WO2014010721A1 - 自己組織化ペプチド誘導体の製造方法 - Google Patents
自己組織化ペプチド誘導体の製造方法 Download PDFInfo
- Publication number
- WO2014010721A1 WO2014010721A1 PCT/JP2013/069124 JP2013069124W WO2014010721A1 WO 2014010721 A1 WO2014010721 A1 WO 2014010721A1 JP 2013069124 W JP2013069124 W JP 2013069124W WO 2014010721 A1 WO2014010721 A1 WO 2014010721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peptide derivative
- group
- leu
- acid
- arg
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/06034—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
- C07K5/06043—Leu-amino acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06086—Dipeptides with the first amino acid being basic
- C07K5/06095—Arg-amino acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0802—Tripeptides with the first amino acid being neutral
- C07K5/0804—Tripeptides with the first amino acid being neutral and aliphatic
- C07K5/0808—Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0819—Tripeptides with the first amino acid being acidic
Definitions
- the present invention relates to a method for producing a self-assembled peptide capable of forming a high-strength peptide gel.
- peptide gels produced from self-assembled peptide derivatives are useful as gels used in the field of regenerative medicine and surgery (Patent Document 1).
- Most preferred amino acid sequences and terminal modifications include the structural formulas: Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH 2 , and Ac-Arg-Leu
- a peptide derivative represented by -Asp-Leu-Arg-Leu-Leu-Leu-Leu-Arg-Leu-Asp-Leu-Arg-NH 2 (wherein Ac represents an acetyl group, the same shall apply hereinafter) is disclosed. .
- Examples of the use of the self-assembling peptide derivative and the gel thereof include cell culture substrates; cosmetics such as skin care products and hair care products; decubitus preparations, bone fillers, injections for cosmetic formation, and ophthalmic surgical aids. , Artificial vitreous body, artificial lens, joint lubricant, eye drops, DDS base material, hemostatic agent, etc .; wet water retention agent; desiccant; coating agent for medical devices such as contact lenses (Patent Document 1) ).
- a chemical synthesis method As a peptide synthesis method, a chemical synthesis method, an enzyme synthesis method, and a gene recombination method are generally known.
- Enzymatic synthesis has advantages such as being able to synthesize under mild reaction conditions and having few by-products.
- an enzyme synthesis method for example, a method using a metallopeptidase such as thermolysin, an aminoacyl-tRNA synthetase, an alanine ligase, or a non-ribosomal peptide synthase is known.
- a metallopeptidase such as thermolysin, an aminoacyl-tRNA synthetase, an alanine ligase, or a non-ribosomal peptide synthase is known.
- some of the enzymes used in conventional enzyme synthesis methods are expensive, and the substrate specificity is biased, so the peptide design may not be as desired. There are challenges.
- the genetic recombination method is a method of preparing DNA consisting of a nucleotide sequence encoding a target peptide and expressing it in a host cell or the like.
- a vector for synthesizing a peptide by expressing a gene As a vector for synthesizing a peptide by expressing a gene, a plasmid, a baculovirus, or the like is used depending on the type of target cell.
- a peptide to be produced may not be a desired peptide itself depending on a vector into which DNA is introduced.
- the chemical synthesis method is a method of chemically linking amino acids, and synthesis methods by a liquid phase method and a solid phase method are generally known.
- peptide solid phase synthesis method polystyrene polymer gel beads with a diameter of about 0.1 mm whose surface is modified with amino groups are used as the solid phase, and amino acid chains are extended one by one by dehydration reaction. is there.
- this synthesis method after the synthesis of the target peptide sequence is completed, the peptide is cut out from the solid surface to obtain the target substance. It is also possible to synthesize ribosomal peptides that are difficult to synthesize in bacteria, introduce non-natural amino acids such as D-forms and heavy atom substitutions, and modify peptides and protein backbones.
- the peptide solid phase synthesis method is inefficient because amino acids are linked one by one in each synthesis step, and the solid phase synthesis support is expensive and the amount of reagent used is large. Not right. Furthermore, there is a problem that it is difficult to scale up in terms of equipment.
- Patent Document 1 The structural formulas disclosed in Patent Document 1 are: Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH 2 , and Ac-Arg-Leu- Since the peptide derivative represented by Asp-Leu-Arg-Leu-Leu-Leu-Leu-Arg-Leu-Asp-Leu-Arg-NH 2 was produced using a general solid phase synthesis method, The development of an efficient production method capable of scaling up peptide derivatives at low cost has been awaited.
- the function and physical properties of peptide derivatives differ depending on the form of the salt, but these peptide derivatives are suitable for commercial production in addition to the function of dissolving in water to form a high-strength peptide gel. Therefore, physical properties such as ease of handling and storage stability have been demanded, and there has been a problem of searching for an embodiment of a salt that can satisfy these properties.
- the present inventors have found that, among various salts of the self-assembled peptide derivatives, commercial production suitability, ease of handling, and storage stability. From the above, it was found that the tetrahydrochloride of the peptide derivative is the optimum form. Further, (i) paying attention to the fact that two identical amino acid sequences represented by Arg-Leu-Asp-Leu-Arg are included in the formula of the self-assembling peptide derivative, the peptides of the amino acid sequences are commonly used.
- a salt such as a disulfate, 4 methanesulfonate or 4 trifluoroacetic acid (TFA) salt
- TFA trifluoroacetic acid
- a peptide derivative I represented by: Formula (II) (In the formula, the amino group of the N-terminal leucine and / or the carboxy group of the C-terminal leucine may be modified, and X is Ala or Leu.) are used as building blocks, which are sequentially coupled, and the side chain protecting group is deprotected with a strong acid, and further includes a terminal deprotection step, a modification step and / or a salt exchange step.
- n means a coefficient of (acid valence) ⁇ n is 4 according to the valence of the acid
- Formula (VIII) In the formula, n means a coefficient of (acid valence) ⁇ n is 4 according to the valence of the acid.
- a peptide derivative Ia in which the N-terminal of the peptide derivative I is acetylated and a peptide derivative IIa in which the C-terminal of the peptide derivative II is protected with an ester group are coupled.
- the peptide derivative Ic was further coupled with a peptide derivative Ic in which the C-terminus of the peptide derivative I was protected with an ester group, and the side-chain protecting group of the resulting peptide derivative IVb was deprotected.
- the production method according to [2] including a step of converting a terminal ester group into an amide group.
- [5] The production method according to [3] or [4], wherein the C-terminal ester of the peptide derivative IIa is a methyl ester.
- the C-terminal ester of the peptide derivative Ic is a methyl ester.
- the peptide derivative Va in which the N-terminus of the peptide derivative V is acetylated and the C-terminus of the peptide derivative VI is an ester group Coupling the peptide derivative VIa protected with, and then deprotecting the C-terminal ester to obtain the peptide derivative Ia; and / or the N-terminus of the peptide derivative V is protected with a protecting group other than an acetyl group.
- n (acid) of the peptide derivative represented by the general formula (VII) and / or the general formula (VIII) is disulfuric acid.
- Method. The “modification” in the present invention is not particularly limited. For example, N-terminal and / or C-terminal protection with a protecting group described later, N-terminal acetylation, and / or C-terminal amidation are usually used. Chemical conversions commonly used in the peptide field are listed.
- the self-assembled peptide derivative useful in the field of regenerative medicine and the surgical field can be obtained economically, in large quantities and efficiently.
- a preferred embodiment of the present invention uses a peptide derivative I represented by the general formula (I) and a peptide II represented by the general formula (II) as building blocks, which are sequentially coupled by coupling to form a side chain.
- the general formula (I) is Wherein the protecting group A and the protecting group C are preferably arginine side chain protecting groups that are stable under basic conditions and can be deprotected under strongly acidic conditions, and may be the same or different from each other. May be.
- the protective group B is preferably a protective group for the side chain of aspartic acid which is stable under basic conditions and can be deprotected under strongly acidic conditions.
- the basic condition is usually preferably pH 8 to 11
- the strongly acidic condition is usually preferably pH 1 or less, more preferably pH ⁇ 1 to 1.
- the general formula (II) is (In the formula, the amino group of the N-terminal leucine and / or the carboxy group of the C-terminal leucine may be modified, and X is Ala or Leu.) Represented by General formula (VII) (In the formula, n is a coefficient according to the valence of the acid (the valence of the acid) ⁇ n becomes 4.) And General formula (VIII) is (In the formula, n is a coefficient according to the valence of the acid (the valence of the acid) ⁇ n is 4) It is represented by
- the acid in the general formulas (VII) and (VIII) is not particularly limited and may be either an inorganic acid or an organic acid.
- inorganic acids include hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid and the like
- organic acids include acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, and citric acid.
- hydrochloric acid, sulfuric acid, methanesulfonic acid, and trifluoroacetic acid are preferable from the viewpoint of ease of handling as a peptide salt, production efficiency, and the like.
- the peptide derivative of the present invention can be synthesized by various chemical synthesis methods, but is preferably a liquid phase method from the viewpoint of ease of scale-up and economy.
- peptide means a compound in which amino acids are covalently bonded together by peptide bonds.
- a peptide consists of two or often more amino acids linked together.
- the peptide sequence is conventionally represented as the N-terminus on the left side and the C-terminus on the right side of the formula.
- amino acid means any compound comprising at least one NH 2 group and at least one carboxy group.
- the amino acid used in the present invention may be a natural amino acid or a non-natural amino acid. Natural amino acids are preferably used because they are available at low cost and facilitate peptide synthesis. Amino acid residues are abbreviated herein as follows: arginine means Arg; leucine means Leu; aspartic acid Asp; alanine means Ala.
- N-terminus of a peptide means the end of a peptide chain having a free amino group (—NH 2 ). This free amino group may be modified.
- C-terminal means a terminal of a peptide chain having a free carboxy group (—COOH). This free carboxy group may be modified.
- “coupling” means a reaction between the carboxy group of an amino acid or the C terminus of the first peptide and the amino group of another amino acid or the N terminus of the second peptide. That is, during coupling, two peptide intermediate fragments or one peptide intermediate fragment and a reactive amino acid are generally combined in an appropriate solvent, usually in the presence of an additional reagent that promotes the coupling reaction. To do.
- the additional reagent include a carboxylic acid activator described later.
- building block means a short-chain peptide derivative used for a coupling reaction at the time of peptide derivative synthesis.
- the number of amino acids constituting the short-chain peptide derivative is not particularly limited, and any peptide derivative formed by combining two or more amino acids can be suitably used as a building block.
- the building block can also be synthesized by coupling shorter peptide derivatives together.
- the short-chain peptide derivative used at this time is also referred to as a subunit hereinafter.
- peptide derivative I of general formula (I) and peptide derivative II of general formula (II) are coupled to obtain peptide derivative III of general formula (III).
- the peptide derivative IV of the general formula (IV) is synthesized by coupling the peptide derivative of the general formula (III) and the peptide derivative I of the general formula (I) and deprotecting the side chain protecting group.
- the general formula (III) is Wherein the protecting group A and the protecting group C are preferably arginine side chain protecting groups that are stable under basic conditions and can be deprotected under strongly acidic conditions, and may be the same or different from each other. May be.
- the protective group B is preferably a protective group for the side chain of aspartic acid which is stable under basic conditions and can be deprotected under strongly acidic conditions.
- the basic condition is usually preferably pH 8 to 11, and the strongly acidic condition is usually preferably pH 1 or less, more preferably pH ⁇ 1 to 1.
- X is Ala or Leu.
- the amino group of the N-terminal arginine and / or the carboxy group of the C-terminal leucine may be modified.
- the general formula (IV) is Where X is Ala or Leu.
- the subunit represented by the general formula (V) and the subunit represented by the general formula (VI) are coupled. Including the step of synthesizing.
- protecting group means that an atom (for example, nitrogen or oxygen) or a functional group (for example, amino group or carboxy group) to which it is added is protected from undesired reactions during peptide synthesis and other processing. Any kind of group to do.
- the protecting group include a protecting group for an N-terminal amino group and / or a C-terminal carboxy group, or a protecting group for a side chain functional group.
- the protecting group for the amino group is not particularly limited.
- benzyloxycarbonyl (Z) group p-chlorobenzyloxycarbonyl group, p-bromobenzyloxycarbonyl group, p-nitrobenzyloxycarbonyl group, p- Methoxybenzyloxycarbonyl group, benzhydryloxycarbonyl group, 2- (p-biphenylyl) isopropyloxycarbonyl group, 2- (3,5-dimethoxyphenyl) isopropyloxycarbonyl group, p-phenylazobenzyloxycarbonyl group, tri Aralkyloxycarbonyl type substituents or unsubstituted groups such as phenylphosphonoethyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl group (Fmoc); t-butyloxycarbonyl (Boc) group, t-amyl
- amino-protecting groups a group containing a carbonyl group, a sulfenyl group or a sulfonyl group is preferred. Allyloxycarbonyl group, t-butyloxycarbonyl (Boc) group, benzyloxycarbonyl (Z) group, 9-fluorenylmethyloxycarbonyl (Fmoc) group, 2-nitrobenzenesulfonyl (Nosyl) group, 2-nitrobenzenesulfenyl (Nps) groups and / or substituted derivatives are more preferred, and Boc groups and / or Fmoc groups are more preferred.
