WO2014005271A1 - 稀土永磁粉、粘结磁体,以及应用该粘结磁体的器件 - Google Patents

稀土永磁粉、粘结磁体,以及应用该粘结磁体的器件 Download PDF

Info

Publication number
WO2014005271A1
WO2014005271A1 PCT/CN2012/078077 CN2012078077W WO2014005271A1 WO 2014005271 A1 WO2014005271 A1 WO 2014005271A1 CN 2012078077 W CN2012078077 W CN 2012078077W WO 2014005271 A1 WO2014005271 A1 WO 2014005271A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth permanent
permanent magnet
magnet powder
content
Prior art date
Application number
PCT/CN2012/078077
Other languages
English (en)
French (fr)
Inventor
罗阳
李红卫
于敦波
李扩社
闫文龙
谢佳君
鲁帅
Original Assignee
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to JP2015518772A priority Critical patent/JP5982567B2/ja
Priority to DE112012006640.5T priority patent/DE112012006640T5/de
Priority to PCT/CN2012/078077 priority patent/WO2014005271A1/zh
Priority to KR1020147027395A priority patent/KR101642924B1/ko
Priority to US14/380,060 priority patent/US9859042B2/en
Publication of WO2014005271A1 publication Critical patent/WO2014005271A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt

Definitions

  • the invention relates to the field of rare earth permanent magnet materials, and more particularly to a rare earth permanent magnet powder, a bonded magnet, and a device using the same.
  • BACKGROUND OF THE INVENTION Rare-earth bonded permanent magnets have been widely used in various electronic equipment, office automation, automobiles, and the like due to their good formability, high dimensional accuracy, and high magnetic performance, especially in micro-motors. In order to meet the requirements of technological development for miniaturization and miniaturization of equipment, it is necessary to further optimize the performance of bonded magnetic powder used in materials.
  • the key to preparing bonded rare earth permanent magnets is the preparation of rare earth permanent magnet powder.
  • the performance of magnetic powder directly determines the quality and market price of bonded magnets.
  • the mature bonded rare earth permanent magnets in the early market are basically isotropic bonded NdFeB magnets.
  • This widely used NdFeB magnetic powder is usually prepared by a rapid quenching method.
  • This kind of NdFeB magnet has better performance, but it has been controlled by a few companies as a patented product.
  • people have been trying to find more new bonded permanent magnet powders.
  • Including HDDR anisotropic powder, 13 ⁇ 421 17 anisotropic powder, TbCu 7 type isotropic powder, ThMn 12 type anisotropic powder, etc. have attracted widespread attention.
  • the lanthanum-iron-nitrogen rare earth permanent magnet powder has attracted extensive attention due to its excellent performance.
  • a quenched magnetic powder having a hard magnetic phase of TbCu 7 structure is prepared by a rapid solidification process, but in the preparation process, in particular In the process of industrialization, the following problems exist:
  • An object of the present invention is to provide a rare earth permanent magnet powder, a bonded magnet, and a device using the same, to improve the magnetic properties of the rare earth permanent magnet powder.
  • the present invention provides a rare earth permanent magnet powder comprising 4 ⁇ 12&1.% of Nd, 0.1 ⁇ 2&1.% of C, 10 ⁇ 25 at.°/N and 62.2 ⁇ 85.9 at.°/T, wherein Fe or FeCo, the rare earth permanent magnet powder has a hard magnetic phase of a TbCu? structure as a main phase.
  • the above rare earth permanent magnet powder has a structure of the formula (I), and the formula (I) is as follows:
  • the above-mentioned rare earth permanent magnet powder further contains 1 to 5 at.% of element A and 0.1 to 2 & 1.% of B, and the element A is Zr and/or Hf, and the content of the B and the content of the element A are further The ratio between the values is 0.1 0.5. Further, the content of B in the rare earth permanent magnet powder is in the range of 0.3 to 2 at.%.
  • the content of the element Nd and the element A in the rare earth permanent magnet powder is 4 to 12 at.% of the total content of the rare earth permanent magnet powder, and the content of the element C and the content of the element Nd and the element A in the rare earth permanent magnet powder The ratio between the sums is 0.03 0.15. Further, the ratio between the content of the element C in the rare earth permanent magnet powder and the sum of the contents of the element Nd and the element A is 0.05 0.12. Further, the above rare earth permanent magnet powder has a structure of the formula (I), and the formula ( ⁇ ) is as follows:
  • the rare earth permanent magnet powder further contains 0.3 to 10 at.°/M, and M is at least one of Ti, V, Cr, Ni Cu, b, Mo, Ta, W, Al, Ga, and Si. Further, the content of M in the rare earth permanent magnet powder in the rare earth permanent magnet powder is 0.5 to 8 at.%. Further, the content of M in the rare earth permanent magnet powder is 0.5 to 5 at.%, and the M is b, Ga, Al,
  • the rare earth permanent magnet powder has a roll surface roughness Ra of 2.8 ⁇ m or less, and preferably the roll surface roughness Ra is 1.6 ⁇ m or less. Further, the rare earth permanent magnet powder has an average crystal grain size of 3 to 100 nm. Further, the elemental Nd portion of the rare earth permanent magnet powder is replaced by Sm and/or Ce, and the content of Sm and/or Ce in the rare earth permanent magnet powder is 0.5 to 4.0 at.%. Meanwhile, in the present invention, there is also provided a bonded magnet which is obtained by bonding the rare earth permanent magnet powder described above with a binder. Meanwhile, in the present invention, there is also provided a device to which the above bonded magnet is applied.
  • the rare earth permanent magnet powder can effectively avoid material evaporation during the preparation process, and improves the preparation process and the water cooling roller.
  • the wettability between the materials, the final prepared material has better magnetic properties.
  • rare earth compounds Because of all rare earth compounds, only nitrides of lanthanide alloys have easy axis anisotropy, which makes them have certain permanent magnet properties. material. Other rare earth iron alloys are base anisotropy, and even if they do not have permanent magnet properties after nitriding, the addition of other rare earth elements will not only have the permanent magnet properties of the rare earth permanent magnet powder, but also may greatly reduce the strontium iron nitrogen. Magnetic powder magnetic properties. Under the guidance of the above theory, the inventors have reduced the magnetic properties of the prepared lanthanum-iron-based rare earth permanent magnet powder in order to improve the wettability between the lanthanum-iron-based rare earth permanent magnet powder and the water-cooled roller.
  • Nd-based N-type rare earth permanent magnet powders have not been improved.
  • research on such inventions has been in a state of stagnation for a long time.
  • the inventors mixed the Nd element, the C element, the N element and the Fe element together, and made a rare earth permanent magnet powder with a hard magnetic phase of the TbCu 7 structure as a main phase by a rapid quenching process, and surprisingly found that the obtained Rare earth permanent magnet
  • the powder improves the wettability between the powder and the water-cooled roll, and improves the magnetic properties of the prepared ferroniobium-based rare earth permanent magnet powder.
  • Such a change may be due to the formation of a hard magnetic phase with a metastable TbCu 7 structure during non-equilibrium solidification during preparation.
  • a rare earth permanent magnet powder includes 4 ⁇ 12&1.% of Nd, 0.1 to 2 at.% of C, 10 ⁇ 25 at.°/N, and 62.2 to 85.9 at. / T, where ⁇ is Fe or FeCo, the rare earth permanent magnet powder
  • the hard magnetic phase of the TbCuy structure is the main phase.
  • the rare earth permanent magnet powder has a lanthanum-based iron alloy as a basic component, and a certain amount of C element is added, and the synergistic addition of the Nd element and the C element can effectively reduce the volatilization of the raw material of the alloy during the smelting process, thereby improving the rapid quenching process and water cooling of the rare earth permanent magnet powder.
  • the wettability between the rolls, so that the final quenched alloy has a stable alloy composition, structure and surface state.
  • the content of the rare earth Nd is in the range of 4 to 12 & 1.%.
  • the Nd content is less than 4at.%, the formation of ⁇ -Fe phase in rare earth permanent magnet powder is more, and the coercive force is greatly reduced. When the Nd content is higher than 12at.%, more rare earth-rich phase is formed. Conducive to the improvement of magnetic properties.
  • the content of the rare earth Nd is 4 to 10 at.%.
  • the content of C (carbon) in the rare earth permanent magnet powder is in the range of 0.1 to 2 at.%, more preferably 0.3 1.5 at.%.
  • T is Fe or Fe and Co
  • a certain amount of Co is added to improve the remanence and temperature stability of the nitrogen-containing magnetic powder, and at the same time, stabilize the metastable TbCu 7 phase structure and improve the preparation process. Wetting and other effects.
  • the amount of Co added preferably does not exceed 20 at.% of the T content.
  • the rare earth permanent magnet powder is nitrided to obtain a rare earth permanent magnet powder, and the introduction of N (nitrogen) increases the Fe-Fe atom spacing, thereby greatly enhancing the Fe-Fe atom exchange, and increasing the Curie temperature and coercivity.
  • N nitrogen
