電池素子>
本発明の太陽電池素子は、p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる前記パッシベーション層形成用組成物の熱処理物層であるパッシベーション層と、前記半導体基板の前記p型層及びn型層の少なくとも一方の層上に設けられる電極とを有する。前記太陽電池素子は、必要に応じてその他の構成要素を更に有していてもよい。
前記太陽電池素子は、本発明のパッシベーション層形成用組成物から形成されたパッシベーション層を有することで、変換効率に優れる。
前記パッシベーション層が設けられる半導体基板の面は、p型層であっても、n型層であってもよい。中でも変換効率の観点からp型層であることが好ましい。前記半導体基板上のp型層は、p型半導体基板に由来するp型層であっても、p型拡散層又はp型拡散層として、n型半導体基板又はp型半導体基板上に形成されたものであってもよい。
前記半導体基板の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば50μm〜1000μmとすることができ、75μm〜750μmであることが好ましい。
また前記半導体基板上に形成されたパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えばパッシベーション層の平均厚みは、5nm〜50μmであることが好ましく、10nm〜30μmであることが好ましく、15nm〜20μmであることが更に好ましい。
前記太陽電池素子の形状や大きさに制限はない。例えば、一辺が125mm〜156mmの正方形であることが好ましい。
<太陽電池素子の製造方法>
本発明の太陽電池素子の製造方法は、p型層及びn型層が接合されてなるpn接合を有し、p型層及びn型層の少なくとも一方の層上に電極を有する半導体基板の、前記電極を有する面の一方又は両方の面上に、前記パッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理して、パッシベーション層を形成する工程とを有する。前記太陽電池素子の製造方法は、必要に応じてその他の工程を更に有していてもよい。
前記パッシベーション層形成用組成物を用いることで、優れたパッシベーション効果を有し、屈折率の大きいパッシベーション層を備え、変換効率に優れる太陽電池素子を簡便な方法で製造することができる。更に電極が形成された半導体基板上に、所望の形状となるようにパッシベーション層を形成することができ、太陽電池素子の生産性に優れる。
p型層及びn型層の少なくとも一方の層上に電極が配置されたpn接合を有する半導体基板は、通常用いられる方法で製造することができる。例えば半導体基板の所望の領域に、銀ペースト、アルミニウムペースト等の電極形成用ペーストを付与し、必要に応じて熱処理(焼成)することで製造することができる。
前記パッシベーション層が設けられる半導体基板の面は、p型層であっても、n型層であってもよい。中でも変換効率の観点からp型層であることが好ましい。
前記パッシベーション層形成用組成物を用いてパッシベーション層を形成する方法の詳細は、既述のパッシベーション層付半導体基板の製造方法と同様であり、好ましい態様も同様である。
前記半導体基板上に形成されるパッシベーション層の厚みは特に制限されず、目的に応じて適宜選択することができる。例えばパッシベーション層の平均厚みは、5nm〜50μmであることが好ましく、10nm〜30μmであることがより好ましく、15nm〜20μmであることが更に好ましい。
図1(a)に示すように、p型半導体基板1には、表面近傍にn型拡散層2が形成され、最表面に反射防止膜3が形成されている。反射防止膜3としては、窒化ケイ素膜、酸化チタン膜等が挙げられる。反射防止膜3とp型半導体基板1との間に酸化ケイ素等の表面保護膜(図示せず)が更に存在していてもよい。また、本発明にかかるパッシベーション層は屈折率が大きいため、反射防止膜3とp型半導体基板1との間に形成することが好ましい(図示せず)。図1では図示しないが、パッシベーション層を受光面側に有する太陽電池素子の製造方法については、図3を用いて後述する。
次いで図1(b)に示すように、裏面の一部の領域にアルミニウム電極ペースト等の裏面電極5を形成する材料を付与した後に熱処理して、裏面電極5を形成し、且つp型半導体基板1中にアルミニウム原子を拡散させてp型拡散層4を形成する。
次いで図1(c)に示すように、受光面側に電極形成用ペーストを付与した後に熱処理して表面電極7を形成する。電極形成用ペーストとしてファイヤースルー性を有するガラス粉末を含むものを用いることで、図1(c)に示すように反射防止膜3を貫通して、n型拡散層2の上に、表面電極7を形成してオーミックコンタクトを得ることができる。
なお、図1では(b)及び(c)を別個の工程として図示しているが、(b)及び(c)の工程を合わせて、1つの工程としてもよい。具体的には、上記(b)において、裏面の一部の領域にアルミニウム電極ペースト等の裏面電極5を形成する材料を付与した後、裏面電極5を形成するための熱処理を行う前に、受光面側に電極形成用ペーストを付与し、そして、この段階で熱処理を行ってもよい。この方法の場合には、1回の熱処理により裏面と受光面の電極が形成され、工程が簡略化される。
最後に図1(d)に示すように、裏面電極5が形成された領域以外の裏面のp型層上に、パッシベーション層形成用組成物を付与して組成物層を形成する。付与は例えばスクリーン印刷等の塗布法により行うことができる。p型層上に形成された組成物層を熱処理(焼成)してパッシベーション6を形成する。裏面のp型層上に、前記パッシベーション層形成用組成物から形成されたパッシベーション層6を形成することで、発電効率に優れた太陽電池素子を製造することができる。
図1に示す製造工程を含む製造方法で製造される太陽電池素子では、アルミニウム等から形成される裏面電極をポイントコンタクト構造とすることができ、基板の反り等を低減することができる。更に前記パッシベーション層形成用組成物を用いることで、電極形成された領域以外のp型層上にのみ優れた生産性でパッシベーション層を形成することができる。
また図1(d)では裏面部分にのみパッシベーション層を形成する方法を示したが、p型半導体基板1の裏面側に加えて、側面にもパッシベーション層形成用組成物を付与し、これを熱処理(焼成)することでp型半導体基板1の側面(エッジ)にパッシベーション層を更に形成してもよい(図示せず)。これにより、発電効率により優れた太陽電池素子を製造することができる。
更にまた、裏面部分にパッシベーション層を形成せず、側面のみに本発明のパッシベーション層形成用組成物を付与し、乾燥してパッシベーション層を形成してもよい。本発明のパッシベーション層形成用組成物は、側面のような結晶欠陥が多い場所に使用すると、その効果が特に大きい。
図1では電極形成後にパッシベーション層を形成する態様について説明したが、パッシベーション層形成後に、更にアルミニウム等の電極を蒸着等によって所望の領域に形成してもよい。
図2は、本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の別の一例を模式的に示す工程図を断面図として示したものである。具体的には、図2はアルミニウム電極ペースト又は熱拡散処理によりp型拡散層を形成可能なp型拡散層形成用組成物を用いてp型拡散層を形成し、その後、アルミニウム電極ペーストの熱処理物又はp型拡散層形成用組成物の熱処理物を除去する工程を含む工程図を断面図として説明するものである。ここでp型拡散層形成用組成物としては例えば、アクセプタ元素含有物質とガラス成分とを含む組成物を挙げることができる。
図2(a)に示すように、p型半導体基板1には、表面近傍にn型拡散層2が形成され、表面に反射防止膜3が形成されている。反射防止膜3としては、窒化ケイ素膜、酸化チタン膜等が挙げられる。
次いで図2(b)に示すように、裏面の一部の領域にp型拡散層形成用組成物を付与した後に熱処理して、p型拡散層4を形成する。p型拡散層4上にはp型拡散層形成用組成物の熱処理物8が形成されている。
ここでp型拡散層形成用組成物に代えて、アルミニウム電極ペーストを用いてもよい。アルミニウム電極ペーストを用いた場合には、p型拡散層4上にはアルミニウム電極8が形成される。
次いで図2(c)に示すように、p型拡散層4上に形成されたp型拡散層形成用組成物の熱処理物8又はアルミニウム電極8をエッチング等の手法により除去する。
次いで図2(d)に示すように、受光面(表面)及び裏面の一部の領域に選択的に電極形成用ペーストを付与した後に熱処理して、受光面(表面)に表面電極7を、裏面に裏面電極5をそれぞれ形成する。受光面側に付与する電極形成用ペーストとしてファイヤースルー性を有するガラス粉末を含むものを用いることで、図2(d)に示すように反射防止膜3を貫通して、n型拡散層2の上に、表面電極7が形成されてオーミックコンタクトを得ることができる。
また裏面電極が形成される領域にはすでにp型拡散層4が形成されているため、裏面電極5を形成する電極形成用ペーストには、アルミニウム電極ペーストに限定されず、銀電極ペースト等のより低抵抗な電極を形成可能な電極用ペーストを用いることもできる。これにより、更に発電効率を高めることも可能になる。
最後に図2(e)に示すように、裏面電極5が形成された領域以外の裏面のp型層上に、パッシベーション層形成用組成物を付与して組成物層を形成する。付与は例えばスクリーン印刷等の塗布法により行うことができる。p型層上に形成された組成物層を熱処理(焼成)してパッシベーション層6を形成する。裏面のp型層上に、前記パッシベーション層形成用組成物から形成されたパッシベーション層6を形成することで、発電効率に優れた太陽電池素子を製造することができる。
また図2(e)では裏面部分にのみパッシベーション層を形成する方法を示したが、p型半導体基板1の裏面側に加えて、側面にもパッシベーション層形成用材料を付与、乾燥することでp型半導体基板1の側面(エッジ)にパッシベーション層を更に形成してもよい(図示せず)。これにより、発電効率が更に優れた太陽電池素子を製造することができる。
更にまた、裏面部分にパッシベーション層を形成せず、側面のみに本発明のパッシベーション層形成用組成物を付与し、これを熱処理(焼成)してパッシベーション層を形成してもよい。本発明のパッシベーション層形成用組成物は、側面のような結晶欠陥が多い場所に使用すると、その効果が特に大きい。
図2では電極形成後にパッシベーション層を形成する態様について説明したが、パッシベーション層形成後に、更にアルミニウム等の電極を蒸着等によって所望の領域に形成してもよい。
上述した実施形態では、受光面にn型拡散層が形成されたp型半導体基板を用いた場合について説明を行ったが、受光面にp型拡散層が形成されたn型半導体基板を用いた場合にも同様にして、太陽電池素子を製造することができる。尚、その場合は裏面側にn型拡散層を形成することとなる。
更にパッシベーション層形成用組成物は、図3に示すような裏面側のみに電極が配置された裏面電極型太陽電池素子の受光面側又は裏面側のパッシベーション層6を形成することにも使用できる。
図3に概略断面図を示すように、p型半導体基板1の受光面側には、表面近傍にn型拡散層2が形成され、その表面にパッシベーション層6及び反射防止膜3が形成されている。反射防止膜3としては、窒化ケイ素膜、酸化チタン膜等が知られている。またパッシベーション層6は、本発明のパッシベーション層形成用組成物を付与し、これを熱処理(焼成)して形成される。本発明にかかるパッシベーション層は良好な屈折率を示すため、受光面側に設けられることで、発電効率を向上させることができる。
p型半導体基板1の裏面側には、p型拡散層4及びn型拡散層2上にそれぞれ裏面電極5が設けられ、更に裏面の電極が形成されていない領域にはパッシベーション層6が設けられている。
型拡散層4は、上述のようにp型拡散層形成用組成物又はアルミニウム電極ペーストを所望の領域に付与した後に熱処理することで形成することができる。またn型拡散層2は、例えば熱拡散処理によりn型拡散層を形成可能なn型拡散層形成用組成物を所望の領域に付与した後に熱処理することで形成することができる。
ここでn型拡散層形成用組成物としては例えば、ドナー元素含有物質とガラス成分とを含む組成物を挙げることができる。
型拡散層4及びn型拡散層2上にそれぞれ設けられる裏面電極5は、銀電極ペースト等の通常用いられる電極形成用ペーストを用いて形成することができる。
また、p型拡散層4上に設けられる裏面電極5は、アルミニウム電極ペーストを用いてp型拡散層4と一括して形成されるアルミニウム電極であってもよい。
裏面に設けられるパッシベーション層6は、パッシベーション層形成用組成物を裏面電極5が設けられていない領域に付与し、これを熱処理(焼成)することで形成することができる。
またパッシベーション層6はp型半導体基板1の裏面のみならず、更に側面にも形成してよい(図示せず)。
図3に示すような裏面電極型太陽電池素子においては、受光面側に電極がないため発電効率に優れる。更に裏面の電極が形成されていない領域にパッシベーション層が形成されているため、更に変換効率に優れる。
上記では半導体基板としてp型半導体基板を用いた例を示したが、n型半導体基板を用いた場合も、上記に準じて変換効率に優れる太陽電池素子を製造することができる。
<太陽電池>
本発明の太陽電池は、上記の太陽電池素子と、前記太陽電池素子の電極上に設けられる配線材料とを有する。前記太陽電池は、前記太陽電池素子の少なくとも1つを含み、太陽電池素子の電極上に配線材料が配置されて構成されることが好ましい。太陽電池は更に必要に応じて、配線材料を介して複数の太陽電池素子が連結され、更に封止材で封止されて構成されていてもよい。
前記配線材料及び封止材としては特に制限されず、当業界で通常用いられているものから適宜選択することができる。
前記太陽電池の大きさに特に制限はない。例えば、0.5m〜3mであることが好ましい。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「%」は質量基準である。
<実施例1>
(パッシベーション層形成用組成物1の調製)
樹脂としてエチルセルロース(日進化成株式会社、ETHOCEL200cps)を5.0g、溶剤としてテルピネオール(日本テルペン化学株式会社、以下同じ)を95.0g混合し、150℃で1時間攪拌してエチルセルロース溶液を調製した。
次に、一般式(I)で表されるアルコキシド化合物としてニオブエトキシド(和光純薬工業株式会社、以下同じ)を9.8g、チタン化合物としてチタンテトライソプロポキシド(和光純薬工業株式会社、以下同じ)を6.7g、エチルセルロース溶液を45.5g、テルピネオール(日本テルペン化学株式会社、以下同じ)を38.0g混合して、パッシベーション層形成用組成物1を調製した。パッシベーション層形成用組成物1の組成を表1に示した。
(パッシベーション層の形成)
半導体基板として、表面がミラー形状の単結晶型p型シリコン基板(株式会社SUMCO、50mm角、厚さ:625μm)を用いた。シリコン基板をRCA洗浄液(関東化学株式会社、Frontier Cleaner−A01)を用いて70℃にて5分間、浸漬洗浄し、前処理を行った。
その後、上記で得られたパッシベーション層形成用組成物1を前処理したシリコン基板上に、スクリーン印刷法を用いて、乾燥後の平均厚みが5μmとなるように全面に付与し、150℃で5分間乾燥処理した。次いで700℃で10分間熱処理(焼成)した後、室温(25℃)で放冷して評価用基板を作製した。
<評価>
上記で得られたパッシベーション層形成用組成物及びこれを用いて作製した評価用基板について以下のような評価を行った、評価結果を表2に示した。
(チキソ比の評価)
上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)に、回転式せん断粘度計(AntonPaar社、MCR301)に、コーンプレート(直径50mm、コーン角1°)を装着し、温度25℃で、せん断速度1.0s−1及び10s−1の条件でそれぞれ測定した。
せん断速度が1.0s−1の条件でのせん断粘度(η)は45.2Pa・s、せん断速度が10s−1の条件でのせん断粘度(η)は36.7Pa・sとなった。せん断粘度が1.0s−1と10s−1の場合でのチキソ比(η/η)は1.2となった。
(保存安定性の評価)
上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)及び25℃で30日間保存した後にそれぞれ測定した。せん断粘度の測定は、回転式せん断粘度計(AntonPaar社、MCR301)に、コーンプレート(直径50mm、コーン角1°)を装着し、温度25℃で、せん断速度10s−1で行った。
調製直後の25℃におけるせん断粘度(η)は36.7Pa・s、25℃で30日間保存した後の25℃におけるせん断粘度(η30)は38.2Pa・sであった。
25℃で30日間保存した後のせん断粘度の変化率を下式(B)により算出し、下記評価基準に従って保存安定性について評価した。
せん断粘度の変化率(%)=(η30−η)/(η)×100 (B)
[評価基準]
A:せん断粘度の変化率が10%未満。
B:せん断粘度の変化率が10%以上、30%未満。
C:せん断粘度の変化率が30%以上。
評価がA又はBであれば、パッシベーション層形成用組成物として良好である。
(印刷滲み)
印刷滲みの評価では、調製したパッシベーション層形成用組成物1を、シリコン基板上にスクリーン印刷法を用いて図4に示したパターンでドット状開口部以外の全面10に印刷した。ここで、評価に用いたドット状開口部のパターンは、ドット径(L)が368μm、ドット間隔(L)が0.5mmである。
その後、パッシベーション層形成用組成物1を付与したシリコン基板を700℃の温度で10分間熱処理(焼成)した後、室温で放冷した。
印刷滲みの評価では、熱処理(焼成)後の基板に形成されるパッシベーション層内のドット状開口部9のドット径(L)を測定した。尚、ドット径(L)を10点測定し、その平均値を算出した。測定した結果、ドット径(L)は344μmであった。
ここで、印刷直後のドット径(L)(368μm)に対し、熱処理(焼成)後のドット径(L)の減少率が10%未満のものを「A」、10%以上、30%未満のものを「B」、30%以上のものを「C」として評価した。評価がA又はBであれば、パッシベーション層形成用組成物としては良好である。
尚、印刷滲みとは、シリコン基板上に印刷したパッシベーション層形成用組成物から形成された組成物層が、シリコン基板の面方向に広がる現象を意味する。
(実効ライフタイムの測定)
上記で得られた評価用基板の実効ライフタイム(μs)を、ライフタイム測定装置(日本セミラボ株式会社、WT−2000PVN)を用いて、室温で反射マイクロ波光電導減衰法により測定した。得られた評価用基板のパッシベーション層形成用組成物を付与した領域の実効ライフタイムは、450μsであった。
(パッシベーション層の厚みと屈折率の測定)
上記で得られた評価用基板上のパッシベーション層の厚み(平均厚み)と屈折率を干渉式膜厚計(フィルメトリス社、F20膜厚測定システム)を用いて測定したところ、厚みは250nm、屈折率は1.66となった。
<実施例2>
(パッシベーション層形成用組成物2の調製)
タンタル(V)メトキシド(高純度化学研究所株式会社)を7.6g、ジルコニウムエトキシド(和光純薬工業株式会社、以下同じ)を8.9g、実施例1で調製したエチルセルロース溶液を45.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物2を調製した。パッシベーション層形成用組成物2の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物2のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物2をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<実施例3>
ニオブエトキシドを6.7g、オルトケイ酸テトラエチル(Si(OC)、和光純薬工業株式会社、以下同じ)を4.0g、アルミニウムエチルアセトアセテートジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH、以下同じ)を6.0g、実施例1で調製したエチルセルロース溶液を56.0g、テルピネオールを27.3g混合して、パッシベーション層形成用組成物3を調製した。パッシベーション層形成用組成物3の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物3のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物3をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<実施例4>
バナジウム(V)オキシトリエトキシド(高純度化学研究所株式会社、以下同じ)を8.8g、ジルコニウムエトキシドを7.7g、実施例1で調製したエチルセルロース溶液を45.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物4を調製した。パッシベーション層形成用組成物4の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物4のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物4をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<実施例5>
イットリウムエトキシド(高純度化学研究所株式会社)を7.6g、オルトケイ酸テトラエチルを5.3g、アルミニウムエチルアセトアセテートジイソプロピレートを3.6g、実施例1で調製したエチルセルロース溶液を45.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物5を調製した。パッシベーション層形成用組成物5の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物5のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物5をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<実施例6>
ハフニウムエトキシド(高純度化学研究所株式会社)を7.2g、チタンテトライソプロポキシドを5.4g、アルミニウムエチルアセトアセテートジイソプロピレート3.9g、実施例1で調製したエチルセルロース溶液を45.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物6を調製した。パッシベーション層形成用組成物6の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物6のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物6をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<実施例7>
ニオブエトキシドを8.0g、ジルコニウムエトキシドを8.5g、実施例1で調製したエチルセルロース溶液を45.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物7を調製した。パッシベーション層形成用組成物7の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物7のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物7をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<実施例8>
バナジウム(V)オキシトリエトキシドを5.6g、オルトケイ酸テトラエチルを5.5g、アルミニウムエチルアセトアセテートジイソプロピレートを5.4g、実施例1で調製したエチルセルロース溶液を45.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物8を調製した。パッシベーション層形成用組成物8の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物8のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物8をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<比較例1>
ニオブエトキシドを16.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物C1を調製した。パッシベーション層形成用組成物C1の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物C1のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物C1をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<比較例2>
オルトケイ酸テトラエチルを16.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物C2を調製した。パッシベーション層形成用組成物C2の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物C2のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物C2をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。
<比較例3>
アルミニウムエチルアセトアセテートジイソプロピレートを16.5g、テルピネオールを38.0g混合して、パッシベーション層形成用組成物C3を調製した。パッシベーション層形成用組成物C3の組成を表1に示した。
その後は実施例1と同様にして、パッシベーション層形成用組成物C3のせん断粘度、チキソ性、及び保存安定性を評価した。また、実施例1と同様にしてパッシベーション層形成用組成物C3をシリコン基板上に付与して熱処理(焼成)した後の印刷滲みの評価及び実効ライフタイム、パッシベーション層の厚みと屈折率の測定を行った。結果を表2に示した。