- the introduction and deprotection of a protecting group for an amino group can be carried out by various commonly used methods.
- the introduction of the protecting group can be carried out, for example, by a reaction with a suitable acid halide such as carbobenzoxyl chloride or a carbonic acid N-succinimidyl ester such as N- (fluorenylmethoxycarbonyloxy) succinimide.
- a suitable acid halide such as carbobenzoxyl chloride or a carbonic acid N-succinimidyl ester such as N- (fluorenylmethoxycarbonyloxy) succinimide.
- examples of the deprotection of the amino group include hydrogenolysis, treatment with dilute ammonium hydroxide or sodium hydroxide aqueous solution, treatment with sodium, treatment with sodium amide, treatment with hydrazine, or enzymatic hydrolysis.
- the Boc group can be introduced and deprotected according to a conventional method.
- it can be introduced by reacting di-tert-butyl dicarbonate (Boc 2 O) in the presence of a base such as pyridine, triethylamine, aqueous sodium hydroxide, or aqueous sodium carbonate.
- Deprotection can be carried out with organic or inorganic acids.
- the organic acid include trifluoroacetic acid (TFA), trifluoromethanesulfonic acid, formic acid, p-toluenesulfonic acid, and methanesulfonic acid.
- the inorganic acid include hydrochloric acid, phosphoric acid, hydrogen bromide, and the like. An acid, a sulfuric acid, etc. are mentioned.
- Deprotection is preferably carried out with an inorganic acid, especially HCl, preferably dissolved in an organic solvent.
- the Fmoc group can be introduced and deprotected according to a conventional method.
- it can be introduced by reacting a reagent such as fluorenylmethyl chloroformate (Fmoc-Cl) in the presence of a base such as pyridine, triethylamine, or an aqueous sodium hydrogen carbonate solution.
- a reagent such as fluorenylmethyl chloroformate (Fmoc-Cl)
- a base such as pyridine, triethylamine, or an aqueous sodium hydrogen carbonate solution.
- Deprotection can be performed by adding a DMF or THF solution of a secondary amine such as pyrrolidine, piperidine, or morpholine.
- the carboxy group can be protected by esterification (protection with an ester group) or silylation (protection with a silyl group).
- Esterification is not particularly limited, and examples thereof include lower alkyl esters such as methyl ester, ethyl ester, tert-butyl ester (t-Bu), benzyl ester, p-methoxybenzyl ester, p-nitrobenzyl ester aralkyl ester, and the like. It is done.
- the silylation is not particularly limited, and examples thereof include trialkylsilyl such as trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, i-propyl-dimethylsilyl and the like. In the present invention, it is preferably protected by esterification. More preferably, a methyl ester is used for protecting the C-terminal carboxy group of the peptide derivative, and a t-Bu ester is used for protecting the side chain carboxy group of aspartic acid.
- Esterification can be carried out according to a conventional method.
- a method of esterification using an acid catalyst or a condensing agent in alcohol can be used.
- the t-Bu ester can be esterified using a condensing agent in tert-butyl alcohol, or can be synthesized by reacting isobutene with a sulfuric acid catalyst.
- benzyl ester can be introduced by reacting carboxy group with benzyl bromide as cesium salt. Deprotection of the carboxy group can be generally performed by hydrolysis, saponification, hydrogenolysis, enzymatic hydrolysis, or the like.
- the protection of the side chain of arginine used in the present invention will be described. Since the guanidino group on the side chain of arginine has strong nucleophilicity, it can be protected with an appropriate protecting group such as a sulfonyl group, nitro group, tosyl group, carbonyl group, etc. Is preferred.
- the sulfonyl group is not particularly limited.
- Pbf 2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl
- p-Ts p-toluenesulfonyl
- Mtr 4-methoxy-2,3,6-trimethylbenzenesulfonyl
- Pmc 2, 2, 5, 7, 8- A pentamethylchroman-6-sulfonyl
- 2-methoxybenzenesulfonyl group and the like can be used.
- N-terminal acetylation refers to modification of the N-terminus with an acetyl group
- conversion to the N-terminal acetyl group refers to acetyl protecting the N-terminal amino group. This means that a protecting group other than a group is deprotected and then modified with an acetyl group.
- the acetyl group can be introduced according to a conventional method.
- triethylamine, pyridine, or hydroxylated in an organic solvent such as tetrahydroxyfuran (THF), dichloromethane (DCM), chloroform, carbon tetrachloride, ether, dioxane, benzene, toluene, N, N-dimethylformamide (DMF), etc.
- organic solvent such as tetrahydroxyfuran (THF), dichloromethane (DCM), chloroform, carbon tetrachloride, ether, dioxane, benzene, toluene, N, N-dimethylformamide (DMF), etc.
- an acetylating reagent such as acetyl chloride or acetic anhydride in the presence of a base such as an aqueous sodium solution.
- peptide synthesis and / or coupling can be performed in the presence of a carboxylic acid activator.
- Carboxylic acid activators useful in the present invention include carbodiimides, carbonyldiimidazoles, phosphonium salts, uronium salts, guanidinium salts, acyl halides, azides, symmetrical acid anhydrides, mixed acid anhydrides, or active esters. . Such carboxylic acid activators can be used before the coupling step or in situ before the introduction of peptide derivatives having free amino groups.
- the carboxylic acid activator is not particularly limited. Specifically, for example, N, N′-dicyclohexylcarbodiimide (DCC), N-ethyl-N ′-(3-dimethylaminopropyl) carbodiimide (EDC), 1- Carbodiimide reagents such as (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI also referred to as “WSC”); 1,1′-carbonyldiimidazole (CDI), diisopropylcarbodiimide (DIPCDI), diisopropylcarbodiimide ( DIC) or carbodiimidazole reagents such as derivatives thereof; (benzotriazol-1-yloxy) tris- (dimethylamino) phosphonium (BOP), benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphine
- the carboxylic acid activator is preferably one or more selected from the group consisting of carbodiimide, carbonyldiimidazole, acyl halide, phosphonium salt, uronium salt and guanidinium salt, more preferably carbodiimide.
- the coupling reaction is generally carried out in the presence of a base as an additional reagent, and in a preferred embodiment of the present invention, the coupling reaction is carried out in the presence of a base.
- the base may be at least one selected from the group consisting of tertiary and heterocyclic aromatic amines such as N-methylmorpholine (NMM), pyridine, triethylamine (TEA), diisopropylethylamine (DIPEA) and the like. preferable. From the viewpoint of reaction efficiency, NMM and / or TEA are more preferable.
- the above peptide coupling reaction is carried out in a polar organic solvent.
- the polar organic solvent that can be used is not particularly limited, and examples thereof include N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO), and ethyl acetate. (AcOEt), dichloromethane (DCM), pyridine, chloroform, acetonitrile, dimethoxyethane, dioxane, tetrahydrofuran (THF) and the like, and a mixture thereof can also be used. From the viewpoint of reaction efficiency, DMF and / or THF are more preferable.
- the coupling reaction can be generally carried out at a temperature of from ⁇ 45 ° C. to + 45 ° C. In order to increase the efficiency of the reaction, it is preferably carried out at a temperature of ⁇ 25 ° C. to + 35 ° C., more preferably ⁇ 5 ° C. to + 25 ° C.
- the peptide derivative Ia in which the N-terminus of the peptide derivative I represented by the general formula (I) is acetylated Peptide derivative IIa represented by (II) is coupled with peptide derivative IIa in which the C-terminus of the peptide derivative II is protected with an ester group to synthesize peptide derivative IIIa, and then deprotecting the C-terminus of peptide derivative IIIa, It is preferable that the process of obtaining the peptide derivative III represented by general formula (III) is included.
- the ester group at the C-terminal of peptide derivative IIa is not particularly limited, and any ester group can be selected, and methyl ester is preferable from the viewpoint of ease of handling.
- the peptide derivative IV represented by the general formula (IV) in the preparation of the peptide derivative IV represented by the general formula (IV), the peptide derivative III represented by the general formula (III) and the peptide represented by the general formula (I)
- the peptide derivative IVa was synthesized by coupling with the peptide derivative Ib in which the C-terminal of the derivative I was amidated, and then the side chain protecting group of the peptide derivative IVa was deprotected, thereby being represented by the general formula (IV). To obtain a peptide derivative IV.
- the peptide derivative III represented by the general formula (III) and the peptide represented by the general formula (I) By synthesizing peptide derivative IVb by coupling peptide derivative Ic in which the C-terminus of derivative I is protected with an ester group, deprotection of the side chain protecting group of peptide derivative IVb and amidation of the C-terminus And a step of obtaining a peptide derivative IV represented by the general formula (IV).
- the ester group at the C-terminal of the peptide derivative Ic is not particularly limited, and any ester group can be selected. From the viewpoint of ease of handling and the like, methyl ester is preferable.
- the N-terminus of the peptide derivative V represented by the general formula (V) Is coupled to a peptide derivative VIa of the peptide derivative VI represented by the general formula (VI) and the peptide derivative VIa in which the C-terminal of the peptide derivative VI is protected with an ester group.
- a step of obtaining the peptide derivative Ia by deprotecting the terminal is included.
- the ester group at the C-terminal of peptide derivative VIa is not particularly limited, and any ester group can be selected, and methyl ester is preferable from the viewpoint of ease of handling.
- the peptide derivative V represented by the general formula (V) Coupling a peptide derivative Vb in which the N-terminal amino group is protected with a protecting group other than an acetyl group and a peptide derivative VIa in which the C-terminal of the peptide derivative VI represented by the general formula (VI) is protected with an ester group
- the peptide derivative Ia is obtained by converting the resulting peptide derivative into an N-terminal acetyl group (deprotection after deprotection of the N-terminal protecting group) and deprotecting the C-terminal.
- the protecting group other than the N-terminal acetyl group affects the protecting group A, protecting group B, protecting group C, and ester group (when the C-terminal deprotection is performed after conversion to the N-terminal acetyl group).
- the protecting group is not particularly limited as long as it can be deprotected without losing, but is preferably Fmoc group, Boc group, benzyloxycarbonyl (Z) group, allyloxycarbonyl group, 2-nitrobenzenesulfonyl (Nosyl) group, and 2-nitrobenzenesulfuric group.
- the ester group at the C-terminal of peptide derivative VIa is not particularly limited, and any ester group can be selected, and methyl ester is preferable from the viewpoint of ease of handling.
- the order of converting the N-terminal acetyl group and deprotecting the C-terminal of the obtained peptide derivative is not particularly limited, and after converting the N-terminal to an acetyl group, the C-terminal is deprotected. Alternatively, after deprotecting the C-terminal, the N-terminal may be converted to an acetyl group.
- the N-terminus of peptide derivative V represented by general formula (V) Obtained by coupling peptide derivative Vb protected with a protecting group other than acetyl group and peptide derivative VIb in which the C-terminal of peptide derivative VI represented by general formula (VI) is amidated
- a step of obtaining the peptide derivative Ib by deprotecting the N-terminus of the peptide derivative is included.
- the protecting group other than the N-terminal acetyl group is not particularly limited as long as it is a protecting group that can be deprotected without affecting the protecting group A, protecting group B, protecting group C, and amide group.
- it is preferably selected from the group consisting of Fmoc group, Boc group, benzyloxycarbonyl (Z) group, allyloxycarbonyl group, 2-nitrobenzenesulfonyl (Nosyl) group and 2-nitrobenzenesulfenyl (Nps) group
- Fmoc group Boc group
- Z benzyloxycarbonyl
- Z benzyloxycarbonyl
- allyloxycarbonyl group 2-nitrobenzenesulfonyl
- Nps 2-nitrobenzenesulfenyl
- the peptide derivative represented by the general formula (V) A peptide derivative Vb in which the amino group at the N-terminal of V is protected with a protecting group other than an acetyl group; and a peptide derivative VIa in which the C-terminal of the peptide derivative VI represented by the general formula (VI) is protected with an ester group.
- the step of obtaining the peptide derivative Ic by deprotecting the N-terminus of the obtained peptide derivative is included.
- the protecting group other than the N-terminal acetyl group is not particularly limited as long as it is a protecting group that can be deprotected without affecting the protecting group A, protecting group B, protecting group C, and ester group. From the viewpoint, it is preferably selected from the group consisting of Fmoc group, Boc group, benzyloxycarbonyl (Z) group, allyloxycarbonyl group, 2-benzenesulfonyl (Nosyl) group, and 2-nitrobenzenesulfenyl (Nps) group. One or more, more preferably Fmoc group and / or Boc group.
- the ester group at the C-terminal of peptide derivative VIa is not particularly limited, and any ester group can be selected, and methyl ester is preferable from the viewpoint of ease of handling.