  • the nitrogen content is 10 to 25 at%, and the addition of nitrogen is too small, and the effect of improving the magnetic properties is not increased by increasing the atomic spacing; if the nitrogen is added too much, the nitrogen may occupy an unfavorable crystal position, and finally Magnetic properties have a negative impact.
  • the above-mentioned rare earth permanent magnet powder is a hard magnetic phase of a TbCu 7 structure as a main phase, which refers to a phase which accounts for the largest volume ratio in the material, and introduces other impurity phases due to compositional deviation, oxidation, etc. during the preparation of the material, the present invention
  • the phase of the powder phase was confirmed by X-ray diffraction, and the respective phases were not resolved by X-rays.
  • the rare earth permanent magnet powder has a structure of the formula (I), and the formula (I) is as follows:
  • the rare earth permanent magnet powder having the general formula (I) has good wettability with the water-cooled roll, and finally has the advantage of good magnetic properties of the rare earth permanent magnet powder.
  • the rare earth permanent magnet powder further contains 1 to 5 at.% of the element A and 0.1 to 2 & 1.% of the B element A is Zr and/or Hf, and the content and the content of the B are The ratio between the contents of the element A is 0.1 to 0.5.
  • the addition of the element A is advantageous for improving the proportion of the rare earth element in the alloy, and obtaining higher remanence while stabilizing the hard magnetic phase structure of the TbCu 7 structure.
  • the content range of A is controlled to be 1 to 5 at.%, and the effect of the A content being too small to stabilize the phase structure is not obvious, and the excessive content of A increases the cost on the one hand, and is not conducive to the improvement of the magnetic property on the other hand.
  • the addition of B (boron) in the rare earth permanent magnet powder is beneficial to improve the amorphous forming ability of the alloy, and can promote the formation of a material having higher performance at a lower copper wheel speed.
  • B boron
  • a certain amount of B is added to refine the grain and improve the magnetic properties such as remanence of the material.
  • the content of the technical solution requires B to be in the range of 0.1 to 2 at.%, preferably 0.3 to 2 at.%, and more preferably 0.5 to 1.5 at.%. Excessive B is liable to cause Nd 2 Fe 14 B phase in the material, Conducive to the improvement of the overall magnetic performance.
  • the ratio of the content of the elements A and B added to the rare earth permanent magnet powder of the present invention is 0.1 0.5.
  • the content of B and A in the rare earth permanent magnet powder is within the above ratio range, which is beneficial to synergistically improve the material properties of the rare earth permanent magnet powder, which is more effective than the two when used alone, because it has been mentioned above that the material is improved by the addition of B.
  • the rapid quenching amorphous forming ability is very effective, but more B easily leads to the appearance of Nd 2 Fe 14 B phase in the material, which is not conducive to the improvement of the overall magnetic properties, when the content of B and A is compounded and has a certain degree of formation.
  • the content of B can be relatively increased without forming a phase difference, thereby further improving the preparation property and the final magnetic properties of the material.
  • the content of the element B is 0.3 to 2 at.%.
  • the content of the element Nd and the element A in the rare earth permanent magnet powder is 4 to 12 at.% of the total content of the rare earth permanent magnet powder, and the content of the element C and the element Nd and the element in the rare earth permanent magnet powder.
  • the ratio between the sum of the A contents is 0.03 to 0.15.
  • the content of the elements Nd and element A in the rare earth permanent magnet powder is controlled to 4 ⁇ 12 at.% of the total content of the rare earth permanent magnet powder, which is favorable for obtaining a permanent magnet material having a single TbCu 7 phase structure.
  • the ratio between the content of the element C in the rare earth permanent magnet powder and the sum of the contents of the element Nd and the element A is controlled as 0.03-0.15, by adjusting the ratio range of the two, it is beneficial to reduce the formation of Nd 2 Fe 14 C phase due to the addition of element C, so that the alloy phase structure is more stable, which is beneficial to the improvement of the overall performance of the material.
  • the ratio is 0.05. 0.12.
  • the rare earth permanent magnet powder has a structure of the formula (II), and the formula (II) is as follows: Nd x A w Ti00-xyz-aC y B z N a ( II ) wherein T Is Fe or FeCo; A is Zr and/or Hf; and 4 ⁇ x+w ⁇ 12, l ⁇ w ⁇ 5, 0.1 ⁇ z ⁇ 2, 10 ⁇ a ⁇ 25, 0.1 ⁇ z/w ⁇ 0.5, 0.1 ⁇ y ⁇ 2.
  • the rare earth permanent magnet powder has good wettability with the water-cooled roll, and finally has the advantage of good magnetic properties of the rare earth permanent magnet powder.
  • the rare earth permanent magnet powder further contains 0.3 to 10% by volume of M, and M is Ti, V, Cr, Ni Cu, Nb, Mo, Ta, W, Al, Ga, Si. At least one of them.
  • M element in the rare earth permanent magnet powder can refine the crystal grains and improve the magnetic properties such as coercivity and remanence of the final rare earth permanent magnet powder.
  • the content of the M element is 0.5 to 8 at%, and more preferably, the content of M in the rare earth permanent magnet powder is 0.5 to 5 at%, and the M is at least one of Nb, Ga, Al, and Si.
  • the wettability between the alloy liquid and the water cooling roll directly affects the surface roughness of the prepared alloy, and the greater the roughness Ra value, the more uneven the surface. Due to the different cooling rates of the strips of different thicknesses, under extreme conditions, some parts of the same strip have been quenched too quickly, while others have insufficient cooling rate, which inevitably affects the phase structure of the final alloy and the microstructure of the alloy; The uneven strip also causes different kinetic conditions in the nitriding process, making the nitridation uneven, which affects the final magnetic properties of the material.
  • the rare earth permanent magnet powder has a roll surface roughness Ra of 2.8 ⁇ m or less.
  • the surface roughness Ra of the surface of the roll is an arithmetic mean deviation of the outline, which indicates the surface state of the tape.
  • the contour arithmetic mean deviation Ra is the arithmetic mean of the absolute value of the contour offset within the sampling length L, and the calculation formula is as follows In the above formula, y is the contour offset, which is the distance between the contour point and the reference line in the measurement direction.
  • the baseline is the centerline of the contour, which divides the contour and minimizes the sum of the squares of the contours off the line within the length of the sample.
  • the surface roughness Ra of the rare earth permanent magnet powder is controlled to be less than 2.8 ⁇ , which is advantageous for controlling the material wettability reaction of the rare earth permanent magnet powder, and further obtaining the rare earth permanent magnet powder having high magnetic properties.
  • the rare earth permanent magnet powder has a roll surface roughness Ra of 2.8 ⁇ m or less; more preferably, the rare earth permanent magnet powder has a roll surface roughness Ra of 2.2 ⁇ m ; more preferably the rare earth permanent magnet powder has a roll surface roughness Ra is 1.6 ⁇ m or less.
  • the rare earth permanent magnet powder has an average crystal grain size of 3 to 100 nm.
  • the average grain size of the hard magnetic phase in the rare earth permanent magnet powder is less than 3 nm, it is not favorable for obtaining a coercive force of 5 kOe or more, and also makes the preparation difficult and reduces the yield; if the average particle diameter exceeds 100 nm, The residual magnetism is lower.
  • the hard magnetic phase grains are preferably distributed in the range of 5 to 80 nm, and more preferably in the range of 5 to 50 nm.
  • the elemental Nd portion of the rare earth permanent magnet powder is replaced by Sm and/or Ce, and the content of Sm and/or Ce in the rare earth permanent magnet powder is 0.5 to 4.0 at%.
  • Sm and/or Ce is added to improve material properties and reduce cost; on the other hand, it is beneficial to improve phase forming conditions and improve the surface state of the strip.
  • a preparation process of the above rare earth permanent magnet powder is also provided, and the specific steps are as follows:
  • alloying ingredients of a certain composition are smelted by medium frequency, arc, etc. to obtain an alloy ingot; (2) the alloy block after coarse crushing is melted by induction to form an alloy liquid, and the alloy liquid is quenched to obtain a piece. (3) The obtained alloy powder is crystallized at a certain temperature and time, and then nitrided and/or carburized at about 350-550 ° C.
  • the nitrogen source is industrial pure nitrogen, hydrogen and ammonia. Mixture gas, etc.; (4) Obtain a rare earth permanent magnet powder.
  • the entire material preparation process: rapid quenching, crushing, crystallization, nitriding and the like require stable and uniform control.
  • the factors that need to be strictly controlled mainly include the melting temperature, the nozzle diameter and the fast quenching wheel speed, and synergistically control the injection pressure.