以上から、本発明のパッシベーション層形成用組成物を用いることで、優れたパッシベーション効果を有し、良好な屈折率を有するパッシベーション層を形成できることが分かる。また本発明のパッシベーション層形成用組成物は保存安定性に優れていることが分かる。更に本発明のパッシベーション層形成用組成物を用いることで、簡便な工程で所望の形状にパッシベーション膜を形成できることが分かる。
<参考実施形態1>
以下は、参考実施形態1に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
<1> 酸化アルミニウムと酸化ニオブとを含み、シリコン基板を有する太陽電池素子に用いられるパッシベーション膜。
<2> 前記酸化ニオブと前記酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70〜90/10である<1>に記載のパッシベーション膜。
<3> 前記酸化ニオブ及び前記酸化アルミニウムの総含有率が90質量%以上である<1>又は<2>に記載のパッシベーション膜。
<4> 更に有機成分を含む<1>〜<3>のいずれか1項に記載のパッシベーション膜。
<5> 酸化アルミニウム前駆体及び酸化ニオブ前駆体を含む塗布型材料の熱処理物である<1>〜<4>のいずれか1項に記載のパッシベーション膜。
<6> 酸化アルミニウム前駆体及び酸化ニオブ前駆体を含み、シリコン基板を有する太陽電池素子のパッシベーション膜の形成に用いられる塗布型材料。
<7> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するp型のシリコン基板と、
前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記複数の開口部を通して、前記シリコン基板の裏面側の表面と電気的な接続を形成している第2電極と、
を備える太陽電池素子。
<8> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するp型のシリコン基板と、
前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
前記シリコン基板の裏面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたp型の不純物拡散層と、
前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記複数の開口部を通して、前記シリコン基板の裏面側の前記p型の不純物拡散層の表面と電気的な接続を形成している第2電極と、
を備える太陽電池素子。
<9> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するn型のシリコン基板と、
前記シリコン基板の受光面側に形成されたp型の不純物拡散層と、
前記シリコン基板の裏面側に形成された第2電極と、
前記シリコン基板の受光面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記シリコン基板の受光面側の前記p型の不純物拡散層の表面に形成され、前記複数の開口部を通して前記シリコン基板の受光面側の表面と電気的な接続を形成している第1電極と、
を備える太陽電池素子。
<10> パッシベーション膜における酸化ニオブと酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70〜90/10である<7>〜<9>のいずれか1項に記載の太陽電池素子。
<11> 前記パッシベーション膜における前記酸化ニオブ及び前記酸化アルミニウムの総含有率が90質量%以上である<7>〜<10>のいずれか1項に記載の太陽電池素子。
<12> シリコン基板と、
前記シリコン基板上の全面又は一部に設けられる<1>〜<5>のいずれか1項に記載のパッシベーション膜と、
を有するパッシベーション膜付シリコン基板。
上記の参考実施形態によれば、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜を低コストで実現することができる。また、そのパッシベーション膜の形成を実現するための塗布型材料を提供することができる。また、そのパッシベーション膜を用いた効率の高い太陽電池素子を低コストで実現することができる。また、キャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜付シリコン基板を低コストで実現することができる。
本実施の形態のパッシベーション膜は、シリコン太陽電池素子に用いられるパッシベーション膜であり、酸化アルミニウムと酸化ニオブとを含むようにしたものである。
また、本実施の形態では、パッシベーション膜の組成を変えることにより、その膜が持つ固定電荷量を制御することができる。
また、酸化ニオブと酸化アルミニウムの質量比が30/70〜80/20であることが、負の固定電荷を安定化できるという観点からより好ましい。また、酸化ニオブと酸化アルミニウムの質量比が35/65〜70/30であることが、負の固定電荷を更に安定化することができるという観点から更に好ましい。また、酸化ニオブと酸化アルミニウムの質量比が50/50〜90/10であることが、キャリアライフタイムの向上と負の固定電荷を両立できるという観点から好ましい。
パッシベーション膜中の酸化ニオブと酸化アルミニウムの質量比は、エネルギー分散型X線分光法(EDX)、二次イオン質量分析法(SIMS)及び高周波誘導結合プラズマ質量分析法(ICP−MS)によって測定することができる。具体的な測定条件は次の通りである。パッシベーション膜を酸又はアルカリ水溶液に溶解し、この溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して波長及び強度を測定し、得られた波長から元素の定性を行い、得られた強度から定量を行う。
パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの総含有率が、80質量%以上であることが好ましく、良好な特性を維持できる観点から90質量%以上であることがより好ましい。パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの成分が多くなると、負の固定電荷の効果が大きくなる。
パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの総含有率は、熱重量分析、蛍光X線分析、ICP−MS及びX線吸収分光法を組み合わせることによって測定することができる。具体的な測定条件は次の通りである。熱重量分析によって無機成分の割合を算出し、蛍光X線やICP−MS分析によってニオブ及びアルミニウムの割合を算出し、酸化物の割合はX線吸収分光法で調べることができる。
また、パッシベーション膜中には、膜質の向上や弾性率の調整の観点から、酸化ニオブ及び酸化アルミニウム以外の成分が有機成分として含まれていてもよい。パッシベーション膜中の有機成分の存在は、元素分析及び膜のFT−IRの測定から確認することができる。
パッシベーション膜中の有機成分の含有率は、パッシベーション膜中、10質量%未満であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。
パッシベーション膜は、酸化アルミニウム前駆体及び酸化ニオブ前駆体を含む塗布型材料の熱処理物として得てもよい。塗布型材料の詳細を次に説明する。
本実施の形態の塗布型材料は、酸化アルミニウム前駆体及び酸化ニオブ前駆体を含み、シリコン基板を有する太陽電池素子用のパッシベーション膜の形成に用いられる。
酸化アルミニウム前駆体は、酸化アルミニウムを生成するものであれば、特に限定されることなく用いることができる。酸化アルミニウム前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な点から、有機系の酸化アルミニウム前駆体を用いることが好ましい。有機系の酸化アルミニウム前駆体の例として、アルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、(株)高純度化学研究所SYM−AL04等を挙げることができる。
酸化ニオブ前駆体は、酸化ニオブを生成するものであれば、特に限定されることなく用いることができる。酸化ニオブ前駆体としては、酸化ニオブをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から有機系の酸化ニオブ前駆体を用いることが好ましい。有機系の酸化ニオブ前駆体の例として、ニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)、(株)高純度化学研究所Nb−05等を挙げることができる。
有機系の酸化ニオブ前駆体及び有機系の酸化アルミニウム前駆体を含む塗布型材料を塗布法又は印刷法を用いて成膜し、その後の熱処理(焼成)により有機成分を除去することにより、パッシベーション膜を得ることができる。したがって、結果として、有機成分を含むパッシベーション膜であってもよい。
<太陽電池素子の構造説明>
本実施の形態の太陽電池素子の構造について図6〜図9を参照しながら説明する。図6〜図9は、本実施の形態の裏面にパッシベーション膜を用いた太陽電池素子の第1〜第4構成例を示す断面図である。
本実施の形態で用いるシリコン基板(結晶シリコン基板、半導体基板)101としては、単結晶シリコン、又は、多結晶シリコンのどちらを用いてもよい。また、シリコン基板101としては、導電型がp型の結晶シリコン、又は、導電型がn型の結晶シリコンのどちらを用いてもよい。本実施の形態の効果をより発揮する観点からは、導電型がp型の結晶シリコンがより適している。
以下の図6〜図9においては、シリコン基板101として、p型単結晶シリコンを用いた例について説明する。尚、当該シリコン基板101に用いる単結晶シリコン又は多結晶シリコンは、任意のものでよいが、抵抗率が0.5Ω・cm〜10Ω・cmである単結晶シリコン又は多結晶シリコンが好ましい。
図6(第1構成例)に示すように、p型のシリコン基板101の受光面側(図中上側、第1面)に、リン等のV族の元素をドーピングしたn型の拡散層102が形成される。そして、シリコン基板101と拡散層102との間でpn接合が形成される。拡散層102の表面には、窒化ケイ素(SiN)膜等の受光面反射防止膜103、及び銀(Ag)等を用いた第1電極105(受光面側の電極、第1面電極、上面電極、受光面電極)が形成される。受光面反射防止膜103は、受光面パッシベーション膜としての機能を兼ね備えてもよい。SiN膜を用いることで、受光面反射防止膜と受光面パッシベーション膜の機能を両方兼ね備えることができる。
尚、本実施の形態の太陽電池素子は、受光面反射防止膜103を有していても有していなくてもよい。また、太陽電池素子の受光面には、表面での反射率を低減するため、凹凸構造(テクスチャー構造)が形成されることが好ましいが、本実施の形態の太陽電池素子は、テクスチャー構造を有していても有していなくてもよい。
一方、シリコン基板101の裏面側(図中下側、第2面、裏面)には、アルミニウム、ボロン等のIII族の元素をドーピングした層であるBSF(Back Surface Field)層104が形成される。ただし、本実施の形態の太陽電池素子は、BSF層104を有していても有していなくてもよい。
このシリコン基板101の裏面側には、BSF層104(BSF層104が無い場合はシリコン基板101の裏面側の表面)とコンタクト(電気的接続)をとるために、アルミニウム等で構成される第2電極106(裏面側の電極、第2面電極、裏面電極)が形成されている。
更に、図6(第1構成例)においては、BSF層104(BSF層104が無い場合はシリコン基板101の裏面側の表面)と第2電極106とが電気的に接続されているコンタクト領域(開口部OA)を除いた部分に、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜(パッシベーション層)107が形成されている。本実施の形態のパッシベーション膜107は、負の固定電荷を有することが可能である。この固定電荷により、光によりシリコン基板101内で発生したキャリアのうち少数キャリアである電子を表面側へ跳ね返す。このため、短絡電流が増加し、光電変換効率が向上することが期待される。
次いで、図7に示す第2構成例について説明する。図6(第1構成例)においては、第2電極106は、コンタクト領域(開口部OA)とパッシベーション膜107上の全面に形成されているが、図7(第2構成例)においては、コンタクト領域(開口部OA)のみに第2電極106が形成されている。コンタクト領域(開口部OA)とパッシベーション膜107上の一部のみに第2電極106が形成される構成としてもよい。図7に示す構成の太陽電池素子であっても図6(第1構成例)と同様の効果を得ることができる。
次いで、図8に示す第3構成例について説明する。図8に示す第3構成例においては、BSF層104が、第2電極106とのコンタクト領域(開口部OA部)を含む裏面側の一部のみに形成され、図6(第1構成例)のように、裏面側の全面に形成されていない。このような構成の太陽電池素子(図8)であっても、図6(第1構成例)と同様の効果を得ることができる。また、図8の第3構成例の太陽電池素子によれば、BSF層104、つまり、アルミニウム、ボロン等のIII族の元素をドーピングすることでシリコン基板101よりも不純物が高い濃度でドーピングされた領域が少ないため、図6(第1構成例)より高い光電変換効率を得ることが可能である。
次いで、図9に示す第4構成例について説明する。図8(第3構成例)においては、第2電極106は、コンタクト領域(開口部OA)とパッシベーション膜107上の全面に形成されているが、図9(第4構成例)においては、コンタクト領域(開口部OA)のみに第2電極106が形成されている。コンタクト領域(開口部OA)とパッシベーション膜107上の一部のみに第2電極106が形成される構成としてもよい。図9に示す構成の太陽電池素子であっても図8(第3構成例)と同様の効果を得ることができる。
また、第2電極106を印刷法で付与し、高温で焼成することにより裏面側の全面に形成した場合は、降温過程で上に凸の反りが発生しやすい。このような反りは、太陽電池素子の破損を引き起こす場合があり、歩留りが低下する恐れがある。また、シリコン基板の薄膜化が進む際には反りの問題が大きくなる。この反りの原因は、シリコン基板よりも金属(例えばアルミニウム)よりなる第2電極106の熱膨張係数が大きく、その分、降温過程での収縮が大きいため、応力が発生することにある。
以上のことから、図7(第2構成例)及び図8(第4構成例)のように第2電極106を裏面側の全面に形成しない方が、電極構造が上下で対称になり易く、熱膨張係数の差による応力が発生しにくいため好ましい。ただし、その場合は、別途反射層を設けることが好ましい。
<太陽電池素子の製法説明>
次に、上記構成をもつ本実施の形態の太陽電池素子(図6〜図9)の製造方法の一例について説明する。ただし、本実施の形態は、以下に述べる方法で作製した太陽電池素子に限るものではない。
まず、図6等に示すシリコン基板101の表面にテクスチャー構造を形成する。テクスチャー構造の形成は、シリコン基板101の両面に形成しても、片面(受光面側)のみに形成してもよい。テクスチャー構造を形成するため、まず、シリコン基板101を加熱した水酸化カリウム又は水酸化ナトリウムの溶液に浸して、シリコン基板101のダメージ層を除去する。その後、水酸化カリウム及びイソプロピルアルコールを主成分とする溶液に浸すことで、シリコン基板101の両面又は片面(受光面側)にテクスチャー構造を形成する。尚、上述したとおり、本実施の形態の太陽電池素子は、テクスチャー構造を有していても有していなくてもよいため、本工程は省略してもよい。
続いて、シリコン基板101を塩酸、フッ酸等の溶液で洗浄した後、シリコン基板101にオキシ塩化リン(POCl)等の熱拡散により、拡散層102としてリン拡散層(n層)を形成する。リン拡散層は、例えば、リンを含んだ塗布型のドーピング材の溶液をシリコン基板101に付与し、熱処理をすることによって形成できる。熱処理後、表面に形成されたリンガラスの層をフッ酸等の酸で除去することで、拡散層102としてリン拡散層(n層)が形成される。リン拡散層を形成する方法は特に制限されない。リン拡散層は、シリコン基板101の表面からの深さが0.2μm〜0.5μmの範囲、シート抵抗が40Ω/□〜100Ω/□(ohm/square)の範囲となるように形成することが好ましい。
その後、シリコン基板101の裏面側にボロン、アルミニウム等を含んだ塗布型のドーピング材の溶液を付与し、熱処理を行うことで、裏面側のBSF層104を形成する。付与には、スクリーン印刷、インクジェット、ディスペンス、スピンコート等の方法を用いることができる。熱処理後、裏面に形成されたボロンガラス、アルミニウム等の層をフッ酸、塩酸等によって除去することでBSF層104が形成される。BSF層104を形成する方法は特に制限されない。好ましくは、BSF層104は、ボロン、アルミニウム等の濃度の範囲が1018cm−3〜1022cm−3となるように形成されることが好ましく、ドット状又はライン状にBSF層104を形成することが好ましい。尚、本実施の形態の太陽電池素子は、BSF層104を有していても有していなくてもよいため、本工程は省略してもよい。
また、受光面の拡散層102、及び裏面のBSF層104とも塗布型のドーピング材の溶液を用いて形成する場合は、上記のドーピング材の溶液をそれぞれシリコン基板101の両面に付与して、拡散層102としてのリン拡散層(n層)とBSF層104の形成を一括して行い、その後、表面に形成したリンガラス、ボロンガラス等を一括して除去してもよい。
その後、拡散層102の上に、受光面反射防止膜103である窒化ケイ素膜を形成する。受光面反射防止膜103を形成する方法は特に制限されない。受光面反射防止膜103は、厚さが50〜100nmの範囲、屈折率が1.9〜2.2の範囲となるように形成することが好ましい。受光面反射防止膜103は、窒化ケイ素膜に限られず、酸化ケイ素膜、酸化アルミニウム膜、酸化チタン膜等であってもよい。窒化イ素膜等の表面反射防止膜103は、プラズマCVD、熱CVD等の方法で作製でき、350℃〜500℃の温度範囲で形成可能なプラズマCVDで作製することが好ましい。
次に、シリコン基板101の裏面側にパッシベーション膜107を形成する。パッシベーション膜107は、酸化アルミニウムと酸化ニオブを含み、例えば、熱処理(焼成)により酸化アルミニウムが得られる有機金属分解塗布型材料に代表される酸化アルミニウム前駆体と、熱処理(焼成)により酸化ニオブが得られる市販の有機金属分解塗布型材料に代表される酸化ニオブ前駆体とを含む材料(パッシベーション材料)を付与し、熱処理(焼成)することにより形成される。
パッシベーション膜107の形成は、例えば、以下のようにして行うことができる。上記の塗布型材料を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチ(20.32cm)のp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行う。その後、窒素雰囲気下で、650℃、1時間の熱処理を行う。この場合、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜が得られる。上記のような方法で形成されるパッシベーション膜107のエリプソメーターにより測定される膜厚は、通常は数十nm程度である。
上記の塗布型材料は、スクリーン印刷、オフセット印刷、インクジェットによる印刷、ディスペンサーによる印刷等の方法により、コンタクト領域(開口部OA)を含んだ所定のパターンに付与される。尚、上記の塗布型材料は、付与後、80℃〜180℃の範囲でプリベークして溶媒を蒸発させた後、窒素雰囲気下又は空気中において、600℃〜1000℃で、30分〜3時間程度の熱処理(アニール)を施し、パッシベーション膜107(酸化物の膜)とすることが好ましい。
更に、開口部(コンタクト用の孔)OAは、BSF層104上に、ドット状又はライン状に形成することが好ましい。
上記の太陽電池素子に用いるパッシベーション膜107としては、酸化ニオブと酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70〜90/10であることが好ましく、30/70〜80/20であることがより好ましく、35/65〜70/30であることが更に好ましい。これにより、負の固定電荷を安定化させることができる。また、酸化ニオブと酸化アルミニウムの質量比が50/50〜90/10であることが、キャリアライフタイムの向上と負の固定電荷を両立できるという観点から好ましい。
更にパッシベーション膜107において、酸化ニオブ及び酸化アルミニウムの総含有率が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
次に、受光面側の電極である第1電極105を形成する。第1電極105は、受光面反射防止膜103上に銀(Ag)を主成分とするペーストをスクリーン印刷により形成し、熱処理(ファイアースルー)を行うことで形成される。第1電極105の形状は、任意の形状でよく、例えば、フィンガー電極とバスバー電極とからなる周知の形状でよい。
そして、裏面側の電極である第2電極106を形成する。第2電極106は、アルミニウムを主成分とするペーストをスクリーン印刷又はディスペンサーを用いて付与し、それを熱処理することによって形成できる。また、第2電極106の形状は、BSF層104の形状と同じ形状、裏面側の全面を覆う形状、櫛型状、格子状等であることが好ましい。尚、受光面側の電極である第1電極105と第2電極106とを形成するためのペーストの印刷をそれぞれ先に行って、その後、熱処理(ファイアスルー)することにより第1電極105と第2電極106とを一括して形成してもよい。
また第2電極106の形成にアルミニウム(Al)を主成分とするペーストを用いることにより、アルミニウムがドーパントとして拡散して、自己整合で第2電極106とシリコン基板101との接触部にBSF層104が形成される。尚、先に述べたように、シリコン基板101の裏面側にボロン、アルミニウム等を含んだ塗布型のドーピング材の溶液を付与し、それを熱処理することで別途BSF層104を形成してもよい。
尚、上記においては、シリコン基板101にp型のシリコンを用いた構造例及び製法例を示したが、シリコン基板101としてn型のシリコン基板も用いることができる。この場合は、拡散層102は、ボロン等のIII族の元素をドーピングした層で形成され、BSF層104は、リン等のV族の元素をドーピングして形成される。ただし、この場合は、負の固定電荷により界面に形成された反転層と裏面側の金属が接触した部分を通じて漏れ電流が流れ、変換効率が上がりにくい場合がある点に留意すべきである。
またn型のシリコン基板を用いる場合には、酸化ニオブ及び酸化アルミニウムを含むパッシベーション膜107を図10に示すように受光面側に用いることができる。図10は、本実施の形態の受光面パッシベーション膜を用いた太陽電池素子の構成例を示す断面図である。
この場合、受光面側の拡散層102は、ボロンをドーピングしてp型となっており、生成したキャリアのうち正孔を受光面側に、電子を裏面側に集める。このために、負の固定電荷をもったパッシベーション膜107が受光面側にあることが好ましい。
酸化ニオブ及び酸化アルミニウムを含むパッシベーション膜の上には、更にCVD等によりSiN等で構成される反射防止膜を形成してもよい。
以下、本実施の形態の参考実施例及び参考比較例を参照しながら詳細に説明する。
[参考実施例1−1]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM−AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb−05、濃度5質量%]を3.0gとを混合して、塗布型材料であるパッシベーション材料(a−1)を調製した。
パッシベーション材料(a−1)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜[酸化ニオブ/酸化アルミニウム=68/32(質量比)]を得た。エリプソメーターにより膜厚を測定したところ43nmであった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(Metal−Insulator−Semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.32Vにシフトしたことが判明した。このシフト量からパッシベーション材料(a−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−7.4×1011cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(a−1)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは530μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
以上のことから、パッシベーション材料(a−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
[参考実施例1−2]
参考実施例1−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、Nb−05、濃度5質量%]とを、比率を変えて混合して、表3に示すパッシベーション材料(a−2)〜(a−7)を調製した。
参考実施例1−1と同様に、パッシベーション材料(a−2)〜(a−7)のそれぞれをp型のシリコン基板の片面に付与し、熱処理(焼成)してパッシベーション膜を作製した。得られたパッシベーション膜の静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
更に、参考実施例1−1と同様に、パッシベーション材料をp型のシリコン基板の両面に付与し、熱処理(焼成)して得たサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表3にまとめた。
熱処理(焼成)後の酸化ニオブ/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(a−2)〜(a−7)については、熱処理(焼成)後にキャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。パッシベーション材料(a−2)〜(a−7)から得られるパッシベーション膜は、いずれも安定的に負の固定電荷を示し、p型のシリコン基板のパッシベーションとしても好適に用いることができることが分かった。

