WO2014010638A1 - セシウム及びストロンチウムを含む多核種の元素の分離安定固定化方法 - Google Patents
セシウム及びストロンチウムを含む多核種の元素の分離安定固定化方法 Download PDFInfo
- Publication number
- WO2014010638A1 WO2014010638A1 PCT/JP2013/068897 JP2013068897W WO2014010638A1 WO 2014010638 A1 WO2014010638 A1 WO 2014010638A1 JP 2013068897 W JP2013068897 W JP 2013068897W WO 2014010638 A1 WO2014010638 A1 WO 2014010638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite
- cesium
- adsorbent
- strontium
- separation
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/12—Processing by absorption; by adsorption; by ion-exchange
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
Definitions
- the present invention relates to a separation and stable immobilization method that adsorbs multi-nuclide elements including cesium and strontium and stably immobilizes them as a stable ceramic solidified body, an adsorbent used in this method, and adsorption removal of cesium and strontium Regarding the method.
- the waste liquid generated at nuclear facilities contains various radioactive substances that need to be removed prior to discharge.
- those that are regarded as high-level waste liquids contain a relatively high concentration of nitric acid or sodium nitrate as a main component, and contain radioactive cesium and other nuclides.
- an insoluble ferrocyan compound as an adsorbent (for example, Patent Documents 1 and 2).
- Patent Document 3 a zeolite impregnated with a ferrocyan compound is used.
- the insoluble ferrocyan compounds used in Patent Documents 1 to 3 are susceptible to thermal decomposition, and there is a concern that cyan gas is generated in a reducing atmosphere.
- the insoluble ferrocyan compound that adsorbs cesium reaches a high temperature, it may easily be thermally decomposed to volatilize cesium. Therefore, when the insoluble ferrocyan compound is baked and solidified, cesium is volatilized, and iron or cobalt oxides derived from the insoluble ferrocyan compound remain as a residue. For this reason, a method for stably fixing the adsorbed elements is desired.
- strontium is also desired to be adsorbed and stabilized.
- the present invention provides a method for separating and fixing a multi-nuclide element that adsorbs and separates cesium and strontium and then stably immobilizes the separated cesium, an adsorbent used in this method, and cesium and strontium. It is an object to provide an adsorption removal method.
- the present inventor made cesium adsorbed by adsorbing cesium in the liquid to be treated by bringing the adsorbent made of zeolite impregnated with an insoluble ferrocyan compound into contact with the liquid to be treated, and further sintering the adsorbent. Has been found to be stably immobilized. The present invention has been completed based on such knowledge.
- the present invention relates to the following [1] to [11].
- a step (1) in which an adsorbent composed of zeolite (B) impregnated with an insoluble ferrocyan compound (A) is brought into contact with the liquid to be treated to adsorb multi-nuclide elements including cesium and strontium; And a step (2) of calcining the adsorbent obtained in the step (1) to obtain a ceramic-like solidified body.
- the method further includes a step (3) of press-molding the adsorbent obtained in the step (1).
- the step (3) The method for stable separation and immobilization according to any one of [1] to [6], wherein the press-molded body obtained by (1) is fired.
- An adsorbent for removing cesium and strontium comprising zeolite (B) impregnated with an insoluble ferrocyan compound (A).
- cesium and strontium can be adsorbed and separated from the liquid to be treated, and the adsorbent is stably fixed and treated while suppressing the volatilization of cesium, thereby providing a highly safe disposal form. be able to. Furthermore, according to the present invention, an adsorbent used in this method and a method for adsorbing and removing cesium and strontium are provided.
- the method for separating and immobilizing a multi-nuclide element of the present invention Step (1): contacting an adsorbent composed of zeolite (B) impregnated with an insoluble ferrocyan compound (A) with a liquid to be treated to adsorb a multi-nuclide element including cesium and strontium; A step (2); a step of firing the adsorbent obtained in the step (1) to obtain a ceramic solidified body.
- cesium and strontium can be adsorbed and separated from the treatment liquid, and the adsorbent can be stably fixed and treated while suppressing volatilization of cesium, so that a highly safe disposal form can be obtained.
- the reason is not clear, but is estimated as follows.
- the adsorbent composed of zeolite (B) impregnated with insoluble ferrocyan compound (A) exhibits the ability to adsorb cesium with the insoluble ferrocyan compound (A), and adsorbs other nuclides such as strontium with zeolite (B). I think it can be done. After adsorption, the adsorbent is baked, so that the cesium adsorbed on the ferrocyan compound (A) is taken into the zeolite (B) after thermal decomposition, and the zeolite (B) becomes a ceramic solidified body and is stably fixed. It is considered possible.
- the method of this invention and each process are demonstrated in detail.
- the adsorbent used in the method of the present invention comprises zeolite (B) impregnated with an insoluble ferrocyan compound (A).
- the insoluble ferrocyan compound (A) is not particularly limited as long as it can be used for adsorption and removal of cesium.
- the insoluble ferrocyan compound (A) is not particularly limited as long as it can be used for adsorption and removal of cesium.
- dipotassium hexacyanonickel iron K 2 [NiFe (CN) 6 ]
- ferric ferrocyanide Fe 4 [Fe (CN) 6 ] 3
- cobalt ferrocyanide Co 2 [Fe (CN) 6 ] 3
- nickel ferrocyanide Ni 2 [Fe (CN) 6 ] 3
- dipotassium hexacyanocobalt iron and dipotassium hexacyanonickel iron are particularly preferable.
- insoluble means that the solubility in water at 20 ° C. is 5 g / 100 mL or less.
- the zeolite used in the present invention is not particularly limited, and examples thereof include faujasite, A-type zeolite, L-type zeolite, zeolite ⁇ , mordenite, chabasite, ferrierite, and clinoptilolite.
- Examples of the faujasite include X-type zeolite, Y-type zeolite, and ultra-stabilized Y-type zeolite (Ultra Stable Y; USY).
- the zeolite may be natural or synthetic.
- A-type zeolite, X-type zeolite, L-type zeolite, mordenite, chabazite, clinoptilolite, or 2 of these is preferable.
- A-type zeolite is preferable because it has suitable cesium adsorption ability and strontium adsorption ability.
- other zeolites may be contained in combination with the A-type zeolite.
- the silica / alumina ratio of the zeolite used in the present invention is not particularly limited, but is usually determined by the type of zeolite. For example, 3 to 300 are preferable, and 5 to 200 are more preferable. From the viewpoint of adsorbing and removing strontium in addition to cesium, the silica / alumina ratio of the zeolite used in the present invention is preferably from 1.0 to 4.5, more preferably from 1.5 to 4.5. 0 to 4.0 are more preferred.
- the ion exchange capacity used in the zeolite of the present invention is not particularly limited, but is preferably 0.1 meq / g or more, more preferably 2 to 10 meq / g, and 4 to 6 meq / g from the viewpoint of obtaining good strontium removal ability. g is more preferable.