- a salt of a peptide derivative obtained after deprotection of an amino acid side chain protecting group such as a disulfate salt, a 4TFA salt, or a 4-methanesulfonate salt (a peptide represented by the general formula VII or VIII)
- an amino acid side chain protecting group such as a disulfate salt, a 4TFA salt, or a 4-methanesulfonate salt
- Derivatives is preferably salt-exchanged to the tetrahydrochloride salt.
- a salt (generally, a TFA + scavenger (deprotecting protecting group scavenger) obtained by a combination of reagents used for deprotection
- the form of the peptide derivative of formula VII or VIII is determined.
- the weight ratio is (82 to 90) / (2 to 6) / (3 to 12) / (2 to 4). / (2-4) is desirable, and when TFA / methanesulfonic acid / triisopropylsilane is used, the weight ratio should be (87-90) / (2-6) / (5-8). Is desirable.
- TFA / 1,2-ethanedithiol / phenol / triisopropylsilane / thioanisole 2 to 7 parts by weight of 1,2-ethanediol and 3 to 15 parts of phenol with respect to 100 parts by weight of TFA. Parts by weight, preferably 2 to 5 parts by weight of triisopropylsilane, and 2 to 5 parts by weight of thioanisole.
- TFA / methanesulfonic acid / triisopropylsilane methane is added to 100 parts by weight of TFA. Desirably, 2 to 7 parts by weight of sulfonic acid and 5 to 10 parts by weight of triisopropylsilane are desirable.
- the salt exchange method can also be carried out by directly adding hydrochloric acid to the peptide derivative subjected to salt exchange, or by reacting the peptide derivative subjected to salt exchange with hydrochloric acid in the presence of a solvent.
- a solvent either a protic polar solvent or an aprotic organic solvent can be used.
- a protic polar solvent Water, a secondary or tertiary alcohol, an acetic acid, formic acid, etc. are mentioned.
- the aprotic polar solvent is not particularly limited, but N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), dichloromethane (DCM) ), Chloroform, acetonitrile, dimethoxyethane, dioxane, tetrahydrofuran (THF), ether and the like.
- tetrahydrochloride in the salt exchange reaction in the final step, tetrahydrochloride is effectively obtained by coexisting an organic solvent instead of simply reacting with hydrochloric acid.
- the solvent used is preferably an aprotic polar solvent, more preferably THF (tetrahydrofuran), from the viewpoint of the efficiency of the salt exchange reaction.
- the hydrochloric acid / organic solvent is preferably 80/20 to 60/40 by weight.
- the concentration of hydrochloric acid used in this embodiment is not particularly limited, and can be any concentration, for example, 0.05 to 5N.
- the reaction product can be isolated and purified by a purification method such as extraction, crystallization, freeze-drying, spray-drying, sedimentation or chromatography (eg, thin layer or column). Isolation and purification by precipitation or crystallization is preferred.
- at least one intermediate peptide or final product is isolated and purified by precipitation or crystallization.
- most intermediates and final products are isolated and purified by precipitation or crystallization, if desired.
- Ac is an acetyl group
- -OMe is a methyl ester group
- Ot-Bu is a tertiary (tert-) butyl ester group
- Pbf is 2, 2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl group
- MsOH is methanesulfonic acid
- TFA is trifluoroacetic acid
- EDC is N-ethyl-N ′-(3-dimethyl Aminopropyl) carbodiimide
- NMM is N-methylmorpholine
- TEA is triethylamine
- MeOH is methanol
- t-BuOH is tert-butyl alcohol
- IPA is isopropyl alcohol
- MTBE is methyl-t-butyl ether
- Tetrahydrofuran DMF is N, N-dimethylformamide
- CPME is cyclope Chill
- Peptide derivative IVb Synthesis of Reaction vessel 200mL, Cl - ⁇ H 2 + -Arg (Pbf) -Leu-Asp (Ot-Bu) -Leu-Arg (Pbf) -OMe ( hydrochloride of the peptide derivatives Ic) 2.50 g (1.9 mmol ), 341 mg (2.52 mmol) of HOBt were charged and suspended in THF (19.9 mL). It cooled in the ice bath, 1.42 g (6.48 mmol) of EDC * HCl was added, and 1.39 mL (12.6 mmol) of NMM was added dropwise.
- Example 8 Peptide derivative tetrahydrochloride by salt exchange reaction Preparation.
- a 50 mL reaction vessel was charged with 0.18 g (0.085 mmol) of Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH 2 .4TFA. .3N Hydrochloric acid 12.4mL (3.72mmol) and THF (12mL) were added and shaken at room temperature. Centrifugation was performed and the supernatant was removed. After adding THF (9 mL), shaking, and allowing to stand, the supernatant was removed.
- the separated organic layer was washed successively with 1N hydrochloric acid (88 mL) and clean water (88 mL), and then the organic layer was concentrated with an evaporator. To the residue were added MeOH (58.7 mL), clean water (29.4 mL), MTBE (58.7 mL), n-heptane (58.7 mL), and the mixture was dissolved and then separated. The lower layer was washed twice with a mixed solution (117.4 mL) of MTBE / heptane (1/1 (v / v)), and then MeOH was distilled off under reduced pressure.
- the reaction mixture was partitioned by adding 9% brine (1500 mL) and ethyl acetate (3000 mL), then 7% multilayer water (1500 mL ⁇ twice), clean water (1500 mL), 1N hydrochloric acid (1500 mL), clean water ( The organic layer was washed in the order of 1500 mL ⁇ 3 times). After concentration under reduced pressure, CPME (1500 mL) was added to the concentrated residue, followed by displacement concentration to obtain a CPME solution of Boc-Ala-Leu-OMe. To this, 3300 mL (6.60 mol) of 2M HCl / CPME solution was added and stirred overnight at room temperature.
- the reaction mixture was partitioned by adding 9% brine (1800 mL) and isopropyl acetate (3600 mL), then 7% multilayer water (1800 mL ⁇ twice), clean water (1800 mL), 1N hydrochloric acid (1800 mL), clean water ( The organic layer was washed in the order of 1800 mL ⁇ 3 times. The organic layer was filtered and the filtrate was concentrated. The concentrated residue was recrystallized from IPA (1000 mL), and the crystal collected by filtration was dissolved in a mixed solution of MTBE / IPA (9/1) (4800 mL), and insoluble matters were filtered off.
- the self-assembled peptide derivative of the present invention thus produced is used according to a known technical level.
- a self-assembled peptide derivative useful in the field of regenerative medicine and the surgical field can be produced efficiently at low cost. It is easy to scale up.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
[1]一般式(IX)
一般式(X)
[2]一般式(I)
で表されるペプチド誘導体Iと、
一般式(II)
で表されるペプチド誘導体IIとを、ビルディングブロックとして用い、これらを順次カップリングし、側鎖保護基を強酸で脱保護し、さらに末端の脱保護工程、修飾工程及び/又は塩交換工程を含んでもよい各工程よりなる、
一般式(VII)
又は、
一般式(VIII)
で表されるペプチド誘導体の製造方法。
[3]前記ペプチド誘導体IのN末端がアセチル化されているペプチド誘導体Iaと、前記ペプチド誘導体IIのC末端がエステル基で保護されているペプチド誘導体IIaとをカップリングさせ、生じたペプチド誘導体IIIaのC末端を脱保護した後に、さらに前記ペプチド誘導体IのC末端がアミド基であるペプチド誘導体Ibとカップリングさせ、得られたペプチド誘導体IVaの側鎖保護基を脱保護する工程を含む前記[2]に記載の製造方法。
[4]前記ペプチド誘導体IのN末端がアセチル化されているペプチド誘導体Iaと、前記ペプチド誘導体IIのC末端がエステル基で保護されているペプチド誘導体IIaとをカップリングさせ、生じたペプチド誘導体IIIaのC末端を脱保護した後に、さらに前記ペプチド誘導体IのC末端がエステル基で保護されているペプチド誘導体Icとカップリングさせ、得られたペプチド誘導体IVbの側鎖保護基を脱保護した後にC末端エステル基をアミド基へと変換する工程を含む前記[2]に記載の製造方法。
[5]前記ペプチド誘導体IIaのC末端エステルがメチルエステルである前記[3]又は[4]に記載の製造方法。
[6]前記ペプチド誘導体IcのC末端エステルがメチルエステルである、前記[4]に記載の製造方法。
[7]一般式(V)
で表されるペプチド誘導体Vと、
一般式(VI)
で表されるペプチド誘導体VIとをカップリングさせ、そのカップリング体のN末端アルギニンのアミノ基及び/又はC末端アルギニンのカルボキシ基の脱保護を行う工程及び/又は修飾を行う工程を含んでいてもよい、前記ペプチド誘導体Iを得る工程を含む前記[3]~[6]のいずれか1項に記載の製造方法。
[8]前記保護基A及び前記保護基Cが、Pbf(2,2,4,6,7-ペンタメチル-2,3-ジヒドロベンゾフラン-5-スルホニル)基である前記[3]~[7]のいずれか1項に記載の製造方法。
[9]前記保護基Bが、t-ブチルエステルである前記[3]~[8]のいずれか1項に記載の製造方法。
[10]前記ペプチド誘導体IのN末端がアセチル化されているペプチド誘導体Iaの調製において、ペプチド誘導体VのN末端がアセチル化されているペプチド誘導体Vaと、前記ペプチド誘導体VIのC末端がエステル基で保護されているペプチド誘導体VIaをカップリングさせ、その後C末端エステルを脱保護してペプチド誘導体Iaを得る工程;及び/又は、前記ペプチド誘導体VのN末端がアセチル基以外の保護基で保護されているペプチド誘導体Vbと、前記ペプチド誘導体VIaとのカップリング後に、N末端をアセチル基に変換、並びにC末端エステルを脱保護してペプチド誘導体Iaを得る工程を含む前記[7]~[9]のいずれか1項に記載の製造方法。
[11]前記ペプチドVIaのC末端エステル基がメチルエステルである、前記[10]に記載の製造方法。
[12]前記ペプチド誘導体IのC末端がアミド化されているペプチド誘導体Ibの調製において、前記ペプチド誘導体VのN末端がアセチル基以外の保護基で保護されているペプチド誘導体Vbと、前記ペプチド誘導体VIのC末端がアミド化されているペプチド誘導体VIbとをカップリングさせ、その後N末端を脱保護してペプチド誘導体Ibを得る工程を含む、前記[7]~[9]のいずれか1項に記載の製造方法。
[13]前記ペプチド誘導体IのC末端がエステル基で保護されたペプチド誘導体Icの調製において、前記ペプチド誘導体VのN末端がアセチル基以外の保護基で保護されているペプチド誘導体Vbと、前記ペプチド誘導体VIのC末端がエステル基で保護されたペプチド誘導体VIaとをカップリングさせ、その後N末端を脱保護してペプチド誘導体Icを得る工程を含む、前記[7]~[9]のいずれか1項に記載の製造方法。