[参考実施例1−3]
市販のニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)を3.18g(0.010mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)とをシクロヘキサン80gに溶解して、濃度5質量%のパッシベーション材料(c−1)を調製した。
パッシベーション材料(c−1)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ50nmであった。元素分析の結果、Nb/Al/C=81/14/5(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(Metal−Insulator−Semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+4.7Vにシフトしたことが判明した。このシフト量からパッシベーション材料(c−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−3.2×1012cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(c−1)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは330μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
以上のことから、パッシベーション材料(c−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
[参考実施例1−4]
市販のニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)を2.35g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(c−2)を調製した。
パッシベーション材料(c−2)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ14nmであった。元素分析の結果、Nb/Al/C=75/17/8(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着して形成し、MIS(Metal−Insulator−Semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.10Vにシフトしたことが判明した。このシフト量からパッシベーション材料(c−2)から得たパッシベーション膜は、固定電荷密度(Nf)が−0.8×1011cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(c−2)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研RTA−540)により行った。その結果、キャリアライフタイムは200μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
以上のことから、パッシベーション材料(c−2)から得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
[参考実施例1−5及び参考比較例1−1]
参考実施例1−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM−AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb−05、濃度5質量%]とを、比率を変えて混合して、表4に示すパッシベーション材料(b−1)〜(b−7)を調製した。
参考実施例1−1と同様に、パッシベーション材料(b−1)〜(b−7)のそれぞれをp型のシリコン基板の片面に付与し、熱処理(焼成)して、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
更に、参考実施例1−1と同様に、パッシベーション材料(塗布型材料)をp型のシリコン基板の両面に付与し、硬化させたサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表4にまとめた。