  • the injection pressure mainly plays two roles in the present invention. One is to ensure stable and uniform discharge of the alloy liquid, and the other is to suppress the volatilization of rare earth elements, especially rare earth elements, during the smelting process by pressure, and to maintain the consistency of the material composition. At the same time, the injection pressure is continuously adjusted according to the amount of the alloy solution and the quenching condition, thereby avoiding unevenness in material preparation at different stages in one preparation process.
  • melt temperature is also an important reference indicator.
  • the melting temperature of NdFe-based alloy is relatively low, and the addition of a certain amount of M can effectively reduce the melting temperature, make the whole process stable, and is not easy to cause volatilization.
  • the melting temperature is between 1200 and 1600 ° C, and is finely adjusted according to the composition.
  • the invention adopts a treatment process which is treated by a relatively low temperature for a long time to obtain a high performance magnetic powder on the basis of maintaining a good microstructure.
  • the main phase provided by the present invention is a rare earth permanent magnet powder having a TbCu 7 structure, and the rare earth permanent magnet powder is mixed with a resin to form an isotropic bonded magnet.
  • the preparation method can be prepared by molding, injection, calendering, extrusion, and the like.
  • the prepared bonded magnet may be in the form of a block, a ring or the like.
  • the bonded magnet obtained by the present invention can be applied to the preparation of the corresponding device.
  • the high-performance rare earth permanent magnet powder and the magnet are prepared by the above method, which is advantageous for further miniaturization of the device.
  • the beneficial effects of the rare earth permanent magnet powder provided by the present invention will be further described below in conjunction with specific examples S1-S71. It was confirmed by X-ray diffraction that the main phases of the hard magnetic phase in the rare earth permanent magnets prepared in the following Examples S1 to S71 were both TbCu 7 structures.
  • the composition, grain size, grain distribution, and magnetic powder properties of the rare earth permanent magnet powder will be further explained below.
  • the rare earth alloy powder component is smelted alloy powder which is formed by nitriding.
  • the composition of the magnetic powder is the composition of the magnetic powder after nitriding, and the composition is expressed by atomic percentage.
  • the shielding gas is Ar gas
  • the injection pressure is 55 kPa
  • the number of nozzles is 2
  • the cross-sectional area is 0.85 mm 2
  • the water-cooling roller linear velocity is 50 m/s. 300mm
  • a flake alloy powder is obtained.
  • the alloy was treated at 730 ° C for 15 min under Ar gas protection, and then subjected to nitriding under an atmosphere of N 2 gas at a temperature of 430 ° C for 6 hours to obtain a nitride magnetic powder.
  • the obtained nitride magnetic powder was subjected to XRD detection.
  • the obtained sheet-like nitride magnetic powder was subjected to detection of composition, magnetic properties, and crystal grain size.
  • the composition and properties of the materials are shown in Table 1, and S represents the examples. Using the same process, the ingredients were changed to give a comparative example, and D is a comparative example.
  • the rare earth permanent magnet powder is prepared by using the element Nd, the element C element N, and the element T (T is Fe or FeCo), the raw material can be controlled.
  • the ratio range allows for higher performance.
  • the content of the C element in the prepared rare earth permanent magnet powder is not within the range required by the present invention, the surface roughness and the magnetic properties are all lowered to different extents. 2.
  • the rare earth permanent magnet powder to which the element A (Zr and/or Hf) and B are added is mixed, and the metals listed in the examples 17 to 36 in Table 2 are mixed and placed in an induction melting furnace under the protection of Ar gas.
  • the alloy ingot is obtained by smelting, and the alloy ingot is coarsely crushed and placed in a quenching furnace for rapid quenching.
  • the shielding gas is Ar gas
  • the injection pressure is 20 kPa
  • the number of nozzles is 2
  • the cross-sectional area is 0.75 mm 2
  • the water-cooled roller The line speed is 55m/s
  • the diameter of the copper roll is 300mm
  • the flake alloy powder is obtained after quenching.
  • the above alloy was subjected to Ar gas treatment at 730 ° C for 10 min, and then subjected to nitriding under 1 atmosphere of N 2 gas under the conditions of 420 ° C for 7 hours to obtain a nitride magnetic powder.
  • the obtained sheet-like nitride magnetic powder was subjected to detection of composition, magnetic properties, and crystal grain size.
  • the composition and properties of the materials are shown in Table 2, and S represents the examples. Using the same process, the ingredients were changed to give a comparative example, and D is a comparative example.
  • Table 2 Material composition, organization and properties
  • rare earth permanent magnet powder is prepared from element Nd, element C, element N, element T (T is Fe or FeCo) and element M, wherein M is Ti V Cr Ni Cu Nb Mo Ta At least one of W Al Ga Si.
  • the metals listed in Tables S37-S53 of Table 3 are mixed and placed in an induction melting furnace, and smelted under the protection of Ar gas to obtain an alloy ingot. The alloy ingot is coarsely crushed and placed in a quenching furnace.
  • the shielding gas is Ar gas
  • the injection pressure is 35kPa
  • the number of nozzles is one
  • the cross-sectional area is 0.9mm 2
  • the water-cooling roller linear velocity is 65m/s
  • the copper roller diameter is 300mm
  • the flake alloy powder is obtained after quenching.
  • the alloy was subjected to argon gas treatment at 750 ° C for 10 min, and then subjected to nitriding under N 2 atmosphere of 1 atm.
  • the treatment conditions were 430 ° C for 6 hours to obtain a nitride magnetic powder.
  • the obtained nitride magnetic powder was subjected to XRD detection.
  • the obtained sheet-like nitride magnetic powder was subjected to detection of composition, magnetic properties, and crystal grain size.
  • the composition and properties of the materials are shown in Table 3, and S represents the examples. Using the same process, the ingredients were changed to give a comparative example, and D is a comparative example.
  • Table 3 Material composition, organization and properties
  • the rare earths and transition metals listed in Tables S54-S63 of Table 4 are mixed and placed in an induction melting furnace, and smelted under Ar gas to obtain an alloy ingot.
  • the alloy ingot is coarsely crushed and then placed in a quenching furnace.
  • the furnace is quenched, the shielding gas is Ar gas, the injection pressure is 30 kPa, the number of nozzles is 3, the cross-sectional area is 0.83 mm 2 , the water-cooling roller linear velocity is 61 m/s, the copper roller diameter is 300 mm, and the quenching is obtained.
  • Flaky alloy powder Flaky alloy powder.
  • the above alloy was subjected to Ar gas treatment at 700 ° C for 10 min, and then subjected to nitriding under 1 atmosphere of N 2 gas under the conditions of 420 ° C for 5.5 hours to obtain a nitride magnetic powder.
  • the obtained nitride magnetic powder was subjected to XRD detection.
  • the obtained sheet-like nitride magnetic powder was subjected to detection of composition, magnetic properties, and crystal grain size.
  • the composition and properties of the materials are shown in Table 4, and S represents the examples. Table 4 Material composition, organization and properties
  • the relevant rare earths and transition metals listed in Tables S64-S71 of Table 5 are mixed and placed in an induction melting furnace, and smelted under the protection of Ar gas to obtain an alloy ingot, and the alloy ingot is coarsely crushed and then placed in a fast quenching furnace for rapid quenching,
  • the protective gas is an Ar gas injection pressure 45kPa bits
  • the number of nozzles is four
  • cross-sectional area 0.75mm 2 linear velocity of the water-cooled roll / s, 60m of copper roll diameter 300mm obtained after rapid quenching Flaky alloy powder.
  • the above alloy was subjected to Ar gas treatment at 700 ° C for 10 min, and then subjected to nitriding under 1 atmosphere of N 2 gas under the conditions of 430 ° C for 6 hours to obtain a nitride magnetic powder.
  • the obtained nitride magnetic powder was subjected to XRD detection.
  • the obtained sheet-like nitride magnetic powder was subjected to detection of composition, magnetic properties, and crystal grain size.
  • the composition and properties of the materials are shown in Table 5, and S represents the examples. Table 5 Material composition, organization and properties
  • the present invention provides a rare earth nitride magnetic powder of TbCu 7 structure, which optimizes the composition, can effectively avoid the problems of rare earth volatilization and poor wettability in the preparation process, and obtain a high magnetic property material with uniform phase structure and uniform microstructure.
  • a bonded magnet can be prepared by mixing the above magnetic powder with a binder, and is applied to a motor, an acoustic, a measuring instrument, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