- the ion exchange capacity represents the number of moles of ion exchange groups introduced per unit mass of zeolite, and the larger the value, the higher the ion exchange group content.
- the ion exchange capacity indicates the amount of exchangeable cations present in the zeolite, and can be measured by, for example, the semi-micro Schollenberger method.
- the effective pore diameter of the zeolite used in the present invention is not particularly limited, but is preferably 1 to 20 mm, more preferably 2 to 15 mm, and further preferably 2 to 10 mm from the viewpoint of cesium adsorption and immobilization.
- the effective pore diameter is a pore diameter measured by a constant volume gas adsorption method. Examples of the adsorption gas used in the constant volume gas adsorption method include N 2 , CO 2 , CH 4 , and H 2 .
- the specific surface area of the zeolite used in the present invention is not particularly limited, but is preferably 200 m 2 / g or more, more preferably 300 m 2 / g or more, more preferably 300 m 2 / g or more, and even more preferably.
- the upper limit of the specific surface area is not particularly limited, but is, for example, 1000 m 2 / g.
- the specific surface area is determined by a nitrogen adsorption BET method (a zeolite having an effective pore diameter of 3 mm or less is a helium adsorption BET method).
- the form of zeolite is not particularly limited, but it is preferable to use a molded body such as beads, pellets and other grains, paper, and the like.
- the mass ratio [(A) / (B)] of the insoluble ferrocyan compound (A) to the zeolite (B) in the adsorbent is preferably 0.5 / 99.5 to 60/40, and 5/95 to 50 / 50 is more preferable, and 15/85 to 50/50 is still more preferable. By setting it as the range of such mass ratio, a cesium adsorption capacity can be improved with a ferrocyan compound, without almost reducing the adsorption performance of zeolite itself.
- the method for adding the insoluble ferrocyan compound (A) to the zeolite (B) can be a known method and is not particularly limited.
- a metal salt of an acid such as nickel nitrate or cobalt nitrate can be added under reduced pressure.
- an insoluble ferrocyan compound can be added to the zeolite.
- step (1) an adsorbent composed of zeolite (B) impregnated with an insoluble ferrocyan compound (A) is brought into contact with the liquid to be treated to adsorb cesium and strontium.
- the to-be-processed object may contain elements of multinuclear species, such as strontium, besides cesium.
- the cesium is not particularly limited, and examples thereof include cesium halides such as cesium nitrate (CsNO 3 ), cesium acetate (CH 3 COOCs), cesium sulfate (Cs 2 SO 4 ), cesium chloride, and cesium iodide. It is done.
- strontium such as strontium nitrate (Sr (NO 3 ) 2 ), cesium acetate ((CH 3 COO) 2 Sr), cesium sulfate (SrSO 4 ), strontium chloride, strontium iodide, etc. Halides are mentioned.
- the liquid to be treated is not particularly limited as long as it contains at least cesium and strontium, and examples thereof include radioactive liquid waste generated in nuclear power related applications.
- the temperature at the time of adsorption is not particularly limited, but is preferably, for example, 0 to 100 ° C, preferably 10 to 70 ° C, and preferably 20 to 40 ° C.
- step (1) the liquid to be processed and the adsorbent may be contacted in a batch manner, or the column may be filled with the adsorbent and the liquid to be processed may be passed.
- a step of separating the adsorbent from the liquid to be treated may be included.
- a separation method is not particularly limited, but a known method can be used, and examples thereof include filtration, sedimentation separation, and the like.
- Step (2) the adsorbent obtained in the step (1) is fired to obtain a ceramic solidified body.
- the maximum temperature in the firing of the present invention is preferably 1000 to 1200 ° C., more preferably 1000 to 1100 ° C., and still more preferably 1000 to 1050 ° C. from the viewpoint of easily obtaining a ceramic solidified body.
- the firing is performed at a temperature of 600 to 700 ° C. for 3 to 180 minutes (hereinafter, simply referred to as “first stage firing”), and then at a high temperature of 1000 ° C. or higher for 3 to It is preferable to perform the treatment for 180 minutes (hereinafter, simply referred to as “second stage baking”).
- the treatment time in the first stage firing is preferably 5 to 170 minutes, more preferably 5 to 160 minutes, from the viewpoint of suitable migration of cesium and work efficiency.
- the treatment time in the second stage firing is preferably 5 to 100 minutes, more preferably 20 to 40 minutes, from the viewpoint of the efficiency of the work for obtaining the ceramic solidified body.
- the ceramic solidified body may be amorphous or crystalline, and includes a decomposition product of zeolite by firing.
- cesium may exist in any form, but the cesium element is incorporated by a covalent bond, for example, by forming a bond such as Cs—Al—Si—O. It is preferable that Further, the ceramic solidified body may contain residual iron, cobalt, nickel and the like derived from the insoluble ferrocyan compound. In addition, voids may be generated in the ceramic solidified body due to the release of ammonia and NOx.
- the stable immobilization method of the present invention further includes a step (3) of press molding the adsorbent obtained in the step (1) between the step (1) and the step (2). ), It is preferable to fire the press-molded body obtained by the step (3).
- the press molding in the step (3) the mixture is compacted, and the volatilization of cesium can be more significantly suppressed.
- by press-molding it is possible to prevent powder from adhering to a container such as a crucible during firing (second stage heat treatment).
- it does not specifically limit about the method of press molding, It can carry out using a well-known method.
- the ceramic solid after firing can be easily handled by molding the mixture into a pellet.
- cesium and strontium can be adsorbed and removed from the liquid to be treated and stably immobilized by the method for stably immobilizing multi-nuclide elements of the present invention. Furthermore, according to the present invention, cesium in an insoluble ferrocyan compound adsorbing a large amount of cesium and strontium can be fixed and discarded in the treatment of a waste liquid containing a radioactive substance.
- Examples 1 to 7 Zeolite impregnated with insoluble ferrocyan compound
- the granular zeolite was dried at 200 ° C. as a pretreatment for the preparation of the zeolite impregnated with the insoluble ferrocyan compound.
- the dried zeolite was immersed in a 1 mol / L Co (NO 3 ) 2 solution under reduced pressure for 3 hours and then dried at 90 ° C. for 3 hours.
- a 0.5 mol / L K 4 Fe (CN) 6 solution was impregnated under reduced pressure for 3 hours and dried at 90 ° C. for 3 hours to obtain a zeolite (adsorbent) carrying insoluble cobalt potassium ferrocyanide.
- An aspirator Tokyo Science Instruments, EYELA A-1000S
- Example 7 zeolite from Aiko, Sendai City, Miyagi Prefecture was used.
- Ai is the initial radioactivity count [cpm] of 137Cs and 85Sr
- Af is the count [cpm] of 137Cs and 85Sr after the adsorption experiment.