パッシベーション材料(b−1)〜(b−6)から得られるパッシベーション膜は、キャリアライフタイムがいずれも大きくパッシベーションとしての機能があることがわかった。また、酸化ニオブ/酸化アルミニウムが10/90及び20/80の場合には、固定電荷密度の値にばらつきが大きく、負の固定電荷密度を安定的に得ることができなかったが、酸化アルミニウムと酸化ニオブを用いることで負の固定電荷密度を実現できることが確認できた。酸化ニオブ/酸化アルミニウムが10/90及び20/80のパッシベーション材料を用いてCV法により測定した際には、場合によって正の固定電荷を示すパッシベーション膜となるため、負の固定電荷を安定的に示すまでには至っていないことが分かる。なお、正に固定電荷を示すパッシベーション膜は、n型のシリコン基板のパッシベーションとして使用可能である。一方、酸化アルミニウムが100質量%となるパッシベーション材料(b−7)では、負の固定電荷密度を得ることができなかった。
[参考比較例1−2]
パッシベーション材料(d−1)として、熱処理(焼成)により酸化チタン(TiO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Ti−03−P、濃度3質量%]、パッシベーション材料(d−2)として、熱処理(焼成)によりチタン酸バリウム(BaTiO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所BT−06、濃度6質量%]、パッシベーション材料(d−3)として、熱処理(焼成)により酸化ハフニウム(HfO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Hf−05、濃度5質量%]を準備した。
参考実施例1−1と同様に、パッシベーション材料(d−1)〜(d−3)のそれぞれをp型のシリコン基板の片面に付与し、その後、熱処理(焼成)して、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
更に、参考実施例1−1と同様に、パッシベーション材料をp型のシリコン基板の両面に付与し、熱処理(焼成)により得たサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表5にまとめた。