[14]一般式(VII)
及び/又は、一般式(VIII)
で表されるペプチド誘導体を、有機溶媒存在下塩酸で処理して、塩交換する工程を含む一般式(XI)
[15]前記有機溶媒が、THF(テトラヒドロフラン)である前記[14]に記載の製造方法。
[16]一般式(VII)及び/又は一般式(VIII)で表されるペプチド誘導体のn(酸)が、2硫酸である前記[2]~[15]のいずれか1項に記載の製造方法。
なお、本発明における「修飾」とは、特に限定されないが、例えば、後述する保護基によるN末端及び/又はC末端の保護、N末端のアセチル化、及び/又はC末端のアミド化等の通常のペプチド分野で常用される化学変換が挙げられる。
ここで、一般式(I)は、
一般式(II)は、
で表され、
一般式(VII)は、
で表され、及び、
一般式(VIII)は、
で表される。
また、一般式(IV)は、
本発明において、アミノ基の保護基は特に限定されず、例えばベンジルオキシカルボニル(Z)基、p-クロロベンジルオキシカルボニル基、p-ブロモベンジルオキシカルボニル基、p-ニトロベンジルオキシカルボニル基、p-メトキシベンジルオキシカルボニル基、ベンズヒドリルオキシカルボニル基、2-(p-ビフェニリル)イソプロピルオキシカルボニル基、2-(3,5-ジメトキシフェニル)イソプロピルオキシカルボニル基、p-フェニルアゾベンジルオキシカルボニル基、トリフェニルホスホノエチルオキシカルボニル基又は9-フルオレニルメチルオキシカルボニル基(Fmoc)等のアラルキルオキシカルボニルタイプの置換基又は非置換基;t-ブチルオキシカルボニル(Boc)基、t-アミルオキシカルボニル基、ジイソプロピルメチルオキシカルボニル基、イソプロピルオキシカルボニル基、エチルオキシカルボニル基、アリルオキシカルボニル基、2-メチルスルホニルエチルオキシカルボニル基又は2,2,2-トリクロロエチルオキシカルボニル基等のアルキルオキシカルボニルタイプの置換基又は非置換基;シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル基、アダマンチルオキシカルボニル基又はイソボルニルオキシカルボニル基等のシクロアルキルオキシカルボニルタイプの基、及びベンゼンスルホニル基、p-トルエンスルホニル基、メシチレンスルホニル基、メトキシトリメチルフェニルスルホニル基、2-ニトロベンゼンスルホニル基、2-ニトロベンゼンスルフェニル基、4-ニトロベンゼンスルホニル基又は4-ニトロベンゼンスルフェニル基等のヘテロ原子を含有する基を挙げることができる。
カルボキシ基の保護は、一般に、エステル化(エステル基による保護)又はシリル化(シリル基による保護)等により実施することができる。エステル化は特に限定されないが、例えばメチルエステル、エチルエステル、tert-ブチルエステル(t-Bu)等の低級アルキルエステル、又はベンジルエステル、p-メトキシベンジルエステル、p-ニトロベンジルエステルアラルキルエステル等が挙げられる。シリル化は、特に限定されないが、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、i-プロピル-ジメチルシリル等のトリアルキルシリル等が挙げられる。本発明においては、好ましくはエステル化により保護する。より好ましくは、ペプチド誘導体のC末端のカルボキシ基の保護には、メチルエステルを、アスパラギン酸の側鎖のカルボキシ基の保護には、t-Buエステルを、それぞれ用いる。
カルボキシ基の脱保護は、一般的に、加水分解、ケン化、水素化分解又は酵素的加水分解等によって行うことができる。
アルギニンの側鎖のグアニジノ基は求核性が強いため、電子求引基であるスルホニル基、ニトロ基、トシル基、カルボニル基等の適当な保護基により保護することができ、特にスルホニル基による保護が好ましい。スルホニル基としては、特に限定されないが、例えば、2,2,4,6,7-ペンタメチル-2,3-ジヒドロベンゾフラン-5-スルホニル(Pbf)基、p-トルエンスルホニル(p-Ts)基、4-メトキシ-2,3,6-トリメチルベンゼンスルホニル(Mtr)基(M.Fujino et al., Chem.Pharm.Bull., 29,2825 (1981))、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル(Pmc)基(R.Ramage at al., Tetrahedron Lett., 28, 2287 (1987))、2-メトキシベンゼンスルホニル基等を用いることができる。本発明においては、Pbf基を用いることが好ましい。
300mLの反応容器に、Cl-・H2 +-Leu-Ala-Leu-OMe(ペプチド誘導体IIa(X=Ala)の塩酸塩)2.69g(7.3mmol)とHOBt 1.05g(7.8mmol)を仕込み、THF(38.2mL)に懸濁させた。この懸濁液に、EDC・HCl 1.96g(10.2mmol)を加え、氷浴にて冷却しながらNMM2.52g(24.9mmol)を滴下した。Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OH(ペプチド誘導体Ia)7.65g(6mmol)をDMF(15.3mL)とTHF(22.9mL)の混合溶媒に溶解し、この溶液を先の反応懸濁液に氷浴にて冷却しながら滴下した。氷浴にて冷却しながら終夜撹拌し、0.5N塩酸(38mL)、THF(74mL)、MTBE(46mL)を加え、室温で分散した後、吸引ろ過、真空乾燥を行い、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-OMe(ペプチド誘導体IIIa)8.39gを白色粉末として得た(Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OH(ペプチド誘導体Ia)からの収率88%)。
1H NMR(400 MHz, DMSO-d6)δ ppm: 0.7-0.9(m, 24 H); 1.19(d, J = 7.1 Hz, 3 H); 1.33(s, 9 H); 1.3-1.8(m, 32 H); 1.84(s, 3 H); 2.00(s, 6 H); 2.42(s, 6 H); 2.48(s, 6 H); 2.4-2.6(m, 1 H); 2.6-2.8(m, 1 H); 2.96(s, 4 H); 3.02(br. s, 4 H); 3.60(s, 3 H); 4.1-4.4(m, 7 H); 4.56(q, J = 7.3 Hz, 1 H); 6.39, 6.65(br. s×2, 6 H); 7.68(d, J = 7.8 Hz, 1 H); 7.78(d, J = 8.4 Hz, 1 H); 7.9-8.1(m, 4 H); 8.11(d, J = 7.5 Hz, 1 H); 8.27(d, J = 8.0 Hz, 1 H).
500mLの反応容器に、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-OMe(ペプチド誘導体IIIa)7.93g(5mmol)、上水(71.4mL)、t-BuOH(238mL)を仕込んだ。室温にて1N 水酸化ナトリウム水溶液25mL(25mmol)を滴下した。室温で終夜撹拌した後、1N 塩酸(79.3mL)を滴下した。t-BuOHを減圧留去し、残渣にMTBE(123.1mL)、THF(79.3mL)、酢酸エチル(23.8mL)を加え、吸引ろ過を行った。シリカゲルカラムクロマトグラフィーで精製し、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-OH 7.48gを白色粉末として得た(収率94%)。
1H NMR(400 MHz, DMSO-d6)δ ppm: 0.7-0.9(m, 24 H); 1.19(d, J = 7.0 Hz, 3 H); 1.33(s, 9 H); 1.3-1.7(m, 32 H); 1.84(s, 3 H); 2.00(s, 6 H); 2.42(s, 6 H); 2.48(s, 6 H); 2.4-2.6(m, 1 H); 2.6-2.8(m, 1 H); 2.96(s, 4 H); 2.9-3.1(m, 4 H); 4.1-4.4(m, 7 H); 4.55(dd, J1 = 14.5 Hz, J2 = 7.9 Hz, 1 H); 6.42, 6.79(br. s×2, 6 H); 7.68(d, J = 8.1 Hz, 1 H); 7.80(d, J = 7.8 Hz, 1 H); 7.8-8.1(m, 5 H); 8.27(d, J = 7.9 Hz, 1 H).
100mLの反応容器に、Cl-・H2 +-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体Ibの塩酸塩)1.00g(0.791mmol)、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-OH 1.51g(0.956mmol)、DMF(10mL)、HOBt 0.13g(0.96mmol)、EDC・HCl 0.30g(1.6mmol)、THF(18mL)を加え、氷浴にて冷却した。氷浴にて冷却、撹拌しながらTEA 0.33mL(2.4mmol)を添加した。氷浴にて冷却下、1週間撹拌した。0.5N塩酸(5mL)、上水(15mL)、MTBE(10mL)を添加し、室温下撹拌後静置、分液した。有機層を減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィーで精製し、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体IVa)1.28gを白色粉末として得た(Cl-・H2 +-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体Ibの塩酸塩)からの収率58%)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.7-0.9(m, 36 H); 1.23(d, J = 7.2 Hz, 3 H); 1.3-1.9(m, 76 H); 1.88(s, 3 H); 1.9-2.1(m, 12 H); 2.4-2.45(m, 12 H); 2.45-2.5(m, 12 H); 2.5-2.6(m, 2 H); 2.70(dd, J1 = 17.9 Hz, J2 = 6.9 Hz, 2 H); 2.9-3.0(m, 8 H); 3.02(br. s, 8 H); 4.0-4.3(m, 11 H); 4.4-4.6(m, 2 H); 6.43, 6.72(br. s×2, 12 H); 6.87(s, 1 H); 7.00(br. s, 1 H); 7.07(br. s, 1 H); 7.65(t, J = 7.4 Hz, 1 H); 7.7-7.9(m, 3 H); 7.82(d, J = 6.8 Hz, 2 H); 7.9-8.1(m, 3 H); 8.0-8.2(m, 2 H); 8.17(d, J = 7.2 Hz, 1 H)。MS(ESI)m/z: 1392.7([M+2H]2+).
一般式(IX)
500mLの反応容器に、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体IVa)7.19g(2.58mmol)を仕込み、TFA 52mL(0.67mol)、上水(2.7mL)を加えた。室温下 1.5時間撹拌し、減圧濃縮した。残渣(61.75g)を撹拌しながら、MTBE(217mL)を加えて固体を析出させた。吸引ろ過、真空乾燥を行い、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・2H2SO4 4.71gを類白色粉末として得た(収率98%)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.8-0.9(m, 36 H); 1.19(d, J = 6.8 Hz, 3 H); 1.3-1.8(34 H); 1.87(s, 3 H); 2.4-2.6(m, 2 H); 2.6-2.8(m, 2 H); 3.09(d, J = 6.0 Hz, 8 H); 4.1-4.4(m, 11 H); 4.5-4.6(m, 2 H), 6.5-8.3(m, 31 H).
一般式(VII)で表されるペプチド誘導体の4メタンスルホン酸塩
30mLの反応容器に、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体IVa)0.54g(0.19mmol)を仕込み、TFA 4.0mL(52mmol)、MsOH 0.10mL(1.3mmol)、トリイソプロピルシラン 0.20mL(0.97mmol)の混合物を加えた。室温下2.1時間撹拌し、減圧濃縮した。残渣(2.76g)を撹拌しながら、MTBE(14mL)を加えて固体を析出させた。吸引ろ過、乾燥を行い、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・4MsOH 0.46gを淡黄色粉末として得た(収率は定量的)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.8-0.9(m, 36 H); 1.21(d, J = 6.8 Hz, 3 H); 1.3-1.8(34 H); 1.88(s, 3 H); 2.38(s, 12 H); 2.4-2.6(m, 2 H); 2.7-2.8(m, 2 H); 3.09(d, J = 5.6 Hz, 8 H); 4.1-4.6(m, 13 H); 4.5-4.6(m, 2 H), 6.6-8.3(m, 31 H).
100mLの反応容器に、Cl-・H2+-Leu-Leu-Leu-OMe(ペプチド誘導体IIa(X=Leu)の塩酸塩)1.14g(2.79mmol)とHOBt 0.40g(3.0mmol)を仕込み、THF(5mL)に懸濁させた。この懸濁液に、EDC・HCl 0.75g(3.9mmol)を加え、氷浴にて冷却しながらNMM 1.04mL(9.46mmol)を滴下した。Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OH(ペプチド誘導体Ia)2.92g(2.29mmol)をDMF(8.2mL)とTHF(12.1mL)の混合溶媒に溶解し、この溶液を先の反応懸濁液に氷浴にて冷却しながら滴下した。室温に上げながら3日間撹拌した。0.5N 塩酸(19mL)、THF(19mL)を加えて、吸引ろ過、乾燥を行い、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Leu-Leu-OMe(ペプチド誘導体IIIa) 2.10gを淡黄色粉末として得た(収率46%)。
1H NMR(400 MHz, DMSO-d6)δ ppm: 0.8-1.0(m, 30 H); 1.37(s, 9 H); 1.44(s, 12 H); 1.2-1.8(m, 23 H); 1.88(s, 3 H); 2.04(s, 6 H); 2.46(s, 6 H); 2.57(s, 6 H); 2.4-2.6(m, 1 H); 2.71(dd, J1 = 16.2 Hz, J2 = 6.2 Hz, 1 H); 3.00(s, 4 H); 3.0-3.1(m, 4 H); 3.63(s, 3 H); 4.1-4.4(m, 7 H); 4.59(dd, J1 = 14.4 Hz, J2 = 7.6 Hz, 1 H); 6.42, 6.66(br. s×2, 6 H); 7.74(d, J = 8.4 Hz, 1 H); 7.81(d, J = 8.0 Hz, 1 H); 7.87(d, J = 8.8 Hz, 1 H); 7.96(d, J = 7.6 Hz, 1 H); 7.9-8.1(m, 2 H); 8.15(d, J = 7.6 Hz, 1 H); 8.32(d, J = 8.0 Hz, 1 H).
50mLの反応容器に、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Leu-Leu-OMe(ペプチド誘導体IIIa) 1.20g(0.737mmol)のt-BuOH(10.3mL)溶液を仕込み、上水(8.5mL)を加えた。氷浴にて冷却しながら水酸化リチウム一水和物 45.76mg(1.090mmol)の上水(2.8mL)溶液を添加し、氷浴にて冷却しながら1週間撹拌した。上清をデカンテーションで除き、上水(14.3mL)、1N 塩酸(1.1mL)、t-BuOH(3mL)を加えて吸引ろ過、乾燥してAc-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Leu-Leu-OHの白色粉末を得た。これを50mL反応容器に仕込み、Cl-・H2 +-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体Ibの塩酸塩) 0.93g(0.73mmol)、DMF(8.3mL)、HOBt 97.82mg(0.7239mmol)、EDC・HCl 0.36g(1.9mmol)、THF(14.5mL)を加え氷浴にて冷却した。氷浴にて冷却、撹拌しながらTEA 0.37mL(2.7mmol)を添加した。氷浴にて冷却下、終夜撹拌した。0.5N 塩酸(3.6mL)、上水(10mL)、MTBE(7.2mL)を添加し、室温下撹拌後静置、分液した。有機層を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製して、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Leu-Leu-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体IVa)0.65 gを類白色非晶質固体として得た(Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Leu-Leu-OMe(ペプチド誘導体IIIa)から2工程での収率31%)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.7-0.9(m, 42 H); 1.3-1.8(m, 73 H); 1.88(s, 3 H); 1.9-2.1(m, 12 H); 2.4-2.5(m, 24 H); 2.6-2.8(m, 4 H); 2.9-3.0(m, 8 H); 2.9-3.1(br. s, 8 H); 4.0-4.8(m, 13 H); 6.40, 6.63(br. s×2, 12 H); 7.0-8.4(m, 15 H).