- Example 13 Comparative Examples 6 to 11: Step (1) Adsorption and removal of strontium
- the strontium adsorption experiment was carried out under the same conditions as in Example 8 except that the cesium concentration 1 ppm solution was replaced with a strontium concentration 1 ppm solution and the adsorbent shown in Table 3 (Example 1) or the zeolite simple substance shown in Table 4 was used. Went. The results are shown in Tables 3 and 4.
- Example 14 to 16 Zeolite impregnated with insoluble ferrocyan compound (dipotassium hexacyanocobalt (II) iron (II): K 2 [CoFe (CN) 6 ]) with respect to 100 mL of 0.5 mol / L CsNO 3 aqueous solution (adsorption of each production example) 1 g) was added, stirred for 1 day and allowed to stand at room temperature. The adsorbent was taken out from the solution and dried at 90 ° C. for 6 hours. Then, the adsorbent was heat-treated by the following temperature raising method A shown below to obtain a ceramic solidified body.
- insoluble ferrocyan compound dipotassium hexacyanocobalt (II) iron (II): K 2 [CoFe (CN) 6 ]
- cesium and strontium can be adsorbed and separated from the liquid to be treated, and the adsorbent is stably fixed and treated while suppressing the volatilization of cesium, thereby providing a highly safe disposal form. It can be applied to waste liquid treatment in nuclear facilities.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
セシウム及びストロンチウムを吸着して分離し、更に分離した元素を安定固定化する多核種の元素の分離安定固定化方法、この方法に使用する吸着剤、並びに、セシウム及びストロンチウムの吸着除去方法を提供する。 不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する工程(1)と、前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする工程(2)と、を有する多核種の元素の分離安定固定化方法。
Description
本発明は、セシウム及びストロンチウムを含む多核種の元素を吸着し、安定なセラミックス状固化体として安定固定化する分離安定固定化方法、この方法に使用する吸着剤、並びに、セシウム及びストロンチウムの吸着除去方法に関する。
原子力関連施設において発生する廃液中には、種々の放射性物質が含まれており、排出に先立ってこれを除去する必要がある。これらの廃液の中でも、高レベル廃液とされるものでは、比較的高濃度の硝酸又は硝酸ナトリウムを主成分とし放射性セシウムその他の核種を含有している。このような廃液の中からセシウムを選択的に取り除く方法としては、不溶性フェロシアン化合物を吸着剤として使用することが知られている(例えば、特許文献1、2)。その他、放射性排水等からセシウムを分離濃縮するために、フェロシアン化合物を添着させたゼオライトを用いることが報告されている(例えば、特許文献3)。
特許文献1~3において用いられる不溶性フェロシアン化合物は、不溶性フェロシアン化合物は、熱分解しやすく、還元性雰囲気ではシアンガスの発生が懸念される。セシウムを吸着した不溶性フェロシアン化合物は高温となった場合に、容易に熱分解してセシウムが揮発する可能性がある。そのため、当該不溶性フェロシアン化合物を焼成固化すると、セシウムは揮発し、残渣として不溶性フェロシアン化合物に由来する鉄やコバルトの酸化物が残ることとなる。このため、吸着した元素を安定固定化する方法が望まれる。また、セシウムに加えてストロンチウムについても、吸着して安定化することが望まれる。
そこで、本発明は、セシウム及びストロンチウムを吸着して分離し、更に分離したセシウムを安定固定化する多核種の元素の分離安定固定化方法、この方法に使用する吸着剤、並びに、セシウム及びストロンチウムの吸着除去方法を提供することを課題とする。
本発明者は、不溶性フェロシアン化合物を添着したゼオライトよりなる吸着剤を被処理液に接触させることで、被処理液中のセシウムを吸着し、更に当該吸着剤を焼結することで吸着したセシウムを安定固定化できることを見出した。本発明は係る知見に基づいて完成されたものである。
すなわち本発明は、以下の〔1〕~〔11〕に関する。
〔1〕 不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する工程(1)と、
前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする工程(2)と、を有する多核種の元素の分離安定固定化方法。
〔2〕 ゼオライト(B)のシリカ/アルミナ比が、1.0~4.5である、〔1〕に記載の分離安定固定化方法。
〔3〕 ゼオライト(B)が、A型ゼオライトである、〔1〕又は〔2〕に記載の分離安定固定化方法。
〔4〕 ゼオライト(B)のイオン交換容量が、4~10meq/gである、〔1〕~〔3〕のいずれかに記載の分離安定固定化方法。
〔5〕 ゼオライト(B)に対する不溶性フェロシアン化合物(A)の質量比〔(A)/(B)〕が、0.5/99.5~60/40である、〔1〕~〔4〕のいずれかに記載の分離安定固定化方法。
〔6〕 工程(2)の焼成における最高温度が、1000~1200℃である、〔1〕~〔5〕のいずれかに記載の分離安定固定化方法。
〔7〕 工程(1)と工程(2)との間に、工程(1)において得られた吸着剤をプレス成型する工程(3)を更に有し、前記工程(2)において前記工程(3)により得られたプレス成型体を焼成する、〔1〕~〔6〕のいずれかに記載の分離安定固定化方法。
〔8〕 不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなるセシウム及びストロンチウム除去用吸着剤。
〔9〕 不溶性フェロシアン化合物(A)とゼオライト(B)の質量比が、0.5/99.5~60/40である、〔8〕に記載の吸着剤。
〔10〕 ゼオライト(B)が、A型ゼオライトである、〔8〕又は〔9〕に記載の吸着剤。
〔11〕 〔8〕~〔10〕のいずれかに記載の吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する、セシウム及びストロンチウムの吸着除去方法。
〔1〕 不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する工程(1)と、
前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする工程(2)と、を有する多核種の元素の分離安定固定化方法。