パッシベーション材料(d−1)〜(d−3)から得られるパッシベーション膜は、キャリアライフタイムがいずれも小さくパッシベーションとしての機能が不充分であることがわかった。また、正の固定電荷を示した。パッシベーション材料(d−3)から得られるパッシベーション膜は、負の固定電荷ではあるが、その値が小さかった。またキャリアライフタイムも比較的小さくパッシベーションとして機能が不十分であることがわかった。
[参考実施例1−6]
シリコン基板101として、ボロンをドーパントした単結晶シリコン基板を用いて、図8に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側に付与し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
次に、受光面側に、受光面反射防止膜103として、プラズマCVDで作製したSiN膜を形成した。その後、参考実施例1−1で調製したパッシベーション材料(a−1)をインクジェット法により、シリコン基板101の裏面側に、コンタクト領域(開口部OA)を除いた領域に付与した。その後、熱処理を行って、開口部OAを有するパッシベーション膜107を形成した。
また、パッシベーション膜107として、参考実施例1−3で調製したパッシベーション材料(c−1)を用いたサンプルも別途作製した。
次に、シリコン基板101の受光面側に形成された受光面反射防止膜103(SiN膜)の上に、銀を主成分とするペーストを所定のフィンガー電極及びバスバー電極の形状でスクリーン印刷した。裏面側においては、アルミニウムを主成分とするペーストを全面にスクリーン印刷した。その後、850℃で熱処理(ファイアスルー)を行って、電極(第1電極105及び第2電極106)を形成し、且つ裏面の開口部OAの部分にアルミニウムを拡散させて、BSF層104を形成して、図8に示す構造の太陽電池素子を形成した。
尚、ここでは、受光面の銀電極に関しては、SiN膜に穴あけをしないファイアスルー工程を記載したが、SiN膜に初めに開口部OAをエッチング等により形成し、その後に銀電極を形成することもできる。
比較のために、上記作製工程のうち、パッシベーション膜107の形成を行わず、裏面側の全面にアルミニウムペーストを印刷し、BSF層104と対応するp層114及び第2電極と対応する電極116を全面に形成して、図5に示す構造の太陽電池素子を形成した。図5中、符号111はシリコン基板、符号112は拡散層、符号113は受光面反射防止膜、符号115は第1電極である。これらの太陽電池素子について、特性評価(短絡電流、開放電圧、曲線因子及び変換効率)を行った。特性評価は、JIS−C−8913(2005年度)及びJIS−C−8914(2005年度)に準拠して測定した。その結果を表6に示す。
表6より、酸化ニオブ及び酸化アルミニウム層を含むパッシベーション膜107を有する太陽電池素子は、パッシベーション膜107を有しない太陽電池素子と比較すると、短絡電流及び開放電圧が共に増加しており、変換効率(光電変換効率)が最大で1%向上することが判明した。