提供一种稀土永磁粉、粘结磁体、以及应用该粘结磁体的器件。该稀土永磁粉包括4-12at.%的Nd、0.1-2at.%的C、10-25at.%的N和62.2-85.9at.%的T,其中Τ为Fe或FeCo,稀土永磁体以TbCu7结构的硬磁相为主相。该稀土永磁粉在制备过程中可有效避免材料挥发,改善了制备过程中与水冷辊之间的润湿性,最终制备的材料具有较好的磁性能。

Description

稀土永磁粉、 粘结磁体, 以及应用该粘结磁体的器件 技术领域 本发明涉及稀土永磁材料领域, 尤其是涉及一种稀土永磁粉、 粘结磁体, 以及应 用该粘结磁体的器件。 背景技术 稀土粘结永磁由于成型性好、 尺寸精度高、 磁性能高等优点目前已经被广泛应用 于各种电子设备、 办公自动化、 汽车等领域, 特别是微特电机中。 为了满足科技发展 对设备小型化微型化的要求,需要对材料中所使用的粘结磁粉的性能做出进一步优化。 制备粘结稀土永磁的关键就是稀土永磁粉的制备, 磁粉的性能直接决定了粘结磁 体的品质及市场价格。 早期市场上成熟的粘结稀土永磁体基本上为各向同性的粘结 NdFeB磁体,这种广泛应用的 NdFeB磁粉通常是采用快淬方法制备而成。这种 NdFeB 磁体性能较好, 但作为专利产品已被少数公司掌控, 为了更近一步地推广稀土粘结永 磁产品的应用, 近年来, 人们一直在努力寻找更多新品的粘结永磁粉, 包括 HDDR各 向异性粉、 1¾21 17型各向异性粉、 TbCu7型各向同性粉, ThMn12型各向异性粉等引起 人们的广泛关注。 目前, 钐铁氮系稀土永磁粉以优异的性能引起了广泛关注, 在 SmFe系合金制备 过程中, 通过速凝工艺制备得到具有 TbCu7结构硬磁相的快淬磁粉, 但是在制备过程 特别是工业化过程中, 存在以下问题:
( 1 )钐的蒸汽压低, 在制备过程中挥发严重, 造成制备合金成本不稳; 挥发出的 钐易氧化, 容易起火燃烧, 易造成安全事故; 挥发出的钐堵塞管道, 给真空系统造成 很大的损害。
(2)钐合金粘度大, 快淬过程中与铜轮润湿性差, 易造成合金液飞溅, 速凝的薄 片表面液流不稳, 表面不平整, 进而造成合金相结构、 微观组织的不均匀, 降低了所 制备的钐铁氮系稀土永磁粉磁性能, 这也是目前影响该材料大规模应用的主要原因。 为了解决钐铁合金制备过程中遇到的这些问题, 寻找一种新的具有较好磁性能的 稀土永磁粉已然成为稀土永磁粉开发领域的新课题。 发明内容 本发明的目的是提供一种稀土永磁粉、 粘结磁体, 以及应用该粘结磁体的器件以 提高稀土永磁粉磁性能。 为此, 本发明提供了一种稀土永磁粉, 包括 4~12&1.%的 Nd、 0.1~2&1.%的 C、 10~25at.°/ N和 62.2~85.9at.°/ T, 其中 Τ为 Fe或 FeCo, 所述稀土永磁粉以 TbCu? 结构的硬磁相为主相。 进一步地, 上述稀土永磁粉具有通式 ( I ) 中结构, 通式 ( I ) 如下:
NdxTi00-x-y-aCyNa ( I ) 其中, 4≤x≤12, 0.1≤y≤2, 10≤a≤25。 进一步地,上述稀土永磁粉中还含有 l~5at.%的元素 A和 0.1~2&1.%的 B ,所述元 素 A为 Zr和 /或 Hf , 所述 B的含量与所述元素 A的含量之间的比值为 0.1 0.5。 进一步地, 上述稀土永磁粉中 B的含量范围为 0.3~2at.%。 进一步地, 上述稀土永磁粉中元素 Nd和所述元素 A的含量为所述稀土永磁粉总 含量的 4~12at.%, 且所述稀土永磁粉中元素 C的含量与元素 Nd和元素 A含量的总和 之间的比值为 0.03 0.15。 进一步地, 上述稀土永磁粉中元素 C的含量与元素 Nd和元素 A含量的总和之间 的比值为 0.05 0.12。 进一步地, 上述稀土永磁粉具有通式 ( I ) 中结构, 通式 (Π ) 如下:
NdxAwTi00-x-y-z-aCyBzNa ( II ) 其中 T为 Fe或 FeCo; A为 Zr和 /或 Hf; 4≤x+w≤12, l≤w≤5, 0.1≤z≤2,
10≤a≤25, 0.1≤z/w≤0.5, 0.1≤y≤2。 进一步地, 上述稀土永磁粉中还含有 0.3~10at.°/ M, M为 Ti、 V、 Cr、 Ni Cu、 b、 Mo、 Ta、 W、 Al、 Ga、 Si中的至少一种。 进一步地, 上述稀土永磁粉中稀土永磁粉中 M的含量为 0.5~8at.%。 进一步地, 上述稀土永磁粉中 M的含量为 0.5~5at.%, 所述 M为 b、 Ga、 Al、
Si中至少一种。 进一步地, 上述稀土永磁粉的贴辊面粗糙度 Ra在 2.8μιη以下, 优选地, 所述贴 辊面粗糙度 Ra在 1.6μιη以下。 进一步地, 上述稀土永磁粉的平均晶粒大小为 3~100nm。 进一步地, 上述稀土永磁粉中元素 Nd部分被 Sm和 /或 Ce取代, 所述稀土永磁粉 中 Sm禾口 /或 Ce的含量为 0.5~4.0at.%。 同时, 在本发明中还提供了一种粘结磁体, 该粘结磁体为上述的稀土永磁粉与粘 结剂粘结而成。 同时, 在本发明中还提供了一种器件, 该器件应用了上述粘结磁体。 本发明的有益效果: 本发明所提出稀土永磁粉、 粘结磁体, 以及应用该粘结磁体 的器件中, 稀土永磁粉在制备过程中可有效避免材料挥发, 改善了制备过程中与水冷 辊之间的润湿性, 最终制备的材料具有较好的磁性能。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考具体实施例来详细说明本发明。 对于氮系稀土永磁粉的研究, 基本上均以钐铁为基础制备, 这是因为所有稀土族 化合物中, 只有钐系合金的氮化物具有易轴各向异性, 从而成为具有一定永磁性能的 材料。 其他稀土铁合金均为基面各向异性, 即使氮化后也不具有永磁性能, 所以其他 稀土元素的加入不但不会具有稀土永磁粉的永磁性能, 而且还可能会大幅度降低钐铁 氮磁粉磁性能。 在上述理论的教导下, 发明人为了改善钐铁氮系稀土永磁粉因与水冷辊之间的润 湿性较差, 降低了所制备的钐铁氮系稀土永磁粉磁性能的不足, 在以钐铁为基础的 N 系稀土永磁粉中做出了多种尝试, 但一直没有得到较好的改善。 也因此致使此类发明 的研究在很长一段时间内都处于停滞不前的状态。 偶然间, 发明人将 Nd元素、 C元素、 N元素以及 Fe元素混合在一起, 经快淬工 艺制成以 TbCu7结构的硬磁相为主相的稀土永磁粉, 惊喜的发现, 所获取的稀土永磁 粉改善了其与水冷辊之间的润湿性, 提高了所制备的钐铁氮系稀土永磁粉磁性能。 这 样的改变可能是因为制备过程中, 非平衡凝固形成了具有亚稳态 TbCu7结构硬磁相的
NdFe合金的缘故,这种具有亚稳态 TbCu7结构硬磁相的 NdFe合金具有单轴各向异性, 快淬合金经过晶化后, 具有一定的硬磁性能, 并且该性能经过氮化, 矫顽力提升, 成 为一种具有实用价值的稀土永磁材料。 在本发明的一种典型实施方式中,一种稀土永磁粉,包括 4~12&1.%的 Nd、0. l~2at.% 的 C、 10~25at.°/ N和 62.2~85.9at.°/ T, 其中 Τ为 Fe或 FeCo, 该稀土永磁粉以
TbCuy结构的硬磁相为主相。 上述稀土永磁粉以钕系铁合金作为基本成分,加入一定量的 C元素, Nd元素与 C 元素的协同加入, 能够有效降低合金在熔炼过程的原料挥发, 进而改善稀土永磁粉在 快淬过程与水冷辊之间的润湿性, 从而使最终快淬合金具有稳定的合金成分、 结构以 及表面状态。 上述稀土永磁粉中, 稀土 Nd的含量在 4~12&1.%范围内。 Nd含量少于 4at.%, 稀 土永磁粉中 α-Fe相的形成较多, 矫顽力大大降低; 而当 Nd含量高于 12at.%时, 又会 有较多的富稀土相形成, 不利于磁性能的提高。 优选地, 稀土 Nd的含量为 4~10at.% 上述稀土永磁粉中, C (碳) 的含量范围为 0.1~2at.%, 更加优选为 0.3 1.5at.%。