〔2〕 ゼオライト(B)のシリカ/アルミナ比が、1.0~4.5である、〔1〕に記載の分離安定固定化方法。
〔3〕 ゼオライト(B)が、A型ゼオライトである、〔1〕又は〔2〕に記載の分離安定固定化方法。
〔4〕 ゼオライト(B)のイオン交換容量が、4~10meq/gである、〔1〕~〔3〕のいずれかに記載の分離安定固定化方法。
〔5〕 ゼオライト(B)に対する不溶性フェロシアン化合物(A)の質量比〔(A)/(B)〕が、0.5/99.5~60/40である、〔1〕~〔4〕のいずれかに記載の分離安定固定化方法。
〔6〕 工程(2)の焼成における最高温度が、1000~1200℃である、〔1〕~〔5〕のいずれかに記載の分離安定固定化方法。
〔7〕 工程(1)と工程(2)との間に、工程(1)において得られた吸着剤をプレス成型する工程(3)を更に有し、前記工程(2)において前記工程(3)により得られたプレス成型体を焼成する、〔1〕~〔6〕のいずれかに記載の分離安定固定化方法。
〔8〕 不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなるセシウム及びストロンチウム除去用吸着剤。
〔9〕 不溶性フェロシアン化合物(A)とゼオライト(B)の質量比が、0.5/99.5~60/40である、〔8〕に記載の吸着剤。
〔10〕 ゼオライト(B)が、A型ゼオライトである、〔8〕又は〔9〕に記載の吸着剤。
〔11〕 〔8〕~〔10〕のいずれかに記載の吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する、セシウム及びストロンチウムの吸着除去方法。
本発明の方法によれば、被処理液中からセシウム及びストロンチウムを吸着して分離できると共に、当該吸着剤をセシウムの揮発を抑制しつつ安定固定して処理し、安全性の高い処分形態とすることができる。更に本発明によれば、この方法に使用する吸着剤、並びに、セシウム及びストロンチウムの吸着除去方法が提供される。
本発明の多核種の元素の分離安定固定化方法は、
工程(1);不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する工程と、
工程(2);前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする工程と、を有する。
このような方法により、処理液中からセシウム及びストロンチウムを吸着して分離できると共に、当該吸着剤をセシウムの揮発を抑制しつつ安定固定して処理し、安全性の高い処分形態とすることができる理由は定かではないが、以下のように推定される。
不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤は、その不溶性フェロシアン化合物(A)によりセシウムの吸着能を示し、ゼオライト(B)によりストロンチウム等の他の核種の吸着を行うことができると考えられる。吸着後、当該吸着剤を焼成することで、フェロシアン化合物(A)に吸着したセシウムが、熱分解後にゼオライト(B)内に取り込まれ、ゼオライト(B)がセラミックス状固化体となり安定固定化することができると考えられる。
以下、本発明の方法において用いるもの及び、各工程について詳細に説明する。
工程(1);不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する工程と、
工程(2);前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする工程と、を有する。
このような方法により、処理液中からセシウム及びストロンチウムを吸着して分離できると共に、当該吸着剤をセシウムの揮発を抑制しつつ安定固定して処理し、安全性の高い処分形態とすることができる理由は定かではないが、以下のように推定される。
不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤は、その不溶性フェロシアン化合物(A)によりセシウムの吸着能を示し、ゼオライト(B)によりストロンチウム等の他の核種の吸着を行うことができると考えられる。吸着後、当該吸着剤を焼成することで、フェロシアン化合物(A)に吸着したセシウムが、熱分解後にゼオライト(B)内に取り込まれ、ゼオライト(B)がセラミックス状固化体となり安定固定化することができると考えられる。
以下、本発明の方法において用いるもの及び、各工程について詳細に説明する。
[吸着剤]
本発明の方法において用いられる吸着剤は、不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる。
本発明の方法において用いられる吸着剤は、不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる。
(不溶性フェロシアン化合物(A))
不溶性フェロシアン化合物(A)としては、セシウムの吸着・除去に使用可能なものであれば、特に限定されないが、例えば、ジカリウムヘキサシアノコバルト鉄(K2[CoFe(CN)6])、ジナトリウムヘキサシアノコバルト鉄(Na2[CoFe(CN)6])、ジカリウムヘキサシアノニッケル鉄(K2[NiFe(CN)6])、フェロシアン化第二鉄(Fe4〔Fe(CN)6〕3)、フェロシアン化コバルト(Co2[Fe(CN)6]3)、フェロシアン化ニッケル(Ni2[Fe(CN)6]3)等が挙げられる。これらの中でも、特に、ジカリウムヘキサシアノコバルト鉄、ジカリウムヘキサシアノニッケル鉄が好ましい。
ここで「不溶性」とは、20℃における水への溶解性が、5g/100mL以下のものを意味する。
不溶性フェロシアン化合物(A)としては、セシウムの吸着・除去に使用可能なものであれば、特に限定されないが、例えば、ジカリウムヘキサシアノコバルト鉄(K2[CoFe(CN)6])、ジナトリウムヘキサシアノコバルト鉄(Na2[CoFe(CN)6])、ジカリウムヘキサシアノニッケル鉄(K2[NiFe(CN)6])、フェロシアン化第二鉄(Fe4〔Fe(CN)6〕3)、フェロシアン化コバルト(Co2[Fe(CN)6]3)、フェロシアン化ニッケル(Ni2[Fe(CN)6]3)等が挙げられる。これらの中でも、特に、ジカリウムヘキサシアノコバルト鉄、ジカリウムヘキサシアノニッケル鉄が好ましい。
ここで「不溶性」とは、20℃における水への溶解性が、5g/100mL以下のものを意味する。
(ゼオライト(B))
本発明において用いられるゼオライトは、特に制限されるものではないが、フォージャサイト、A型ゼオライト、L型ゼオライト、ゼオライトβ、モルデナイト、チャバサイト、フェリエライト、クリノプチロライトが挙げられる。なお、フォージャサイトとしては、X型ゼオライト、Y型ゼオライト、超安定化Y型ゼオライト(Ultra Stable Y;USY)が挙げられる。ゼオライトは、天然であっても、合成であってもよい。
これらの中でも、特に好適なセシウム吸着能及び焼結後の吸着保持率を得る観点から、A型ゼオライト、X型ゼオライト、L型ゼオライト、モルデナイト、チャバサイト、クリノプチロライト、又はこれらのうち2以上の組合せが好ましい。特に、不溶性セシウム化合物を添着しても、好適なセシウム吸着能及びストロンチウム吸着能を有することから、A型ゼオライトが好適である。またA型ゼオライトと組み合わせて、他のゼオライトを含有していてもよく、例えば、コバルト等の他の核種の元素の吸着の観点から、X型ゼオライトと組み合わせて用いることが好適である。
本発明において用いられるゼオライトは、特に制限されるものではないが、フォージャサイト、A型ゼオライト、L型ゼオライト、ゼオライトβ、モルデナイト、チャバサイト、フェリエライト、クリノプチロライトが挙げられる。なお、フォージャサイトとしては、X型ゼオライト、Y型ゼオライト、超安定化Y型ゼオライト(Ultra Stable Y;USY)が挙げられる。ゼオライトは、天然であっても、合成であってもよい。
これらの中でも、特に好適なセシウム吸着能及び焼結後の吸着保持率を得る観点から、A型ゼオライト、X型ゼオライト、L型ゼオライト、モルデナイト、チャバサイト、クリノプチロライト、又はこれらのうち2以上の組合せが好ましい。特に、不溶性セシウム化合物を添着しても、好適なセシウム吸着能及びストロンチウム吸着能を有することから、A型ゼオライトが好適である。またA型ゼオライトと組み合わせて、他のゼオライトを含有していてもよく、例えば、コバルト等の他の核種の元素の吸着の観点から、X型ゼオライトと組み合わせて用いることが好適である。
本発明に用いるゼオライトのシリカ/アルミナ比は、特に制限はないが、通常ゼオライトの種類によりその値が決定される。例えば、3~300が好ましく、5~200がより好ましい。また、セシウムに加えて、ストロンチウムを吸着除去する観点から、本発明に用いるゼオライトのシリカ/アルミナ比は、1.0~4.5が好ましく、1.5~4.5がより好ましく、2.0~4.0が更に好ましい。
本発明のゼオライトに使用されるイオン交換容量は、特に制限されないが、0.1meq/g以上が好ましく、2~10meq/gがより好ましく、良好なストロンチウム除去能を得る観点から、4~6meq/gが更に好ましい。なお、イオン交換容量とは、ゼオライトの単位質量あたりに導入されたイオン交換基のモル数を表し、値が大きいほどイオン交換基含量が高いことを示す。イオン交換容量は、ゼオライトに存在する交換性陽イオンの量を示し、例えば、セミミクロSchollenberger法により測定が可能である。
本発明に使用するゼオライトの有効細孔径は、特に制限されないが、セシウムの吸着及び固定化の観点から、例えば、1~20Åが好ましく、2~15Åがより好ましく、2~10Åが更に好ましい。有効細孔径は、定容量式ガス吸着法により測定される細孔径である。前記定容量式ガス吸着法に使用する吸着ガスとしては、N2、CO2、CH4、H2等が挙げられる。
本発明に使用するゼオライトの比表面積は、特に制限されないが、200m2/g以上が好ましく、300m2/g以上がより好ましく、300m2/g以上がより好ましく、以上が更に好ましい。なお、比表面積の上限は特に制限されないが、例えば、1000m2/gである。なお、比表面積は窒素吸着BET法(なお、有効細孔径3Å以下のゼオライトのはヘリウム吸着BET法)により求められる。
本発明に使用するゼオライトの比表面積は、特に制限されないが、200m2/g以上が好ましく、300m2/g以上がより好ましく、300m2/g以上がより好ましく、以上が更に好ましい。なお、比表面積の上限は特に制限されないが、例えば、1000m2/gである。なお、比表面積は窒素吸着BET法(なお、有効細孔径3Å以下のゼオライトのはヘリウム吸着BET法)により求められる。
ゼオライトの形態は、特に制限されないが、ビーズ、ペレット等の粒、紙、等の成形体を用いることが好ましい。
吸着剤における、ゼオライト(B)に対する不溶性フェロシアン化合物(A)の質量比〔(A)/(B)〕は、0.5/99.5~60/40が好ましく、5/95~50/50がより好ましく、15/85~50/50が更に好ましい。このような質量比の範囲とすることで、ゼオライト自体の吸着性能をほとんど低下させることなく、フェロシアン化合物によりセシウム吸着能力を向上することができる。
不溶性フェロシアン化合物(A)のゼオライト(B)への添着方法は、公知の方法を使用することができ、特に制限されないが、例えば、硝酸ニッケル、硝酸コバルト等の酸の金属塩を減圧下でゼオライト(B)に含浸させ、次いでフェロシアン化カリウム溶液を含浸させるとゼオライトに不溶性フェロシアン化合物を添着することができる。
[分離安定固定化方法]
<工程(1)>
工程(1)では、不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを吸着する。
<工程(1)>
工程(1)では、不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを吸着する。
(被処理液)
本発明の方法において、被処理物は、少なくともセシウムを含む水を用いることが好適である。また、被処理物は、セシウム以外にもストロンチウム等の多核種の元素を含んでいてもよい。
ここでセシウムとしては、特に限定されないが、例えば、硝酸セシウム(CsNO3)、酢酸セシウム(CH3COOCs)、硫酸セシウム(Cs2SO4)、塩化セシウム、ヨウ化セシウム等のセシウムハロゲン化物が挙げられる。
ストロンチウムとしては、特に限定されないが、例えば、硝酸ストロンチウム(Sr(NO3)2)、酢酸セシウム((CH3COO)2Sr)、硫酸セシウム(SrSO4)、塩化ストロンチウム、ヨウ化ストロンチウム等のストロンチウムハロゲン化物が挙げられる。
本発明の方法において、被処理物は、少なくともセシウムを含む水を用いることが好適である。また、被処理物は、セシウム以外にもストロンチウム等の多核種の元素を含んでいてもよい。
ここでセシウムとしては、特に限定されないが、例えば、硝酸セシウム(CsNO3)、酢酸セシウム(CH3COOCs)、硫酸セシウム(Cs2SO4)、塩化セシウム、ヨウ化セシウム等のセシウムハロゲン化物が挙げられる。
ストロンチウムとしては、特に限定されないが、例えば、硝酸ストロンチウム(Sr(NO3)2)、酢酸セシウム((CH3COO)2Sr)、硫酸セシウム(SrSO4)、塩化ストロンチウム、ヨウ化ストロンチウム等のストロンチウムハロゲン化物が挙げられる。
被処理液は、セシウム及びストロンチウムを少なくとも含んでいれば、特に制限されないが、例えば、原子力関連施おいて発生する放射性廃液等が挙げられる。
また吸着時の温度も特に制限されないが、例えば、0~100℃が好ましく、10~70℃が好ましく、20~40℃が好ましい。
また吸着時の温度も特に制限されないが、例えば、0~100℃が好ましく、10~70℃が好ましく、20~40℃が好ましい。
工程(1)では、バッチ式で被処理液と吸着剤を接触させてもよいし、吸着剤をカラムに充填して被処理液を通過させてもよい。前者の場合、吸着剤を被処理液から分離する工程を含んでいてもよい。分離方法は、特に制限されないが、公知の方法が使用でき、濾過、沈降分離、等の手段が挙げられる。
<工程(2)>
工程(2)では、前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする。
本発明の焼成における最高温度は、セラミックス状固化体を得やすくする観点から、好ましくは1000~1200℃であり、より好ましくは1000~1100℃であり、更に好ましくは1000~1050℃である。
本発明においては、焼成の条件としては、600~700℃の条件で、3~180分間処理(以下、単に「第一段階の焼成」とする。)した後に、1000℃以上の高温で3~180分間処理(以下、単に「第二段階の焼成」とする。)されることが好適である。すなわち比較的低温の第一段階の焼成において、不溶性フェロシアン化合物に吸着したセシウムをゼオライトに移行させ、比較的高温の第二段階の焼成において、セシウムを吸着したゼオライトを焼結してセラミックス状固化体に変換しやすくすることで、セシウムの揮発をより顕著に抑制することができる。
第一段階の焼成における処理時間は、セシウムの好適な移行と作業の効率の観点から、好ましくは5~170分間であり、より好ましくは5~160分間である。
第二段階の焼成における処理時間は、セラミックス状固化体とするための作業の効率の観点から、好ましくは5~100分間であり、より好ましくは20~40分間である。
工程(2)では、前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする。
本発明の焼成における最高温度は、セラミックス状固化体を得やすくする観点から、好ましくは1000~1200℃であり、より好ましくは1000~1100℃であり、更に好ましくは1000~1050℃である。
本発明においては、焼成の条件としては、600~700℃の条件で、3~180分間処理(以下、単に「第一段階の焼成」とする。)した後に、1000℃以上の高温で3~180分間処理(以下、単に「第二段階の焼成」とする。)されることが好適である。すなわち比較的低温の第一段階の焼成において、不溶性フェロシアン化合物に吸着したセシウムをゼオライトに移行させ、比較的高温の第二段階の焼成において、セシウムを吸着したゼオライトを焼結してセラミックス状固化体に変換しやすくすることで、セシウムの揮発をより顕著に抑制することができる。
第一段階の焼成における処理時間は、セシウムの好適な移行と作業の効率の観点から、好ましくは5~170分間であり、より好ましくは5~160分間である。
第二段階の焼成における処理時間は、セラミックス状固化体とするための作業の効率の観点から、好ましくは5~100分間であり、より好ましくは20~40分間である。
(セラミックス状固化体)
工程(2)によりセラミックス状固化体が得られる。セラミックス状固化体としては、アモルファスであっても、結晶性であってもよく、焼成によるゼオライトの分解物が含まれる。セラミックス状固化体の中で、セシウムは、どのような形態で存在していてもよいが、Cs-Al-Si-O等の結合を生成するなどして、共有結合によりセシウム元素が取り込まれていることが好適である。また、セラミックス状固化体は、不溶性フェロシアン化合物に由来する残渣の鉄、コバルト、ニッケル等が含まれていてもよい。その他、セラミックス状固化体には、アンモニア、NOxの放出によって空隙が発生することもある。
工程(2)によりセラミックス状固化体が得られる。セラミックス状固化体としては、アモルファスであっても、結晶性であってもよく、焼成によるゼオライトの分解物が含まれる。セラミックス状固化体の中で、セシウムは、どのような形態で存在していてもよいが、Cs-Al-Si-O等の結合を生成するなどして、共有結合によりセシウム元素が取り込まれていることが好適である。また、セラミックス状固化体は、不溶性フェロシアン化合物に由来する残渣の鉄、コバルト、ニッケル等が含まれていてもよい。その他、セラミックス状固化体には、アンモニア、NOxの放出によって空隙が発生することもある。
<工程(3)>
本発明の安定固定化方法は、工程(1)と工程(2)との間に、工程(1)において得られた吸着剤をプレス成型する工程(3)を更に有し、前記工程(2)において前記工程(3)により得られたプレス成型体を焼成することが好適である。工程(3)においてプレス成型することで、混合物が押し固められて、セシウムの揮発をより顕著に抑制することが可能となる。また、プレス成型することで、焼成(第二段の熱処理)において、るつぼ等の容器に粉末が付着することを防止することができる。なお、プレス成型の方法については、特に限定されず、公知の方法を用いて行うことが可能である。特に、混合物をペレット状に成型することで、焼成後のセラミックス固体の取り扱いが容易となる。
本発明の安定固定化方法は、工程(1)と工程(2)との間に、工程(1)において得られた吸着剤をプレス成型する工程(3)を更に有し、前記工程(2)において前記工程(3)により得られたプレス成型体を焼成することが好適である。工程(3)においてプレス成型することで、混合物が押し固められて、セシウムの揮発をより顕著に抑制することが可能となる。また、プレス成型することで、焼成(第二段の熱処理)において、るつぼ等の容器に粉末が付着することを防止することができる。なお、プレス成型の方法については、特に限定されず、公知の方法を用いて行うことが可能である。特に、混合物をペレット状に成型することで、焼成後のセラミックス固体の取り扱いが容易となる。
以上、本発明の多核種の元素の安定固定化方法により、被処理液からセシウム及びストロンチウムを吸着除去して、安定固定化することができる。更に本発明によれば、放射性物質を含む廃液の処理において、大量に発生するセシウム及びストロンチウムを吸着した不溶性フェロシアン化合物中のセシウムを固定化して廃棄することができる。
(実施例1~7:不溶性フェロシアン化合物を添着したゼオライト)
不溶性フェロシアン化合物を添着したゼオライトの調製の前処理として粒状ゼオライトは200℃で乾燥させた。乾燥したゼオライトを減圧下で1mol/LのCo(NO3)2溶液に3時間浸した後、90℃で3時間乾燥した。乾燥後、0.5mol/LのK4Fe(CN)6溶液に減圧下で3時間含浸させ、90℃で3時間乾燥させて、不溶性フェロシアン化コバルトカリウムを担持したゼオライト(吸着剤)を調製した。減圧下にするためにアスピレータ(東京理科器械,EYELA A-1000S)を使用した。なお、実施例7では宮城県仙台市愛子産のゼオライトを用いた。
不溶性フェロシアン化合物を添着したゼオライトの調製の前処理として粒状ゼオライトは200℃で乾燥させた。乾燥したゼオライトを減圧下で1mol/LのCo(NO3)2溶液に3時間浸した後、90℃で3時間乾燥した。乾燥後、0.5mol/LのK4Fe(CN)6溶液に減圧下で3時間含浸させ、90℃で3時間乾燥させて、不溶性フェロシアン化コバルトカリウムを担持したゼオライト(吸着剤)を調製した。減圧下にするためにアスピレータ(東京理科器械,EYELA A-1000S)を使用した。なお、実施例7では宮城県仙台市愛子産のゼオライトを用いた。
(実施例8~12、参考例1~5 工程(1)セシウムの吸着除去)
実海水は松島海岸で採取したものを用い、セシウム濃度1ppmの溶液を調製した。これらの溶液5cm3を0.05gの各種吸着剤と温度25℃で振とうした。その後、5,000rpmで5分間遠心分離した後に、上澄み液のみを1mLずつサンプリングし、Cs,Sr濃度をγ線用NaIシンチレーションカウンター(千代田テクノル製JDC-715)により測定した。ここで、吸着率Rを各々以下の式(1)で示すように定義する。
実海水は松島海岸で採取したものを用い、セシウム濃度1ppmの溶液を調製した。これらの溶液5cm3を0.05gの各種吸着剤と温度25℃で振とうした。その後、5,000rpmで5分間遠心分離した後に、上澄み液のみを1mLずつサンプリングし、Cs,Sr濃度をγ線用NaIシンチレーションカウンター(千代田テクノル製JDC-715)により測定した。ここで、吸着率Rを各々以下の式(1)で示すように定義する。
ここで、Aiは137Cs、85Srの初期放射能カウント数[cpm]、Afは吸着実験後137Cs、85Srのカウント数[cpm]である。
(海水系からのCs吸着特性)
振とう時間24hでバッチ実験を行い、不溶性フェロシアン化合物を添着した吸着剤(実施例1,2,4,5,6)のセシウムに対する吸着率(実施例8~12)と各種製造例の吸着剤に用いたゼオライト単体のセシウムに対する吸着率(参考例1~5)を比較した。
振とう時間24hでバッチ実験を行い、不溶性フェロシアン化合物を添着した吸着剤(実施例1,2,4,5,6)のセシウムに対する吸着率(実施例8~12)と各種製造例の吸着剤に用いたゼオライト単体のセシウムに対する吸着率(参考例1~5)を比較した。
以上の結果から、ゼオライトに対して、不溶性フェロシアン化合物を添着することで、セシウム吸着力に関する効果が顕著となることが読み取れる。
(実施例13、比較例6~11:工程(1)ストロンチウムの吸着除去)
セシウム濃度1ppmの溶液をストロンチウム濃度1ppmの溶液に置き換え、表3に示す吸着剤(実施例1)又は表4に示すゼオライト単体を用いた以外は実施例8と同様の条件で、ストロンチウムの吸着実験を行った。結果を表3及び表4に示す。
セシウム濃度1ppmの溶液をストロンチウム濃度1ppmの溶液に置き換え、表3に示す吸着剤(実施例1)又は表4に示すゼオライト単体を用いた以外は実施例8と同様の条件で、ストロンチウムの吸着実験を行った。結果を表3及び表4に示す。
以上の表4の結果より、ゼオライトとして、4A、13X、LSXを使用した場合には、特に高いストロンチウム除去性能を示すことが確認された。
A型のゼオライトの場合、それ単体でのストロンチウムの吸着能が高く(表4)、セシウムの吸着は、顕著ではない(表2)。特に当該A型のゼオライトにフェロシアン化合物を添着すると、ストロンチウム吸着量を維持して、セシウム吸着量を向上させることができることがわかる。また、以下の実施例で示されるようにフェロシアン化合物を添着したゼオライトにはゼオライト成分が含まれるのでセシウムの安定固定化を行うことができる。
A型のゼオライトの場合、それ単体でのストロンチウムの吸着能が高く(表4)、セシウムの吸着は、顕著ではない(表2)。特に当該A型のゼオライトにフェロシアン化合物を添着すると、ストロンチウム吸着量を維持して、セシウム吸着量を向上させることができることがわかる。また、以下の実施例で示されるようにフェロシアン化合物を添着したゼオライトにはゼオライト成分が含まれるのでセシウムの安定固定化を行うことができる。
(実施例14~16)
0.5mol/LのCsNO3水溶液100mLに対して、不溶性フェロシアン化合物(ジカリウムヘキサシアノコバルト(II)鉄(II):K2[CoFe(CN)6])を添着したゼオライト(各製造例の吸着剤)を1g添加して、1日攪拌して室温で放置した。溶液から吸着剤を取り出し90℃で6時間乾燥した。その後、吸着剤を以下に示す、以下の昇温方法Aにて熱処理し、セラミックス状固化体を得た。
(昇温方法A)
200℃で30分保持後、昇温(17℃/分)、400℃で30分保持後、昇温(20℃/分)、500℃で30分保持し、昇温(14℃/分)して1000℃で1時間保持し、昇温(17℃/分)して1100℃で1時間保持した(600~700℃:7.14分、1000℃以上:1時間以上)。(*なお、表5中1000℃の実施例においては、上記昇温方法において、1000℃で1時間保持後、昇温せずに終了した。)
0.5mol/LのCsNO3水溶液100mLに対して、不溶性フェロシアン化合物(ジカリウムヘキサシアノコバルト(II)鉄(II):K2[CoFe(CN)6])を添着したゼオライト(各製造例の吸着剤)を1g添加して、1日攪拌して室温で放置した。溶液から吸着剤を取り出し90℃で6時間乾燥した。その後、吸着剤を以下に示す、以下の昇温方法Aにて熱処理し、セラミックス状固化体を得た。
(昇温方法A)
200℃で30分保持後、昇温(17℃/分)、400℃で30分保持後、昇温(20℃/分)、500℃で30分保持し、昇温(14℃/分)して1000℃で1時間保持し、昇温(17℃/分)して1100℃で1時間保持した(600~700℃:7.14分、1000℃以上:1時間以上)。(*なお、表5中1000℃の実施例においては、上記昇温方法において、1000℃で1時間保持後、昇温せずに終了した。)
(セシウム濃度の測定方法(EDS))
実施例14~16における分離した吸着剤及び熱処理後の試料についてEDS(エネルギー分散型微小部X線分析法)により解析を行って試料中のセシウム濃度(質量%)を測定し、これらの結果から吸着保持率(%)([熱処理後のセシウム濃度]/[混合時のセシウム濃度]×100)を求めて、表5に示した。
実施例14~16における分離した吸着剤及び熱処理後の試料についてEDS(エネルギー分散型微小部X線分析法)により解析を行って試料中のセシウム濃度(質量%)を測定し、これらの結果から吸着保持率(%)([熱処理後のセシウム濃度]/[混合時のセシウム濃度]×100)を求めて、表5に示した。
本発明の方法によれば、被処理液中からセシウム及びストロンチウムを吸着して分離できると共に、当該吸着剤をセシウムの揮発を抑制しつつ安定固定して処理し、安全性の高い処分形態とすることができ、原子力関連設備における廃液処理に応用することができる。
Claims (11)
- 不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなる吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する工程(1)と、
前記工程(1)により得られた吸着剤を焼成してセラミックス状固化体とする工程(2)と、を有する多核種の元素の分離安定固定化方法。 - ゼオライト(B)のシリカ/アルミナ比が、1.0~4.5である、請求項1に記載の分離安定固定化方法。
- ゼオライト(B)が、A型ゼオライトである、請求項1又は2に記載の分離安定固定化方法。
- ゼオライト(B)のイオン交換容量が、2~10meq/gである、請求項1~3のいずれかに記載の分離安定固定化方法。
- ゼオライト(B)に対する不溶性フェロシアン化合物(A)の質量比〔(A)/(B)〕が、0.5/99.5~60/40である、請求項1~4のいずれかに記載の分離安定固定化方法。
- 工程(2)の焼成における最高温度が、1000~1200℃である、請求項1~5のいずれかに記載の分離安定固定化方法。
- 工程(1)と工程(2)との間に、工程(1)において得られた吸着剤をプレス成型する工程(3)を更に有し、前記工程(2)において前記工程(3)により得られたプレス成型体を焼成する、請求項1~6のいずれかに記載の分離安定化方法。
- 不溶性フェロシアン化合物(A)を添着したゼオライト(B)よりなるセシウム及びストロンチウム除去用吸着剤。
- 不溶性フェロシアン化合物(A)とゼオライト(B)の質量比が、0.5/99.5~60/40である、請求項8に記載の吸着剤。
- ゼオライト(B)が、A型ゼオライトである、請求項8又は9に記載の吸着剤。
- 請求項8~10のいずれかに記載の吸着剤を被処理液に接触させて、セシウム及びストロンチウムを含む多核種の元素を吸着する、セシウム及びストロンチウムの吸着除去方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-155623 | 2012-07-11 | ||
JP2012155623A JP6166869B2 (ja) | 2012-07-11 | 2012-07-11 | セシウム及びストロンチウムを含む多核種の元素の分離安定固定化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014010638A1 true WO2014010638A1 (ja) | 2014-01-16 |
Family
ID=49916087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/068897 WO2014010638A1 (ja) | 2012-07-11 | 2013-07-10 | セシウム及びストロンチウムを含む多核種の元素の分離安定固定化方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6166869B2 (ja) |
WO (1) | WO2014010638A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015138000A (ja) * | 2014-01-24 | 2015-07-30 | 国立研究開発法人日本原子力研究開発機構 | フェロシアン化物に吸着した放射性セシウムの安定化処理方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016099264A (ja) * | 2014-11-25 | 2016-05-30 | 有限会社パールハート | 放射性物質を安全に処分する放射性物質吸着セラミックス |
JP6373748B2 (ja) * | 2014-12-12 | 2018-08-15 | 株式会社東芝 | 放射性物質吸着剤の処分方法及び処分装置 |
JP2016176742A (ja) * | 2015-03-19 | 2016-10-06 | 日立造船株式会社 | 放射性セシウムの固定化方法、及び放射性セシウム吸着無機鉱物 |
JP6509713B2 (ja) * | 2015-11-16 | 2019-05-08 | 株式会社東芝 | 放射性物質吸着剤の処理方法及び処理装置 |
JP6502835B2 (ja) * | 2015-11-20 | 2019-04-17 | 株式会社東芝 | 放射性物質吸着剤の処理装置及び処理方法 |
JP6672990B2 (ja) * | 2016-04-22 | 2020-03-25 | ユニオン昭和株式会社 | 放射性ネプツニウム除染剤 |
FR3055558B1 (fr) | 2016-09-08 | 2022-01-14 | Commissariat Energie Atomique | Materiau solide nanocomposite a base d'hexa- ou octacyanometallates de metaux alcalins, son procede de preparation, et procede d'extraction de cations metalliques. |
JP2018059838A (ja) * | 2016-10-06 | 2018-04-12 | 株式会社荏原製作所 | 放射性セシウムを含有する放射性廃液の処理方法 |
JP6668215B2 (ja) * | 2016-10-18 | 2020-03-18 | 株式会社東芝 | 放射性廃棄物の処理方法及び処理装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111041A (en) * | 1980-02-08 | 1981-09-02 | Hitachi Ltd | Production of zeolite attached with ferrocyanide metal compound |
JPS58184598A (ja) * | 1982-04-23 | 1983-10-28 | 株式会社日立製作所 | 放射性廃液の固定化方法 |
JPS6243519B2 (ja) * | 1979-12-06 | 1987-09-14 | Hitachi Ltd | |
JP2007263613A (ja) * | 2006-03-27 | 2007-10-11 | Japan Atomic Energy Agency | 高レベル放射性廃液の高減容ガラス固化処理方法 |
-
2012
- 2012-07-11 JP JP2012155623A patent/JP6166869B2/ja not_active Expired - Fee Related
-
2013
- 2013-07-10 WO PCT/JP2013/068897 patent/WO2014010638A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243519B2 (ja) * | 1979-12-06 | 1987-09-14 | Hitachi Ltd | |
JPS56111041A (en) * | 1980-02-08 | 1981-09-02 | Hitachi Ltd | Production of zeolite attached with ferrocyanide metal compound |
JPS58184598A (ja) * | 1982-04-23 | 1983-10-28 | 株式会社日立製作所 | 放射性廃液の固定化方法 |
JP2007263613A (ja) * | 2006-03-27 | 2007-10-11 | Japan Atomic Energy Agency | 高レベル放射性廃液の高減容ガラス固化処理方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015138000A (ja) * | 2014-01-24 | 2015-07-30 | 国立研究開発法人日本原子力研究開発機構 | フェロシアン化物に吸着した放射性セシウムの安定化処理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6166869B2 (ja) | 2017-07-19 |
JP2014016311A (ja) | 2014-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6166869B2 (ja) | セシウム及びストロンチウムを含む多核種の元素の分離安定固定化方法 | |
Abdel-Galil et al. | Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions | |
El-Shazly et al. | Kinetic and isotherm studies for the sorption of 134Cs and 60Co radionuclides onto supported titanium oxide | |
JP5936196B2 (ja) | セシウム含有層状複水酸化物複合体、廃棄物固化体、セシウム含有廃水の処理方法、層状複水酸化物複合体、及び層状複水酸化物複合体の製造方法 | |
US9659678B2 (en) | Method for removing cesium ions from water | |
JP6131245B2 (ja) | セシウムを吸着した不溶性フェロシアン化合物の処理方法 | |
Nenadović et al. | Natural diatomite (Rudovci, Serbia) as adsorbent for removal Cs from radioactive waste liquids | |
AU2017367216B2 (en) | Zeolite adsorbent material, method of preparation and use for non-cryogenic separation of industrial gases | |
JP6869295B2 (ja) | 放射性核種吸着剤、その製造方法及びそれを用いた放射性核種の除去方法 | |
CA2973548A1 (en) | Adsorbent and method for producing same | |
Yamada et al. | Preparation of mordenite and its composite material with nano-sized magnetite from diatomites for radioactive Cs decontamination | |
JP2019529086A (ja) | アルカリ金属のヘキサシアノメタレートまたはオクタシアノメタレートに基づく固体ナノ複合材料、その調製方法、及び金属カチオンの抽出方法 | |
EP2986564B1 (en) | Use of zeolitic materials for removing mercury (+2) ions from liquid streams | |
JP2005345448A (ja) | 放射性元素含有廃棄物の吸着剤および放射性元素の固定化方法 | |
Stechynska et al. | Preconcentration of Lutetium from Aqueous Solution by Transcarpathian Clinoptilolite. | |
WO2019147664A1 (en) | Compositions for the removal of heavy metals | |
JP6825193B1 (ja) | 放射性物質吸着材及びその製造方法 | |
Caballero et al. | Kinetic analysis of lead removal by natural hydroxyapatite from aqueous solution in high concentration | |
JP2016099264A (ja) | 放射性物質を安全に処分する放射性物質吸着セラミックス | |
JP6581945B2 (ja) | 放射性ヨウ素の吸着材及び放射性ヨウ素の除去装置 | |
Pénélope et al. | Lead-vanadate sorbents for iodine trapping and their conversion into an iodoapatite-based conditioning matrix | |
Qadeer | Adsorption of neodymium ions on activated charcoal from aqeous solutions | |
Ikarashi et al. | Selective adsorption properties and stable solidification of Cs by insoluble ferrocyanide loaded zeolites | |
Wang et al. | A Study on the Removal of Heavy Metal with Mg-Modified Zeolite | |
RU2575044C1 (ru) | Композиционный гранулированный сорбент на основе силикатов кальция |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13816859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13816859 Country of ref document: EP Kind code of ref document: A1 |