<参考実施形態2>
以下は、参考実施形態2に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
<1>酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含み、シリコン基板を有する太陽電池素子に用いられるパッシベーション膜。
<2>前記バナジウム族元素の酸化物と前記酸化アルミニウムの質量比(バナジウム族元素の酸化物/酸化アルミニウム)が30/70〜90/10である<1>に記載のパッシベーション膜。
<3>前記バナジウム族元素の酸化物及び前記酸化アルミニウムの総含有率が90%以上である<1>又は<2>に記載のパッシベーション膜。
<4>前記バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ及び酸化タンタルよりなる群から選択される2種又は3種のバナジウム族元素の酸化物を含む<1>〜<3>のいずれか1項に記載のパッシベーション膜。
<5>酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含む塗布型材料の熱処理物である<1>〜<4>のいずれか1項に記載のパッシベーション膜。
<6>酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含み、シリコン基板を有する太陽電池素子のパッシベーション膜の形成に用いられる塗布型材料。
<7>p型のシリコン基板と、
前記シリコン基板の受光面側である第1面側に形成されたn型の不純物拡散層と、
前記不純物拡散層上に形成された第1電極と、
前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
<8>前記シリコン基板の第2面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたp型の不純物拡散層を有し、
前記第2電極は、前記p型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<7>に記載の太陽電池素子。
<9>n型のシリコン基板と、
前記シリコン基板の受光面側である第1面側に形成されたp型の不純物拡散層と、
前記不純物拡散層上に形成された第1電極と、
前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
<10>前記シリコン基板の第2面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたn型の不純物拡散層を有し、
前記第2電極は、前記n型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<9>に記載の太陽電池素子。
<11>前記パッシベーション膜の前記バナジウム族元素の酸化物と前記酸化アルミニウムの質量比が30/70〜90/10である、<7>〜<10>のいずれか1項に記載の太陽電池素子。
<12>前記パッシベーション膜の前記バナジウム族元素の酸化物及び前記酸化アルミニウムの総含有率が90%以上である、<7>〜<11>のいずれか1項に記載の太陽電池素子。
<13>前記バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ、及び酸化タンタルよりなる群から選択される2種又は3種のバナジウム族元素の酸化物を含む、<7>〜<12>のいずれか1項に記載の太陽電池素子。
<14>シリコン基板と、
前記シリコン基板上の全面又は一部に設けられる<1>〜<5>のいずれか1項に記載の太陽電池素子用パッシベーション膜と、
を有するパッシベーション膜付シリコン基板。
上記の参考実施形態によれば、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜を低コストで実現することができる。また、そのパッシベーション膜の形成を実現するための塗布型材料を提供することができる。また、そのパッシベーション膜を用いた低コストで効率の高い太陽電池素子を実現することができる。また、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜付シリコン基板を低コストで実現することができる。
本実施の形態のパッシベーション膜は、シリコン太陽電池素子に用いられるパッシベーション膜であり、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含むようにしたものである。
また、本実施の形態では、パッシベーション膜の組成を変えることにより、パッシベーション膜が有する固定電荷の量を制御することができる。ここで、バナジウム族元素とは、周期律表の第5族元素であり、バナジウム、ニオブ及びタンタルから選ばれる元素である。
また、バナジウム族元素の酸化物と酸化アルミニウムの質量比が35/65〜90/10であることが、負の固定電荷を安定化できるという観点からより好ましく、50/50〜90/10であることが更に好ましい。
パッシベーション膜中のバナジウム族元素の酸化物と酸化アルミニウムの質量比は、エネルギー分散型X線分光法(EDX)、二次イオン質量分析法(SIMS)及び高周波誘導結合プラズマ質量分析法(ICP−MS)によって測定することができる。具体的な測定条件は、例えばICP−MSの場合は次の通りである。パッシベーション膜を酸又はアルカリ水溶液に溶解し、この溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して波長及び強度を測定し、得られた波長から元素の定性を行い、得られた強度から定量を行う。
パッシベーション膜中のバナジウム族元素の酸化物及び酸化アルミニウムの総含有率は80質量%以上であることが好ましく、良好な特性を維持できる観点から90質量%以上であることがより好ましい。パッシベーション膜中のバナジウム族元素の酸化物及び酸化アルミニウム以外の成分が多くなると、負の固定電荷の効果が大きくなる。
また、パッシベーション膜中には、膜質の向上及び弾性率の調整の観点から、バナジウム族元素の酸化物及び酸化アルミニウム以外の成分が有機成分として含まれていてもよい。パッシベーション膜中の有機成分の存在は、元素分析及び膜のFT−IRの測定から確認することができる。
前記バナジウム族元素の酸化物としては、より大きい負の固定電荷を得る観点からは、酸化バナジウム(V)を選択することが好ましい。
前記パッシベーション膜は、バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ及び酸化タンタルからなる群より選択される2種又は3種のバナジウム族元素の酸化物を含んでもよい。
前記パッシベーション膜は、塗布型材料を熱処理することにより得られることが好ましく、塗布型材料を塗布法や印刷法を用いて成膜し、その後に熱処理により有機成分を除去することにより得られることがより好ましい。すなわち、パッシベーション膜は、酸化アルミニウム前駆体及びバナジウム族元素の酸化物の前駆体を含む塗布型材料の熱処理物として得てもよい。塗布型材料の詳細を後述する。
本実施の形態の塗布型材料は、シリコン基板を有する太陽電池素子用のパッシベーション膜に用いる塗布型材料であって、酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含む。塗布型材料が含有するバナジウム族元素の酸化物の前駆体としては、塗布材料より形成されるパッシベーション膜の負の固定電荷の観点からは、酸化バナジウム(V)の前駆体を選択することが好ましい。塗布型材料は、バナジウム族元素の酸化物の前駆体として、酸化バナジウムの前駆体、酸化ニオブの前駆体及び酸化タンタルの前駆体からなる群より選択される2種又は3種のバナジウム族元素の酸化物の前駆体を含んでもよい。
酸化アルミニウム前駆体は、酸化アルミニウムを生成するものであれば、特に限定されることなく用いることができる。酸化アルミニウム前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から、有機系の酸化アルミニウム前駆体を用いることが好ましい。有機系の酸化アルミニウム前駆体の例として、アルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、(株)高純度化学研究所、SYM−AL04を挙げることができる。
バナジウム族元素の酸化物の前駆体は、バナジウム族元素の酸化物を生成するものであれば、特に限定されることなく用いることができる。バナジウム族元素の酸化物の前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から有機系のバナジウム族元素の酸化物の前駆体を用いることが好ましい。
有機系の酸化バナジウムの前駆体の例としては、バナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)、(株)高純度化学研究所、V−02を挙げることができる。有機系の酸化タンタルの前駆体の例としては、タンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)、(株)高純度化学研究所、Ta−10−Pを挙げることができる。有機系の酸化ニオブ前駆体の例としては、ニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)、(株)高純度化学研究所、Nb−05を挙げることができる。
有機系のバナジウム族元素の酸化物の前駆体及び有機系の酸化アルミニウム前駆体を含む塗布型材料を塗布法又は印刷法を用いて成膜し、その後の熱処理により有機成分を除去することにより、パッシベーション膜を得ることができる。したがって、結果として、有機成分を含むパッシベーション膜であってもよい。パッシベーション膜中の有機成分の含有率は、10質量%未満であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。
本実施の形態の太陽電池素子(光電変換装置)は、シリコン基板の光電変換界面の近傍に上記実施の形態で説明したパッシベーション膜(絶縁膜、保護絶縁膜)、すなわち、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物とを含む膜を有するものである。酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物とを含むことにより、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有することができ、太陽電池素子の特性(光電変換効率)を向上させることができる。
本実施の形態に係る太陽電池素子の構造説明及び製法説明は、参考実施形態1に係る太陽電池素子の構造説明及び製法説明を参照することができる。
以下、本実施の形態の参考実施例及び参考比較例を参照しながら詳細に説明する。
<バナジウム族元素の酸化物として酸化バナジウムを使用した場合>
[参考実施例2−1]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]を6.0gとを混合して、塗布型材料であるパッシベーション材料(a2−1)を調製した。
パッシベーション材料(a2−1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、700℃、30分の熱処理(焼成)を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜[酸化バナジウム/酸化アルミニウム=63/37(質量%)]を得た。エリプソメーターにより膜厚を測定したところ51nmであった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.02Vにシフトしたことが判明した。このシフト量からパッシベーション材料(a2−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−5.2×1011cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(a2−1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により測定した。その結果、キャリアライフタイムは400μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。また、サンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムは380μsであった。これにより、キャリアライフタイムの低下(400μsから380μs)は−10%以内となり、キャリアライフタイムの低下が小さいことがわかった。
以上のことから、パッシベーション材料(a2−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
[参考実施例2−2]
参考実施例2−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]とを、比率を変えて混合して、表7に示すパッシベーション材料(a2−2)〜(a2−7)を調製した。
参考実施例2−1と同様に、パッシベーション材料(a2−2)〜(a2−7)のそれぞれをp型のシリコン基板の片面に塗布し、熱処理(焼成)してパッシベーション膜を作製した。得られたパッシベーション膜の静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
更に、参考実施例2−1と同様に、パッシベーション材料をp型のシリコン基板の両面に塗布し、熱処理(焼成)して得たサンプルを用いて、キャリアライフタイムを測定した。
得られた結果を表7にまとめた。またサンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムの低下は、表7に示すパッシベーション材料(a2−2)〜(a2−7)を用いたパッシベーション膜のいずれも−10%以内であり、キャリアライフタイムの低下が小さいことがわかった。
熱処理(焼成)後の酸化バナジウム/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(a2−2)〜(a2−7)については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。パッシベーション材料(a2−2)〜(a2−7)から得られるパッシベーション膜は、いずれも安定的に負の固定電荷を示し、p型のシリコン基板のパッシベーションとしても好適に用いることができることが分かった。