50mLの反応容器に、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Leu-Leu-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体IVa)0.78g(0.28mmol)を仕込み、TFA 5.7mL(74mmol)、上水(0.29mL)を加えた。室温下 1.9時間撹拌後、MTBE(15mL)を加えて固体を析出させた。室温下 1.5時間撹拌後、吸引ろ過を行い、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Leu-Leu-Arg-Leu-Asp-Leu-Arg-NH2・2H2SO4 0.45gを類白色粉末として得た(収率86%)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.8-1.0(m, 42 H); 1.3-1.8(37 H); 1.90(s, 3 H); 2.4-2.6(m, 2 H); 2.7-2.9(m, 2 H); 3.1-3.2(br. s, 8 H); 4.1-4.4(m, 11 H); 4.5-4.6(m, 2 H), 6.6-8.4(m, 31 H).
200mLの反応容器に、Cl-・H2 +-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe(ペプチド誘導体Icの塩酸塩) 2.50g(1.9mmol)、HOBt 341mg(2.52mmol)を仕込み、THF(19.9mL)に懸濁させた。氷浴にて冷却し、EDC・HCl 1.42g(6.48mmol)を加え、NMM 1.39mL(12.6mmol)を滴下した。Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-OH 2.83g(1.8mmol)をDMF(19.8mL)とTHF(19.8mL)の混合溶媒に溶解し、この溶液を先の反応懸濁液に氷浴にて冷却しながら滴下した。氷浴にて冷却しながら3日間撹拌し、0.5N 塩酸(56.6mL)、酢酸エチル(28.3mL)を加え分液した。この有機層を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製してAc-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe(ペプチド誘導体IVb)2.81gを白色固体として得た(Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-OHからの収率56%)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.81-0.94(m, 36 H), 1.20(d, J = 6.8 Hz, 3 H), 1.2-1.6(76 H); 1.85(s, 3 H); 2.00(s, 12 H); 2.42(s, 12 H); 2.47(s, 12 H); 2.5-2.7(m, 4 H); 2.95(s, 8 H), 3.01(br, 8 H), 3.58(s, 3 H); 4.1-4.4(m, 11 H); 4.52(m, 2 H).
50mLの反応容器に、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-Leu-Ala-Leu-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe(ペプチド誘導体IVb)2.80g(1.0mmol)を仕込み、水冷にてTFA40mL(0.52mol)、上水(2mL)を加えた。室温下1時間撹拌し、エバポレーターで濃縮した。濃縮残渣にMTBE(91mL)を加え、室温で終夜撹拌した。吸引ろ過し、真空乾燥を行ってAc-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-OMe・2H2SO4 2.16gを白色固体として得た(収率は定量的)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.7-0.9(m, 36 H), 1.20(d, J = 5.0 Hz, 3 H); 1.3-1.7(m, 34 H); 1.88(s, 3 H); 2.4-2.7(m, 4 H); 3.10(d, J = 5.6 Hz, 8 H), 3.61(s, 3 H); 4.2-4.3(m, 11 H); 4.53(m, 2 H).
50mLの反応容器に、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-OMe・2H2SO4 2.13g(1.1mmol)を仕込み、水冷にて8N アンモニア/MeOH溶液42.6mL(341mmol)を加えた。室温にて1週間撹拌し、吸引ろ過し、ケーキをMeOH(8.5mL)で2回、MTBE(8.5mL)で1回洗浄し、真空乾燥を行い、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・2H2SO4 2.07gを白色固体として得た(収率は定量的)。
塩交換反応による、ペプチド誘導体4塩酸塩
500mLの反応容器に、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・2H2SO4 4.71g(2.54mmol)を仕込み、0.5N 塩酸180mL(90mmol)、THF(300mL)を加え室温下15時間撹拌した後、上清(370mL)を除去し、THF(360mL)を加え撹拌、静置後上清を除去した。THF(100mL)、MTBE(263mL)を加えて室温下0.4時間撹拌後、吸引ろ過し、真空乾燥して、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・4HCl 3.15gを白色粉末として得た(収率69%)。
IR(KBr)ν cm-1: 3273(s); 2957(m); 1626(s); 1541(s).
塩交換反応による、ペプチド誘導体4塩酸塩
50mLの反応容器に、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Leu-Leu-Arg-Leu-Asp-Leu-Arg-NH2・2H2SO4 0.41g(0.22mmol)を仕込み、0.5N 塩酸15mL(7.5mmol)、THF(10mL)を加え室温下19時間撹拌した後、上清(32mL)を除去し、THF(45mL)を加え撹拌、静置後上清を除去した。MTBE(8mL)を加えて室温下0.5時間撹拌後、吸引ろ過し、真空乾燥して、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Leu-Leu-Arg-Leu-Asp-Leu-Arg-NH2・4HCl 0.11gを白色粉末として得た(収率28%)。
1H NMR(400 MHz、DMSO-d6)δ ppm: 0.8-1.0(m, 42 H); 1.3-1.8(37 H); 1.89(s, 3 H); 2.4-2.6(m, 2 H); 2.75(dd, J1 = 16.6 Hz、J2 = 5.8 Hz、2 H); 3.0-3.1(m, 8 H); 4.1-4.4(m, 11 H); 4.4-4.6(m, 2 H), 6.6-8.4(m, 31 H).
塩交換反応による、ペプチド誘導体4塩酸塩
10mLの反応容器に、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・4MsOH 0.17g(0.083mmol)を仕込み、0.5N塩酸6.9mL(3.5mmol)、THF(4.6mL)を加え室温下終夜撹拌した後、上清を除去し、THF(15mL)を加え撹拌、静置後上清を除去した。MTBE(5mL)を加えて室温下1.1時間撹拌後、吸引ろ過、真空乾燥を行って、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・4HCl 0.06gを白色固体として得た(収率40%)。
塩交換反応による、ペプチド誘導体4塩酸塩
50mLの反応容器に、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・4TFA 0.18g(0.085mmol)を仕込み、0.3N 塩酸 12.4mL(3.72mmol)、THF(12mL)を加え室温下振とうした。遠心沈降を行い、上清を除去した。THF(9mL)を加え振とう、静置後上清を除去した。MTBE(4mL)を加えて振とう後、吸引ろ過し、真空乾燥を行って、Ac-Arg-Leu-Asp-Leu-Arg-Leu-Ala-Leu-Arg-Leu-Asp-Leu-Arg-NH2・4HCl0.07gを白色固体として得た(収率46%)。
ペプチド誘導体Iaの合成。
200mLの反応容器にCl-・H2 +-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe(ペプチド誘導体VIaの塩酸塩)8.26g(10.9mmol)、HOBt 1.47g(10.9mmol)を加え、THF(84.6mL)に懸濁させた。氷浴にて冷却し、EDC・HCl 2.40g(12.5mmol)を加えた。氷浴にて冷却しながらFmoc-Arg(Pbf)-Leu-OH(ペプチド誘導体Vb(N末端保護基はFmoc基))8.52g(10.9mmol)のTHF(9.2mL)溶液を滴下した後、NMM 2.75g(27.2mmol)のTHF(33mL)溶液を滴下した。氷浴にて冷却しながら終夜撹拌した後、酢酸エチル(59.2mL)と上水(42.3mL)を加え、分液した。有機層を5%重曹水(50.8mL)、1N 塩酸(50.8mL)、上水(50.8mL)の順で洗浄した。エバポレーターにて減圧濃縮後、真空ポンプでポンプアップし、Fmoc-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe 20.54gを白色固体として得た(収率は定量的)。
1H NMR(400 MHz, CDCl3)δ ppm: 0.84(d, J = 6.2 Hz, 6 H); 0.88(d, J = 6.2 Hz, 6 H); 1.3-2.0(m, 35 H); 2.07(s, 6 H); 2.49(s, 3 H); 2.51(s, 3 H); 2.56(s, 3 H); 2.59(s, 3 H); 2.84(dd, J1 = 15.1 Hz, J2 = 4.2 Hz, 2 H); 2.91(s, 4 H); 3.1-3.3(br. s, 2 H); 3.32(br. s, 2 H); 3.71(s, 3 H); 4.0-4.2(m, 2 H); 4.2-4.4(m, 3 H); 4.4-4.6(m, 1 H); 4.5-4.7(m, 2 H); 6.14, 6.37(br. s×2, 6 H); 6.66(br. s, 1 H); 7.1-7.3(m, 1 H); 7.21(d, J = 7.8 Hz, 2 H); 7.36(t, J = 7.4 Hz, 2 H); 7.5-7.6(br. s, 2 H); 7.60(t, J = 6.7 Hz, 2 H); 7.6-7.8(br. s, 1 H); 7.73(d, J = 7.6 Hz, 2 H).
200mLの反応容器に、Fmoc-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe 14.68g(10mmol)、THF(95.4mL)を仕込み、室温にてピペリジン 1.53g(18mmol、1.8eq.)を滴下した。反応溶液を室温で7時間撹拌し、MTBE(58.7mL)、AcOEt(14.7mL)、0.5N 塩酸(88mL)を加えた。分液した有機層を1N 塩酸(88mL)、上水(88mL)で順次洗浄した後、有機層をエバポレーターで濃縮した。残渣にMeOH(58.7mL)、上水(29.4mL)、MTBE(58.7mL)、n-ヘプタン(58.7mL)を加え、溶解させた後、分液した。下層をMTBE/ヘプタン(1/1(v/v))の混合溶液(117.4mL)で2回洗浄した後、減圧でMeOHを留去した。残渣に上水(29.4mL)、酢酸エチル(58.7mL)、食塩(2.0g)を加え分液した後、有機層を減圧濃縮し、Cl-・H2 +-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe 12.66gを白色固体として得た(収率98%)。
1H NMR(400 MHz, CDCl3)δ ppm: 0.84(m, 12 H); 1.38(s, 9 H); 1.45(s, 12 H); 1.6-2.4(m, 14 H); 2.07(s, 6 H); 2.47(s, 6 H); 2.54(s, 6 H); 2.7-2.9(m, 2 H); 2.94(s, 4 H); 3.1-3.4(m, 4 H); 3.68(s, 3 H); 4.0-4.7(m, 5 H); 6.50(br. s, 6 H); 7.6-9.4(m, 8 H).
100mLの反応容器に、Cl-・H2 +-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe 8.97g(7mmol)、THF(63mL)を加え、氷浴にて冷却した。氷浴にて冷却しながら、無水酢酸1.07g(10.5mmol、1.5eq.)を加えた後、氷浴にて冷却しながらTEA1.77g(17.5mmol、2.5eq.)を滴下した。氷浴にて冷却しながら2時間撹拌し、酢酸エチル(36mL)、1N 塩酸(36mL)を加えた。分液した有機層を1N 塩酸(36mL)、5%重曹水(36mL)で順次洗浄した後、有機層を減圧濃縮し、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe8.46gを白色固体として得た(収率93%)。
1H NMR(400 MHz, CDCl3)δ ppm: 0.85(d, J = 6.6 Hz, 3 H); 0.88(d, J = 6.4 Hz, 6 H); 0.93(d, 5.4 Hz, 3 H); 1.42(s, 9 H); 1.46(s, 12 H); 1.3-2.0(m, 14 H); 2.05(s, 3 H); 2.09(s, 6 H); 2.48(s, 3 H); 2.50(s, 3 H); 2.55(s, 3 H); 2.57(s, 3 H); 2.7-2.8(m, 1 H); 2.9-3.1(m, 1 H); 2.95(s, 4 H); 3.1-3.3(m, 3 H); 3.3-3.4(m, 1 H); 3.72(s, 3 H); 3.9-4.1(m, 1 H); 4.4-4.6(m, 2 H); 4.5-4.7(m, 2 H); 6.0-6.5(m, 6 H); 7.14(d, J = 8.7 Hz, 1 H); 7.4-7.5(m, 1 H); 7.5-7.7(m, 3 H).
500mLの反応容器に、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe 8.11g(6.3mmol)、t-BuOH(243.5mL)、上水(73.1mL)を加え、溶解させた。水浴で冷却しながら、1N 水酸化ナトリウム水溶液 9.45mL(9.45mmol、1.5eq.)を滴下した。氷浴で冷却しながら終夜撹拌し、1N 塩酸 10.4mL(10.4mmol;1.65eq.)を滴下した。反応液を減圧濃縮し、酢酸エチル(105.5mL)、上水(40.6mL)を加え、分液した。有機層を0.5%KHCO3水溶液(81.2mL)、0.25%KHCO3水溶液(81.2mL)、0.2N 塩酸(81.2mL)で順次洗浄した後、有機層を減圧濃縮し、Ac-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-OH(ペプチド誘導体Ia)7.68gを白色固体として得た(収率95.6%)。
1H NMR(400 MHz, DMSO-d6)δ ppm: 0.82(d, J = 6.4 Hz, 6 H); 0.85(d, J = 6.6 Hz, 6 H); 1.33(s, 9 H); 1.41(s, 12 H); 1.3-1.5(m, 8 H); 1.5-1.7(m, 5 H); 1.6-1.9(m, 1 H); 1.84(s, 3 H); 2.00(s, 6 H); 2.42(s, 6 H); 2.48(s, 6 H); 2.4-2.6(m, 1 H); 2.68(dd, J1 = 15.8 Hz, J2 = 6.2 Hz, 1 H); 2.96(m, 4 H); 2.9-3.1(m, 4 H); 4.09(dd, J1 = 13.1 Hz, J2 = 7.6 Hz, 1 H); 4.1-4.4(m, 3 H); 4.55(dd, J1 = 14.6 Hz, J2 = 7.7 Hz, 1 H); 6.39, 6.5-6.9(br. s×2, 6 H); 7.63(d, J = 8.5 Hz, 1 H); 7.91(d, J = 8.0 Hz, 1 H); 7.98(d, J = 7.7 Hz, 1 H); 8.06(d, J = 7.4 Hz, 1 H); 8.26(m, 1 H).
ペプチド誘導体Ibの合成。
100mLの反応容器を用い、Cl-・H2 +-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体VIbの塩酸塩) 1.00g(1.41mmol)、DMF(2.1mL)、THF(1.5mL)、HOBt 0.20g(1.5mmol)、EDC・HCl 0.32g(1.7mmol)、TEA 0.24mL(1.7mmol)を仕込み氷浴で冷却した。氷浴にて冷却しながら、Fmoc-Arg(Pbf)-Leu-OH(ペプチド誘導体Vb(N末端保護基はFmoc基))1.04g(1.32mmol)のTHF(3mL)溶液を添加した。氷浴にて冷却しながら終夜撹拌した後、MTBE(15mL)、上水(15mL)を加えると固体が析出した。吸引ろ過を行い、乾燥して、Fmoc-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2 1.77gを類白色粉末として得た(Fmoc-Arg(Pbf)-Leu-OH(ペプチド誘導体Vb(N末端保護基はFmoc基))からの収率86%)。
1H NMR(400 MHz, DMSO-d6)δ ppm: 0.7-0.9(m, 12 H); 1.32(s, 9 H); 1.3-1.8(m, 26 H); 2.00(s, 3 H); 2.00(s, 3 H); 2.42(s, 6 H); 2.5(s, 6 H); 2.5-2.6(m, 1 H); 2.6-2.7(m, 1 H); 2.94(s, 2 H); 2.95(s, 2 H); 3.0-3.1(m, 4 H); 4.00(m, 1 H); 4.13(dd, J1 = 13.6 Hz, J2 = 8.0 Hz, 1 H); 4.2-4.4(m, 5 H); 4.4-4.6(m, 1 H); 4.58(dd, J1 = 14.6 Hz, J2 = 7.8 Hz, 1 H) 6.42, 6.68(br. s×2, 6 H); 6.99(s, 1 H); 7.16(s, 3 H); 7.31(t, J = 7.5 Hz, 2 H); 7.41(t, J = 7.5 Hz, 2 H); 7.46(d, J = 8.4 Hz, 1 H); 7.7-7.8(m, 4 H); 7.8-7.9(m, 1 H); 7.88(d, J = 7.6 Hz, 2 H); 8.31(d, J = 7.6 Hz, 1 H).
30mLの反応容器を用い、Fmoc-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2 0.97g(0.67mmol)にDMF(2.5mL)を加えて溶解した。ピペリジン 0.10mL(1.0mmol)を加え、室温下2.1時間撹拌した。MTBE(3mL)、酢酸エチル(7mL)、0.24N 塩酸(8.5mL)を加えると固体が析出した。室温下終夜撹拌後、吸引ろ過し、乾燥してCl-・H2 +-Arg(Pbf)-Leu-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体Ibの塩酸塩)0.77gを淡黄色粉末として得た(収率91.2%)。
1H NMR(400 MHz, CDCl3)δ ppm: 0.82(d, J = 6.4 Hz, 3 H); 0.8-0.9(m, 9 H); 1.33(s, 9 H); 1.3-1.6(m, 10 H), 1.41(s, 12 H); 1.6-1.8(m, 4 H); 2.01(s, 3 H); 2.01(s, 3 H); 2.42(s, 3 H); 2.43(s, 3 H); 2.48(s, 6 H); 2.4-2.6(m, 1 H); 2.6-2.8(m, 1 H); 2.96(s, 4 H); 3.0-3.1(m, 4 H); 3.79(br. s, 1 H); 4.14(dd, J1 = 13.6 Hz, J2 = 8.0 Hz, 1 H); 4.26(dd, J1 = 14.8 Hz, J2 = 7.6 Hz, 1 H); 4.3-4.5(m, 1 H); 4.61(dd, J1 = 14.4 Hz, J2 = 8.0 Hz, 1 H); 6.51, 6.86(br. s×2, 6 H); 7.00(s, 1 H); 7.21(s, 1 H)7.3-8.2(m, 5 H); 8.47(d, J = 8.0 Hz, 1 H); 8.55(d, J = 8.0 Hz, 1 H).
200mLの反応容器を用い、Fmoc-Arg(Pbf)-OH・0.5IPE 5.60g(8.0mmol)、Cl-・H2 +-Leu-Ot-Bu 1.88g(8.4mmol)、HOBt 1.08g(8.0mmol)を加え、THF(39.2mL)に懸濁させた。氷浴にて冷却した後、EDC・HCl 1.69g(8.8mmol)を加えた。氷浴にて冷却しながら30分撹拌した後、NMM 1.78g(17.6mmol)のTHF(5.6mL)溶液を滴下した。氷浴にて冷却しながら4時間撹拌した後、酢酸エチル(14mL)と9%食塩水(28mL)を加え、分液した。有機層を飽和重曹水(28mL)、5%重曹水(28mL)、0.5N 塩酸(28mL)、0.1N 塩酸(28mL)、上水(28mL)の順で洗浄した。エバポレーターにて減圧濃縮後、真空ポンプでポンプアップし、Fmoc-Arg(Pbf)-Leu-Ot-Bu 6.66gを白色固体として得た(収率は定量的)。
1H NMR(400 MHz、CDCl3)δ ppm: 0.85(d, J = 6.8 Hz, 6 H); 1.42(m, 15 H); 1.54-1.97(m, 7 H); 2.07(s, 3 H); 2.51(s, 3 H); 2.59(s, 3 H) ; 2.91(s, 2 H); 3.31(br. s, 2 H); 4.14(m, 1 H); 4.31-4.38(m, 4 H); 5.95-6.30(br. s, 3 H); 7.23(m, 2 H); 7.33(t, J = 7.5 Hz, 2 H); 7.56(d, J = 7.4 Hz, 2 H); 7.72(d, J = 7.6 Hz, 2 H).
100mLの反応容器を用い、Fmoc-Arg(Pbf)-Leu-Ot-Bu 5.01g(6.0mmol)を仕込み、上水(3mL)、濃塩酸(3mL)を加え、80℃の油浴上で加熱、撹拌した。酢酸エチル(20mL)、上水(20mL)を加え分液した後、有機層を減圧濃縮後、シリカゲルカラムクロマトグラフィーで精製してFmoc-Arg(Pbf)-Leu-OH(ペプチド誘導体Vb(N末端保護基はFmoc基))4.79gを白色固体として得た(収率は定量的)。
1H NMR (400 MHz、CDCl3) δ ppm: 0.87(d, J = 4.9 Hz, 6 H); 1.42(s, 6 H); 1.54-1.97(m, 7 H); 2.05(s, 3 H); 2.47(s, 3 H); 2.55(s, 3 H); 2.90(s, 2 H); 3.14-3.31(br. s, 2 H); 4.1-4.5(m, 5 H); 6.0 -6.6(br. s, 3 H); 7.22(m, 2 H); 7.34(t, J = 7.4 Hz, 2 H); 7.54(d, J = 7.4 Hz, 2 H); 7.71(d, J = 7.6 Hz, 2 H).
30mLの反応容器を用い、Boc-Arg(Pbf)-OH 2.11g(4.0mmol)に5.2% HCl/MeOH溶液 6.73g(9.6mmol)を添加した。反応溶液を室温で終夜撹拌した後、内温39~42℃で5時間撹拌した。反応溶液をエバポレーターで濃縮、真空ポンプでポンプアップした。濃縮乾固物にMTBE(10mL)、上水(10mL)を加えて溶解し、分液した。水層をMTBE(10mL)で洗浄した後、炭酸ナトリウム 594mg(5.6mmol、1.4eq.)、酢酸エチル(40mL)を加え、分液した。有機層を10%炭酸カリウム水溶液(10mL)で3回洗浄した。有機層を濃縮し、析出した白色固体を綿栓ろ過にてろ別し、ろ液を濃縮した。H-Arg(Pbf)-OMe 1.53gを微黄色粘ちょう油状物として得た(収率71%)。
1H NMR(400 MHz、CDCl3)δ ppm: 1.46(s, 6 H); 1.62-1.85(m, 4 H); 2.09(s. 3 H); 2.53(s, 3 H); 2.58(s, 3 H); 2.95(s, 2 H); 3.19(m, 2 H); 3.50(m, 1 H); 3.83(s, 3 H); 6.0-6.15(m, 3 H).
100mLの反応容器を用い、THF(4mL)中、H-Arg(Pbf)-OMe 0.96g(2.17mmol)、HOBt 0.30g(2.2mmol、1.02eq.)、EDC・HCl 0.49g(2.6mmol、1.18eq.)、TEA 0.26g(2.6mmol、1.27eq.)を懸濁した。氷浴で冷却しながら、Boc-Leu-OH・H2O 0.53g(2.1mmol)のTHF(4mL)溶液を添加した。氷浴で冷却しながら終夜撹拌した後、酢酸エチル(5mL)を加え内温2℃で析出結晶をろ別した。ろ液を減圧濃縮し、残渣をシリカゲルクロマトグラフィーで精製し、Boc-Leu-Arg(Pbf)-OMe 1.43gを白色固体として得た(収率は定量的)。
1H NMR (400 MHz、CDCl3) δ ppm: 0.93(d, J = 6.4 Hz, 3 H); 0.95(d, J = 6.4 Hz, 3 H); 1.42(s, 9 H); 1.46(s, 6 H); 1.4-1.8(m, 6 H); 1.8-2.0(m, 1 H); 2.09(s, 3 H); 2.53(s, 3 H); 2.59(s, 3 H); 2.95(s, 2 H); 3.1-3.3(br. s, 2 H); 3.74(s, 3 H); 4.0-4.2(m, 1 H); 4.55(dt, J1 = 8.3 Hz, J2 = 4.5 Hz, 1 H); 5.13(d, J = 6.8 Hz, 1 H); 6.06, 6.15(br. s×2, 3 H); 7.03(d. J = 8.0 Hz, 1 H).
30mLの反応容器を用い、Boc-Leu-Arg(Pbf)-OMe 1.20g(1.76mmol)に5.88% HCl/MeOH 2.19g(3.53mmol)を加え、内温41~43℃で終夜撹拌後、室温下2日間撹拌した。減圧濃縮し、残渣にTHF(1mL)を加えて置換濃縮した後、THF(3mL)を加えて100mLの反応容器へ移送した。Fmoc-Asp(Ot-Bu)-OH 0.74g(1.8mmol、1.03eq.)、HOBt 0.24g(1.8mmol、1.02eq.)、EDC・HCl 0.39g(2.0mmol、1.16eq.)を順に加え、懸濁した。氷浴にて冷却しながらNMM 0.41mL(3.7mmol、2.13eq.)を添加した。氷浴にて冷却しながら終夜撹拌した後、酢酸エチル(6mL)を加え析出結晶をろ別した。ろ液を減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製した。Fmoc-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe 1.28gを、白色固体として得た(Boc-Leu-Arg(Pbf)-OMeから2工程での収率99.9%)。
1H NMR(400 MHz, CDCl3)δ ppm: 0.88(d, J = 5.6 Hz, 3 H); 0.93(d, J = 6.0 Hz, 3 H); 1.44(s, 9 H); 1.44(s, 6 H); 1.4-1.9(m, 7 H); 2.08(s, 3 H); 2.52(s, 3 H); 2.58(s, 3 H); 2.66(dd, J1 = 17.1 Hz, J2 = 4.9 Hz, 1 H); 2.88(dd, J1 = 17.1 Hz, J2 = 3.6 Hz, 1 H); 2.93(s, 2 H); 3.19(br. s, 2 H); 3.70(s, 3 H); 4.21(t, J = 6.6 Hz, 1 H); 4.43(d, J = 6.4 Hz, 1 H);4.4-4.5(br. s, 1 H); 4.57(dt, J1 = 8.5 Hz, J2 = 4.1 Hz, 1 H); 5.8, 6.10(br. s×2, 3 H); 6.0-6.2(br. s, 1 H); 6.8-6.9(m, 1 H); 7.31(t, J = 7.6 Hz, 1 H); 7.41(t, J = 7.6 Hz, 1 H); 7.57(d, J = 7.6 Hz, 1 H); 7.77(d, J = 7.6 Hz, 1 H).
50mLの反応容器を用い、Fmoc-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe 0.74g(1.09mmol)にTHF(1.6mL)を加え溶解した。ピペリジン 0.21mL(2.1mmol、1.94eq.)を加え、室温下終夜撹拌した。酢酸エチル(2mL)と上水(4mL)を加えると白色固体が析出した。析出結晶をろ別し、ろ液に酢酸エチル(3.5mL)を加え、撹拌後静置、分液した。淡黄色濁った有機層を0.5N 塩酸(1mL)、1N 塩酸(1mL)、1N 塩酸(2mL×2)の順で洗浄した。減圧濃縮し、Cl-・H2 +-Asp(Ot-Bu)-Leu-Arg(Pbf)-OMe(ペプチド誘導体VIaの塩酸塩)0.71gを淡黄色水アメ状残さとして得た(収率86%)。
1H NMR(400 MHz, CDCl3)δ ppm: 0.90(d, J = 5.6 Hz, 3 H); 0.94(d, J = 6.0 Hz, 3 H); 1.45(s, 9 H); 1.47(s, 6 H); 1.6-1.9(m, 7 H); 2.10(s, 3 H); 2.49(s, 3 H); 2.55(s, 3 H); 2.97(s, 2 H); 3.06(dd, J1 = 19.0 Hz, J2 = 6.8 Hz, 1 H); 3.12(dd, J1 = 19.0 Hz, J2 = 6.4 Hz, 1 H); 3.27(br. s, 2 H); 3.70(s, 3 H); 4.3-4.5(m, 2 H);4.5-4.6(m, 1 H); 6.68(br. s, 3 H); 8.5-8.9(br. s, 1 H); 8.17(br. s, 1 H); 8.58(br. s, 3 H).
100mLの反応容器を用い、Boc-Leu-Arg(Pbf)-OMe 6.54g(10mmol)に8N NH3/MeOH溶液 30mL(240mmol)を添加した。反応溶液を室温下2日間撹拌した後、減圧濃縮した。残渣にCPME(14.5mL)を加えて置換濃縮を行い、無色液状のBoc-Leu-Arg(Pbf)-NH2のCPME溶液を得た。100mLの反応容器を用い、4M HCl/CPME溶液 10.4mL(41.6mmol)を仕込み、氷浴にて冷却しながら前記で合成したBoc-Leu-Arg(Pbf)-NH2のCPME溶液を滴下した。室温下終夜撹拌し、吸引ろ過を行い、CPME(12.1mL×2)で洗い込んだ。40℃で温風乾燥し、Cl-・H2 +-Leu-Arg(Pbf)-NH2 5.68gを白色粉末として得た(Boc-Leu-Arg(Pbf)-OMeから2工程での収率は定量的)。
1H NMR(400 MHz, DMSO-d6)δ ppm: 0.8-1.0(m, 6 H); 1.41(s, 6 H); 1.3-1.6(m, 5 H); 1.6-1.8(m, 2 H); 2.01(s, 3 H); 2.43(s, 3 H); 2.49(s, 3 H); 3.0-3.1(br. s, 2 H); 3.8-3.9(br. s, 1 H); 4.2-4.3(m, 1 H); 6.08, 6.54(br. s×2, 3 H); 7.06(s, 1 H); 7.52(s, 1 H); 8.2-8.4(m, 3 H); 8.6-8.7(m, 1 H).
100mLの反応容器を用い、上記で合成したCl-・H2 +-Leu-Arg(Pbf)-NH2 1.02g(1.77mmol)、HOBt 0.25g(1.9mmol)、EDC・HC l0.40g(2.1mmol)、Fmoc-Asp(Ot-Bu)-OH 0.63g(1.5mmol)を仕込んだ。撹拌しながらTHF(8mL)を加え、氷浴にて冷却しながらNMM 0.45mL(4.1mmol)を添加した。氷浴にて冷却しながら5.8時間撹拌した後、酢酸エチル(8mL)、上水(8mL)を加え室温下撹拌後静置、分液した。有機層を飽和重層水(4mL)、上水(4mL)、1N 塩酸(4mL×2回)、上水(4mL×2)の順で洗浄した。得られたFmoc-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2の酢酸エチル溶液にピペリジン 0.36mL(3.6mmol、2.05eq.)を加え、室温下終夜撹拌した。上水(4mL)を加え撹拌、静置、分液を行い、有機層を上水洗浄(4mL×2回)した。減圧濃縮し、残渣にDMF(2.5mL)を加え再度減圧濃縮を行った。析出した固体をろ別し、ろ液をポンプアップしてH-Asp(Ot-Bu)-Leu-Arg(Pbf)-NH2(ペプチド誘導体VIb)0.98gを得た(Cl-・H2 +-Leu-Arg(Pbf)-NH2から2工程での収率78%)。
1H NMR(400 MHz, CDCl3)δ ppm: 0.91(d, J = 6.0 Hz, 3 H); 0.96(d, J = 6.0 Hz, 3 H); 1.43(s, 9 H); 1.46(s, 6 H); 1.5-1.9(m, 6 H); 1.9-2.0(m, 1 H); 2.09(s, 3 H); 2.51(s, 3 H); 2.58(s, 3 H); 2.5-2.7(m, 1 H); 2.7-2.8(m, 1 H); 2.9-3.0(s, 2 H); 3.2-3.3(m, 2 H); 3.68(dd, J1 = 7.2 Hz, J2 = 4.8 Hz, 2H); 3.7-3.8(m, 1 H); 4.2-4.4(m, 1 H); 4.48(dt, J1 = 8.6 Hz, J2 = 4.7 Hz, 1 H); 5.66(s, 1 H); 6.18, 6.28(br. s×2, 3 H); 6.94(s, 1 H); 7.45(d, J = 8.0 Hz, 1 H); 7.90(d, J = 6.8 Hz, 1 H).
10Lの反応容器にCl-・H2 +-Leu-OMe 300g(1.65mol)、Boc-Ala-OH 327g(1.73mol)、HOBt 268g(1.98mol)、THF(3600mL)を仕込んだ後、内温-5~0℃でTEA 550mL(3.96mol)を滴下した。この溶液にEDC・HCl 380g(1.98mol)を加えた後、氷浴で冷却しながら終夜撹拌した。反応液に9%食塩水(1500mL)、酢酸エチル(3000mL)を加えて分液した後、7%重層水(1500mL×2回)、上水(1500mL)、1N 塩酸(1500mL)、上水(1500mL×3回)の順で有機層を洗浄した。減圧濃縮した後、濃縮残渣にCPME(1500mL)を加えて置換濃縮し、Boc-Ala-Leu-OMeのCPME溶液を得た。これに2M HCl/CPME溶液3300mL(6.60mol)を加え、室温で終夜撹拌した。減圧濃縮し、Cl-・H2 +-Ala-Leu-OMeを得た。これに、THF(1800mL)を加えた。外温40℃に加熱し、Boc-Leu-OH 364g(1.46mol)、HOBt 230g(1.70mol)を加えた。内温-5~0℃でEDC・HCl 326g(1.70mol)を加え、TEA 470mL(3.41mol)を滴下した。この反応液を氷浴で冷却しながら終夜撹拌した。反応液に9%食塩水(1800mL)、酢酸イソプロピル(3600mL)を加えて分液した後、7%重層水(1800mL×2回)、上水(1800mL)、1N 塩酸(1800mL)、上水(1800mL×3回)の順で有機層を洗浄した。有機層をろ過し、ろ液を濃縮した。濃縮残渣をIPA(1000mL)から再結晶し、ろ取した結晶をMTBE/IPA(9/1)混合溶液(4800mL)に溶解し、不溶物をろ別した。ろ液を減圧濃縮後、IPA(912mL)から再結晶を行い、ろ取した結晶を真空乾燥し294gのBoc-Leu-Ala-Leu-OMeを得た(Cl-・H2 +-Leu-OMeから3工程での収率40%)。
1H NMR (400 MHz、CDCl3)δ ppm: 0.9-1.0(m, 12 H); 1.38(d, J = 7.2 Hz, 3 H); 1.44(s, 9 H); 1.5-1.7(m, 6 H); 3.73(s, 3 H); 4.09(br. s, 1 H); 4.4-4.6(m, 2 H); 4.86(br. s, 1 H); 6.5-6.7(m, 2 H).
5Lの反応容器にBoc-Leu-Ala-Leu-OMe 250g(0.56mol)、2M HCl/CPME溶液1160mL(2.32mol)を仕込み、室温で終夜撹拌した。IPE(1250mL)を加えて10分撹拌した後、デカンテーションにより上澄みを除去した。IPE(3000mL)を加えて10分撹拌した後、デカンテーションにより上澄みを除去した。減圧濃縮し、199gのCl-・H2 +-Leu-Ala-Leu-OMe(ペプチド誘導体IIa(X=Ala)の塩酸塩)を得た(収率96.3%)。
1H NMR(400 MHz、CDCl3)δ ppm: 0.90-0.97(m, 12 H); 1.42(d, J = 6.8 Hz, 3 H); 1.63-1.82(m, 6 H); 3.71(s, 3 H); 4.38(br. s, 1 H); 4.47-4.50(m, 1 H); 4.71(br. s, 1 H); 7.59(br. s, 1 H); 8.28(br. s, 3 H); 8.51(br. s, 1 H).
ペプチド誘導体IIa(X=Leu)の塩酸塩
30mLの反応容器にH-Leu-Leu-Leu-OH 1.00g(2.80mmol)を仕込み、2M HCl/MeOH溶液5mL(10mmol)を加えて室温下終夜撹拌した。減圧濃縮を行い、Cl-・H2 +-Leu-Leu-Leu-OMe(ペプチド誘導体IIa(X=Leu)の塩酸塩)1.17gを得た(収率は定量的)。
1H NMR (400 MHz、D2O) δ ppm: 0.82 (d, J = 6.6 Hz, 3 H); 0.83-0.90 (m, 12 H); 0.92 (d, J = 6.6 Hz, 3 H); 1.3-1.8 (m, 9 H); 3.5-3.7 (s, 3 H); 3.6-3.9 (m, 1 H); 4.2-4.4 (m, 1 H); 4.4-4.5 (m, 1 H); 8.14 (br. s, 3 H); 8.46 (d, J = 7.8 Hz, 1 H); 8.61 (d, J = 8.4 Hz, 1 H).
Claims (16)
- 一般式(I)
で表されるペプチド誘導体Iと、
一般式(II)
で表されるペプチド誘導体IIとを、ビルディングブロックとして用い、これらを順次カップリングし、側鎖保護基を強酸で脱保護し、さらに末端脱保護工程、修飾工程及び/又は塩交換工程を含んでもよい各工程よりなる、
一般式(VII)
又は、
一般式(VIII)
で表されるペプチド誘導体の製造方法。 - 前記ペプチド誘導体IのN末端がアセチル化されているペプチド誘導体Iaと、前記ペプチド誘導体IIのC末端がエステル基で保護されているペプチド誘導体IIaとをカップリングさせ、生じたペプチド誘導体IIIaのC末端を脱保護した後に、さらに前記ペプチド誘導体IのC末端がアミド基であるペプチド誘導体Ibとカップリングさせ、得られたペプチド誘導体IVaの側鎖保護基を脱保護する工程を含む請求項2に記載の製造方法。
- 前記ペプチド誘導体IのN末端がアセチル化されているペプチド誘導体Iaと、前記ペプチド誘導体IIのC末端がエステル基で保護されているペプチド誘導体IIaとをカップリングさせ、生じたペプチド誘導体IIIaのC末端を脱保護した後に、さらに前記ペプチド誘導体IのC末端がエステル基で保護されているペプチド誘導体Icとカップリングさせ、得られたペプチド誘導体IVbの側鎖保護基を脱保護した後にC末端エステル基をアミド基へと変換する工程を含む請求項2に記載の製造方法。
- 前記ペプチド誘導体IIaのC末端エステルがメチルエステルである、請求項3又は4に記載の製造方法。
- 前記ペプチド誘導体IcのC末端エステルがメチルエステルである、請求項4に記載の製造方法。
- 前記保護基A及び前記保護基Cが、2,2,4,6,7-ペンタメチル-2,3-ジヒドロベンゾフラン-5-スルホニル基である請求項3~7のいずれか1項に記載の製造方法。
- 前記保護基Bが、t-ブチルエステルである請求項3~8のいずれか1項に記載の製造方法。
- 前記ペプチド誘導体IのN末端がアセチル化されているペプチド誘導体Iaの調製において、ペプチド誘導体VのN末端がアセチル化されているペプチド誘導体Vaと、前記ペプチド誘導体VIのC末端がエステル基で保護されているペプチド誘導体VIaをカップリングさせ、その後C末端エステルを脱保護してペプチド誘導体Iaを得る工程;及び/又は、前記ペプチド誘導体VのN末端がアセチル基以外の保護基で保護されているペプチド誘導体Vbと、前記ペプチド誘導体VIaとのカップリング後に、N末端をアセチル基に変換、並びにC末端エステルを脱保護してペプチド誘導体Iaを得る工程を含む請求項7~9のいずれか1項に記載の製造方法。
- 前記ペプチドVIaのC末端エステル基がメチルエステルである、請求項10に記載の製造方法。
- 前記ペプチド誘導体IのC末端がアミド化されているペプチド誘導体Ibの調製において、前記ペプチド誘導体VのN末端がアセチル基以外の保護基で保護されているペプチド誘導体Vbと、前記ペプチド誘導体VIのC末端がアミド化されているペプチド誘導体VIbとをカップリングさせ、その後N末端を脱保護してペプチド誘導体Ibを得る工程を含む、請求項7~9のいずれか1項に記載の製造方法。
- 前記ペプチド誘導体IのC末端がエステル基で保護されたペプチド誘導体Icの調製において、前記ペプチド誘導体VのN末端がアセチル基以外の保護基で保護されているペプチド誘導体Vbと、前記ペプチド誘導体VIのC末端がエステル基で保護されたペプチド誘導体VIaとをカップリングさせ、その後N末端を脱保護してペプチド誘導体Icを得る工程を含む、請求項7~9のいずれか1項に記載の製造方法。
- 前記有機溶媒がTHFである、請求項14に記載の製造方法。
- 一般式(VII)及び/又は一般式(VIII)で表されるペプチド誘導体のn(酸)が2硫酸である、請求項2~15のいずれか1項に記載の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/412,190 US9963483B2 (en) | 2012-07-13 | 2013-07-12 | Process for producing self-assembling peptide derivatives |
EP13816363.9A EP2873677B1 (en) | 2012-07-13 | 2013-07-12 | Method of producing self-assembling peptide derivative |
JP2014524889A JP6334399B2 (ja) | 2012-07-13 | 2013-07-12 | 自己組織化ペプチド誘導体の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012157090 | 2012-07-13 | ||
JP2012-157090 | 2012-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014010721A1 true WO2014010721A1 (ja) | 2014-01-16 |
Family
ID=49916160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069124 WO2014010721A1 (ja) | 2012-07-13 | 2013-07-12 | 自己組織化ペプチド誘導体の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9963483B2 (ja) |
EP (1) | EP2873677B1 (ja) |
JP (1) | JP6334399B2 (ja) |
TW (1) | TWI655213B (ja) |
WO (1) | WO2014010721A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002717A1 (ja) * | 2014-06-30 | 2016-01-07 | 国立大学法人名古屋大学 | 骨形成促進材 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102245760A (zh) | 2008-07-07 | 2011-11-16 | 牛津纳米孔技术有限公司 | 酶-孔构建体 |
CA2730068A1 (en) | 2008-07-07 | 2010-01-14 | Oxford Nanopore Technologies Limited | Base-detecting pore |
GB0820927D0 (en) | 2008-11-14 | 2008-12-24 | Isis Innovation | Method |
CN102482330A (zh) * | 2009-01-30 | 2012-05-30 | 牛津纳米孔技术有限公司 | 酶突变体 |
CA2750879C (en) | 2009-01-30 | 2018-05-22 | Oxford Nanopore Technologies Limited | Adaptors for nucleic acid constructs in transmembrane sequencing |
GB0905140D0 (en) | 2009-03-25 | 2009-05-06 | Isis Innovation | Method |
KR101939420B1 (ko) | 2011-02-11 | 2019-01-16 | 옥스포드 나노포어 테크놀로지즈 리미티드 | 돌연변이체 세공 |
KR20140050067A (ko) | 2011-07-25 | 2014-04-28 | 옥스포드 나노포어 테크놀로지즈 리미티드 | 막횡단 포어를 사용한 이중 가닥 폴리뉴클레오티드 서열분석을 위한 헤어핀 루프 방법 |
JP6271505B2 (ja) | 2012-04-10 | 2018-01-31 | オックスフォード ナノポール テクノロジーズ リミテッド | 変異体ライセニンポア |
WO2014013259A1 (en) | 2012-07-19 | 2014-01-23 | Oxford Nanopore Technologies Limited | Ssb method |
GB201314695D0 (en) | 2013-08-16 | 2013-10-02 | Oxford Nanopore Tech Ltd | Method |
CN105209634B (zh) | 2013-03-08 | 2020-05-12 | 牛津纳米孔技术公司 | 酶停滞方法 |
GB201313477D0 (en) | 2013-07-29 | 2013-09-11 | Univ Leuven Kath | Nanopore biosensors for detection of proteins and nucleic acids |
CN111534504B (zh) | 2014-01-22 | 2024-06-21 | 牛津纳米孔科技公开有限公司 | 将一个或多个多核苷酸结合蛋白连接到靶多核苷酸的方法 |
GB201403096D0 (en) | 2014-02-21 | 2014-04-09 | Oxford Nanopore Tech Ltd | Sample preparation method |
CN106459159B (zh) | 2014-05-02 | 2021-11-30 | 牛津纳米孔技术公司 | 突变孔 |
CN114605507A (zh) | 2014-09-01 | 2022-06-10 | 弗拉芒区生物技术研究所 | 突变csgg孔 |
US10266885B2 (en) | 2014-10-07 | 2019-04-23 | Oxford Nanopore Technologies Ltd. | Mutant pores |
GB201418159D0 (en) | 2014-10-14 | 2014-11-26 | Oxford Nanopore Tech Ltd | Method |
GB201502809D0 (en) | 2015-02-19 | 2015-04-08 | Oxford Nanopore Tech Ltd | Mutant pore |
GB201502810D0 (en) | 2015-02-19 | 2015-04-08 | Oxford Nanopore Tech Ltd | Method |
CN107735686B (zh) | 2015-04-14 | 2021-06-11 | 鲁汶天主教大学 | 具有内部蛋白质衔接子的纳米孔 |
CA3011830A1 (en) | 2015-12-08 | 2017-06-15 | Katholieke Universiteit Leuven Ku Leuven Research & Development | Modified nanopores, compositions comprising the same, and uses thereof |
WO2017149317A1 (en) | 2016-03-02 | 2017-09-08 | Oxford Nanopore Technologies Limited | Mutant pore |
CN118256605A (zh) | 2016-04-06 | 2024-06-28 | 牛津纳米孔科技公开有限公司 | 突变体孔 |
GB201609220D0 (en) | 2016-05-25 | 2016-07-06 | Oxford Nanopore Tech Ltd | Method |
GB201707122D0 (en) | 2017-05-04 | 2017-06-21 | Oxford Nanopore Tech Ltd | Pore |
SG11201913174PA (en) | 2017-06-30 | 2020-01-30 | Vib Vzw | Novel protein pores |
GB201807793D0 (en) | 2018-05-14 | 2018-06-27 | Oxford Nanopore Tech Ltd | Method |
CN109678824A (zh) * | 2019-01-08 | 2019-04-26 | 吉尔生化(上海)有限公司 | 一种多肽原料精氨酸(pbf)甲酯盐酸盐的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002090985A1 (fr) * | 2001-05-07 | 2002-11-14 | Kiyoshi Nokihara | Plateau a peptide immobilise et procede d'analyse de proteine cible au moyen de celui-ci |
WO2010103887A1 (ja) | 2009-03-09 | 2010-09-16 | 株式会社メニコン | 自己組織化ペプチドおよび高強度ペプチドゲル |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4766528B2 (ja) * | 2005-06-27 | 2011-09-07 | 株式会社メニコン | 自己組織化ペプチドおよびそれより得られるゲル |
ES2559634T3 (es) * | 2007-11-28 | 2016-02-15 | Enkam Pharmaceuticals A/S | Péptidos derivados de NCAM (FGLs) |
SG177521A1 (en) * | 2009-08-05 | 2012-02-28 | Polyphor Ag | Conformationally constrained, fully synthetic macrocyclic compounds |
ES2358829B1 (es) * | 2009-10-23 | 2012-06-25 | Lipotec, S.A. | Péptidos útiles en el tratamiento y/o cuidado de la piel, mucosas y/o cabello y su uso en composiciones cosméticas o farmacéuticas. |
-
2013
- 2013-07-11 TW TW102125106A patent/TWI655213B/zh active
- 2013-07-12 US US14/412,190 patent/US9963483B2/en active Active
- 2013-07-12 EP EP13816363.9A patent/EP2873677B1/en active Active
- 2013-07-12 JP JP2014524889A patent/JP6334399B2/ja active Active
- 2013-07-12 WO PCT/JP2013/069124 patent/WO2014010721A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002090985A1 (fr) * | 2001-05-07 | 2002-11-14 | Kiyoshi Nokihara | Plateau a peptide immobilise et procede d'analyse de proteine cible au moyen de celui-ci |
WO2010103887A1 (ja) | 2009-03-09 | 2010-09-16 | 株式会社メニコン | 自己組織化ペプチドおよび高強度ペプチドゲル |
Non-Patent Citations (6)
Title |
---|
"Shin Seikagaku Jikken Koza 1 Tanpakushitsu VI, Gosei Oyobi Hatsugen", KABUSHIKI KAISHA TOKYO KAGAKU DOJIN, 15 June 1992 (1992-06-15), TOKYO KAGAKU DOJIN, pages 3 - 29, 66 TO 74, XP008176221 * |
HAN, SO-YEOP ET AL.: "Recent development of peptide coupling reagents in organic synthesis.", TETRAHEDRON, vol. 60, no. 11, 2004, pages 2447 - 2467, XP004492575 * |
M. FUJINO ET AL., CHEM. PHARM. BULL., vol. 29, 1981, pages 2825 |
NAGAI YUSUKE ET AL.: "The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel.", BIOMATERIALS, vol. 33, no. 4, February 2012 (2012-02-01), pages 1044 - 1051, XP028115482 * |
NOBUO IZUMIYA ET AL.: "Peptide Gosei no Kiso to Jikken", MARUZEN CO., LTD, 20 January 1985 (1985-01-20), pages 146 - 153, 222 TO 223, XP008176206 * |
R. RAMAGE, TETRAHEDRON LETT., vol. 28, 1987, pages 2287 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002717A1 (ja) * | 2014-06-30 | 2016-01-07 | 国立大学法人名古屋大学 | 骨形成促進材 |
JP6042038B2 (ja) * | 2014-06-30 | 2016-12-14 | 国立大学法人名古屋大学 | 骨形成促進材 |
US10821136B2 (en) | 2014-06-30 | 2020-11-03 | National University Corporation Tokai National Higher Education And Research System | Bone formation promoter |
Also Published As
Publication number | Publication date |
---|---|
EP2873677A1 (en) | 2015-05-20 |
US9963483B2 (en) | 2018-05-08 |
EP2873677A4 (en) | 2016-04-27 |
EP2873677B1 (en) | 2018-08-15 |
TWI655213B (zh) | 2019-04-01 |
US20150175663A1 (en) | 2015-06-25 |
JP6334399B2 (ja) | 2018-05-30 |
JPWO2014010721A1 (ja) | 2016-06-23 |
TW201408701A (zh) | 2014-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6334399B2 (ja) | 自己組織化ペプチド誘導体の製造方法 | |
JP5588917B2 (ja) | ペプチド生成物 | |
JP6350632B2 (ja) | ペプチドの製造方法 | |
JP6703669B2 (ja) | リュープロレリンの製造方法 | |
US12098218B2 (en) | Process for the manufacture of degarelix and its intermediates | |
JP2009525997A (ja) | グルカゴンン様ペプチドの合成 | |
US20210079036A1 (en) | Compositions and methods for chemical synthesis | |
WO2012165545A1 (ja) | ペプチドの製造方法 | |
KR20210102362A (ko) | 플레카나타이드의 개선된 제조 방법 | |
TW202112759A (zh) | 肽化合物的製造方法、保護基形成用試藥及縮合多環化合物 | |
JP2020023555A (ja) | H−Inp−(D)Bal−(D)Trp−Phe−Apc−nh2の液相合成方法およびその医薬的に許容される塩 | |
JP5661032B2 (ja) | ペプチド製造方法 | |
JP2022513474A (ja) | Wntヘキサペプチドの逐次液相経路 | |
CN112521459B (zh) | 一种stat3抑制多肽及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13816363 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14412190 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014524889 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013816363 Country of ref document: EP |