C的加入有利于增加稀土永磁粉的矫顽力, 其与 Nd元素复合, 有利于改善材料的表 面状态并最终得到稳定的合金成分、 结构。 上述稀土永磁粉中, T为 Fe或者 Fe和 Co, 一定量的 Co加入有利于含氮磁粉剩 磁和温度稳定性的提高, 同时可以稳定亚稳态的 TbCu7相结构, 改善制备过程中的润 湿性等效果。 考虑到成本等原因, Co的加入量优选不超过 T含量的 20at.%。 上述稀土永磁粉经过氮化后得到稀土永磁粉, N (氮)的引入使 Fe-Fe原子间距增 大, 从而使 Fe-Fe原子交换作用大大增强, 居里温度和矫顽力均得到提高。 在上述稀 土永磁粉中, 氮含量为 10~25at%, 氮的加入过少, 起不到加大原子间距, 改善磁性能 的作用; 氮加入过多, 氮反而会占据不利晶位, 对最终磁性能产生负面影响。 上述稀土永磁粉是以 TbCu7结构的硬磁相为主相, 其是指材料中占体积比最大的 相, 在材料制备过程中由于成分偏差、 氧化等原因, 会引入其他杂质相, 本发明中粉 末构成相采用 X射线衍射进行确认, 各杂相以 X射线不能分辨出为准。 在本发明中的一种具体实施方式中, 上述稀土永磁粉具有通式 ( I ) 中结构, 通 式 ( I ) 如下:
NdxTi00-x-y-aCyNa ( I ) 其中, 4≤x≤12, 0.1≤y≤2, 10≤a≤25。 具有通式 ( I ) 的稀土永磁粉具有与 水冷辊之间的润湿性好, 最终制备稀土永磁粉磁性能好的的优势。 在本发明的一种典型实施方式中, 上述稀土永磁粉中还含有 l~5at.%的元素 A和 0.1~2&1.%的 B元素 A为 Zr和 /或 Hf, 所述 B的含量与所述元素 A的含量之间的比值 为 0.1~0.5。 在这种稀土永磁粉中, 加入元素 A, 即元素 Zr和 /或 Hf, 有利于改善稀土元素在 合金中的比例, 在稳定 TbCu7结构的硬磁相结构的同时获得更高的剩磁。 优选将 A的 含量范围控制在 l~5at.%, A含量过少稳定相结构的效果不明显, 而 A含量过多一方 面增加成本, 另一方面不利于磁性能的提高。 同时, 在该稀土永磁粉中 B (硼) 的加入有利于改善合金的非晶形成能力, 可以 促进在较低铜轮转速下形成具有较高性能的材料。 同时一定量的 B加入对细化晶粒, 提高材料剩磁等磁性能参数是有利的。本技术方案要求 B的含量范围为 0.1~2at.%,优 选为 0.3~2at.%, 更加优选为 0.5-1.5at.% o 过多的 B易导致材料中出现 Nd2Fe14B相, 不利于整体磁性能的提高。 另外, 在本发明稀土永磁粉中所加入的元素 A和 B之间含量的比值为 0.1 0.5。 在该稀土永磁粉中 B和 A的含量在上述比值范围内,有利于协同改善稀土永磁粉的材 料性能, 其比两者单独使用时效果明显, 因为前面已经提到, 通过 B的加入改善材料 的快淬非晶形成能力是十分有效的,但较多的 B易导致材料中出现 Nd2Fe14B相,不利 于整体磁性能的提高, 当 B与 A的含量复合添加并且具有一定的成分配比时, 可以相 对提高 B的含量而不形成劣相, 从而进一步改善材料的制备性能与最终的磁性能。 优 选元素 B的含量为 0.3~2at.%。 在本发明的一种优选实施方式中, 上述稀土永磁粉中元素 Nd和元素 A的含量为 稀土永磁粉总含量的 4~12at.%, 且稀土永磁粉中元素 C的含量与元素 Nd和元素 A含 量的总和之间的比值为 0.03~0.15。将稀土永磁粉中元素 Nd和元素 A的含量控制在稀 土永磁粉总含量的 4~12at.%, 有利于得到具有单一 TbCu7相结构的永磁材料。 同时, 将稀土永磁粉中元素 C 的含量与元素 Nd和元素 A含量的总和之间的比值控制为 0.03-0.15, 通过调节两者的比值范围, 有利于减少因元素 C的添加形成 Nd2Fe14C相, 使合金相结构更加稳定, 有利于材料整体性能的提高, 优选地, 该比值为 0.05 0.12。 在本发明的一种典型实施方式中, 上述稀土永磁粉具有通式 (Π ) 中结构, 通式 ( II ) 如下: NdxAwTi00-x-y-z-aCyBzNa ( II ) 其中 T为 Fe或 FeCo; A为 Zr和 /或 Hf; 且 4≤x+w≤12, l≤w≤5 , 0.1≤z≤2, 10≤a≤25 , 0.1≤z/w≤0.5 , 0.1≤y≤2。 这种稀土永磁粉具有与水冷辊之间的润湿性 好, 最终制备稀土永磁粉磁性能好的的优势。 在本发明的一种典型实施方式中, 上述稀土永磁粉中还含有 0.3~10&1%的 M, M 为 Ti、 V、 Cr、 Ni Cu、 Nb、 Mo、 Ta、 W、 Al、 Ga、 Si中的至少一种。 在这种稀土 永磁粉中 M元素的加入可以细化晶粒, 提高最终稀土永磁粉矫顽力、 剩磁等磁性能。 优选地, M元素的含量为 0.5~8at%,更加优选地,稀土永磁粉中 M的含量为 0.5~5at%, 所述 M为 Nb、 Ga、 Al、 Si中至少一种。 通过不同原料的选择, 在制作上述稀土永磁粉的过程中, 很难避免材料中除了 TbCu7结构的硬磁相外不存在其他相结构,例如 ThMn12结构以及 Th2Zn17结构,,在一 种优选方案中,上述稀土永磁粉在 Cu靶 X射线下, TbCu7结构的硬磁相在 2Θ= 40~45° 之间有一个峰, 优选地, 当 X射线衍射精度为 0.02°时, 稀土永磁粉的半峰宽 <0.8°时, 满足上述要求的稀土永磁分相结构单一、 稳定, 具有较好的磁性能。 在稀土永磁粉的快淬合金的制备中, 合金液与水冷辊之间润湿性的好坏直接影响 制备出的合金表面粗糙度, 粗糙度 Ra值越大, 表示表面越凸凹不平。 由于不同厚度 的带片冷却速率不同, 极端条件下, 同一带片某些部位已经过快淬, 而另外一些部位 冷速不够, 因此必然影响最终形成合金的相结构, 以及合金的微观组织; 另外, 不均 匀的带片也造成了氮化过程中的动力学条件不同, 使氮化不均匀, 以上均影响材料的 最终磁性能。 为了进一步提升本发明所提供的稀土永磁粉的磁性能, 在本发明的一种典型实施 方式中, 上述稀土永磁粉的贴辊面粗糙度 Ra在 2.8μιη以下。 在本发明中贴辊面粗糙 度 Ra为轮廓算术平均偏差, 其表示带片的表面状态。 轮廓算术平均偏差 Ra为在取样 长度 L内轮廓偏距绝对值的算术平均值, 计算公式如下
Figure imgf000008_0001
在上式中, y 为轮廓偏距, 其是指在测量方向上轮廓点与基准线之间的距离。 基 准线为轮廓的中线, 这条线划分轮廓, 并使其在取样长度内轮廓偏离该线的平方和为 最小。 将稀土永磁粉的贴辊面粗糙度 Ra控制在 2.8μιη以下, 有利于控制稀土永磁粉的 材料润湿性的反应, 进而获取具有较高磁性能的稀土永磁粉。 优选地, 上述稀土永磁 粉的贴辊面粗糙度 Ra值在 2.8μιη以下; 进一步优选地, 上述稀土永磁粉的贴辊面粗 糙度 Ra为 2.2μιη; 更加上述稀土永磁粉的贴辊面粗糙度 Ra为 1.6μιη以下。 在本发明的一种典型实施方式中, 上述稀土永磁粉的平均晶粒大小为 3~100nm。 在该稀土永磁粉中硬磁相的平均晶粒小于 3nm时,既不利于得到 5kOe以上的矫顽力, 同时也为制备造成了难度, 降低了成品率; 如果其平均粒径超过 lOOnm, 得到的剩磁 较低。 硬磁相晶粒优选为分布在 5~80nm范围内, 更加优选为分布在 5~50nm范围内。 在本发明的一种优选实施方式中, 上述稀土永磁粉中元素 Nd部分被 Sm和 /或 Ce 取代, 稀土永磁粉中 Sm和 /或 Ce的含量为 0.5~4.0at%。在该稀土永磁粉中增加 Sm和 /或 Ce—方面改善材料性能、 降低成本; 另一方面有利于改善成相条件, 改善带片表 面状态的作用。 在本发明中还提供了一种上述稀土永磁粉的制备工艺, 具体采用步骤如下:
( 1 )首先将一定成分的合金配料,经过中频、电弧等方式进行熔炼得到合金铸锭; (2)将粗破碎后的合金块经过感应融化后形成合金液, 使合金液经过急冷后得到片状 合金粉; (3 ) 获得的合金粉经过一定温度和时间的晶化处理, 然后在 350~550°C左右 渗氮和 /或渗碳处理, 氮源为工业纯氮, 氢气和氨气的混合气等; (4)得到稀土永磁粉。 在具有以上公开的材料成分情况下, 整个材料制备过程: 快淬、 破碎、 晶化、 氮 化等过程均需要稳定均匀控制。在快淬阶段, 需要严格控制的因素主要包括熔炼温度、 喷嘴直径与快淬轮速, 并协同控制喷射压力。 喷射压力在本发明中主要起到两个作用, 一个是保证合金液稳定均匀的喷出, 二 是通过压力来抑制熔炼过程中稀土元素特别是稀土元素的挥发, 保持材料成分的一致 性。 同时喷射压力根据合金溶液的量与快淬状况连续调节, 从而避免在一次制备过程 中的不同阶段材料制备的不均匀。 在快淬开始阶段, 由于金属钢液本身造成的压力, 可以保证顺利喷射而出, 此时可采用较小的喷射压; 到快淬的中后期, 由于钢液页面 的下降造成液流缓慢甚至喷射不出, 这是加大喷射压, 以保证快淬顺利进行。 熔炼温度也是一个重要的参考指标。 NdFe基合金熔炼温度相对较低, 同时一定量 M的加入可以有效降低熔炼温度, 使整个过程稳定, 同时不易造成挥发。 本发明中, 熔炼温度在 1200~1600°C之间, 根据成分的不同微调。 在晶化与氮化阶段, 为了避免软硬磁相晶粒长大, 需要控制处理的温度和时间。 同时, 提高晶化与氮化效率是避免晶粒异常长大的关键因素之一。 本发明采用通过相 对低温长时间处理的处理工艺, 得到在保持较好微观组织基础上的高性能磁粉。 本发明所提供的主相为 TbCu7结构的稀土永磁粉末, 将该稀土永磁粉末与树脂进 行混合制成各向同性的粘结磁体。 制备方法可以通过模压、 注射、 压延、 挤出等方法 制备而成。 制备的粘结磁体可以为块状、 环状等其他形式。 本发明得到的粘结磁体可以应用到相应器件的制备中。 通过上述方法制备出高性 能的稀土永磁粉以及磁体, 有利于器件的进一步小型化。 以下将结合具体实施例 S1-S71 进一步说明本发明所提供的稀土永磁粉的有益效 果。 经 X射线衍射法确认, 如下实施例 S1-S71所制备的稀土永磁分中硬磁相的主相 均为 TbCu7结构。 以下将进一步说明稀土永磁粉成分、 晶粒大小、 晶粒分布、 磁粉性 能。
( 1 ) 稀土永磁粉成分 稀土合金粉成分为熔炼的合金粉经过渗氮而成。磁粉的成分为渗氮后磁粉的成分, 成分用原子百分比表示。
(2) 晶粒大小 σ 平均晶粒大小表示方法: 采用电子显微镜拍摄材料的微观组织照片, 从照片中观 测硬磁相 TbCu7结构晶粒, 以及软磁相 α-Fe相晶粒。具体方法是统计 n个同种类型晶 粒的总横截面积 S, 然后将横截面积 S等效成一个圆的面积, 求出圆的直径, 即为平 均晶粒大小 σ, 单位为 nm, 计算公式如下:
Figure imgf000009_0001
(3 ) 磁粉性能 磁粉性能通过振动样品磁强计 (VSM) 检测。 其中 Br为剩磁, 单位为 kGs; Hcj为内禀矫顽力, 单位为 kOe; (BH)m为磁能积, 单位为 MGOe。 (4) 粗糙度 Ra 粗糙度采用粗糙度仪进行测量。 一、 关于 NdxT x CyNa类稀土永磁粉 按比例将表 1实施例 1-16列出的金属混合后放入感应熔炼炉中, 在 Ar气保护下 进行熔炼得到合金铸锭, 将合金铸锭粗破碎后放入快淬炉中进行快淬, 保护气体为 Ar 气,喷射压力为 55kPa,喷嘴数量为 2个,横截面积为 0.85mm2,水冷辊线速度为 50m/s 铜辊直径为 300mm, 快淬后得到片状合金粉。 将上述合金在 Ar气保护下于 730°C处理 15min后, 进入 1个大气压的 N2气下进 行氮化, 处理条件为 430°C 6小时, 得到氮化物磁粉。 得到的氮化物磁粉进行 XRD 检测。 将得到的片状氮化物磁粉进行成分、 磁性能、 晶粒大小的检测。 材料的成分、 性 能如表 1所示, S表示实施例。 采用相同工艺, 改变成分得到对比例, D表示对比例。
Figure imgf000010_0001
S l l 1.8 61 8.4 7.0 16. 1
S 12 Nd4.oFebaiCo2o.oCo.5Nio.o 1.9 49 8.5 7.3 16.7
S 13 0.5 43 9.4 7.5 17.6
S 14 0.8 45 9.3 7.7 17.4
S 15 1.7 52 8.3 6.9 14.4
S 16 Nd8.iFebaiCo.2Ni4.5 2. 1 33 8.5 6.9 15.2
D l Sm9.oFebaiC04.5N15 4.5 41 7.3 5.9 12.7
D2 Nd9.oFebaiC04.5C3.5N15 3. 1 46 7.9 6.4 13.9
D3 Nd9.oFebaiNi5 3.7 40 7. 1 6. 1 11.6
u u u
由表中实施例 1-16和对比例 1-3所对应的数据结构可知,在使用元素 Nd、元素 C 元素 N和元素 T ( T为 Fe或 FeCo )制备稀土永磁粉时, 通过控制可原料的比值范围, 可以获得较高的性能。 尤其是, 对所制备的稀土永磁粉中 C元素的含量, 当含 C量不 在本发明要求范围之内时, 表面粗糙度以及磁性能均会有不同程度的降低。 二、 关于添加有元素 A (Zr和 /或 Hf) 和 B的稀土永磁粉 按比例将表 2中实施例 17-36列出的金属混合后放入感应熔炼炉中,在 Ar气保护 下进行熔炼得到合金铸锭, 将合金铸锭粗破碎后放入快淬炉中进行快淬, 保护气体为 Ar气, 喷射压力位 20kPa, 喷嘴数量为 2个, 横截面积为 0.75mm2, 水冷辊线速度为 55m/s, 铜辊直径为 300mm, 快淬后得到片状合金粉。 将上述合金在 Ar气保护下于 730°C处理 lOmin后进入 1个大气压的 N2气下进行 氮化, 处理条件为 420°C 7小时, 得到氮化物磁粉。 将得到的片状氮化物磁粉进行成分、 磁性能、 晶粒大小的检测。 材料的成分、 性 能如表 2所示, S表示实施例。 采用相同工艺, 改变成分得到对比例, D表示对比例。 表 2 材料成分、 组织与性能
Figure imgf000011_0001
S26 2.3 41 8.3 7.7 16.3
S27 1.2 51 9.3 7.7 17.2
S28 2.3 87 8.4 8.0 16.4
S29 0.8 59 9.5 7.3 17.5
S30 0.9 61 9.3 7. 1 17.2
S31 N N N N N N N 0.7 47 9.6 6.8 17.7
N N
S32 2.8 67 7.9 5.3 15.4
S33 1.6 64 6.8 6.5 15.9
S34 O O O 0.9 71 6.5 5.9 15.3
o
S35 u u u u u u u 1.4 43 9.2 7.5 17.0
u u u
S36 o o 2.2 79 8.4 7.8 16.2
D4 o 3.2 83 6.8 5.7 8.6
o
o
D5 4.7 76 6.9 6.4 9.0
D6 o 3. 1 91 7. 1 6. 1 9.8 由表 2中内容可以看出, 在本发明稀土永磁粉中加入元素 Α和 Β后, 通过控制可 原料的比值范围, 可以获得较高的性能。尤其是将元素 B和元素 A之间的比值控制在 0.1~0.5之间, 同时控制 C与 A和 Nd之和的比值在 0.05 0.12范围之间时, 可以获得 最优的表面状况与磁性能。 同时可以从实施例中看到, 当这些比值范围不在这个范围 之内时, 磁性能均有所下降。 三、 关于添加有元素 M的稀土永磁粉 关于由元素 Nd、 元素 C、 元素 N、 元素 T ( T为 Fe或 FeCo ) 以及元素 M制备稀 土永磁粉, 其中 M为 Ti V Cr Ni Cu Nb Mo Ta W Al Ga Si中的至少 一种。 按比例将表 3实施例 S37-S53列出的金属混合后放入感应熔炼炉中,在 Ar气保护 下进行熔炼得到合金铸锭, 将合金铸锭粗破碎后放入快淬炉中进行快淬, 保护气体为 Ar气, 喷射压力位 35kPa, 喷嘴数量为 1个, 横截面积为 0.9mm2, 水冷辊线速度为 65m/s, 铜辊直径为 300mm, 快淬后得到片状合金粉。 将上述合金在 Ar气保护下于 750°C处理 lOmin后进入 1个大气压的 N2气下进行 氮化, 处理条件为 430°C 6小时, 得到氮化物磁粉。 得到的氮化物磁粉进行 XRD检测。 将得到的片状氮化物磁粉进行成分、 磁性能、 晶粒大小的检测。 材料的成分、 性能如表 3所示, S表示实施例。 采用相同工艺, 改 变成分得到对比例, D表示对比例。 表 3 材料成分、 组织与性能
Figure imgf000013_0001
由表 3中内容可以看出,一定量的 M加入也会使表面粗糙度获得较低的值,但是, 与不加 M的相比, 磁性能会有所下降, 当成分偏离本发明要求范围之内时, 表面粗糙 度以及磁性能均会有不同程度的降低。 四、 关于添加有元素 M的稀土永磁粉 关于由元素 Nd、 元素 C、 元素 N、 元素 T (T为 Fe或 FeCo)、 元素 A、 元素 B 以及元素 M制备稀土永磁粉, 其中 M为 Ti V Cr Ni Cu Nb Mo Ta W Al Ga Si中的至少一种。 按比例将表 4实施例 S54-S63列出的稀土及过渡族金属混合后放入感应熔炼炉中, 在 Ar气保护下进行熔炼得到合金铸锭, 将合金铸锭粗破碎后放入快淬炉中进行快淬, 保护气体为 Ar气, 喷射压力位 30kPa, 喷嘴数量为 3个, 横截面积为 0.83mm2, 水冷 辊线速度为 61m/s, 铜辊直径为 300mm, 快淬后得到片状合金粉。 将上述合金在 Ar气保护下于 700°C处理 lOmin后进入 1个大气压的 N2气下进行 氮化, 处理条件为 420°C 5.5小时, 得到氮化物磁粉。 得到的氮化物磁粉进行 XRD检测。 将得到的片状氮化物磁粉进行成分、 磁性能、 晶粒大小的检测。 材料的成分、 性能如表 4所示, S表示实施例。 表 4 材料成分、 组织与性能
Figure imgf000014_0001
由表 4中内容可知, 一定量的 M加入也会使表面粗糙度获得较低的值, 但是, 与 不加 M的相比, 磁性能会有所下降, 当成分偏离本发明要求范围之内时, 表面粗糙度 以及磁性能均会有不同程度的降低。 五、 关于其他稀土元素对本发明所提供的稀土永磁粉的磁性能影响。 按比例将表 5实施例 S64-S71列出的相关稀土及过渡族金属混合后放入感应熔炼 炉中,在 Ar气保护下进行熔炼得到合金铸锭,将合金铸锭粗破碎后放入快淬炉中进行 快淬, 保护气体为 Ar气, 喷射压力位 45kPa, 喷嘴数量为 4个, 横截面积为 0.75mm2 水冷辊线速度为 60m/s, 铜辊直径为 300mm, 快淬后得到片状合金粉。 将上述合金在 Ar气保护下于 700°C处理 lOmin后进入 1个大气压的 N2气下进行 氮化, 处理条件为 430°C 6小时, 得到氮化物磁粉。 得到的氮化物磁粉进行 XRD检测。 将得到的片状氮化物磁粉进行成分、 磁性能、 晶粒大小的检测。 材料的成分、 性能如表 5所示, S表示实施例。 表 5 材料成分、 组织与性能
Figure imgf000015_0001
根据以上说明, 本发明提供 TbCu7结构稀土氮化物磁粉, 优化了成分, 能够有效 避免制备工程中稀土挥发、 润湿性差等问题, 得到相结构、 微观组织均匀的高磁性能 材料。 此外, 根据本发明, 可用以上的磁粉与粘结剂混合进行粘结制备粘结磁体, 在马 达、 音响、 测量仪器等场合得到应用。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种稀土永磁粉, 其特征在于, 所述稀土永磁粉包括 4~12at.°/ Nd、 0.1~2at% 的 C、 10~25at.°/ N和 62.2~85.9at.°/ T, 其中 Τ为 Fe或 FeCo, 所述稀土永 磁粉以 TbCu7结构的硬磁相为主相。
2. 根据权利要求 1所述的稀土永磁粉,其特征在于,所述稀土永磁粉具有通式( I ) 中结构, 通式 ( I ) 如下:
NdxTi00-x-y-aCyNa ( I )
其中, 4≤x≤12, 0.1≤y≤2, 10≤a≤25。
3. 根据权利要求 1 所述的稀土永磁粉, 其特征在于, 所述稀土永磁粉中还含有 l~5at.%的元素 A和 0.1~2at.°/ B, 所述元素 A为 Zr禾 P/或 Hf , 所述 B的含 量与所述元素 A的含量之间的比值为 0.1 0.5。
4. 根据权利要求 3 所述的稀土永磁粉, 其特征在于, 所述 B 的含量范围为 0.3~2at.%。
5. 根据权利要求 3所述的稀土永磁粉, 其特征在于, 所述元素 Nd和所述元素 A 的含量为所述稀土永磁粉总含量的 4~12at.%,且所述稀土永磁粉中元素 C的含 量与元素 Nd和元素 A含量的总和之间的比值为 0.03~0.15。
6. 根据权利要求 5所述的稀土永磁粉, 其特征在于, 所述稀土永磁粉中元素 C的 含量与元素 Nd和元素 A含量的总和之间的比值为 0.05 0.12。
7. 根据权利要求 5所述的稀土永磁粉,其特征在于,所述稀土永磁粉具有通式( II ) 中结构, 通式 (Π ) 如下:
NdxAwT M-x-y-z-aCyBzNa ( II )
其中 T为 Fe或 FeCo; A为 Zr和 /或 Hf;
4≤x+w≤ 12, l≤w≤5 , 0.1≤z≤2, 10≤a≤25, 0.1≤z/w≤0.5, 0.1≤y
≤2。
8. 根据权利要求 1、 3至 6中任一项所述的稀土永磁粉, 其特征在于, 所述稀土永 磁粉中还含有 0.3~10at.。/ M, M为 Ti、 V、 Cr、 Ni Cu、 Nb、 Mo、 Ta、 W、 Al、 Ga、 Si中的至少一种。
9. 根据权利要求 8所述的稀土永磁粉, 其特征在于, 所述稀土永磁粉中 M的含量 为 0.5~8at.%。
10. 根据权利要求 9所述的稀土永磁粉, 其特征在于, 所述稀土永磁粉中 M的含量 为 0.5~5at.%, 所述 M为 Nb、 Ga、 Al、 Si中至少一种。
11. 根据权利要求 1至 10中任一项所述的稀土永磁粉,其特征在于,所述稀土永磁 粉的贴辊面粗糙度 Ra在 2.8μιη以下, 优选地, 所述贴辊面粗糙度 Ra在 1.6μιη 以下。
12. 根据权利要求 1至 11中任一项所述的稀土永磁粉,其特征在于,所述稀土永磁 粉平均晶粒大小为 3~100nm。
13. 一种如权利要求 1至 12中任一项所述的稀土永磁粉,其特征在于,所述稀土永 磁粉中元素 Nd部分被 Sm和 /或 Ce取代, 所述稀土永磁粉中 Sm和 /或 Ce的含 量为 0.5~4.0at.% o
14. 一种粘结磁体,其特征在于,所述粘结磁体为权利要求 1至 13中任一项所述的 稀土永磁粉与粘结剂粘结而成。
15. 一种器件, 其特征在于, 所述器件应用了权利要求 14中所述的粘结磁体。
PCT/CN2012/078077 2012-07-02 2012-07-02 稀土永磁粉、粘结磁体,以及应用该粘结磁体的器件 WO2014005271A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015518772A JP5982567B2 (ja) 2012-07-02 2012-07-02 希土類永久磁石粉末、ボンド磁石及び当該ボンド磁石を応用するデバイス
DE112012006640.5T DE112012006640T5 (de) 2012-07-02 2012-07-02 Seltenerd-Permanentmagnetpulver, gebundener Magnet und Vorrichtung, die den gebundenen Magneten verwendet
PCT/CN2012/078077 WO2014005271A1 (zh) 2012-07-02 2012-07-02 稀土永磁粉、粘结磁体,以及应用该粘结磁体的器件
KR1020147027395A KR101642924B1 (ko) 2012-07-02 2012-07-02 희토류 영구자석 분말, 본드 자석 및 그 본드 자석을 응용한 부품
US14/380,060 US9859042B2 (en) 2012-07-02 2012-07-02 Rare earth permanent magnetic powder, bonded magnet and device using the bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078077 WO2014005271A1 (zh) 2012-07-02 2012-07-02 稀土永磁粉、粘结磁体,以及应用该粘结磁体的器件

Publications (1)

Publication Number Publication Date
WO2014005271A1 true WO2014005271A1 (zh) 2014-01-09

Family

ID=49881222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078077 WO2014005271A1 (zh) 2012-07-02 2012-07-02 稀土永磁粉、粘结磁体,以及应用该粘结磁体的器件

Country Status (5)

Country Link
US (1) US9859042B2 (zh)
JP (1) JP5982567B2 (zh)
KR (1) KR101642924B1 (zh)
DE (1) DE112012006640T5 (zh)
WO (1) WO2014005271A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220732B (zh) * 2016-12-22 2019-12-31 有研稀土新材料股份有限公司 合金材料、粘结磁体以及稀土永磁粉的改性方法
CN108630371B (zh) 2017-03-17 2020-03-27 有研稀土新材料股份有限公司 一种高热稳定性的稀土永磁材料、其制备方法及含有其的磁体
WO2020184724A1 (ja) * 2019-03-14 2020-09-17 国立研究開発法人産業技術総合研究所 準安定単結晶希土類磁石微粉及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195868A (zh) * 1997-04-03 1998-10-14 东芝株式会社 永久磁铁材料及粘合磁铁
CN1274933A (zh) * 1999-05-19 2000-11-29 东芝株式会社 粘结磁铁、粘结磁铁的制造方法及使用该磁铁的传动装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693601B2 (ja) * 1989-11-10 1997-12-24 日立金属株式会社 永久磁石および永久磁石原料
JP3135665B2 (ja) * 1991-03-27 2001-02-19 株式会社東芝 磁性材料およびボンド磁石
JPH04365840A (ja) * 1991-06-14 1992-12-17 Minebea Co Ltd 希土類磁石材料
JPH05198410A (ja) * 1991-09-30 1993-08-06 Toshiba Corp 永久磁石材料
US5482573A (en) * 1991-10-16 1996-01-09 Kabushiki Kaisha Toshiba Magnetic material
JP2904667B2 (ja) * 1993-01-14 1999-06-14 信越化学工業株式会社 希土類永久磁石合金
JP3795694B2 (ja) * 1995-06-30 2006-07-12 株式会社東芝 磁性材料およびボンド磁石
JP3856869B2 (ja) 1996-04-30 2006-12-13 Tdk株式会社 樹脂含有圧延シート磁石およびその製造方法
JPH113812A (ja) 1997-04-03 1999-01-06 Toshiba Corp 永久磁石材料およびボンド磁石
JP4936593B2 (ja) * 1998-03-27 2012-05-23 株式会社東芝 磁石粉末の製造方法
JP4421185B2 (ja) * 2002-12-09 2010-02-24 株式会社東芝 磁石材料とそれを用いたボンド磁石
KR100734416B1 (ko) * 2005-02-28 2007-07-03 인하대학교 산학협력단 이방성 다공질 금속간화합물 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195868A (zh) * 1997-04-03 1998-10-14 东芝株式会社 永久磁铁材料及粘合磁铁
CN1274933A (zh) * 1999-05-19 2000-11-29 东芝株式会社 粘结磁铁、粘结磁铁的制造方法及使用该磁铁的传动装置

Also Published As

Publication number Publication date
US20150040725A1 (en) 2015-02-12
JP2015529004A (ja) 2015-10-01
JP5982567B2 (ja) 2016-08-31
KR101642924B1 (ko) 2016-07-26
US9859042B2 (en) 2018-01-02
DE112012006640T5 (de) 2015-04-02
KR20140131983A (ko) 2014-11-14

Similar Documents

Publication Publication Date Title
CN102220538B (zh) 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法
CN100356487C (zh) 一种烧结钕铁硼磁体的制备方法
US11101057B2 (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
KR101758088B1 (ko) 희토류 영구자석 분말, 본드자석 및 그를 포함하는 장치
CN103280290B (zh) 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN110571007B (zh) 一种稀土永磁材料、原料组合物、制备方法、应用、电机
KR101687981B1 (ko) 희토류 영구자석 분말, 그것을 포함한 접착성 자성체 및 접착성 자성체를 응용한 소자
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN1725394B (zh) 晶界相中添加纳米氮化硅提高钕铁硼工作温度和耐蚀性方法
US10366814B2 (en) Permanent magnet
CN106319323B (zh) 一种烧结钕铁硼磁体用辅助合金铸片及其制备方法
WO2011032432A1 (en) Rare earth permanent magnetic material and preparation method thereof
CN111613410B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
EP2857547B1 (en) Method for making a rare-earth magnet sputtering target
KR20210151946A (ko) R-t-b계 희토류 영구자석 재료와 그 제조방법, 및 응용
CN106783130B (zh) 制备低重稀土高矫顽力钕铁硼磁体的方法
TWI608500B (zh) Rare earth permanent magnetic powder, bonded magnet, and device using the bonded magnet
WO2014005271A1 (zh) 稀土永磁粉、粘结磁体,以及应用该粘结磁体的器件
WO2023280259A1 (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
JP2005270988A (ja) 希土類合金薄帯の製造方法、希土類合金薄帯及び希土類磁石
Ishii et al. High-coercivity nanocomposite permanent magnet based on Nd–Fe–B–Ti–C with Cr addition for high-temperature applications
JP2002285276A (ja) R−t−b−c系焼結磁石及びその製造方法
CN1021607C (zh) 各向异性微晶稀土永磁材料的制备方法及其设备
CN1858861A (zh) 含钛、碳的Re-Fe-B基高性能纳米复合永磁材料
CN101255526A (zh) 一种具有织构的稀土铁硼合金快冷厚带及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14380060

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015518772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027395

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012006640

Country of ref document: DE

Ref document number: 1120120066405

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880276

Country of ref document: EP

Kind code of ref document: A1