[参考実施例2−3]
熱処理(焼成)により酸化バナジウム(V)が得られる化合物として、市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)を1.02g(0.010mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(b2−1)を調製した。
パッシベーション材料(b2−1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、60nmであった。元素分析の結果、V/Al/C=64/33/3(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.10Vにシフトしたことが判明した。このシフト量からパッシベーション材料(b2−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−6.2×1011cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(b2−1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは400μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
以上のことから、パッシベーション材料(b2−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
[参考実施例2−4]
市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)を1.52g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(b2−2)を調製した。
パッシベーション材料(b2−2)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の加熱を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、22nmであった。元素分析の結果、V/Al/C=71/22/7(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.03Vにシフトしたことが判明した。このシフト量からパッシベーション材料(b2−2)から得たパッシベーション膜は、固定電荷密度(Nf)が−2.0×1011cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(b2−2)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは170μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
以上のことから、パッシベーション材料(b2−2)が硬化したパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
<バナジウム族元素の酸化物として酸化タンタルを使用した場合>
[参考実施例2−5]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta−10−P、濃度10質量%]とを比率を変えて混合して、表8に示すパッシベーション材料(c2−1)〜(c2−6)を調製した。
パッシベーション材料(c2−1)〜(c2−6)のそれぞれを濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、700℃、30分の熱処理(焼成)を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。このパッシベーション膜を用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
次いで、パッシベーション材料(c2−1)〜(c2−6)のそれぞれを8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。
得られた結果を表8にまとめた。またサンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムの低下は、表8に示すパッシベーション材料(c2−1)〜(c2−6)を用いたパッシベーション膜のいずれも−10%以内であり、キャリアライフタイムの低下が小さいことがわかった。
熱処理(焼成)後の酸化タンタル/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(c2−1)〜(c2−6)については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。

[参考実施例2−6]
熱処理(焼成)により酸化タンタル(Ta)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)を1.18g(0.0025mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(d2−1)を調製した。
パッシベーション材料(d2−1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークをした。その後、窒素雰囲気下で、700℃、1時間の加熱を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、40nmであった。元素分析の結果、Ta/Al/C=75/22/3(wt%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、−0.30Vにシフトしたことが判明した。このシフト量から、パッシベーション材料(d2−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−6.2×1010cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(d2−1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは610μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
以上のことから、パッシベーション材料(d2−1)を熱処理して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
[参考実施例2−7]
熱処理(焼成)により酸化タンタル(Ta)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)1.18g(0.005mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gの混合物に溶解して、パッシベーション材料(d2−2)を調製した。
パッシベーション材料(d2−2)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、650℃、1時間の加熱を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、18nmであった。元素分析の結果、Ta/Al/C=72/20/8(wt%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。
次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、−0.43Vにシフトしたことが判明した。このシフト量から、パッシベーション材料(d−2)から得たパッシベーション膜は、固定電荷密度(Nf)が−5.5×1010cm−2で負の固定電荷を示すことがわかった。
上記と同様に、パッシベーション材料(d2−2)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは250μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。
以上のことから、パッシベーション材料(d2−2)を熱処理(焼成)して得たパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。
<2種以上のバナジウム族元素の酸化物を使用した場合>
[参考実施例2−8]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]、及び熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta−10−P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(e2−1)を調製した(表9参照)。
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所V−02、濃度2質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Nb−05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2−2)を調製した(表9参照)。
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Ta−10−P、濃度10質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Nb−05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2−3)を調製した(表9参照)。
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所V−02、濃度2質量%]、熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Ta−10−P、濃度10質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Nb−05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2−4)を調製した(表9参照)。
パッシベーション材料(e2−1)〜(e2−4)のそれぞれを、参考実施例2−1と同様に、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークをした。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウムと2種以上のバナジウム族元素の酸化物を含むパッシベーション膜を得た。
上記で得られたパッシベーション膜を用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
次いで、パッシベーション材料(e2−1)〜(e2−4)のそれぞれを8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。
得られた結果を表9にまとめた。
熱処理(焼成)後の2種以上のバナジウム族元素の酸化物と酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(e2−1)〜(e2−4)を用いたパッシベーション膜については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。

[参考実施例2−9]
参考実施例2−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]、又は熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta−10−P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(f2−1)〜(f2−8)を調製した(表10参照)。
また、酸化アルミニウムを単独で用いたパッシベーション材料(f2−9)を調製した(表10参照)。
参考実施例2−1と同様に、パッシベーション材料(f2−1)〜(f2−9)のそれぞれをp型のシリコン基板の片面に塗布し、その後、熱処理(焼成)を行って、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。
更に、参考実施例2−1と同様に、パッシベーション材料(f2−1)〜(f2−9)のそれぞれをp型のシリコン基板の両面に塗布し、熱処理(焼成)して得られたサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表10にまとめた。
表10に示すように、パッシベーション材料中の酸化アルミニウム/酸化バナジウム又は酸化タンタルが90/10及び80/20の場合には、固定電荷密度の値にばらつきが大きく、負の固定電荷密度を安定的に得ることができなかったが、酸化アルミニウムと酸化ニオブを用いることで負の固定電荷密度を実現できることが確認できた。酸化アルミニウム/酸化バナジウム又は酸化タンタルが90/10及び80/20のパッシベーション材料を用いてCV法により測定した際には、場合によって正の固定電荷を示すパッシベーション膜となるため、負の固定電荷を安定的に示すまでには至っていないことが判る。なお、正の固定電荷を示すパッシベーション膜は、n型のシリコン基板のパッシベーション膜として使用可能である。一方、酸化アルミニウムが100質量%となるパッシベーション材料(f2−9)では、負の固定電荷密度を得ることができなかった。

[参考実施例2−10]
シリコン基板101として、ボロンをドーパントとした単結晶シリコン基板を用いて、図8に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側のみに塗布し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
次に、受光面側に、受光面反射防止膜103として、プラズマCVDでSiN膜を形成した。その後、参考実施例2−1で調製したパッシベーション材料(a2−1)を、インクジェット法により、シリコン基板101の裏面側に、コンタクト領域(開口部OA)を除いた領域に塗布した。その後、熱処理を行って、開口部OAを有するパッシベーション膜107を形成した。また、パッシベーション膜107として、参考実施例2−5で調製したパッシベーション材料(c2−1)を用いたサンプルも別途作製した。
次に、シリコン基板101の受光面側に形成された受光面反射防止膜103(SiN膜)の上に、銀を主成分とするペーストを所定のフィンガー電極及びバスバー電極の形状でスクリーン印刷した。裏面側においては、アルミニウムを主成分とするペーストを全面にスクリーン印刷した。その後、850℃で熱処理(ファイアスルー)を行って、電極(第1電極105及び第2電極106)を形成し、且つ裏面の開口部OAの部分にアルミニウムを拡散させて、BSF層104を形成して、図8に示す構造の太陽電池素子を形成した。
尚、ここでは、受光面の銀電極の形成に関しては、SiN膜に穴あけをしないファイアスルー工程を記載したが、SiN膜に初めに開口部OAをエッチング等により形成し、その後に銀電極を形成することもできる。
比較のために、上記作製工程のうち、パッシベーション膜107の形成を行わず、裏面側の全面にアルミニウムペーストを印刷し、BSF層104と対応するp層114及び第2電極と対応する電極116を全面に形成して、図5の構造の太陽電池素子を形成した。これらの太陽電池素子について、特性評価(短絡電流、開放電圧、曲線因子及び変換効率)を行った。特性評価は、JIS−C−8913(2005年度)及びJIS−C−8914(2005年度)に準拠して測定した。その結果を表11に示す。
表11より、パッシベーション膜107を有する太陽電池素子は、パッシベーション膜107を有しない太陽電素子と比較すると、短絡電流及び開放電圧が共に増加しており、変換効率(光電変換効率)が最大で0.6%向上することが判明した。

日本国特許出願第2012−160336号、第2012−218389号、第2013−011934号、第2013−040153号及び第2013−038894号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (12)

  1. 下記一般式(I)で表されるアルコキシドの少なくとも1種と、チタン化合物及びジルコニウム化合物からなる群より選択される少なくとも1種の化合物と、一般式(II)で表されるアルミニウム化合物の少なくとも1種と、溶剤と、樹脂と、を含む、太陽電池の受光面に設けられるパッシベーション層の形成のためのパッシベーション層形成用組成物。

    [一般式(I)中、Mは、Nb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。R は炭素1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。]


    [一般式(II)中、R はそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X 及びX はそれぞれ独立して酸素原子又はメチレン基を表す。R 、R 及びR はそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。]
  2. 下記一般式(I)で表されるアルコキシドの少なくとも1種と、シリコンアルコキシドと、一般式(II)で表されるアルミニウム化合物の少なくとも1種と、溶剤と、樹脂と、を含む、太陽電池の受光面に設けられるパッシベーション層の形成のためのパッシベーション層形成用組成物。


    [一般式(I)中、Mは、Nb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rは炭素1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。]


    [一般式(II)中、Rはそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。]
  3. 前記一般式(I)で表されるアルコキシドの少なくとも1種が、MがNbを含むアルコキシドである、請求項1又は請求項2に記載のパッシベーション層形成用組成物。
  4. 前記一般式(I)で表されるアルコキシドの少なくとも1種が、MがTa、V、Y又はHfを含むアルコキシドである、請求項1又は請求項2に記載のパッシベーション層形成用組成物。
  5. 前記チタン化合物及びジルコニウム化合物からなる群より選択される少なくとも1種の化合物が、少なくとも前記チタン化合物を含み、前記チタン化合物が、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンn−プロポキシド、チタンn−ブトキシド、チタンt−ブトキシド、チタンイソブトキシド、チタン(ジイソプロポキシド)ビス(アセチルアセトナート)及びチタン(テトラキス(2−エチル−1−ヘキサノラート))からなる群より選択される少なくとも1種である、請求項1に記載のパッシベーション層形成用組成物。
  6. 前記チタン化合物及びジルコニウム化合物からなる群より選択される少なくとも1種の化合物が、少なくとも前記ジルコニウム化合物を含み、前記ジルコニウム化合物が、ジルコニウムエトキシド、ジルコニウムイソプロポキシド、ジルコニウムn−プロポキシド、ジルコニウムn−ブトキシド、ジルコニウムt−ブトキシド、ジルコニウムアセチルアセトン、ジルコニウムトリフルオロアセチルアセトナート及びジルコニウムヘキサフルオロアセチルアセトナートからなる群より選択される少なくとも1種である、請求項1に記載のパッシベーション層形成用組成物。
  7. 前記シリコンアルコキシドが下記一般式(III)で表されるシリコンアルコキシドである、請求項2に記載のパッシベーション層形成用組成物。


    [一般式(III)中、R及びRはそれぞれ独立して炭素数1〜8のアルキル基を表す。mは0〜3の整数を表す。]
  8. 前記溶剤及び樹脂の総含有率が前記パッシベーション層形成用組成物の総質量中に5質量%〜98質量%である、請求項1〜請求項のいずれか1項に記載のパッシベーション層形成用組成物。
  9. 半導体基板と、前記半導体基板上の太陽電池の受光面となる側の全面又は一部に設けられる請求項1〜請求項のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物層と、を有するパッシベーション層付半導体基板。
  10. 半導体基板上の太陽電池の受光面となる側の全面又は一部に、請求項1〜請求項のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理してパッシベーション層を形成する工程と、を有するパッシベーション層付半導体基板の製造方法。
  11. p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の太陽電池の受光面となる側の全面又は一部に設けられる請求項1〜請求項のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物層であるパッシベーション層と、前記p型層及びn型層の少なくとも一方の層上に設けられる電極と、を有する太陽電池素子。
  12. p型層及びn型層がpn接合されてなる半導体基板の太陽電池の受光面となる側の全面又は一部に請求項1〜請求項のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理して、パッシベーション層を形成する工程と、前記p型層及びn型層の少なくとも一方の層上に、電極を形成する工程と、を有する太陽電池素子の製造方法。
JP2014525891A 2012-07-19 2013-07-19 パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法 Expired - Fee Related JP6330661B2 (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2012160336 2012-07-19
JP2012160336 2012-07-19
JP2012218389 2012-09-28
JP2012218389 2012-09-28
JP2013011934 2013-01-25
JP2013011934 2013-01-25
JP2013040153 2013-02-28
JP2013038894 2013-02-28
JP2013040153 2013-02-28
JP2013038894 2013-02-28
PCT/JP2013/069697 WO2014014107A1 (ja) 2012-07-19 2013-07-19 パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2014014107A1 JPWO2014014107A1 (ja) 2016-07-07
JP6330661B2 true JP6330661B2 (ja) 2018-05-30

Family

ID=49948927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014525891A Expired - Fee Related JP6330661B2 (ja) 2012-07-19 2013-07-19 パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法

Country Status (6)

Country Link
EP (1) EP2876671B1 (ja)
JP (1) JP6330661B2 (ja)
KR (1) KR20150036453A (ja)
CN (1) CN104471719A (ja)
TW (1) TWI621623B (ja)
WO (1) WO2014014107A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20125988A (fi) * 2012-09-24 2014-03-25 Optitune Oy Menetelmä n-tyypin piisubstraatin modifioimiseksi
WO2015152816A1 (en) * 2014-04-03 2015-10-08 Trina Solar Energy Development Pte Ltd A hybrid all-back-contact solar cell and method of fabricating the same
CN109304950B (zh) * 2017-07-26 2021-06-25 天津环鑫科技发展有限公司 一种硅片沟槽内丝网印刷工艺

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496398A (en) * 1982-01-20 1985-01-29 Solarex Corporation Antireflective coating composition
JPS59178778A (ja) * 1983-03-30 1984-10-11 Toshiba Corp 太陽電池及びその製造方法
JP3107287B2 (ja) 1996-03-25 2000-11-06 株式会社日立製作所 太陽電池
JP2000294817A (ja) * 1999-04-09 2000-10-20 Dainippon Printing Co Ltd 太陽電池モジュ−ル用表面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2003303984A (ja) * 2002-04-12 2003-10-24 Sharp Corp 太陽電池の製造方法およびその方法により製造する太陽電池
JP2004006565A (ja) 2002-04-16 2004-01-08 Sharp Corp 太陽電池とその製造方法
JP2004087951A (ja) * 2002-08-28 2004-03-18 Sharp Corp 太陽電池の製造方法
JP4767110B2 (ja) 2006-06-30 2011-09-07 シャープ株式会社 太陽電池、および太陽電池の製造方法
EP2201607A4 (en) * 2007-10-17 2017-12-27 Heraeus Precious Metals North America Conshohocken LLC Dielectric coating for single sided back contact solar cells
WO2010111311A2 (en) * 2009-03-23 2010-09-30 Sba Materials, Inc. New dielectric oxide films and method for making same
EP2517255B1 (en) * 2009-12-25 2019-07-03 Ricoh Company, Ltd. Field-effect transistor, semiconductor memory, display element, image display device, and system
JP5633346B2 (ja) * 2009-12-25 2014-12-03 株式会社リコー 電界効果型トランジスタ、半導体メモリ、表示素子、画像表示装置及びシステム
JP5899615B2 (ja) * 2010-03-18 2016-04-06 株式会社リコー 絶縁膜の製造方法及び半導体装置の製造方法
JP5660123B2 (ja) * 2010-03-08 2015-01-28 日本電気株式会社 構造体、配線基板および配線基板の製造方法
US8753987B2 (en) * 2010-06-08 2014-06-17 Sumitomo Metal Mining Co., Ltd. Method of manufacturing metal oxide film
JP5557662B2 (ja) * 2010-09-10 2014-07-23 日揮触媒化成株式会社 コアシェル型無機酸化物微粒子の分散液、その製造方法および該分散液を含む塗料組成物
JP5884486B2 (ja) * 2010-09-30 2016-03-15 三菱マテリアル株式会社 太陽電池の反射防止膜用組成物、太陽電池の反射防止膜、太陽電池の反射防止膜の製造方法、及び太陽電池
JP2012160336A (ja) 2011-01-31 2012-08-23 Toshiba Corp 燃料電池システムとその運転方法

Also Published As

Publication number Publication date
TW201406768A (zh) 2014-02-16
WO2014014107A1 (ja) 2014-01-23
TWI621623B (zh) 2018-04-21
JPWO2014014107A1 (ja) 2016-07-07
EP2876671A4 (en) 2016-03-02
KR20150036453A (ko) 2015-04-07
EP2876671B1 (en) 2017-11-22
EP2876671A1 (en) 2015-05-27
WO2014014107A9 (ja) 2014-06-19
CN104471719A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2014014109A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池
JP6295952B2 (ja) 太陽電池素子及びその製造方法、並びに太陽電池モジュール
WO2014014110A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
WO2014010743A1 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池
JP6350278B2 (ja) 太陽電池素子、太陽電池素子の製造方法及び太陽電池モジュール
KR102083249B1 (ko) 패시베이션층 형성용 조성물, 패시베이션층이 형성된 반도체 기판, 패시베이션층이 형성된 반도체 기판의 제조 방법, 태양 전지 소자, 태양 전지 소자의 제조 방법 및 태양 전지
JP6330661B2 (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法
JP6269484B2 (ja) 電界効果型パッシベーション層形成用組成物、電界効果型パッシベーション層付半導体基板、電界効果型パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP6295953B2 (ja) 太陽電池素子及びその製造方法、並びに太陽電池モジュール
JP6176249B2 (ja) パッシベーション層付半導体基板及びその製造方法
JP2014099622A (ja) パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees