WO2014003027A1 - 色素増感太陽電池 - Google Patents

色素増感太陽電池 Download PDF

Info

Publication number
WO2014003027A1
WO2014003027A1 PCT/JP2013/067435 JP2013067435W WO2014003027A1 WO 2014003027 A1 WO2014003027 A1 WO 2014003027A1 JP 2013067435 W JP2013067435 W JP 2013067435W WO 2014003027 A1 WO2014003027 A1 WO 2014003027A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
layer
solar cell
sensitized solar
anode
Prior art date
Application number
PCT/JP2013/067435
Other languages
English (en)
French (fr)
Inventor
健治 町田
望 神山
慎吾 竹内
賢次 玉光
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to EP13809151.7A priority Critical patent/EP2866297B1/en
Priority to CN201380033541.8A priority patent/CN104412346A/zh
Priority to JP2014522650A priority patent/JP6218046B2/ja
Priority to KR1020147035317A priority patent/KR102032808B1/ko
Priority to US14/410,819 priority patent/US20150332858A2/en
Publication of WO2014003027A1 publication Critical patent/WO2014003027A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell that is excellent in heat resistance, shows a high fill factor, and has high photoelectric conversion efficiency.
  • dye-sensitized solar cells have less resource constraints, are cheaper in raw materials, and have a simple manufacturing method. It has the advantage of being able to give flexibility. Because of these advantages, dye-sensitized solar cells are highly expected as next-generation solar cells.
  • an electrolyte layer containing a pair of oxidizing species and reducing species converts a cathode having a semiconductor layer containing a dye as a photosensitizer, and converts the oxidizing species in the electrolyte layer into reducing species. And having a structure sandwiched between the anode having the catalyst layer.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • An electrode in which a layer is formed is used as a cathode, and an electrode obtained by adhering Pt on a substrate such as the above-described transparent electrode or steel by a sputtering method, a vacuum evaporation method, or the like is used as an anode.
  • the dye When light is irradiated onto the dye of the semiconductor layer through the transparent electrode, the dye absorbs light energy to be in an excited state and emits electrons toward the semiconductor. The emitted electrons move from the semiconductor layer to the transparent electrode, and further move from the transparent electrode to the anode via the external circuit.
  • the Pt catalyst layer of the anode is excellent in catalytic ability to convert oxidized species of the electrolyte layer into reduced species, but is expensive.
  • a vacuum process is necessary for the production of the Pt catalyst layer, the production equipment becomes expensive, the process is complicated, and the mass productivity is inferior.
  • there is a problem that durability against I ⁇ ions in the presence of moisture is not sufficient. Therefore, there has been a demand for a conductive material that can replace the Pt catalyst layer.
  • a conductive polymer layer particularly a conductive polymer layer made of polystyrene sulfonate of poly (3,4-ethylenedioxythiophene) has been developed.
  • PEDOT polystyrenesulfonic acid
  • PES polystyrenesulfonic acid
  • PEDOT: PSS polystyrene sulfonate salt of poly (3,4-ethylenedioxythiophene)
  • Non-Patent Document 1 Electrochemistry 71, No. 11 (2003) 944-946 selects an electrode having three conductive polymer layers of PEDOT: PSS, polyaniline, and polypyrrole, and I ⁇ / I 3 - cyclic voltammograms in an electrolytic solution containing a redox couple is measured, reporting the results of comparison with those of the Pt electrode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-16442 discloses a cathode having a titanium oxide layer containing a dye, bis (5-methyl-1,3,4-thiadiazolyl) 2-disulfide and 5 constituting a redox pair. -Chemical polymerization using 3-methoxypropionitrile solution containing methyl-2-mercapto-1,3,4-thiadiazole salt and EDOT using tris-p-toluenesulfonate iron (III) as an oxidizing agent And a positive electrode having a PEDOT layer obtained by making a dye-sensitized solar cell.
  • This solar cell has a higher value of the fill factor compared to the solar cell using the anode having the Pt layer instead of the anode having the PEDOT layer (Example 1 and Comparative Example 4 in this document). However, it is explained that this is because the PEDOT layer is superior in catalytic activity to the redox couple than the Pt layer.
  • the solar cell having the anode having the PEDOT layer and the solar cell having the anode having the Pt layer are substantially equivalent curves. The values of factors and photoelectric conversion efficiency are shown (see Comparative Example 1 and Comparative Example 3 in this document).
  • the conductive polymer layer of the anode is required to have a high catalytic ability for converting the oxidized species in the electrolyte layer into the reduced species. Furthermore, in the solar cell manufacturing process, each component of the solar cell may experience high temperatures, and it is assumed that the solar cell is used outdoors in extreme heat. Heat resistance is required. However, the PEDOT: PSS layer and the PEDOT layer containing p-toluenesulfonate anion as dopants that have been studied so far have not had satisfactory heat resistance.
  • WO2012 / 133858A1 and WO2012 / 133859A1 published after the filing of the application on which the priority claim of the present application is based have thiophenes having substituents at the 3-position and 4-position (hereinafter referred to as 3).
  • a conductive polymer layer comprising a compound and an anion generated from at least one compound having a molecular weight of 200 or more of the anion of the compound has excellent heat resistance, and reduces oxidized species in the electrolyte layer It has excellent catalytic ability to convert to seeds, and the density of the conductive polymer layer is 1.15 to 1. By limiting the range of 0 g / cm 3, it reported that the heat resistance is further improved.
  • the “non-sulfonic acid organic compound” means an organic compound having no sulfonic acid group and / or sulfonic acid group.
  • An object of the present invention is to provide a dye-sensitized solar cell that is excellent in heat resistance, has a high fill factor, and has high light conversion efficiency based on the above-described knowledge.
  • the inventors have established a dye-sensitized solar cell by setting the thickness of the conductive polymer layer on the anode of the dye-sensitized solar cell to 100 nm or more. It was discovered that a dye-sensitized solar cell having a higher fill factor than the dye-sensitized solar cell used can be obtained.
  • the present invention provides a cathode having a semiconductor layer containing a dye as a photosensitizer, an electrolyte layer stacked on the semiconductor layer of the cathode and containing a pair of oxidized species and reduced species, and the electrolyte.
  • a dye-sensitized solar cell comprising a conductive polymer layer that acts as a catalyst for converting the oxidized species to the reduced species, and the conductive polymer layer in the anode comprises: A polymer composed of at least one monomer selected from substituted thiophenes, and at least one compound that is a non-sulfonic acid organic compound as a dopant for the polymer and has an anion molecular weight of 200 or more.
  • a dye-sensitized solar cell comprising a generated anion and having a thickness in a range of 100 to 10,000 nmSince the photoelectric conversion efficiency of the dye-sensitized solar cell is proportional to the value of the fill factor, a dye-sensitized solar cell having high photoelectric conversion efficiency can be obtained by the present invention.
  • the conductive polymer layer contains, as a dopant, an anion generated from a non-sulfonic acid organic compound having a molecular weight of 200 or more.
  • borodisalicylic acid borodisalicylate, formula (I) or formula (II)
  • m means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2
  • n means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2.
  • a compound selected from sulfonylimidic acid represented by (2) or (3) and salts thereof is particularly preferable because it provides a conductive polymer layer excellent in heat resistance.
  • the monomer for constituting the conductive polymer layer is not particularly limited as long as it is a compound selected from the group consisting of substituted thiophenes, that is, thiophenes having substituents at the 3- and 4-positions.
  • the substituents at the 3-position and 4-position of the thiophene ring may form a ring together with the carbons at the 3-position and 4-position.
  • the monomer is EDOT, it is preferable because a conductive polymer layer having excellent catalytic stability for converting oxidized species in the electrolyte layer into reducing species can be obtained in addition to excellent environmental stability.
  • a conductive polymer layer including a polymer composed of a monomer selected from substituted thiophenes and the above-described specific range of dopant
  • reduction is performed to convert oxidized species in the electrolyte into reducing species as the thickness increases.
  • the reduction reaction rate tends to decrease. Therefore, when it is desired to obtain a dye-sensitized solar cell that achieves fast power generation by combining the anode provided with the conductive polymer layer with a cathode having a fast photoelectron transfer reaction, the thickness of the conductive polymer layer is 1 to 2000 nm.
  • the thickness of the conductive polymer was set to 100 nm or more, a battery having a higher curve factor than that of a dye-sensitized solar cell including an anode having a conventional Pt catalyst layer was obtained.
  • the reason for this is considered to be due to the high reduction catalytic ability and high specific surface area of the conductive polymer layer in the present invention. Therefore, the dye-sensitized solar cell of the present invention is high regardless of the type of the semiconductor layer in the cathode. It is considered to indicate the fill factor.
  • the thickness of the conductive polymer for obtaining a dye-sensitized solar cell exhibiting a high fill factor is in the range of 100 to 10,000 nm, preferably in the range of 100 to 4200 nm. If the thickness of the conductive polymer is 10,000 nm or more, the internal resistance becomes high, the reduction reaction rate becomes insufficient, and the electrolytic polymerization takes time, which is economically disadvantageous.
  • the density of the conductive polymer layer is preferably in the range of 1.15 to 1.80 g / cm 3 , more preferably in the range of 1.20 to 1.80 g / cm 3 , and 1.60 to A range of 1.80 g / cm 3 is particularly preferred.
  • the density is less than 1.15 g / cm 3 , the heat resistance is drastically lowered, and it is difficult to produce a conductive polymer layer having a density exceeding 1.80 g / cm 3 .
  • the density of the conductive polymer layer is too high, the conductive polymer layer becomes hard and lacks flexibility, so the density of the conductive polymer layer is 1.75 g / cm. It is preferably 3 or less, particularly preferably 1.70 g / cm 3 or less.
  • the conductive polymer layer having a density in the range of 1.15 to 1.80 g / cm 3 comprises a solvent composed of 100 to 80% by mass of water and 0 to 20% by mass of an organic solvent, a substituted thiophene as a monomer, It can be obtained by electrolytic polymerization using a polymerization solution containing the above-mentioned specific range non-sulfonic acid organic compound. Since this specific range of non-sulfonic acid-based organic compound acts as a supporting electrolyte in the polymerization solution, it is also referred to as a “non-sulfonic acid-based organic supporting electrolyte”.
  • a solvent comprising 100 to 80% by mass of water and 0 to 20% by mass of an organic solvent is hereinafter referred to as “water-rich solvent”.
  • water-rich solvent the total amount of water and the organic solvent is 100% by mass.
  • the conductive polymer layer in which the polymer particles are densely packed becomes difficult to be formed on the substrate by electrolytic polymerization, and the content of the organic solvent is reduced to 20% by mass of the whole solvent.
  • it exceeds the heat resistance of the obtained conductive polymer layer will fall remarkably (refer to WO2012 / 133858A1 and WO2012 / 133859A1).
  • the semiconductor layer in the cathode may be formed using any material used for the semiconductor layer in the conventional dye-sensitized solar cell, but it is preferable to use titanium oxide having high photoelectric conversion efficiency. .
  • the thickness of the semiconductor layer is not strictly limited, but is generally in the range of 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, particularly preferably 3 to 20 ⁇ m. If the thickness of the semiconductor layer is less than 1 ⁇ m, light absorption may be insufficient. If the thickness of the semiconductor layer is greater than 100 ⁇ m, the distance from which the electrons reach the conductive portion of the base becomes long, and the electrons Is not preferable because of inactivation.
  • the conductive polymer layer in a specific range used as the anode catalyst layer in the dye-sensitized solar cell of the present invention has excellent catalytic ability to convert oxidized species in the electrolyte layer to reducing species, and also has excellent heat resistance.
  • the dye-sensitized solar cell of the present invention provided with an anode having a conductive polymer layer in this specific range is less expensive than a conventional dye-sensitized solar cell using an anode having a Pt catalyst layer.
  • anode having a PEDOT layer obtained by electrolytic polymerization using a polymerization solution containing a borodisalicylate ammonium and EDOT of I - / I 3 - is a cyclic voltammogram of an electrolytic solution containing a redox pair.
  • PEDOT I for anodes with a PEDOT layer obtained from a slurry containing PSS - / I 3 - is a cyclic voltammogram of an electrolytic solution containing a redox pair.
  • the dye sensitized solar cell comprising an anode having a PEDOT layer of different thicknesses, I - / I 3 - is a diagram showing a charge-transporting impedance redox reaction, and the thickness of the PEDOT layer, the relationship.
  • I - / I 3 - is a diagram showing a charge-transporting impedance redox reaction, and the thickness of the PEDOT layer, the relationship.
  • I - / I 3 - is a diagram showing a charge-transporting impedance redox reaction, and the thickness of the PEDOT layer, the relationship.
  • the thickness of the PEDOT layer showed relationships Figure It is.
  • the anode for the dye-sensitized solar cell of the present invention is a non-sulfonic acid organic compound as a dopant composed of at least one monomer selected from substituted thiophenes and a dopant for the polymer. And an anion generated from at least one compound having a molecular weight of 200 or more of the anion of the compound, and a conductive polymer layer having a thickness in the range of 100 to 10,000 nm.
  • the conductive polymer layer is prepared by introducing a preparation step for obtaining a polymerization solution for electrolytic polymerization containing the monomer and the non-sulfonic acid organic compound, and a substrate having a conductive portion in the obtained polymerization solution.
  • electrolytic polymerization it can be produced by a method including a polymerization step of forming a conductive polymer layer obtained by polymerization of the monomer on a conductive portion of the substrate.
  • each step will be described.
  • the polymerization solution for electrolytic polymerization prepared in this step contains a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range non-sulfonic acid organic compound as essential components.
  • this polymerization solution may contain an organic solvent such as methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, acetone, tetrahydrofuran, and methyl acetate.
  • an organic solvent such as methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, acetone, tetrahydrofuran, and methyl acetate.
  • Water is preferably 90% by mass or more of the whole solvent, more preferably 95% by mass or more of the whole solvent, and particularly preferably the solvent consists of water alone.
  • the conductive polymer layer in which the polymer particles are densely packed becomes difficult to be formed on the substrate by electrolytic polymerization, and the content of the organic solvent is reduced to 20% by mass of the whole solvent. When it exceeds, the heat resistance of the obtained conductive polymer layer will fall remarkably.
  • a substituted thiophene that is, a monomer selected from thiophene having substituents at the 3-position and 4-position is used.
  • the substituents at the 3-position and 4-position of the thiophene ring may form a ring together with the carbons at the 3-position and 4-position.
  • monomers that can be used include 3,4-dialkylthiophenes such as 3,4-dimethylthiophene and 3,4-diethylthiophene, 3,4 such as 3,4-dimethoxythiophene and 3,4-diethoxythiophene.
  • a non-sulfonic acid organic compound having an anion molecular weight of 200 or more is used as the supporting electrolyte in the polymerization solution.
  • the anion of these supporting electrolytes is contained in the conductive polymer film as a dopant in the process of electrolytic polymerization shown below.
  • borodisalicylic acid, borodisalicylate, formula (I) or formula (II) (In the formula, m means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2, and n means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2. And o means 2 or 3) and salts thereof can be preferably used.
  • the salt examples include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkyl ammonium salts such as ammonium salt, ethyl ammonium salt and butyl ammonium salt, dialkyl ammonium salts such as diethyl ammonium salt and dibutyl ammonium salt, and triethyl ammonium salt. And trialkylammonium salts such as tributylammonium salt, and tetraalkylammonium salts such as tetraethylammonium salt and tetrabutylammonium salt.
  • These supporting electrolytes provide a conductive polymer layer that is particularly excellent in heat resistance.
  • salts of bis (pentafluoroethanesulfonyl) imidic acid, such as potassium salt, sodium salt, and ammonium salt give a conductive polymer layer having extremely high heat resistance.
  • borodisalicylic acid and borodisalicylate are inexpensive and economically advantageous, and are particularly preferable because they provide a conductive polymer layer having excellent heat resistance.
  • borodisalicylic acid and borodisalicylate are preferable. It has been found that salicylate ions hydrolyze into salicylic acid and boric acid, which have very low water solubility in water. For this reason, when borodisalicylic acid and / or borodisalicylate is used as a supporting electrolyte, precipitation gradually occurs in the polymerization solution, making it unusable.
  • the supporting electrolyte is added to the solution and then subjected to electrolytic polymerization before formation of the precipitate, Used in combination with a stabilizer selected from the group consisting of nitrobenzene and nitrobenzene derivatives, which have the action of inhibiting the hydrolysis of salicylate ions.
  • the stabilizer may be a single compound or two or more compounds.
  • nitrobenzene derivatives include nitrophenol, nitrobenzyl alcohol, nitrobenzoic acid, dinitrobenzoic acid, dinitrobenzene, nitroanisole, and nitroacetophenone, and include o-nitrophenol, m-nitrophenol, p-nitrophenol, And mixtures thereof are preferred.
  • a single compound may be used, or two or more compounds may be used, and the amount is sufficient to obtain a sufficient current for electrolytic polymerization at a concentration equal to or lower than the saturated dissolution amount in the polymerization solution. Used, preferably at a concentration of 10 mM or more, particularly preferably at a concentration of 30 mM or more.
  • the polymerization solution is prepared by the following method depending on the monomer content.
  • a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range of supporting electrolyte are introduced into a container for producing a polymerization solution, and are manually or mechanically
  • a polymerization solution is prepared by dissolving each component in a water-rich solvent using a proper stirring means.
  • the monomer exceeds the saturated dissolution amount, that is, a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range of supporting electrolyte are introduced into a container for producing a polymerization solution, and stirred and homogenized.
  • the polymerization solution can be prepared by irradiating the solution with ultrasonic waves and dispersing the phase-separated monomer as oil droplets in the polymerization solution.
  • the polymerization liquid of the present invention is obtained by irradiating a liquid obtained by adding a monomer exceeding the amount of saturated dissolution in a water-rich solvent with ultrasonic irradiation to disperse the monomer as oil droplets, and then adding a supporting electrolyte to the obtained liquid. You can also get If each component in the polymerization solution is stable, there is no limitation on the temperature during preparation.
  • “ultrasound” means a sound wave having a frequency of 10 kHz or more.
  • an ultrasonic oscillator conventionally known for ultrasonic cleaners, cell grinders and the like can be used without particular limitation.
  • the phase-separated monomer must be oil droplets having a diameter of several ⁇ m or less.
  • the output of the ultrasonic wave is preferably 4 W / cm 2 or more.
  • the ultrasonic irradiation time is not strictly limited but is preferably in the range of 2 to 10 minutes.
  • the longer the irradiation time the more the aggregation of monomer oil droplets is inhibited, and the time until demulsification tends to be longer.
  • the ultrasonic irradiation time is 10 minutes or more, the aggregation effect of oil droplets tends to be saturated. Is recognized. It is also possible to perform multiple irradiations using ultrasonic waves having different frequencies and / or outputs.
  • the monomer content exceeding the saturated dissolution amount may be an amount that can obtain a dispersion in which demulsification is suppressed by ultrasonic irradiation.
  • ultrasonic irradiation conditions It also changes depending on.
  • the polymerization liquid of the present invention contains a water-rich solvent, a monomer selected from substituted thiophenes, and other additives within a range that does not adversely affect the present invention in addition to the above-mentioned specific range of supporting electrolyte. Also good. Suitable additives include water-soluble nonionic surfactants. Since the monomer is concentrated in the micelles of the nonionic surfactant, electrolytic polymerization proceeds rapidly, and a polymer exhibiting high conductivity is obtained. In addition, the nonionic surfactant itself does not ionize, and does not inhibit doping of the polymer in the specific range with the anion of the supporting electrolyte.
  • nonionic surfactant a known water-soluble nonionic surfactant can be used without any particular limitation.
  • examples include polyalkylene glycol, polyvinyl alcohol, polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene styryl phenyl ether, polyoxyalkylene benzyl phenyl ether, polyoxyalkylene-added alkylphenol formaldehyde condensate, polyoxyalkylene Addition styrylphenol formaldehyde condensate, polyoxyalkylene addition benzylphenol formaldehyde condensate, alkyne diol, polyoxyalkylene addition alkyne diol, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene castor oil, polyoxyalkylene hydrogenated castor oil , Polyglycerin alkyl agent Le, such as polyglyce
  • alkyne diol having high dispersion effect such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and other nonionic surfactants, preferably polyoxyethylene (9) nonyl
  • alkyne diol having high dispersion effect such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and other nonionic surfactants, preferably polyoxyethylene (9) nonyl
  • a combination with a polyoxyethylene alkylphenyl ether such as a phenyl ether branched type in the polymerization liquid is preferable because the monomer content in the polymerization liquid can be greatly increased.
  • a water-rich solvent, a monomer, the above-mentioned specific range of supporting electrolyte, and a nonionic surfactant are introduced into a container for producing a polymerization solution, and are manually or mechanically stirred.
  • a polymerization solution is prepared by dissolving each component in a water-rich solvent by using or irradiating ultrasonic waves.
  • a water-rich solvent, a monomer, and a nonionic surfactant are introduced into a container for producing a polymerization solution to prepare a solution in which each component is dissolved in a water-rich solvent.
  • the supporting electrolyte in the specific range may be added and dissolved.
  • any method for producing a polymerization liquid when borodisalicylic acid and / or borodisalicylate as a supporting electrolyte and nitrobenzene and / or a nitrobenzene derivative as a stabilizer are used in combination, the polymerization liquid is produced. Both are introduced into the container almost simultaneously, or the stabilizer is introduced first. This is because the stabilizer is used to suppress hydrolysis of borodisalicylate ions.
  • the polymerization solution obtained by the above-described preparation step is substituted by introducing a working electrode (substrate of the conductive polymer layer) having at least a conductive portion on the surface and a counter electrode, and performing electrolytic polymerization.
  • a conductive polymer layer obtained by polymerization of thiophene is formed on the conductive portion of the working electrode to obtain an anode for a dye-sensitized solar cell.
  • the material, shape and size of the working electrode having at least a conductive portion on the surface are appropriately selected according to the application.
  • the conductive portion of the substrate may be a single layer or may include a plurality of different types of layers.
  • a conductive plate or foil of platinum, gold, nickel, titanium, steel, rhodium, ruthenium or the like can be used as a working electrode.
  • the conductive polymer layer obtained in this polymerization step is excellent in transparency, it is transparent and insulating glass substrate such as optical glass, quartz glass, alkali-free glass, or polyethylene terephthalate, polyethylene naphthalate, polycarbonate, poly On the surface of transparent and insulating plastic substrates such as ether sulfone and polyacrylate, indium oxide, tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), tin oxide, antimony-doped tin oxide (ATO), fluorine-doped oxidation It is preferable to use, as a working electrode, a transparent substrate on which a transparent conductive layer such as tin (FTO), zinc oxide, or aluminum-doped zinc oxide (AZO) is provided by vapor deposition or coating.
  • a substrate in which a metal film such as platinum, nickel, titanium, rhodium, ruthenium, or the like is provided on the glass substrate or plastic substrate described
  • a counter electrode for electrolytic polymerization a plate of platinum, nickel, or the like can be used.
  • the electrolytic polymerization is performed by any one of a constant potential method, a constant current method, and a potential sweep method using the polymerization solution obtained in the preparation step.
  • a potential of 1.0 to 1.5 V is suitable for the saturated calomel electrode, and in the case of the constant current method, it depends on the type of monomer.
  • a current value of 1 to 10000 ⁇ A / cm 2 preferably 5 to 500 ⁇ A / cm 2 , more preferably 10 to 100 ⁇ A / cm 2 is suitable, and depends on the type of monomer when using the potential sweep method.
  • the polymerization temperature is not strictly limited, but is generally in the range of 10 to 60 ° C.
  • the polymerization time varies depending on the composition of the polymerization solution and the electrolytic polymerization conditions, but is generally in the range of 0.6 second to 2 hours, preferably 1 to 10 minutes, particularly preferably 2 to 6 minutes.
  • a conductive polymer layer containing the anion of the above-mentioned specific range non-sulfonic acid organic supporting electrolyte as a dopant is formed on the conductive portion of the working electrode.
  • the resulting conductive polymer layer has a density in the range of 1.15 to 1.80 g / cm 3 .
  • the density of the conductive polymer layer is less than 1.15 g / cm 3 , the heat resistance is drastically lowered, and it is difficult to produce a conductive polymer layer having a density exceeding 1.80 g / cm 3 .
  • the density of the conductive polymer layer having excellent heat resistance is preferably in the range of 1.20 to 1.80 g / cm 3 , particularly preferably in the range of 1.60 to 1.80 g / cm 3 .
  • the density of the conductive polymer layer is 1.75 g / cm. It is preferably 3 or less, particularly preferably 1.70 g / cm 3 or less.
  • the thickness of the conductive polymer layer is generally in the range of 100 to 10,000 nm, preferably 100 to 4200 nm. If the thickness of the conductive polymer is 10000 nm or more, the internal resistance becomes high, the reduction reaction rate for converting the oxidized species in the electrolyte to the reduced species becomes insufficient, and it takes time for the electrolytic polymerization, which is economically disadvantageous. Further, if the thickness of the conductive polymer exceeds 4200 nm, cracks may be observed in the conductive polymer layer. Therefore, the thickness of the conductive polymer is preferably 4200 nm or less. The thickness of the conductive polymer can be measured with an atomic force microscope or the like.
  • constant current electropolymerization at a predetermined current density is performed twice or more at different times, and after measuring the thickness of the conductive polymer layer obtained by each electropolymerization, the obtained thickness and the energization in the electropolymerization are measured.
  • a calculation formula indicating the relationship with the charge amount may be derived, and the thickness of the conductive polymer layer may be calculated from the energization charge amount using the calculated calculation formula.
  • an anode in which a conductive polymer layer having excellent heat resistance is formed on the substrate with good adhesion can be obtained.
  • the obtained conductive polymer layer of the anode is stable to moisture in the air and exhibits a pH near neutral, so that other components are not corroded in the process of manufacturing or using the solar cell. .
  • a dye-sensitized solar cell includes a cathode having a semiconductor layer containing a dye as a photosensitizer, and a pair of oxidized and reduced species stacked on the semiconductor layer of the cathode. And an electrolyte layer including the anode described above.
  • the conductive polymer layer of the anode described above has sufficient catalytic ability to convert the oxidizing species constituting the redox couple into the reducing species in the electrolyte layer.
  • the conductive substrate and the semiconductor layer constituting the cathode in the dye-sensitized solar cell the conductive substrate and the semiconductor layer in the conventional dye-sensitized solar cell can be used without any particular limitation.
  • a substrate having at least a conductive portion on the surface can be used, and the conductive portion of the substrate may be a single layer or may include a plurality of different types of layers.
  • a plate or foil of a conductor such as platinum, nickel, titanium, steel, chromium, niobium, molybdenum, ruthenium, rhodium, tantalum, tungsten, iridium, or hastelloy can be used as a substrate, or optical glass, quartz
  • a transparent and insulating glass substrate such as glass and alkali-free glass, or transparent and insulating plastic substrate such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, polyacrylate, indium oxide, ITO,
  • a transparent substrate provided with a transparent conductive layer such as IZO, tin oxide, ATO, FTO, zinc oxide, and AZO by vapor deposition or coating can also be used.
  • a substrate in which a metal film such as platinum, nickel, titanium, rhodium, and ruthenium is provided on the above glass substrate or plastic substrate by vapor deposition or coating can be used.
  • a transparent substrate is used as the cathode substrate.
  • an all-transparent solar cell can be constructed by using a transparent base for the cathode.
  • Semiconductor layer is titanium oxide, zirconium oxide, zinc oxide, tin oxide, nickel oxide, niobium oxide, magnesium oxide, tungsten oxide, bismuth oxide, indium oxide, thallium oxide, lanthanum oxide, yttrium oxide, phosphonium oxide, cerium oxide, oxide
  • An oxide semiconductor such as aluminum, cadmium sulfide, cadmium selenide, cadmium telluride, calcium titanate, strontium titanate, or barium titanate can be used.
  • the oxide semiconductor a single compound may be used, or two or more kinds may be mixed and used. It is preferable to use titanium oxide having high photoelectric conversion efficiency.
  • An oxide semiconductor is usually used in a porous form so that a large amount of dye can be supported on a semiconductor layer.
  • an organic dye or a metal complex dye having absorption in the visible light region and / or the infrared light region can be used.
  • Organic dyes include coumarin, cyanine, merocyanine, phthalocyanine, porphyrin, azo, quinone, quinoneimine, quinacridone, squarylium, triphenylmethane, xanthene, perylene, indigo, na
  • a phthalocyanine dye or the like can be used, and a coumarin dye is preferably used.
  • an osmium complex, a ruthenium complex, an iron complex, a zinc complex, a platinum complex, a palladium complex, or the like can be used, and in particular, a ruthenium bipyridine complex such as N3 or N719 in that it has a wide absorption band. It is preferable to use a ruthenium terpyridine complex and a ruthenium quarterpyridine complex such as N749.
  • a carboxyl group in the dye molecule Those having an interlock group such as an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group are preferable, and among these, a group having a carboxyl group is particularly preferable.
  • an acid functional group such as a carboxyl group is neutralized with an alkali metal hydroxide, a tetraalkylammonium hydroxide, an imidazolium hydroxide, a pyridinium hydroxide, or the like, an anion is obtained.
  • the repulsive force acting between them suppresses the association between the dye molecules, and can greatly reduce the electron trap between the dye molecules.
  • these dyes a single compound may be used, or a mixture of two or more kinds may be used.
  • the cathode of the dye-sensitized solar cell can be obtained by a known method.
  • a dispersion containing the above-described oxide semiconductor particles and an organic binder such as polytetrafluoroethylene, polyvinylidene fluoride, or carboxymethyl cellulose on a conductive portion of a substrate is wet by spin coating, bar coating, cast coating, or the like. After laminating by the method, drying by heating, and firing at a temperature of 400 to 500 ° C., a porous layer of the oxide semiconductor is provided on the substrate.
  • the oxide semiconductor particles spherical, rod-like, needle-like particles having an average primary particle diameter of 1 to 200 nm are preferably used.
  • the substrate after baking is immersed in a solution in which the above-described dye is dissolved in a solvent such as ethanol, isopropyl alcohol, butyl alcohol, etc., taken out from the immersion liquid after a predetermined time, and dried to carry the dye on the oxide semiconductor.
  • a solvent such as ethanol, isopropyl alcohol, butyl alcohol, etc.
  • a reverse electron transfer inhibitor having a functional group such as an imidazolyl group, a carboxy group, or a phosphone group that binds to the semiconductor, such as tert-butylpyridine, 1-methoxybenzimidazole, decanoic acid
  • a phosphonic acid having a long-chain alkyl group having about 13 carbon atoms
  • the reverse electron transfer inhibitor is adsorbed in the gap between the dyes on the semiconductor surface. It is preferable because reverse electron transfer in the liquid can be prevented and the dye is less likely to be eluted into the electrolytic solution.
  • the thickness of the semiconductor layer is generally in the range of 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, particularly preferably 3 to 20 ⁇ m. If the thickness of the semiconductor layer is less than 1 ⁇ m, light absorption may be insufficient. If the thickness of the semiconductor layer is greater than 100 ⁇ m, the distance from which the electrons reach the conductive portion of the base becomes long, and the electrons Is not preferable because of inactivation.
  • the electrolyte solution for forming the electrolyte layer of the dye-sensitized solar cell includes an iodine-based redox in an organic solvent such as acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile, propylene carbonate, ethylene carbonate, ⁇ -butyrolactone, and ethylene glycol.
  • an organic solvent such as acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile, propylene carbonate, ethylene carbonate, ⁇ -butyrolactone, and ethylene glycol.
  • An electrolytic solution in which a complex or the like is dissolved can be used.
  • metal complexes such as ferrocyanate / ferricyanate and ferrocene / ferricinium ions, sulfur compounds such as sodium polysulfide, alkylthiol / alkyl disulfide, viologen dyes, hydroquinone / quinone, etc.
  • metal complexes such as ferrocyanate / ferricyanate and ferrocene / ferricinium ions
  • sulfur compounds such as sodium polysulfide, alkylthiol / alkyl disulfide, viologen dyes, hydroquinone / quinone, etc.
  • Li, Na, K, Mg, Ca, Cs and the like are preferable as the cation of the metal compound
  • tetraalkylammoniums, pyridiniums, imidazoliums and the like are preferable as the cation of the organic compound.
  • iodide and iodine having high photoelectric conversion efficiency, and in particular, I 2 and alkali metal iodides such as LiI, NaI, and KI, and imidazolium such as dimethylpropylimidazolium iodide. It is preferred to use a combination of a compound and a quaternary ammonium iodide.
  • concentration of the above-mentioned salt is preferably 0.05M to 5M, more preferably 0.2M to 2M with respect to the organic solvent.
  • concentration of I 2 or Br 2 is preferably 0.0005M to 1M, and more preferably 0.001 to 0.2M.
  • additives such as 4-tert-butylpyridine and carboxylic acid can also be added for the purpose of improving the open circuit voltage of the dye-sensitized solar cell.
  • a supporting electrolyte such as lithium iodide or lithium tetrafluoroborate may be added to the electrolytic solution as necessary.
  • the electrolyte layer can also be formed from a gel electrolyte that is pseudo-solidified by adding a gelling agent to the electrolyte solution.
  • a gelling agent When used as a physical gel, polyacrylonitrile, polyvinylidene fluoride, or the like can be used as a gelling agent.
  • an acrylic (methacrylic) ester oligomer or tetra (bromomethyl) benzene as a gelling agent.
  • a combination of polyvinyl pyridine and polyvinyl pyridine can be used.
  • the dye-sensitized solar cell can be obtained by a known method using the above-described anode. For example, by disposing a cathode semiconductor layer and an anode conductive polymer layer with a predetermined gap, injecting an electrolyte into the gap, and heating as necessary to form an electrolyte layer, dye sensitization A solar cell can be obtained.
  • the thickness of the electrolyte layer is generally in the range of 1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, excluding the thickness of the electrolyte layer that has penetrated into the semiconductor layer. If the thickness of the electrolyte layer is less than 1 ⁇ m, the semiconductor layer of the cathode may be short-circuited. If the thickness of the electrolyte layer is more than 100 ⁇ m, the internal resistance increases, which is not preferable.
  • the thickness of the conductive polymer for the anode was calculated as follows. First, an experiment was conducted in which a conductive polymer layer was formed by performing constant current electrolytic polymerization for 1 minute on an ITO electrode under the condition of 0.1 mA / cm 2 , and the thickness of the polymer layer was measured with an atomic force microscope.
  • the constant current electropolymerization was carried out for 10 minutes under the following conditions.
  • the working electrode after polymerization was washed with methanol and then dried at 160 ° C. for 30 minutes to obtain an anode in which a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 350 nm was formed on the FTO electrode.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode B Distilled water (50 mL) was introduced into a glass container.
  • EDOT was added at a concentration of 0.0148M and sodium bis (trifluoromethanesulfonyl) imidate at a concentration of 0.08M and stirred.
  • a dissolved polymerization solution was obtained.
  • An FTO electrode having an area of 1 cm 2 (FTO layer surface resistance: 10 ⁇ / ⁇ ) was introduced into the obtained polymerization solution as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode, respectively, and 100 ⁇ A / cm 2.
  • the constant current electropolymerization was carried out for 10 minutes under the following conditions.
  • PEDOT layer diopant: bis (trifluoromethanesulfonyl) imidoanion
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode C Instead of 0.08M concentration of sodium bis (trifluoromethanesulfonyl) imidate, ammonium bis (nonafluorobutanesulfonyl) imidoate was used at a concentration of 0.08M and the manufacturing procedure for anode B was repeated on the FTO electrode.
  • An anode having a 350 nm thick PEDOT layer (dopant: bis (nonafluorobutanesulfonyl) imidate anion) was obtained.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode D instead of 0.08M sodium bis (trifluoromethanesulfonyl) imidate, ammonium 1,1,2,2,3,3-hexafluoro-1,3-disulfonylimidate at a concentration of 0.08M
  • the anode B manufacturing procedure was repeated, and a 350 nm thick PEDOT layer (dopant: 1,1,2,2,3,3-hexafluoro-1,3-disulfonylimide acid anion) was formed on the FTO electrode.
  • a formed anode was obtained.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Anode E On an FTO electrode (FTO layer surface resistance: 10 ⁇ / ⁇ ) having an area of 1 cm 2 , 100 ⁇ L of a commercially available PEDOT: PSS aqueous dispersion (trade name: Vitron P: manufactured by Starck Co., Ltd.) was cast at a rotational speed of 5000 rpm. Spin coating was performed for 30 seconds. Subsequently, it dried at 160 degreeC for 30 minute (s), and the anode which has the same PEDOT: PSS layer as the nonpatent literature 1 was obtained.
  • PEDOT PSS aqueous dispersion
  • Anode F A mass of 1: 8: 1 of EDOT (0.48M), tris-P-toluenesulfonic acid iron (III), and dimethyl sulfoxide on an FTO electrode (FTO layer surface resistance: 10 ⁇ / ⁇ ) having an area of 1 cm 2 100 ⁇ L of the reaction solution dissolved in n-butanol in a ratio was cast and spin-coated at a rotation speed of 2000 rpm for 30 seconds. The FTO electrode holding the reaction solution was heated at 110 ° C. for 5 minutes to allow chemical polymerization to proceed, then washed with methanol, and dried at 160 ° C. for 30 minutes. An anode having a PEDOT chemical polymerization layer containing a toluenesulfonate anion as a dopant was obtained.
  • An electrolytic solution in which 10 mM lithium iodide, 1 mM iodine, and 1 M lithium tetrafluoroborate are dissolved in acetonitrile has an area of 4 cm 2 as an anode of any of anodes A to F as a working electrode and a counter electrode.
  • a platinum mesh and a silver-silver chloride electrode as a reference electrode were introduced, and the scanning potential range was ⁇ 0.8 to +0.8 V, and the scanning speed was 10 mV / s.
  • the anodes A to F were taken out from the electrolytic solution, washed, and then subjected to thermal aging that was allowed to stand in a high-temperature atmosphere at 160 ° C. in air for 500 hours, to obtain a cyclic voltammogram again.
  • Figures 1 to 6 show cyclic voltammograms before and after thermal aging.
  • 1 to 6 show, in order, an anode A (dopant: borodisalicylate anion), an anode B (dopant: bis (trifluoromethanesulfonyl) imidate anion), and an anode C (dopant: bis (nonafluorobutanesulfonyl) imidic acid.
  • anode D (dopant: 1,1,2,2,3,3-hexafluoro-1,3-disulfonylimide acid anion), anode E (dopant: PSS anion), and anode F (dopant: p
  • the cyclic voltammogram of -toluenesulfonate anion) is shown.
  • the negative potential side redox wave is a redox wave corresponding to I 3 ⁇ / I ⁇
  • the positive potential side redox wave is a redox wave corresponding to I 2 / I 3 ⁇ .
  • a reduction wave from I 3 ⁇ to I ⁇ observed around ⁇ 0.2 V with respect to a silver-silver chloride electrode is particularly important. This is because sufficient regeneration of I ⁇ is necessary.
  • the cyclic voltammogram of the anode E no reduction wave from I 3 ⁇ to I ⁇ was observed, as reported in Non-Patent Document 1.
  • the shape of the cyclic voltammogram of the anode F having the PEDOT layer containing p-toluenesulfonate anion as a dopant is greatly changed, the current response is remarkably reduced, and the peak potential of the oxidation wave is a high potential. The peak potential of the reduction wave shifted to the low potential side. This indicates a marked deterioration of the redox catalytic ability.
  • the cyclic voltammograms of anodes A to D two pairs of redox waves were clearly recognized even after thermal aging.
  • the anode A and the anode C exhibited almost the same cyclic voltammogram before and after thermal aging under extremely severe conditions of 160 ° C. and 500 hours, and had excellent heat resistance.
  • the conductive polymer layer in the anode used in the dye-sensitized solar cell of the present invention is excellent in reduction catalytic ability to convert the oxidized species (I 3 ⁇ ) to the reduced species (I ⁇ ), and in addition, the sulfonic acid group Or it turns out that it is excellent in heat resistance than the conductive polymer layer which contains the anion which has a sulfonate group as a dopant.
  • a Ti electrode having an area of 2.25 cm 2 composed of a Ti foil having a thickness of 100 ⁇ m was introduced as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode. Constant current electrolytic polymerization was performed for 3 minutes under the conditions of cm 2 .
  • the working electrode after polymerization was washed with methanol and then dried at 150 ° C. for 30 minutes to obtain an anode having a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 105 nm formed on a Ti electrode.
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • a titanium oxide paste (manufactured by JGC Catalysts & Chemicals Co., Ltd.) was applied to the surface of the FTO electrode having a surface area of 0.25 cm 2 by screen printing so that the film thickness was about 10 ⁇ m, and pre-dried at 60 ° C. for 30 minutes, Furthermore, the titanium oxide porous layer was formed on the FTO electrode by baking at 450 degreeC for 15 minutes. The thickness of the titanium oxide after firing was 8 ⁇ m. Further, the titanium oxide porous layer was immersed in a butanol / acetonitrile 1: 1 solution containing dye N719 at a concentration of 0.5 mM for 24 hours, and then dried at room temperature to attach the dye N719 to the titanium oxide porous layer. To obtain a cathode of a dye-sensitized solar cell.
  • the electrolytes include 0.1M lithium iodide, 0.05M iodine, 0.6M 1,2-dimethyl-1,3-propylimidazolium iodide, and 0.5M 4-t-butylpyridine. Was used in which acetonitrile was dissolved.
  • Example 2 Into the polymerization liquid used in Example 1, a Ti electrode having an area of 2.25 cm 2 composed of a Ti foil having a thickness of 100 ⁇ m was used as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode. The constant current electrolytic polymerization was performed for 10 minutes under the condition of 100 ⁇ A / cm 2 . The working electrode after polymerization was washed with methanol and then dried at 150 ° C. for 30 minutes to obtain an anode having a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 350 nm formed on a Ti electrode. The density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Example 3 Into the polymerization solution obtained in Example 1, a Ti electrode having an area of 2.25 cm 2 composed of a Ti foil having a thickness of 100 ⁇ m was used as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode, respectively. Then, constant current electropolymerization was performed for 6 minutes under the condition of 500 ⁇ A / cm 2 . The working electrode after polymerization was washed with methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a 1050 nm thick PEDOT layer (dopant: borodisalicylate anion) was formed on the Ti electrode. The density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Example 4 Into the polymerization solution obtained in Example 1, a Ti electrode having an area of 2.25 cm 2 composed of a Ti foil having a thickness of 100 ⁇ m was used as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode, respectively. Then, constant current electropolymerization was conducted for 9 minutes under the condition of 500 ⁇ A / cm 2 . The working electrode after polymerization was washed with methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 1575 nm was formed on the Ti electrode. The density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Example 5 Into the polymerization solution obtained in Example 1, a Ti electrode having an area of 2.25 cm 2 composed of a Ti foil having a thickness of 100 ⁇ m was used as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode, respectively. Then, constant current electropolymerization was carried out for 12 minutes under the condition of 500 ⁇ A / cm 2 . The working electrode after polymerization was washed with methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 2100 nm was formed on the Ti electrode. The density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Example 6 Into the polymerization solution obtained in Example 1, a Ti electrode having an area of 2.25 cm 2 composed of a Ti foil having a thickness of 100 ⁇ m was used as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode, respectively. Then, constant current electropolymerization was performed for 24 minutes under the condition of 500 ⁇ A / cm 2 . The working electrode after polymerization was washed with methanol and then dried at 150 ° C. for 30 minutes to obtain an anode in which a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 4200 nm was formed on the Ti electrode. The density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Titanium oxide paste (manufactured by JGC Catalysts & Chemicals Co., Ltd.) is applied to the surface of an FTO electrode having a surface area of 0.25 cm 2 by different screen printing methods, pre-dried at 60 ° C. for 30 minutes, and further at 450 ° C. By baking for 3 minutes, a titanium oxide porous layer having a thickness of 3 to 25 ⁇ m was formed on the FTO electrode. Further, the titanium oxide porous layer was immersed in a butanol / acetonitrile 1: 1 solution containing dye N719 at a concentration of 0.5 mM for 24 hours, and then dried at room temperature to attach the dye N719 to the titanium oxide porous layer. To obtain a cathode of a dye-sensitized solar cell.
  • Example 3 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with the anode having a 1050 nm thick PEDOT layer (dopant: borodisalicylate anion) obtained in Example 3.
  • Example 8 An FTO electrode having an area of 1 cm 2 (FTO layer surface resistance: 10 ⁇ / ⁇ ) was introduced into the polymerization solution used in Example 1 as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode. Constant current electrolytic polymerization was performed for 10 minutes under the conditions of / cm 2 . The working electrode after polymerization was washed with methanol and then dried at 160 ° C. for 30 minutes to obtain an anode in which a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 350 nm was formed on the FTO electrode. The density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Example 9 The polymerization solution used in Example 1, as a working electrode an electrode having an area of 2.25 cm 2, which is composed of a polyethylene naphthalate / ITO sputtering film having a thickness of 200 [mu] m, the SUS mesh having an area of 5 cm 2 as a counter electrode Each was introduced, and constant current electrolytic polymerization was performed for 10 minutes under the condition of 100 ⁇ A / cm 2 .
  • the working electrode after polymerization was washed with methanol and then dried at 160 ° C. for 30 minutes to obtain an anode in which a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 350 nm was formed on a polyethylene naphthalate / ITO electrode. .
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Example 10 Into the polymerization liquid used in Example 1, an FTO electrode having an area of 2.25 cm 2 (FTO layer surface resistance: 10 ⁇ / ⁇ ) was used as a working electrode, and a SUS mesh having an area of 5 cm 2 was introduced as a counter electrode. The constant current electrolytic polymerization was performed for 10 minutes under the condition of 100 ⁇ A / cm 2 . The working electrode after polymerization was washed with methanol and then dried at 160 ° C. for 30 minutes to obtain an anode in which a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 350 nm was formed on the FTO electrode. The density of the PEDOT layer was about 1.6 g / cm 3 .
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Comparative Example 1 An anode having a Pt layer formed on a Ti electrode by depositing Pt to a thickness of about 100 nm by a sputtering method on a Ti electrode having an area of 2.25 cm 2 composed of a Ti foil having a thickness of 100 ⁇ m. Got.
  • Example 7 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer with a thickness of 3 to 25 ⁇ m to which the dye obtained in Example 7 was attached.
  • Comparative Example 2 225 ⁇ L of a commercially available PEDOT: PSS aqueous dispersion (trade name Vitron P: manufactured by Starck) was cast on a Ti electrode composed of 100 ⁇ m-thick Ti foil and having an area of 2.25 cm 2. And spin coated for 30 seconds. Subsequently, it dried at 150 degreeC for 30 minute (s), and the anode by which the PEDOT: PSS layer was formed on the Ti electrode was obtained.
  • a commercially available PEDOT: PSS aqueous dispersion trade name Vitron P: manufactured by Starck
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Example 2 a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • Comparative Example 4 A commercial product (trade name: Conductive film with platinum film: Vexel Technologies, Inc.) having a Pt coating layer formed on an electrode having an area of 2.25 cm 2 made of a polyethylene naphthalate / ITO sputtered film having a thickness of 200 ⁇ m was used as the anode.
  • a dye-sensitized solar cell was obtained in the same procedure as in Example 1.
  • Comparative Example 5 An anode having a Pt layer formed on an FTO electrode by depositing Pt to a thickness of about 350 nm by sputtering on an FTO electrode (FTO layer surface resistance: 10 ⁇ / ⁇ ) having an area of 2.25 cm 2. Got. Subsequently, a dye-sensitized solar cell was obtained in the same procedure as in Example 1 in combination with a cathode having a titanium oxide porous layer to which the dye obtained in Example 1 was attached.
  • FIG. 7 is a graph showing the relationship between the obtained short-circuit current density value and the thickness of the anode PEDOT layer for the dye-sensitized solar cells of Examples 1 to 6. It can be seen that as the thickness of the PEDOT layer increases, the value of the short-circuit current density gradually decreases, and the value of the short-circuit current density is almost constant when the thickness is 2100 nm or more.
  • FIG. 8 is a graph showing the relationship between the obtained open-circuit voltage value and the thickness of the anode PEDOT layer for the dye-sensitized solar cells of Examples 1 to 6.
  • the thickness of the PEDOT layer is up to 1050 nm, the value of the open-circuit voltage gradually increases as the thickness increases, and when the thickness is 1050 nm or more, a substantially constant open-circuit voltage can be obtained.
  • FIG. 9 is a graph showing the relationship between the value of the obtained curve factor and the thickness of the anode PEDOT layer for the dye-sensitized solar cells of Examples 1 to 6. It can be seen that when the thickness of the PEDOT layer is up to 2100 nm, the value of the curve factor gradually increases as the thickness increases, and when the thickness is 2100 nm or more, the value of the curve factor is almost constant.
  • FIG. 10 shows photoelectric conversion efficiency values calculated using the values of the short-circuit current density, the open-circuit voltage, and the fill factor shown in FIGS. It can be seen that when the thickness of the PEDOT layer is up to 1575 nm, the value of the photoelectric conversion efficiency gradually decreases as the thickness increases, and when the thickness is 1575 nm or more, a substantially constant photoelectric conversion efficiency is obtained.
  • FIG. 11 is a graph showing the relationship between the value of the obtained curve factor and the thickness of the porous titanium oxide porous layer for the dye-sensitized solar cells of Example 7 and Comparative Example 1.
  • the value of the curve factor was almost constant regardless of the thickness of the titanium oxide porous layer.
  • the dye-sensitized solar cell of Example 7 exhibits a higher fill factor than the dye-sensitized solar cell of Comparative Example 1 over the entire range of the titanium oxide porous layer thickness of 3 to 20 ⁇ m. I understand.
  • the value of the curve factor of the dye-sensitized solar cell including the anode having the PEDOT: PSS layer of Comparative Example 2 is 0.22, which is compared with the values of the curve factor of the cells of Examples 1 to 6 and Comparative Example 1. It was extremely small.
  • the straight lines in FIGS. 7 to 10 represent the values of the short-circuit current density, the open-circuit voltage, the fill factor, and the photoelectric conversion efficiency in the dye-sensitized solar cell of Comparative Example 1 that has a porous titanium oxide layer of 8 ⁇ m. Show.
  • the dye-sensitized solar cells of Examples 1 to 6 of the present invention have a particularly increased curve factor as compared to the dye-sensitized solar cell having the anode having the Pt layer of Comparative Example 1, and this curve factor This leads to high photoelectric conversion efficiency in the battery.
  • I - / I 3 - were determined charge transporting impedance in the oxidation-reduction reaction.
  • I - / I 3 - the charge-transporting impedance in the oxidation-reduction reaction, the majority of the dominant factors of the curve factor of the dye-sensitized solar cells.
  • the results are shown in FIG.
  • the charge transport impedance decreased as the thickness of the PEDOT layer increased. From this, it was considered that even if the thickness of the PEDOT layer was thick, I 3 ⁇ reached the deep part of the layer (near the Ti electrode) and was reduced to I ⁇ .
  • I - / I 3 - speed scanning electrochemical response in the electrolytic solution was evaluated by a slow cyclic voltammogram.
  • An electrolyte used in the dye-sensitized solar cell of any one of Examples 1 to 6 was used as an counter electrode in an electrolytic solution in which 10 mM lithium iodide, 1 mM iodine, and 1 M lithium tetrafluoroborate were dissolved in acetonitrile.
  • a platinum mesh having an area of 4 cm 2 and a silver-silver chloride electrode as a reference electrode were introduced, the scanning potential range was ⁇ 0.8 to +0.8 V, and the scanning speed was 1 mV / s.
  • the area in the obtained cyclic voltammogram where the current density was 0 mA ⁇ cm ⁇ 2 or less and the potential was in the range of ⁇ 0.05 to ⁇ 0.20 V was calculated as the reduced charge.
  • the value of the reduced charge is proportional to the number of active sites of the reduction reaction from I 3 ⁇ to I ⁇ , and therefore also proportional to the specific surface area of the PEDOT layer involved in the reaction.
  • the electrode reaction rate of the conductive polymer layer in the anode of the dye-sensitized solar cell of the present invention and the Pt layer in the anode of the conventional dye-sensitized solar cell was compared by the following method.
  • An anode used for the battery, a platinum mesh having an area of 4 cm 2 as a counter electrode, and a silver-silver chloride electrode as a reference electrode were introduced, and the scanning potential range was ⁇ 0.55 to +0.25 V, and scanning was performed. Cyclic voltammograms were measured at varying speeds. In the range of -0.55 ⁇ + 0.25V I - / I 3 - oxidation-reduction reaction occurs. Next, the rate constant of the electrode reaction was determined based on the Nicholson theory from the potential difference between the peak potential of the oxidation wave and the peak potential of the reduction wave and the scanning speed.
  • the anode used in the dye-sensitized solar cell of Example 10 was 2.83 ⁇ 10 ⁇ 3 cms ⁇ 1
  • the anode used in the dye-sensitized solar cell of Comparative Example 5 was 2.61 ⁇ 10 ⁇
  • a rate constant of 3 cms ⁇ 1 was shown. That is, it was found that the conductive polymer layer in the anode of the dye-sensitized solar cell of the present invention has higher reactivity with iodine than the Pt layer in the anode of the conventional dye-sensitized solar cell. This is also considered to be a factor that the dye-sensitized solar cell of the present invention exhibits a higher photoelectric conversion efficiency as compared with a conventional dye-sensitized solar cell including an anode having a Pt layer.
  • the dye-sensitized solar cells of Examples 1 to 6 and Comparative Example 1 were allowed to stand at 85 ° C. for 1000 hours in the absence of light, and the photoelectric conversion efficiency after being left was evaluated again. As a result, all the batteries showed an initial photoelectric conversion efficiency of about 97%. From this, it can be seen that the conductive polymer layer in the anode used in the dye-sensitized solar cell of the present invention was stable without being affected by moisture in the air even when left.
  • the dye-sensitized solar cells of Example 8 and Comparative Example 3 were left at 60 ° C. for 500 hours under irradiation conditions of 100 mW / cm 2 and AM1.5G using a solar simulator, and the photoelectric conversion efficiency before and after being left was evaluated.
  • the dye-sensitized solar cell of Example 8 showed a photoelectric conversion efficiency of 6.7% in the initial stage (before standing) and 6.6% after standing, and the influence of the standing was slight.
  • Comparative Example 3 Although the dye-sensitized solar cell of Example 1 showed a photoelectric conversion efficiency of 3% in the initial stage, the photoelectric conversion efficiency after standing was greatly reduced to 0.3%.
  • the conductive polymer layer in the anode used in the dye-sensitized solar cell of the present invention is stable without being affected by moisture in the air even under light irradiation, and is a conventional PEDOT: PSS layer. It can be seen that the durability is greatly increased in comparison.
  • the dye-sensitized solar cells of Example 9 and Comparative Example 4 were allowed to stand for 320 hours under non-irradiation conditions of 85 ° C. and 85% relative humidity, and the photoelectric conversion efficiency before and after being left was evaluated.
  • the dye-sensitized solar cell of Example 9 showed a photoelectric conversion efficiency of 86% of the initial value after being left, whereas the dye-sensitized solar cell of Comparative Example 4 showed only a photoelectric conversion efficiency of 68% of the initial value after being left. It was. From this, it can be seen that the conductive polymer layer in the anode used in the dye-sensitized solar cell of the present invention has superior high-temperature and high-humidity durability as compared with the conventional Pt layer.
  • the working electrode after polymerization was washed with water / methanol and then dried at 150 ° C. for 30 minutes to obtain an anode having a PEDOT layer (dopant: borodisalicylate anion) having a thickness of 105 nm and 350 nm on the FTO electrode. .
  • the density of the PEDOT layer was about 1.6 g / cm 3 .
  • a titanium oxide paste (manufactured by JGC Catalysts and Chemicals) was applied to the surface of an FTO electrode having a surface area of 0.25 cm 2 by screen printing, and then pre-dried at 120 ° C. for 20 minutes.
  • the titanium oxide paste having the thickness of 14 ⁇ 1 ⁇ m in total is formed by repeating the application of the titanium oxide paste by the screen printing method and the preliminary drying for 20 minutes at 120 ° C. twice. Formed. Subsequently, it baked at 450 degreeC for 15 minute (s), and the titanium oxide porous layer was formed on the FTO electrode.
  • the titanium oxide porous layer was immersed in a 1: 1 solution of t-butanol / acetonitrile containing dye N719 at a concentration of 0.5 mM for 24 hours and then dried at room temperature, whereby the dye N719 was added to the titanium oxide porous layer.
  • the electrolytes include 0.1M lithium iodide, 0.05M iodine, 0.6M 1,2-dimethyl-1,3-propylimidazolium iodide, and 0.5M 4-t-butylpyridine. Was used in which acetonitrile was dissolved.
  • FIG. 14, FIG. 15, FIG. 16 and FIG. 17 show the relationship between the thickness of the PEDOT layer and the short-circuit current density, open-circuit voltage, fill factor, or photoelectric conversion efficiency for the dye-sensitized solar cell of Example 11. It is.
  • the battery of Example 11 shows a significantly increased short-circuit current density value as compared with the batteries of Examples 1 to 6, and the comparison between FIG. 17 and FIG.
  • the battery of Example 11 showed a photoelectric conversion efficiency improved by about 2% over the batteries of Examples 1 to 6.
  • the titanium oxide porous layer was formed uniformly and thickly by performing the steps of applying the titanium oxide paste and pre-drying a plurality of times. It is considered that the current density was improved, and as a result, the photoelectric conversion efficiency was greatly improved.
  • a dye-sensitized solar cell having excellent heat resistance and high conversion efficiency can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

 耐熱性に優れる上に、高い光電変換効率を有する色素増感太陽電池を提供する。 光増感剤としての色素を含む半導体層を有する陰極と、該陰極の半導体層上に積層された、対を成す酸化種と還元種とを含む電解質層と、該電解質層上に積層された、上記酸化種を上記還元種に変換する触媒として作用する導電性ポリマー層を有する陽極と、を備えた本発明の色素増感太陽電池は、上記陽極における導電性ポリマー層が、3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含み、且つ、100~10000nmの範囲の厚みを有している。

Description

色素増感太陽電池
 本発明は、耐熱性に優れる上に、高い曲線因子の値を示し、高い光電変換効率を有する色素増感太陽電池に関する。
 色素増感太陽電池は、シリコン系太陽電池や化合物系太陽電池と比較して、資源的制約が無く、原材料が安価であり、製法が簡便であるため生産コストを低く抑えることができ、軽量で柔軟性をもたせることができるなどの利点を有している。これらの利点のため、色素増感太陽電池は、次世代の太陽電池として大きな期待を集めている。
 この色素増感太陽電池は、対を成す酸化種と還元種とを含む電解質層が、光増感剤としての色素を含む半導体層を有する陰極と、電解質層中の酸化種を還元種に変換する触媒層を有する陽極との間に挟み込まれた構造を有している。一般に、ガラスなどの透明基体の表面にスズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)などの半導体セラミックスの蒸着層を形成した透明電極の上にルテニウム錯体などの色素を担持した酸化物半導体層を形成した電極が陰極として使用されており、上述した透明電極や鋼などの基体上にPtをスパッタリング法、真空蒸着法などにより付着させた電極が陽極として使用されている。透明電極を介して半導体層の色素に光が照射されると、色素が光エネルギーを吸収して励起状態となり、電子を半導体に向けて放出する。放出された電子は半導体層から透明電極へと移動し、さらに透明電極から外部回路を経由して陽極へと移動する。そして、陽極のPt触媒層の作用により電解質層の酸化種(例えばI )が陽極から電子を受け取って還元種(例えばI)へと変換され、さらに還元種(例えばI)が色素に電子を放出して酸化種(例えばI )へと変換される。
 ところで、陽極のPt触媒層は、電解質層の酸化種を還元種に変換する触媒能に優れているが、高価である。その上、Pt触媒層の製造のために真空プロセスが必要なことから、製造設備が高価になり、工程も複雑であり、量産性に劣るという問題点をかかえている。また、水分存在下でのIイオンに対する耐久性が十分でないという問題点も有している。そのため、Pt触媒層の代替となる導電性材料が求められており、これまでに導電性ポリマー層、特にポリ(3,4-エチレンジオキシチオフェン)のポリスチレンスルホン酸塩から成る導電性ポリマー層が頻繁に検討されてきた(以下、3,4-エチレンジオキシチオフェンを「EDOT」と表し、ポリ(3,4-エチレンジオキシチオフェン)を「PEDOT」と表し、ポリスチレンスルホン酸を「PSS」と表し、ポリ(3,4-エチレンジオキシチオフェン)のポリスチレンスルホン酸塩を「PEDOT:PSS」と表す)。PEDOT:PSS等の導電性ポリマー層の製造は湿式方式で行われるため、Pt触媒層の製造に比較して、製造設備が安価で、工程も簡便である。その上、導電性ポリマー層はフレキシビリティに富み、曲面に形成することができるので、用途範囲が拡大する可能性もある。
 例えば、非特許文献1(Electrochemistry 71,No.11(2003)944-946)は、PEDOT:PSS、ポリアニリン、及びポリピロールの3種の導電性ポリマー層を備えた電極を選択し、I/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムを測定し、Pt電極のものと比較した結果を報告している。この文献の報告によると、Pt電極のサイクリックボルタモグラムにはI からIへの還元波が明瞭に認められるのに対し、PEDOT:PSS電極及びポリピロール電極のサイクリックボルタモグラムにはI からIへの還元波がほとんど認められず、ポリアニリン電極のサイクリックボルタモグラムには酸化還元波自体が全く認められなかった。色素増感太陽電池において、このI からIへの還元波が特に重要である。満足のいく性能を有する色素増感太陽電池を得るためには、Iの十分な再生が必要だからである。しかしながら、ポリアニリン電極やポリピロール電極はもちろんのこと、PEDOT:PSS電極であっても、明瞭な還元波を示さず、色素増感太陽電池の陽極として満足のいく性能を有していなかった。
 PSSアニオン以外のドーパントを含むPEDOT層の利用もまた検討されている。特許文献1(特開2008-16442号公報)は、色素を含む酸化チタン層を有する陰極と、酸化還元対を構成するビス(5-メチル-1,3,4-チアジアゾリル)2-ジスルフィドと5-メチル-2-メルカプト-1,3,4-チアジアゾール塩とを含む3-メトキシプロピオニトリル液からなる電解質層と、EDOTをトリス-p-トルエンスルホン酸鉄(III)を酸化剤として化学重合させることによって得られたPEDOT層を有する陽極と、を備えた色素増感太陽電池を開示している。この太陽電池は、上記PEDOT層を有する陽極に代えてPt層を有する陽極を使用した太陽電池に比較して、高い曲線因子の値を有している(この文献の実施例1と比較例4を参照)が、この原因は上記PEDOT層がPt層よりも上記酸化還元対に対する触媒活性に優れているためであると説明されている。また、上記酸化還元対に代えてヨウ素系酸化還元対を用いた場合には、上記PEDOT層を有する陽極を備えた太陽電池とPt層を有する陽極を備えた太陽電池とは、ほぼ同等の曲線因子の値や光電変換効率を示している(この文献の比較例1と比較例3を参照)。
特開2008-16442号公報
Electrochemistry 71,No.11(2003)944-946
 上述したように、陽極の導電性ポリマー層には、電解質層中の酸化種を還元種に変換する高い触媒能が要求される。さらに、太陽電池の製造過程において、太陽電池の各構成要素が高温を経験することがあり、また太陽電池を猛暑時に野外で使用する場合も想定されるため、太陽電池の各構成要素には十分な耐熱性が求められる。しかしながら、これまで検討されてきたPEDOT:PSS層及びp-トルエンスルホン酸アニオンをドーパントとして含むPEDOT層は満足のいく耐熱性を有していなかった。
 これに対し、出願人は、本願の優先権主張の基礎とされた出願の出願時後に公開されたWO2012/133858A1及びWO2012/133859A1において、3位と4位に置換基を有するチオフェン(以下、3位と4位に置換基を有するチオフェンを、「置換チオフェン」と表わす。)から成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含む導電性ポリマー層が、優れた耐熱性を有する上に、電解質層中の酸化種を還元種に変換する触媒能にも優れていること、さらには、上記導電性ポリマー層の密度を1.15~1.80g/cmの範囲に限定することにより、耐熱性がさらに向上することを報告した。ここで、「非スルホン酸系有機化合物」とは、スルホン酸基及び/又はスルホン酸塩基を有していない有機化合物を意味する。
 本発明の目的は、上述した知見を基礎として、耐熱性に優れる上に、高い曲線因子を有し、高い光変換効率を有する色素増感太陽電池を提供することである。
 発明者らは、鋭意検討した結果、色素増感太陽電池の陽極上の導電性ポリマー層の厚みを100nm以上に設定して色素増感太陽電池を構成すると、従来のPt触媒層を有する陽極を用いた色素増感太陽電池よりも高い曲線因子を有する色素増感太陽電池が得られることを発見した。
 したがって、本発明は、光増感剤としての色素を含む半導体層を有する陰極と、該陰極の半導体層上に積層された、対を成す酸化種と還元種とを含む電解質層と、該電解質層上に積層された、上記酸化種を上記還元種に変換する触媒として作用する導電性ポリマー層を有する陽極と、を備えた色素増感太陽電池であって、上記陽極における導電性ポリマー層が、置換チオフェンから選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含み、且つ、100~10000nmの範囲の厚みを有していることを特徴とする色素増感太陽電池を提供する。色素増感太陽電池の光電変換効率は曲線因子の値に比例するため、本発明により高い光電変換効率を有する色素増感太陽電池が得られる。
 上記導電性ポリマー層には、ドーパントとして、非スルホン酸系有機化合物であってそのアニオンの分子量が200以上である化合物から発生したアニオンが含まれる。無機化合物から発生したアニオン、或いは、有機化合物であってもスルホン酸基及び/又はスルホン酸塩基を有する化合物から発生したアニオン、或いは、スルホン酸基及び/又はスルホン酸塩基を有していない有機化合物であってもアニオンの分子量が200未満である化合物から発生したアニオンは、耐熱性に優れた導電性ポリマー層を与えない(WO2012/133858A1及びWO2012/133859A1参照)。非スルホン酸系有機化合物であってそのアニオンの分子量が200以上である化合物のなかでも、ボロジサリチル酸、ボロジサリチル酸塩、式(I)又は式(II)
Figure JPOXMLDOC01-appb-C000002
(式中、mが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、nが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、oが2又は3を意味する)で表わされるスルホニルイミド酸及びこれらの塩から選択された化合物は、特に耐熱性に優れた導電性ポリマー層を与えるため好ましい。
 上記導電性ポリマー層を構成するためのモノマーには、置換チオフェン、すなわち、3位と4位に置換基を有するチオフェンから成る群から選択された化合物であれば、特に限定が無い。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。特にモノマーがEDOTであると、環境安定性に優れる上に、電解質層中の酸化種を還元種に変換する触媒能に優れた導電性ポリマー層が得られるため好ましい。
 置換チオフェンから選択されたモノマーから構成されたポリマーと、上述した特定範囲のドーパントと、を含む導電性ポリマー層において、その厚みが厚くなるにつれて、電解質中の酸化種を還元種へと変換する還元量が増大する傾向が認められるが、還元反応速度は低下する傾向が認められる。したがって、この導電性ポリマー層を備えた陽極を光電子移動反応が速い陰極と組み合わせて速い発電を達成する色素増感太陽電池を得たい場合には、導電性ポリマー層の厚みを、1~2000nmの範囲、好ましくは35~350nm、特に好ましくは70~350nmの範囲にするのが有利である(WO2012/133858A1及びWO2012/133859A1参照)。しかし、発明者らが色素増感太陽電池を構成してさらに検討を進めたところ、厚い導電性ポリマー層においても色素増感太陽電池のために満足のいく還元反応速度が得られることがわかった。その上、導電性ポリマー層を厚くすると、色素増感太陽電池の曲線因子の値が増大することがわかった。そして、導電性ポリマーの厚みを100nm以上にすると、従来のPt触媒層を有する陽極を備えた色素増感太陽電池よりも高い曲線因子を有する電池が得られた。この理由は、本発明における導電性ポリマー層の高い還元触媒能と高い比表面積とに起因すると考えられ、したがって、本発明の色素増感太陽電池は、陰極における半導体層の種類に関わらず、高い曲線因子を示すと考えられる。
 高い曲線因子を示す色素増感太陽電池を得るための上記導電性ポリマーの厚みは、100~10000nmの範囲であり、好ましくは100~4200nmの範囲である。導電性ポリマーの厚みが10000nm以上では、内部抵抗が高くなって還元反応速度が十分でなくなり、また電解重合に時間がかかるため経済的に不利である。
 上記導電性ポリマー層の密度は、1.15~1.80g/cmの範囲であるのが好ましく、1.20~1.80g/cmの範囲であるのがより好ましく、1.60~1.80g/cmの範囲であるのが特に好ましい。密度が1.15g/cm未満であると、耐熱性が急激に低下し、密度が1.80g/cmを超える導電性ポリマー層の製造は困難である。また、柔軟性を有する陽極を得る場合には、導電性ポリマー層の密度が高すぎると導電性ポリマー層が固くなって柔軟性に乏しくなるため、導電性ポリマー層の密度が1.75g/cm以下であるのが好ましく、1.70g/cm以下であるのが特に好ましい。
 1.15~1.80g/cmの範囲の密度を有する導電性ポリマー層は、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒と、モノマーとしての置換チオフェンと、上述した特定範囲の非スルホン酸系有機化合物と、を含む重合液を用いた電解重合により得ることができる。この特定範囲の非スルホン酸系有機化合物は、重合液において支持電解質として作用するため、「非スルホン酸系有機支持電解質」とも表わされる。また、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒を、以下「水リッチ溶媒」と表わす。水リッチ溶媒において、水と有機溶媒との合計量は100質量%である。水リッチ溶媒における有機溶媒の含有量が増加すると、ポリマー粒子が緻密に充填された導電性ポリマー層が電解重合により基体上に形成されにくくなり、有機溶媒の含有量が溶媒全体の20質量%を超えると、得られた導電性ポリマー層の耐熱性が顕著に低下する(WO2012/133858A1及びWO2012/133859A1参照)。
 上記陰極における半導体層は、従来の色素増感太陽電池において半導体層のために使用されているいずれの材料を用いて形成しても良いが、光電変換効率が高い酸化チタンを使用するのが好ましい。半導体層の厚みには厳密な制限がないが、一般には1~100μm、好ましくは3~50μm、特に好ましくは3~20μmの範囲である。半導体層の厚みが1μmより薄いと光の吸収が不十分な場合があり、半導体層の厚みが100μmより厚いと、酸化物半導体から基体の導電性部分に電子が到達する距離が長くなって電子が失活するため好ましくない。
 本発明の色素増感太陽電池において陽極の触媒層として使用される特定範囲の導電性ポリマー層は、電解質層中の酸化種を還元種に変換する触媒能に優れる上に、耐熱性に優れる。また、この特定範囲の導電性ポリマー層を有する陽極を備えた本発明の色素増感太陽電池は、従来のPt触媒層を有する陽極を用いた色素増感太陽電池よりも、安価で製造方法も簡便であり、その上、高い曲線因子の値を有するため高い光電変換効率を有する。
ボロジサリチル酸アンモニウムとEDOTとを含む重合液を用いた電解重合により得られたPEDOT層を有する陽極についてのI/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムである。 ビス(トリフルオロメタンスルホニル)イミド酸ナトリウムとEDOTとを含む重合液を用いた電解重合により得られたPEDOT層を有する陽極についてのI/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムである。 ビス(ノナフルオロブタンスルホニル)イミド酸アンモニウムとEDOTとを含む重合液を用いた電解重合により得られたPEDOT層を有する陽極についてのI/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムである。 1,1,2,2,3,3-ヘキサフルオロ-1,3-ジスルホニルイミド酸アンモニウムとEDOTとを含む重合液を用いた電解重合により得られたPEDOT層を有する陽極についてのI/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムである。 PEDOT:PSSを含むスラリーから得たPEDOT層を有する陽極についてのI/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムである。 EDOTをトリス-p-トルエンスルホン酸鉄(III)を酸化剤として化学重合させることによって得られたPEDOT層を有する陽極についてのI/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムである。 異なる厚みのPEDOT層を有する陽極を備えた色素増感太陽電池における、PEDOT層の厚みと短絡電流密度の値との関係を示した図である。 異なる厚みのPEDOT層を有する陽極を備えた色素増感太陽電池における、PEDOT層の厚みと開放電圧の値との関係を示した図である。 異なる厚みのPEDOT層を有する陽極を備えた色素増感太陽電池における、PEDOT層の厚みと曲線因子の値との関係を示した図である。 異なる厚みのPEDOT層を有する陽極を備えた色素増感太陽電池における、PEDOT層の厚みと光電変換効率の値との関係を示した図である。 異なる厚みの酸化チタン多孔質層を有する陰極を備えた色素増感太陽電池における、酸化チタン多孔質層の厚みと曲線因子の値との関係を示した図である。 異なる厚みのPEDOT層を有する陽極を備えた色素増感太陽電池における、I/I 酸化還元反応の電荷輸送インピーダンスと、PEDOT層の厚みと、の関係を示した図である。 異なる厚みのPEDOT層を有する陽極についての、I/I 酸化還元対を含む電解液中でのサイクリックボルタモグラムから算出された還元電荷と、PEDOT層の厚みと、の関係を示した図である。 均一な酸化チタン多孔質層を有する陰極を備えた色素増感太陽電池における、PEDOT層の厚みと短絡電流密度の値との関係を示した図である。 均一な酸化チタン多孔質層を有する陰極を備えた色素増感太陽電池における、PEDOT層の厚みと開放電圧の値との関係を示した図である。 均一な酸化チタン多孔質層を有する陰極を備えた色素増感太陽電池における、PEDOT層の厚みと曲線因子の値との関係を示した図である。 均一な酸化チタン多孔質層を有する陰極を備えた色素増感太陽電池における、PEDOT層の厚みと光電変換効率の値との関係を示した図である。
 まず、上述した特定範囲の導電性ポリマー層を備えた陽極について説明し、次いで、色素増感太陽電池の全体について説明する。
 A:陽極
 本発明の色素増感太陽電池のための陽極は、置換チオフェンから選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含み、且つ、100~10000nmの範囲の厚みを有する導電性ポリマー層を備えている。そして、この導電性ポリマー層は、上記モノマーと上記非スルホン酸系有機化合物とを含む電解重合用の重合液を得る調製工程、及び、得られた重合液に導電性部分を有する基体を導入し、電解重合を行うことにより、上記モノマーの重合により得られた導電性ポリマー層を上記基体の導電性部分の上に形成する重合工程、を含む方法により製造することができる。以下、各工程について説明する。
 (1)調製工程
 この工程で調製する電解重合用の重合液は、水リッチ溶媒と、モノマーとしての置換チオフェンと、上述した特定範囲の非スルホン酸系有機化合物と、を必須成分として含む。
 重合液の調製には、環境負荷が小さく、経済的にも優れる水を主溶媒として使用する。この重合液には、水に加えて、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、アセトニトリル、アセトン、テトラヒドロフラン、酢酸メチルなどの有機溶媒が含まれていてもよいが、溶媒全体の80質量%以上は水である。水は溶媒全体の90質量%以上であるのが好ましく、溶媒全体の95質量%以上であるのがより好ましく、溶媒が水のみから成るのが特に好ましい。水リッチ溶媒における有機溶媒の含有量が増加すると、ポリマー粒子が緻密に充填された導電性ポリマー層が電解重合により基体上に形成されにくくなり、有機溶媒の含有量が溶媒全体の20質量%を超えると、得られた導電性ポリマー層の耐熱性が顕著に低下する。
 モノマーとしては、置換チオフェン、すなわち、3位と4位に置換基を有するチオフェンから選択されたモノマーが用いられる。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。使用可能なモノマーの例としては、3,4-ジメチルチオフェン、3,4-ジエチルチオフェンなどの3,4-ジアルキルチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェンなどの3,4-ジアルコキシチオフェン、3,4-メチレンジオキシチオフェン、EDOT、3,4-(1,2-プロピレンジオキシ)チオフェンなどの3,4-アルキレンジオキシチオフェン、3,4-メチレンオキシチアチオフェン、3,4-エチレンオキシチアチオフェン、3,4-(1,2-プロピレンオキシチア)チオフェンなどの3,4-アルキレンオキシチアチオフェン、3,4-メチレンジチアチオフェン、3,4-エチレンジチアチオフェン、3,4-(1,2-プロピレンジチア)チオフェンなどの3,4-アルキレンジチアチオフェン、チエノ[3,4-b]チオフェン、イソプロピルチエノ[3,4-b]チオフェン、t-ブチル-チエノ[3,4-b]チオフェンなどのアルキルチエノ[3,4-b]チオフェンが挙げられる。モノマーとして、単独の化合物を使用しても良く、2種以上の化合物を混合して使用しても良い。特に、EDOTを使用するのが好ましい。
 重合液中の支持電解質としては、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である化合物が用いられる。これらの支持電解質のアニオンが、以下に示す電解重合の過程でドーパントとして導電性ポリマーフィルム中に含まれる。特に、ボロジサリチル酸、ボロジサリチル酸塩、式(I)又は式(II)
Figure JPOXMLDOC01-appb-C000003
(式中、mが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、nが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、oが2又は3を意味する)で表わされるスルホニルイミド酸及びこれらの塩を好ましく使用することができる。塩としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩、エチルアンモニウム塩、ブチルアンモニウム塩などのアルキルアンモニウム塩、ジエチルアンモニウム塩、ジブチルアンモニウム塩などのジアルキルアンモニウム塩、トリエチルアンモニウム塩、トリブチルアンモニウム塩などのトリアルキルアンモニウム塩、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩などのテトラアルキルアンモニウム塩を例示することができる。これらの支持電解質は、特に耐熱性に優れた導電性ポリマー層を与える。中でも、ビス(ペンタフルオロエタンスルホニル)イミド酸の塩、例えばカリウム塩、ナトリウム塩、アンモニウム塩は、極めて高い耐熱性を有する導電性ポリマー層を与える。
 また、ボロジサリチル酸及びボロジサリチル酸塩は、安価で経済的に有利であり、特に耐熱性に優れた導電性ポリマー層を与えるため好ましいが、ボロジサリチル酸及びボロジサリチル酸塩に含まれるボロジサリチル酸イオンが水中で水への溶解度が極めて小さいサリチル酸とホウ酸とに加水分解することがわかっている。そのため、ボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用すると、徐々に重合液中に沈殿が生じて使用に耐えなくなる。このことを回避するため、ボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用する場合には、この支持電解質を液に添加した後沈殿生成前に電解重合を行うか、或いは、ボロジサリチル酸イオンの加水分解を抑制する作用を有するニトロベンゼン及びニトロベンゼン誘導体から成る群から選択された安定化剤と併用する。上記安定化剤は、単独の化合物であっても良く、2種以上の化合物であっても良い。ニトロベンゼン誘導体としては、ニトロフェノール、ニトロベンジルアルコール、ニトロ安息香酸、ジニトロ安息香酸、ジニトロベンゼン、ニトロアニソール、ニトロアセトフェノンを例示することができ、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、及びこれらの混合物が好ましい。
 支持電解質は、単独の化合物を使用しても良く、2種以上の化合物を使用しても良く、重合液に対する飽和溶解量以下の濃度で且つ電解重合のために充分な電流が得られる量で使用され、好ましくは10mM以上の濃度で、特に好ましくは30mM以上の濃度で使用される。
 重合液の調製は、モノマーの含有量に応じて、以下のような方法により行う。モノマーが飽和溶解量以下の量である場合には、重合液製造用の容器に、水リッチ溶媒、モノマーとしての置換チオフェン、及び上述した特定範囲の支持電解質を導入し、手作業により或いは機械的な攪拌手段を使用して各成分を水リッチ溶媒に溶解させることにより、重合液を調製する。モノマーが飽和溶解量を超える量である場合には、すなわち、重合液製造用の容器に、水リッチ溶媒、モノマーとしての置換チオフェン、及び上述した特定範囲の支持電解質を導入して攪拌・均一化した後静置するとモノマーが相分離する場合には、液に超音波照射を施して相分離したモノマーを重合液中に油滴として分散させることにより重合液を調製することができる。水リッチ溶媒に飽和溶解量を超える量のモノマーを添加した液に超音波照射を施してモノマーを油滴として分散させ、次いで得られた液に支持電解質を添加することにより、本発明の重合液を得ることもできる。重合液における各成分が安定であれば、調製時の温度に制限は無い。なお、本明細書において、「超音波」とは10kHz以上の周波数を有する音波を意味する。
 超音波照射のために、超音波洗浄機用、細胞粉砕機用等として従来から知られている超音波発振器を特に限定なく使用することができる。モノマー油滴が水リッチ溶媒に安定に分散している液を超音波照射により得るためには、相分離しているモノマーを数μm以下の直径を有する油滴にする必要があり、そのためには、少なくとも機械的作用が強い数百nm~数μmのキャビテーションを発生させることができる15~200kHzの周波数の超音波を相分離液に照射する必要がある。超音波の出力は、4W/cm以上であるのが好ましい。超音波照射時間には厳密な制限はないが、2~10分の範囲であるのが好ましい。照射時間が長いほど、モノマー油滴の凝集が阻害され、解乳化までの時間が長期化する傾向にあるが、超音波照射時間が10分以上では、油滴の凝集阻害効果が飽和する傾向が認められる。異なる周波数及び/又は出力を有する超音波を用いて複数回の照射を行うことも可能である。飽和溶解量を超えるモノマーの含有量は、超音波照射により解乳化が抑制された分散液が得られる量であれば良く、モノマーの種類ばかりでなく、支持電解質の種類と量、超音波照射条件によっても変化する。
 本発明の重合液には、水リッチ溶媒、置換チオフェンから選択されたモノマー、及び上記特定範囲の支持電解質に加えて、本発明に悪影響を与えない範囲内で他の添加物が含まれていても良い。好適な添加物として、水溶性のノニオン界面活性剤が挙げられる。モノマーがノニオン界面活性剤のミセル中に濃縮されるため、速やかに電解重合が進行し、高電導度を示すポリマーが得られる。その上、ノニオン界面活性剤自体はイオン化せず、上記特定範囲の支持電解質のアニオンによるポリマーへのドーピングを阻害することが無い。
 ノニオン界面活性剤としては、公知の水溶性のノニオン界面活性剤を特に限定無く使用することができる。例としては、ポリアルキレングリコール、ポリビニルアルコール、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンスチリルフェニルエーテル、ポリオキシアルキレンベンジルフェニルエーテル、ポリオキシアルキレン付加アルキルフェノールホルムアルデヒド縮合物、ポリオキシアルキレン付加スチリルフェノールホルムアルデヒド縮合物、ポリオキシアルキレン付加ベンジルフェノールホルムアルデヒド縮合物、アルキンジオール、ポリオキシアルキレン付加アルキンジオール、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレンひまし油、ポリオキシアルキレン硬化ひまし油、ポリグリセリンアルキルエーテル、ポリグリセリン脂肪酸エステルなどが挙げられる。これらは単独で使用しても良く、2種以上を混合して使用しても良い。また、例えば2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのような分散効果が高いアルキンジオールと他のノニオン界面活性剤、好ましくは、ポリオキシエチレン(9)ノニルフェニルエーテル分岐型のようなポリオキシエチレンアルキルフェニルエーテルとの組み合わせを重合液において使用すると、重合液におけるモノマーの含有量を大幅に増加させることができるため好ましい。
 ノニオン界面活性剤を併用する場合には、重合液製造用の容器に、水リッチ溶媒、モノマー、上記特定範囲の支持電解質、及びノニオン界面活性剤を導入し、手作業により或いは機械的な攪拌手段を使用して或いは超音波を照射して各成分を水リッチ溶媒に溶解させることにより、重合液を調製する。また、重合液製造用の容器に、水リッチ溶媒、モノマー、及びノニオン界面活性剤を導入して、各成分を水リッチ溶媒に溶解させた液を調製した後、電解重合直前に、この液に上記特定範囲の支持電解質を添加して溶解させても良い。
 いずれの重合液の製造方法においても、支持電解質としてのボロジサリチル酸及び/又はボロジサリチル酸塩と、安定化剤としてのニトロベンゼン及び/又はニトロベンゼン誘導体と、を併用する場合には、重合液製造用の容器に両者をほぼ同時に導入するか、或いは安定化剤を先に導入する。安定化剤はボロジサリチル酸イオンの加水分解を抑制するために使用されるからである。
 (2)重合工程
 上述の調製工程により得られた重合液に、少なくとも表面に導電性部分を有する作用極(導電性ポリマー層の基体)と対極とを導入し、電解重合を行うことにより、置換チオフェンの重合により得られた導電性ポリマー層を作用極の導電性部分の上に形成し、色素増感太陽電池のための陽極を得る。
 少なくとも表面に導電性部分を有する作用極の材質、形状及び大きさは、用途に応じて適宜選択される。基体の導電性部分は、単層であっても良く、異なる種類の複数の層を含んでいても良い。例えば、白金、金、ニッケル、チタン、鋼、ロジウム、ルテニウムなどの導電体の板或いは箔を作用極として使用することができる。しかしながら、この重合工程で得られる導電性ポリマー層は透明性に優れるため、光学ガラス、石英ガラス、無アルカリガラスなどの透明で絶縁性のガラス基板、又は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルサルホン、ポリアクリレートなどの透明で絶縁性のプラスチック基板の表面に酸化インジウム、スズドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)、酸化スズ、アンチモンドープ酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)などの透明導電層を蒸着又は塗布により設けた透明基体を作用極として使用するのが好ましい。この他、上述のガラス基板又はプラスチック基板の上に、白金、ニッケル、チタン、ロジウム、ルテニウムなどの金属膜を蒸着又は塗布により設けた基体を作用極とすることもできる。
 電解重合の対極としては、白金、ニッケルなどの板を用いることができる。
 電解重合は、調製工程により得られた重合液を用いて、定電位法、定電流法、電位掃引法のいずれかの方法により行われる。定電位法による場合には、モノマーの種類に依存するが、飽和カロメル電極に対して1.0~1.5Vの電位が好適であり、定電流法による場合には、モノマーの種類に依存するが、1~10000μA/cm、好ましくは5~500μA/cm、より好ましくは10~100μA/cmの電流値が好適であり、電位掃引法による場合には、モノマーの種類に依存するが、飽和カロメル電極に対して-0.5~1.5Vの範囲を5~200mV/秒の速度で掃引するのが好適である。重合温度には厳密な制限がないが、一般的には10~60℃の範囲である。重合時間は重合液の組成や電解重合条件に依存して変化するが、一般的には0.6秒~2時間、好ましくは1~10分、特に好ましくは2~6分の範囲である。
 電解重合により、上述した特定範囲の非スルホン酸系有機支持電解質のアニオンをドーパントとして含む導電性ポリマー層が作用極の導電性部分の上に形成される。得られる導電性ポリマー層の密度は、1.15~1.80g/cmの範囲である。導電性ポリマー層の密度が1.15g/cm未満であると、耐熱性が急激に低下し、密度が1.80g/cmを超える導電性ポリマー層の製造は困難である。耐熱性に優れた導電性ポリマー層の密度は、好ましくは1.20~1.80g/cmの範囲、特に好ましくは1.60~1.80g/cmの範囲である。また、柔軟性を有する陽極を得る場合には、導電性ポリマー層の密度が高すぎると導電性ポリマー層が固くなって柔軟性に乏しくなるため、導電性ポリマー層の密度が1.75g/cm以下であるのが好ましく、1.70g/cm以下であるのが特に好ましい。
 導電性ポリマー層の厚みは、一般的には100~10000nm、好ましくは100~4200nmの範囲である。導電性ポリマーの厚みが10000nm以上では、内部抵抗が高くなって電解質中の酸化種を還元種に変換する還元反応速度が十分でなくなり、また電解重合に時間がかかるため経済的に不利である。また、導電性ポリマーの厚みが4200nmを超えると、導電性ポリマー層に亀裂が認められる場合がある。したがって、導電性ポリマーの厚みは4200nm以下であるのが好ましい。導電性ポリマーの厚みは、原子間力顕微鏡等により測定することができる。また、所定の電流密度での定電流電解重合を時間を変えて2回以上行い、各回の電解重合により得られた導電性ポリマー層の厚みを計測した後、得られた厚みと電解重合における通電電荷量との関係を示す計算式を導出し、導出した計算式を用いて通電電荷量から導電性ポリマー層の厚みを算出しても良い。
 電解重合後の導電性ポリマー層を水、エタノール等で洗浄し、乾燥することにより、耐熱性に優れた導電性ポリマー層が基体上に密着性良く形成された陽極を得ることができる。得られた陽極の導電性ポリマー層は、空気中の水分に安定であり、また中性付近のpHを示すため、太陽電池の製造或いは使用の過程で他の構成要素が腐食されるおそれも無い。
 B:色素増感太陽電池
 色素増感太陽電池は、光増感剤としての色素を含む半導体層を有する陰極と、該陰極の半導体層上に積層された対を成す酸化種と還元種とを含む電解質層と、上述した陽極と、を備えている。上述した陽極の導電性ポリマー層は、電解質層中で酸化還元対を構成する酸化種を還元種に変換させるのに十分な触媒能を有している。
 色素増感太陽電池における陰極を構成する導電性基体及び半導体層は、従来の色素増感太陽電池における導電性基体及び半導体層を特に限定無く使用することができる。
 導電性基体としては、少なくとも表面に導電性部分を有する基体を使用することができ、基体の導電性部分は、単層であっても良く、異なる種類の複数の層を含んでいても良い。例えば、白金、ニッケル、チタン、鋼、クロム、ニオブ、モリブデン、ルテニウム、ロジウム、タンタル、タングステン、イリジウム、ハステロイなどの導電体の板或いは箔を基体として使用することができ、或いは、光学ガラス、石英ガラス、無アルカリガラスなどの透明で絶縁性のガラス基板、又は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルサルホン、ポリアクリレートなどの透明で絶縁性のプラスチック基板の表面に酸化インジウム、ITO、IZO、酸化スズ、ATO、FTO、酸化亜鉛、AZOなどの透明導電層を蒸着又は塗布により設けた透明基体を使用することもできる。この他、上述のガラス基板又はプラスチック基板の上に、白金、ニッケル、チタン、ロジウム、ルテニウムなどの金属膜を蒸着又は塗布により設けた基体を使用することもできる。陽極に含まれる基体が不透明である場合には、透明な基体を陰極の基体として使用する。また、陽極に含まれる基体が透明であっても、陰極のためにも透明基体を使用することにより、全透明型の太陽電池を構成することもできる。
 半導体層は、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化ニッケル、酸化ニオブ、酸化マグネシウム、酸化タングステン、酸化ビスマス、酸化インジウム、酸化タリウム、酸化ランタン、酸化イットリウム、酸化ホスホニウム、酸化セリウム、酸化アルミニウム、硫化カドミウム、セレン化カドミウム、テルル化カドミウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムなどの酸化物半導体を使用して形成することができる。酸化物半導体は、単一の化合物を使用しても良く、2種以上を混合して使用しても良い。光電変換効率が高い酸化チタンを使用するのが好ましい。酸化物半導体は、通常、多くの色素を半導体層に担持できるように、多孔質の形態で使用される。
 光増感剤として作用する色素としては、可視光領域及び/又は赤外光領域に吸収を有する有機色素又は金属錯体色素などを使用することができる。有機色素としては、クマリン系、シアニン系、メロシアニン系、フタロシアニン系、ポルフィリン系、アゾ系、キノン系、キノンイミン系、キナクリドン系、スクアリリウム系、トリフェニルメタン系、キサンテン系、ペリレン系、インジゴ系、ナフタロシアニン系などの色素を使用することができ、クマリン系の色素を使用するのが好ましい。金属錯体色素としては、オスミウム錯体、ルテニウム錯体、鉄錯体、亜鉛錯体、白金錯体、パラジウム錯体などを使用することができ、特に、幅広い吸収帯を有する点で、N3、N719のようなルテニウムビピリジン錯体、N749のようなルテニウムターピリジン錯体及びルテニウムクォーターピリジン錯体を使用するのが好ましい。また、多孔性酸化物半導体層に色素を強固に吸着させ、励起状態の色素と多孔性酸化物半導体層の伝導帯との間の電子移動を容易にするために、色素分子中にカルボキシル基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基等のインターロック基を有するものが好ましく、これらの中でもカルボキシル基を有するものが特に好ましい。また、カルボキシル基などの酸官能基の一部をアルカリ金属水酸化物、テトラアルキルアンモニウム水酸化物、イミダゾリウム水酸化物、及びピリジニウム水酸化物などで中和してアニオン化しておくと、アニオン間に働く斥力により色素分子同士の会合が抑制され、色素分子間の電子トラップの大幅な低減を図ることができる。これらの色素も、単一の化合物を使用しても良く、2種以上の混合物を使用しても良い。
 色素増感太陽電池の陰極は、公知の方法により得ることができる。例えば、基体の導電性部分の上に、上述した酸化物半導体粒子とポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロースなどの有機バインダーとを含む分散物をスピンコート、バーコート、キャストコートなどの湿式法により積層し、加熱乾燥した後、400~500℃の温度で焼成することにより、酸化物半導体の多孔質層を基体上に設ける。酸化物半導体粒子としては、1~200nmの平均一次粒子径を有する、球状、棒状、針状等の粒子が好ましく使用される。上記分散物の塗布及び加熱乾燥の工程を2回以上繰り返した後に400~500℃の温度で焼成を行うと、均一で厚い多孔質層を得ることができ、その結果、色素増感太陽電池の短絡電流密度を向上させることができ、したがって光電変換効率を向上させることができるため好ましい。また、酸化物半導体粒子間のネッキングを向上させ、電子輸送特性を向上させ、光電変換効率を向上させるために、酸化物半導体の多孔質層にTiCl溶液を浸透させて表面を水洗した後、400~500℃の温度で焼成しても良い。次いで、エタノール、イソプロピルアルコール、ブチルアルコール等の溶剤に上述した色素を溶解した液に焼成後の基体を浸漬し、所定時間経過後に浸漬液から取り出し、乾燥して酸化物半導体に色素を担持することにより、陰極を得ることができる。酸化物半導体に色素を担持させた後、半導体と結合するイミダゾリル基、カルボキシ基、ホスホン基などの官能基を有する逆電子移動防止剤、例えば、tert-ブチルピリジン、1-メトキシベンゾイミダゾール、デカンリン酸などの長鎖アルキル基(炭素数13程度)を持つホスホン酸、を溶解させた液に得られた基体を浸漬し、逆電子移動防止剤を半導体表面の色素間の隙間に吸着させると、電解液中の逆電子移動を防止することができる上に、色素が電解液に溶出しにくくなるため好ましい。半導体層の厚みは、一般には1~100μm、好ましくは3~50μm、特に好ましくは3~20μmの範囲である。半導体層の厚みが1μmより薄いと光の吸収が不十分な場合があり、半導体層の厚みが100μmより厚いと、酸化物半導体から基体の導電性部分に電子が到達する距離が長くなって電子が失活するため好ましくない。
 色素増感太陽電池の電解質層を形成する電解液としては、アセトニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトン、エチレングリコールなどの有機溶剤に、ヨウ素系酸化還元対を構成する金属ヨウ化物若しくは有機ヨウ化物とヨウ素との組合せ、臭素系酸化還元対を構成する金属臭化物若しくは有機臭化物と臭素との組合せ、コバルト錯体系酸化還元対を構成するCo(II)ポリピリジン錯体などを溶解した電解液を使用することができる。この他、酸化還元対として、フェロシアン酸塩/フェリシアン酸塩やフェロセン/フェリシニウムイオンなどの金属錯体、ポリ硫化ナトリウム、アルキルチオール/アルキルジスルフィドなどのイオウ化合物、ビオロゲン色素、ヒドロキノン/キノンなどを用いることができる。上記金属化合物のカチオンとしては、Li、Na、K、Mg、Ca、Csなどが好適であり、上記有機化合物のカチオンとしてはテトラアルキルアンモニウム類、ピリジニウム類、イミダゾリウム類などが好適である。この中でも、光電変換効率が高いヨウ化物とヨウ素との組み合わせを使用するのが好ましく、特に、Iと、LiI、NaI、KIなどのアルカリ金属ヨウ化物、ジメチルプロピルイミダゾリウムヨウ化物などのイミダゾリウム化合物及び4級アンモニウムヨウ化物の組み合わせを使用するのが好ましい。上述の塩の濃度は、有機溶媒に対して0.05M~5Mが好ましく、さらに好ましくは0.2M~2Mである。IやBrの濃度は0.0005M~1Mが好ましく、さらに好ましくは0.001~0.2Mである。また、色素増感太陽電池の開放電圧を向上させる目的で、4-tert-ブチルピリジンやカルボン酸などの各種添加剤を加えることもできる。さらに、電解液には、必要に応じて、ヨウ化リチウム、テトラフルオロホウ酸リチウムなどの支持電解質を添加しても良い。
 また、上記電解液にゲル化剤を添加して擬固体化したゲル電解質により電解質層を形成することもできる。物理ゲルとする場合には、ゲル化剤としてポリアクリロニトリル、ポリフッ化ビニリデンなどを使用することができ、化学ゲルとする場合には、ゲル化剤としてアクリル(メタクリル)エステルオリゴマー、テトラ(ブロモメチル)ベンゼンとポリビニルピリジンとの組み合わせなどを使用することができる。
 色素増感太陽電池は、上述した陽極を使用して公知の方法により得ることができる。例えば、陰極の半導体層と陽極の導電性ポリマー層とを所定の間隙を開けて配置し、間隙に電解液を注入し、必要に応じて加熱して電解質層を形成することにより、色素増感太陽電池を得ることができる。電解質層の厚みは、半導体層内に浸透した電解質層の厚みを除いて、一般には1~100μm、好ましくは1~50μmの範囲である。電解質層の厚みが1μmより薄いと、陰極の半導体層が短絡するおそれがあり、電解質層の厚みが100μmより厚いと、内部抵抗が高くなるため好ましくない。
 以下に本発明の実施例を示すが、本発明は以下の実施例に限定されない。
 まず本発明の色素増感太陽電池に用いられる陽極の耐熱性について説明し、次に本発明の色素増感太陽電池について説明する。なお、陽極の導電性ポリマーの厚みは、以下のようにして算出した。まず、ITO電極上に0.1mA/cmの条件で定電流電解重合を1分間行うことにより導電性ポリマー層を形成し、原子間力顕微鏡によりポリマー層の厚みを測定する実験を行った。次いで、ITO電極上に0.1mA/cmの条件で定電流電解重合を28.6分間行うことにより導電性ポリマー層を形成し、段差計によりポリマー層の厚みを測定する実験を行った。この2つの実験から電荷量と導電性ポリマー層の厚みとの関係式を導出した。そして、導出された関係式を用いて、電解重合の電荷量を導電性ポリマー層の厚みに換算した。
 (1)陽極の耐熱性の評価
 (a)陽極の製造
 陽極A
 ガラス容器に蒸留水50mLを導入し、この液にp-ニトロフェノールを0.10Mの濃度で、EDOTを0.0148Mの濃度で、ボロジサリチル酸アンモニウムを0.08Mの濃度で、この順番に添加して攪拌し、全てのEDOTが溶解した重合液を得た。得られた重合液に、1cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を10分間行った。重合後の作用極をメタノールで洗浄した後、160℃で30分間乾燥し、FTO電極上に350nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極B
 ガラス容器に蒸留水50mLを導入し、この液に、EDOTを0.0148Mの濃度で、ビス(トリフルオロメタンスルホニル)イミド酸ナトリウムを0.08Mの濃度で、添加して攪拌し、全てのEDOTが溶解した重合液を得た。得られた重合液に、1cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を10分間行った。重合後の作用極をメタノールで洗浄した後、160℃で30分間乾燥し、FTO電極上に350nmの厚みのPEDOT層(ドーパント:ビス(トリフルオロメタンスルホニル)イミド酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極C
 0.08Mの濃度のビス(トリフルオロメタンスルホニル)イミド酸ナトリウムの代わりに、ビス(ノナフルオロブタンスルホニル)イミド酸アンモニウムを0.08Mの濃度で用いて、陽極Bの製造手順を繰り返し、FTO電極上に350nmの厚みのPEDOT層(ドーパント:ビス(ノナフルオロブタンスルホニル)イミド酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極D
 0.08Mの濃度のビス(トリフルオロメタンスルホニル)イミド酸ナトリウムの代わりに、1,1,2,2,3,3-ヘキサフルオロ-1,3-ジスルホニルイミド酸アンモニウムを0.08Mの濃度で用いて、陽極Bの製造手順を繰り返し、FTO電極上に350nmの厚みのPEDOT層(ドーパント:1,1,2,2,3,3-ヘキサフルオロ-1,3-ジスルホニルイミド酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 陽極E
 1cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)上に、市販のPEDOT:PSS水性分散液(商品名バイトロンP:スタルク社製)の100μLをキャストし、5000rpmの回転数で30秒間スピンコートを行った。次いで、160℃で30分間乾燥し、非特許文献1と同様の、PEDOT:PSS層を有する陽極を得た。
 陽極F
 1cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)上に、EDOT(0.48M)、トリス-P-トルエンスルホン酸鉄(III)、ジメチルスルホキシドを1:8:1の質量比でn-ブタノールに溶解させた反応液の100μLをキャストし、2000rpmの回転数で30秒間スピンコートを行った。この反応液を保持したFTO電極を110℃にて5分間加熱して化学重合を進行させた後、メタノールで洗浄し、160℃で30分間乾燥することにより、特許文献1と同様の、p-トルエンスルホン酸アニオンをドーパントとして含むPEDOTの化学重合層を有する陽極を得た。
 (b)I/I 電解液における電気化学的応答の評価
 陽極A~Fについて、I/I 電解液における電気化学的応答をサイクリックボルタモグラムにより評価した。
 10mMのヨウ化リチウム、1mMのヨウ素、1Mのテトラフルオロホウ酸リチウムをアセトニトリルに溶解させた電解液に、作用極としての陽極A~Fのいずれかの陽極、対極としての4cmの面積を有する白金メッシュ、及び参照電極としての銀-塩化銀電極を導入し、走査電位範囲を-0.8~+0.8Vとし、走査速度を10mV/sとして評価した。
 次いで、陽極A~Fを電解液から取り出し、洗浄後、空気中、160℃の高温雰囲気下に500時間放置する熱エージングを行い、再度サイクリックボルタモグラムを得た。
 図1~6に、熱エージング前後のサイクリックボルタモグラムを示す。図1~6は、順番に、陽極A(ドーパント:ボロジサリチル酸アニオン)、陽極B(ドーパント:ビス(トリフルオロメタンスルホニル)イミド酸アニオン)、陽極C(ドーパント:ビス(ノナフルオロブタンスルホニル)イミド酸アニオン)、陽極D(ドーパント:1,1,2,2,3,3-ヘキサフルオロ-1,3-ジスルホニルイミド酸アニオン)、陽極E(ドーパント:PSSアニオン)、及び陽極F(ドーパント:p-トルエンスルホン酸アニオン)のサイクリックボルタモグラムを示している。
 熱エージング前には、陽極A~D,Fのサイクリックボルタモグラムに2対の酸化還元波が認められた。負電位側の酸化還元波がI /Iに対応する酸化還元波であり、正電位側の酸化還元波がI/I に対応する酸化還元波である。色素増感太陽電池においては、銀-塩化銀電極に対して-0.2V付近に認められるI からIへの還元波が特に重要である。Iの十分な再生が必要だからである。これに対し、陽極Eのサイクリックボルタモグラムには、非特許文献1の報告と同様に、I からIへの還元波が認められなかった。
 熱エージング後には、p-トルエンスルホン酸アニオンをドーパントとして含むPEDOT層を有する陽極Fのサイクリックボルタモグラムの形状が大きく変化し、電流応答が顕著に減少した上に、酸化波のピーク電位は高電位側にシフトし、還元波のピーク電位は低電位側にシフトした。これは、酸化還元触媒能の著しい劣化を示している。これに対し、陽極A~Dのサイクリックボルタモグラムには、熱エージング後でも2対の酸化還元波が明瞭に認められた。特に、陽極A及び陽極Cは、160℃500時間という極めて厳しい条件での熱エージング前後で、ほぼ同一のサイクリックボルタモグラムを示し、優れた耐熱性を有していた。
 したがって、本発明の色素増感太陽電池に用いられる陽極における導電性ポリマー層は、酸化種(I )を還元種(I)に変換する還元触媒能に優れ、その上、スルホン酸基又はスルホン酸塩基を有するアニオンをドーパントとして含む導電性ポリマー層よりも耐熱性に優れていることがわかる。
 (2)色素増感太陽電池の評価
 (i)PEDOT層の厚みの影響
 (a)色素増感太陽電池の製造
 実施例1
 ガラス容器に蒸留水50mLを導入し、この液にp-ニトロフェノール0.70g(0.10M)、EDOT0.105g(濃度0.0148M)、及びボロジサリチル酸アンモニウム1.4g(濃度0.08M)をこの順番で添加して攪拌し、全てのEDOTが溶解した重合液を得た。得られた重合液に、厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間行った。重合後の作用極をメタノールで洗浄した後、150℃で30分間乾燥し、Ti電極上に105nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 0.25cmの表面積を有するFTO電極の表面に酸化チタンペースト(日揮触媒化成株式会社製)をスクリーン印刷法により膜厚が約10μmになるように塗布し、60℃で30分間予備乾燥し、さらに450℃で15分間焼成することにより、FTO電極上に酸化チタン多孔質層を形成した。焼成後の酸化チタンの厚みは8μmであった。さらに、色素N719を0.5mMの濃度で含むブタノール/アセトニトリル1:1溶液に酸化チタン多孔質層を24時間浸漬した後、室温にて乾燥することにより、酸化チタン多孔質層に色素N719を添着させ、色素増感太陽電池の陰極を得た。
 次いで、得られた陰極と陽極とを酸化チタン多孔質層と導電性ポリマー層とが50μmのスペーサーを介して対向するように張り合わせ、間隙に電解液を含浸させることにより電解質層を形成して、色素増感太陽電池を得た。電解液としては、0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-1,3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた液を用いた。
 実施例2
 実施例1で用いた重合液に、厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を10分間行った。重合後の作用極をメタノールで洗浄した後、150℃で30分間乾燥し、Ti電極上に350nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例3
 実施例1で得られた重合液に、厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、500μA/cmの条件で定電流電解重合を6分間行った。重合後の作用極をメタノールで洗浄した後、150℃で30分間乾燥し、Ti電極上に1050nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例4
 実施例1で得られた重合液に、厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、500μA/cmの条件で定電流電解重合を9分間行った。重合後の作用極をメタノールで洗浄した後、150℃で30分間乾燥し、Ti電極上に1575nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例5
 実施例1で得られた重合液に、厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、500μA/cmの条件で定電流電解重合を12分間行った。重合後の作用極をメタノールで洗浄した後、150℃で30分間乾燥し、Ti電極上に2100nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例6
 実施例1で得られた重合液に、厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、500μA/cmの条件で定電流電解重合を24分間行った。重合後の作用極をメタノールで洗浄した後、150℃で30分間乾燥し、Ti電極上に4200nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例7
 0.25cmの表面積を有するFTO電極の表面に酸化チタンペースト(日揮触媒化成株式会社製)をスクリーン印刷法によりに異なる厚みで塗布し、60℃で30分間予備乾燥し、さらに450℃で15分間焼成することにより、3~25μmの厚みの酸化チタン多孔質層をFTO電極上に形成した。さらに、色素N719を0.5mMの濃度で含むブタノール/アセトニトリル1:1溶液に酸化チタン多孔質層を24時間浸漬した後、室温にて乾燥することにより、酸化チタン多孔質層に色素N719を添着させ、色素増感太陽電池の陰極を得た。
 次いで、実施例3で得られた1050nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)を有する陽極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例8
 実施例1で用いた重合液に、1cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を10分間行った。重合後の作用極をメタノールで洗浄した後、160℃で30分間乾燥し、FTO電極上に350nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例9
 実施例1で用いた重合液に、厚さ200μmのポリエチレンナフタレート/ITOスパッタ膜で構成された2.25cmの面積を有する電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を10分間行った。重合後の作用極をメタノールで洗浄した後、160℃で30分間乾燥し、ポリエチレンナフタレート/ITO電極上に350nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 実施例10
 実施例1で用いた重合液に、2.25cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を10分間行った。重合後の作用極をメタノールで洗浄した後、160℃で30分間乾燥し、FTO電極上に350nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 比較例1
 厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極上に、スパッタ法によりPtを約100nmの厚みになるように蒸着し、Ti電極上にPt層が形成された陽極を得た。
 次いで、実施例7で得られた色素を添着させた3~25μmの厚みの酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 比較例2
 厚さ100μmのTi箔で構成された2.25cmの面積を有するTi電極に、市販のPEDOT:PSS水性分散液(商品名バイトロンP:スタルク社製)の225μLをキャストし、5000rpmの回転数で30秒間スピンコートを行った。次いで、150℃で30分間乾燥し、Ti電極上にPEDOT:PSS層が形成された陽極を得た。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 比較例3
 1cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)上に、市販のPEDOT:PSS水性分散液(商品名バイトロンP:スタルク社製)の100μLをキャストし、3000rpmの回転数で30秒間スピンコートを行った。次いで、160℃で30分間乾燥し、非特許文献1と同様の、PEDOT:PSS層を有する陽極を得た。
 次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 比較例4
 厚さ200μmのポリエチレンナフタレート/ITOスパッタ膜で構成された2.25cmの面積を有する電極上にPt塗布層が形成されている市販品(商品名白金膜付き導電性フィルム:ベクセルテクノロジーズ社製)を陽極として用いた。この陽極と実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 比較例5
 2.25cmの面積を有するFTO電極(FTO層表面抵抗:10Ω/□)上に、スパッタ法によりPtを約350nmの厚みになるように蒸着し、FTO電極上にPt層が形成された陽極を得た。次いで、実施例1で得られた色素を添着させた酸化チタン多孔質層を有する陰極と組み合わせ、実施例1と同じ手順で色素増感太陽電池を得た。
 (b)色素増感太陽電池の評価
 実施例1~7及び比較例1,2の色素増感太陽電池について、ソーラシュミレータによる100mW/cm、AM1.5Gの照射条件下での電流-電圧特性を評価した。測定は、20℃で、電圧を10mV/sの速度で変化させながら行った。
 図7は、実施例1~6の色素増感太陽電池について、得られた短絡電流密度の値と陽極のPEDOT層の厚みとの関係を示した図である。PEDOT層の厚みが厚くなるにつれて短絡電流密度の値が緩やかに減少し、厚みが2100nm以上ではほぼ一定の短絡電流密度の値を示すことがわかる。図8は、実施例1~6の色素増感太陽電池について、得られた開放電圧の値と陽極のPEDOT層の厚みとの関係を示した図である。PEDOT層の厚みが1050nmまでの間は、厚みが厚くなるにつれて開放電圧の値が緩やかに増加し、厚みが1050nm以上では、ほぼ一定の開放電圧が得られることがわかる。
 図9は、実施例1~6の色素増感太陽電池について、得られた曲線因子の値と陽極のPEDOT層の厚みとの関係を示した図である。PEDOT層の厚みが2100nmまでの間は、厚みが厚くなるにつれて曲線因子の値が緩やかに増加し、厚みが2100nm以上ではほぼ一定の曲線因子の値を示すことがわかる。図10は、図7~9に示した短絡電流密度、開放電圧、及び曲線因子の値を用いて算出した光電変換効率の値を示す。PEDOT層の厚みが1575nmまでの間は、厚みが厚くなるにつれて光電変換効率の値が緩やかに減少し、厚みが1575nm以上では、ほぼ一定の光電変換効率が得られることがわかる。
 図11は、実施例7と比較例1の色素増感太陽電池について、得られた曲線因子の値と、陰極の酸化チタン多孔質層の厚みと、の関係を示した図である。実施例7及び比較例1の色素増感太陽電池は、酸化チタン多孔質層の厚みが3~20μmの範囲では、酸化チタン多孔質層の厚みに依存せず、ほぼ一定の曲線因子の値を示すことがわかる。また、実施例7の色素増感太陽電池が、酸化チタン多孔質層の厚みが3~20μmの全範囲に亘って、比較例1の色素増感太陽電池よりも高い曲線因子の値を示すことがわかる。
 比較例2のPEDOT:PSS層を有する陽極を備えた色素増感太陽電池の曲線因子の値は0.22であり、実施例1~6及び比較例1の電池における曲線因子の値と比較して、著しく小さかった。
 図7~10における直線は、比較例1の色素増感太陽電池のうち、8μmの酸化チタン多孔質層を有する電池における、短絡電流密度、開放電圧、曲線因子、及び光電変換効率の値をそれぞれ示している。実施例1~6の本発明の色素増感太陽電池が、比較例1のPt層を有する陽極を備えた色素増感太陽電池と比較して、特に増加した曲線因子を有し、この曲線因子が電池における高い光電変換効率へと導いていることがわかる。
 この原因を調査するため、実施例の色素増感太陽電池について電気化学インピーダンスを測定して、I/I 酸化還元反応における電荷輸送インピーダンスを求めた。I/I 酸化還元反応における電荷輸送インピーダンスは、色素増感太陽電池の曲線因子の支配要因の大部分を占める。結果を図12に示す。この図から明らかなように、PEDOT層の厚みが増加するにつれて、電荷輸送インピーダンスが低下していた。このことから、PEDOT層の厚みが厚くても、I3-が層の深部(Ti電極近傍)にまで到達してIに還元されていると考えられた。
 このことを確認するために、I/I 電解液における電気化学的応答を走査速度が遅いサイクリックボルタモグラムにより評価した。10mMのヨウ化リチウム、1mMのヨウ素、1Mのテトラフルオロホウ酸リチウムをアセトニトリルに溶解させた電解液に、実施例1~6のいずれかの色素増感太陽電池において用いられた陽極と、対極としての4cmの面積を有する白金メッシュと、参照電極としての銀-塩化銀電極とを導入し、走査電位範囲を-0.8~+0.8Vとし、走査速度を1mV/sとして評価した。次いで、得られたサイクリックボルタモグラムにおける電流密度が0mA・cm-2以下で且つ電位が-0.05~-0.20Vの範囲の面積を、還元電荷として算出した。還元電荷の値は、I からIへの還元反応の活性点の数に比例し、したがってまた反応に関与するPEDOT層の比表面積に比例する。
 結果を図13に示す。PEDOT層の厚みが増加するにつれて、還元電荷の値が増加し、厚みが2100nm以上では、還元電荷の増加率がより上昇した。この結果から、PEDOT層の厚みが厚いほど、I からIへの還元反応の活性点の数が増加することがわかった。すなわち、PEDOT層の厚みが4200nmと厚くても、I3-が層の深部にまで到達してIに還元されていることがわかった。そして、このことが、PEDOT層の厚みが増加するにつれて色素増感太陽電池の曲線因子の値が増加する要因であると判断された。
 さらに、本発明の色素増感太陽電池の陽極における導電性ポリマー層と、従来の色素増感太陽電池の陽極におけるPt層との電極反応速度を以下の方法により対比した。10mMのヨウ化リチウム、1mMのヨウ素、1Mのテトラフルオロホウ酸リチウムをアセトニトリルに溶解させた電解液に、実施例10の色素増感太陽電池に用いられた陽極或いは比較例5の色素増感太陽電池に用いられた陽極と、対極としての4cmの面積を有する白金メッシュと、参照電極としての銀-塩化銀電極とを導入し、走査電位範囲を-0.55~+0.25Vとし、走査速度を変化させてサイクリックボルタモグラムを測定した。-0.55~+0.25Vの範囲ではI/I 酸化還元反応が生じる。次いで、酸化波のピーク電位と還元波のピーク電位との電位差と走査速度とから、ニコルソン理論に基づき電極反応の速度定数を求めた。その結果、実施例10の色素増感太陽電池に用いられた陽極は2.83×10-3cms-1、比較例5の色素増感太陽電池に用いられた陽極は2.61×10-3cms-1の速度定数を示した。すなわち、本発明の色素増感太陽電池の陽極における導電性ポリマー層は、従来の色素増感太陽電池の陽極におけるPt層よりも、ヨウ素との反応性が高いことがわかった。このことも、本発明の色素増感太陽電池が従来のPt層を有する陽極を備えた色素増感太陽電池に比較して高い光電変換効率を示すことの要因であると考えられる。
 実施例1~6及び比較例1の色素増感太陽電池を、光非照射下、85℃にて1000時間放置し、放置後の光電変換効率を再び評価した。その結果、いずれの電池も初期の約97%の光電変換効率を示した。このことから、本発明の色素増感太陽電池に用いられた陽極における導電性ポリマー層が、放置の間も空気中の水分の影響を受けずに安定であったことがわかる。
 実施例8と比較例3の色素増感太陽電池を、ソーラシュミレータによる100mW/cm、AM1.5Gの照射条件下、60℃にて500時間放置し、放置前後の光電変換効率を評価した。実施例8の色素増感太陽電池は、初期(放置前)には6.7%、放置後には6.6%の光電変換効率を示し、放置の影響はわずかであったが、比較例3の色素増感太陽電池は、初期には3%の光電変換効率を示したものの、放置後の光電変換効率は0.3%まで大幅に低下した。このことから、本発明の色素増感太陽電池に用いられた陽極における導電性ポリマー層が、光照射下においても空気中の水分の影響を受けずに安定であり、従来のPEDOT:PSS層に比較して大幅に増加した耐久性を有していることがわかる。
 実施例9と比較例4の色素増感太陽電池を、光非照射下、85℃、相対湿度85%の条件下で320時間放置し、放置前後の光電変換効率を評価した。実施例9の色素増感太陽電池は放置後に初期値の86%の光電変換効率を示したが、比較例4の色素増感太陽電池は放置後に初期値の68%の光電変換効率しか示さなかった。このことから、本発明の色素増感太陽電池に用いられた陽極における導電性ポリマー層が、従来のPt層に比較して、優れた高温高湿耐久性を有していることがわかる。
 (ii)酸化チタン多孔質層の製造工程の影響
 (a)色素増感太陽電池の製造
 実施例11
 ガラス容器に蒸留水50mLを導入し、この液にp-ニトロフェノール0.70g(0.10M)、EDOT0.105g(濃度0.0148M)、及びボロジサリチル酸アンモニウム1.4g(濃度0.08M)をこの順番で添加して攪拌し、全てのEDOTが溶解した重合液を得た。得られた重合液に、2.25cmの面積を有するFTO電極を作用極として、5cmの面積を有するSUSメッシュを対極として、それぞれ導入し、100μA/cmの条件で定電流電解重合を3分間又は10分間行った。重合後の作用極を水・メタノールで洗浄した後、150℃で30分間乾燥し、FTO電極上に105nm及び350nmの厚みのPEDOT層(ドーパント:ボロジサリチル酸アニオン)が形成された陽極を得た。PEDOT層の密度は、約1.6g/cmであった。
 0.25cmの表面積を有するFTO電極の表面に、酸化チタンペースト(日揮触媒化成株式会社製)をスクリーン印刷法により塗布した後、120℃で20分間予備乾燥した。得られた酸化チタン層の上に、上記酸化チタンペーストのスクリーン印刷法による塗布及び120℃での20分間の予備乾燥をさらに2回繰り返すことにより、合計で14±1μmの厚みの酸化チタン層を形成した。次いで、450℃で15分間焼成し、FTO電極上に酸化チタン多孔質層を形成した。さらに、色素N719を0.5mMの濃度で含むt-ブタノール/アセトニトリル1:1溶液に酸化チタン多孔質層を24時間浸漬した後、室温にて乾燥することにより、酸化チタン多孔質層に色素N719を添着させ、色素増感太陽電池の陰極を得た。
 次いで、得られた陰極と陽極とを酸化チタン多孔質層と導電性ポリマー層とが50μmのスペーサーを介して対向するように張り合わせ、間隙に電解液を含浸させることにより電解質層を形成して、色素増感太陽電池を得た。電解液としては、0.1Mのヨウ化リチウム、0.05Mのヨウ素、0.6Mの1,2-ジメチル-1,3-プロピルイミダゾリウムヨウ化物、及び0.5Mの4-t-ブチルピリジンをアセトニトリルに溶解させた液を用いた。
 (b)色素増感太陽電池の評価
 実施例11の色素増感太陽電池について、ソーラシュミレータによる100mW/cm、AM1.5Gの照射条件下での電流-電圧特性を評価した。測定は、20℃で、電圧を10mV/sの速度で変化させながら行った。
 図14、図15、図16及び図17はそれぞれ、実施例11の色素増感太陽電池についての、PEDOT層の厚みと短絡電流密度、開放電圧、曲線因子或いは光電変換効率の関係を示した図である。
 実施例11の電池についての図14~17に示した結果を、実施例1~6の電池についての図7~10に示した結果と比較すると、両者は、PEDOT層の厚みが増加するにつれて、短絡電流密度及び光電変換効率の値が減少し、曲線因子の値が増加する点で一致した結果を示した。実施例11の電池は、PEDOT層の厚みが105nmであっても、大きな開放電圧の値を示した。
 実施例11の電池についての結果と実施例1~6の電池についての結果を比較すると、短絡電流密度の値と光電変換効率の値において顕著な相違が認められる。図14と図7との対比から明らかなように、実施例11の電池は実施例1~6の電池に比較して著しく増大した短絡電流密度の値を示し、図17と図10との対比から明らかなように、実施例11の電池は実施例1~6の電池よりも約2%も向上した光電変換効率を示した。実施例11の電池において、陰極形成の際に酸化チタンペーストの塗布及び予備乾燥の工程を複数回に分けて行ったことにより、酸化チタン多孔質層を均一に厚く形成することができたため、短絡電流密度が向上し、その結果光電変換効率の大幅な向上がもたらされたと考えられる。
 本発明により、耐熱性に優れる上に、高い変換効率を有する色素増感太陽電池が得られる。

Claims (7)

  1.  光増感剤としての色素を含む半導体層を有する陰極と、
     該陰極の半導体層上に積層された、対を成す酸化種と還元種とを含む電解質層と、
     該電解質層上に積層された、前記酸化種を前記還元種に変換する触媒として作用する導電性ポリマー層を有する陽極と、
     を備えた色素増感太陽電池であって、
     前記陽極における導電性ポリマー層が、
     3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、
     該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、
     を含み、且つ、100~10000nmの範囲の厚みを有している
     ことを特徴とする色素増感太陽電池。
  2.  前記導電性ポリマー層の密度が1.15~1.80g/cmの範囲である、請求項1に記載の色素増感太陽電池。
  3.  前記陰極における半導体層が酸化チタンにより形成されている、請求項1又は2に記載の色素増感太陽電池。
  4.  前記半導体層の厚みが3~20μmの範囲である、請求項1~3のいずれか1項に記載の色素増感太陽電池。
  5.  前記非スルホン酸系有機化合物が、式(I)又は式(II)
    Figure JPOXMLDOC01-appb-C000001
    (式中、mが1~8の整数を意味し、nが1~8の整数を意味し、oが2又は3を意味する)で表わされるスルホニルイミド酸及びこれらの塩から成る群から選択された少なくとも一種の化合物である、請求項1~4のいずれか1項に記載の色素増感太陽電池。
  6.  前記非スルホン酸系有機化合物が、ボロジサリチル酸及びボロジサリチル酸塩から成る群から選択された少なくとも一種の化合物である、請求項1~5のいずれか1項に記載の色素増感太陽電池。
  7.  前記モノマーが3,4-エチレンジオキシチオフェンである、請求項1~6のいずれか1項に記載の色素増感太陽電池。
PCT/JP2013/067435 2012-06-26 2013-06-26 色素増感太陽電池 WO2014003027A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13809151.7A EP2866297B1 (en) 2012-06-26 2013-06-26 Dye-sensitized solar cell
CN201380033541.8A CN104412346A (zh) 2012-06-26 2013-06-26 色素敏化太阳能电池
JP2014522650A JP6218046B2 (ja) 2012-06-26 2013-06-26 色素増感太陽電池
KR1020147035317A KR102032808B1 (ko) 2012-06-26 2013-06-26 색소 증감 태양 전지
US14/410,819 US20150332858A2 (en) 2012-06-26 2013-06-26 Dye-sensitized solar cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-143571 2012-06-26
JP2012143571 2012-06-26
JP2012221749 2012-10-03
JP2012-221749 2012-10-03
JP2013054454 2013-03-16
JP2013-054454 2013-03-16

Publications (1)

Publication Number Publication Date
WO2014003027A1 true WO2014003027A1 (ja) 2014-01-03

Family

ID=49783168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067435 WO2014003027A1 (ja) 2012-06-26 2013-06-26 色素増感太陽電池

Country Status (6)

Country Link
US (1) US20150332858A2 (ja)
EP (1) EP2866297B1 (ja)
JP (1) JP6218046B2 (ja)
KR (1) KR102032808B1 (ja)
CN (1) CN104412346A (ja)
WO (1) WO2014003027A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136571A (ja) * 2019-02-22 2020-08-31 日本ケミコン株式会社 ペロブスカイト型太陽電池およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508716B (zh) * 2020-04-03 2021-06-18 三峡大学 Ni3Bi2S2/N-C电催化材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054449A (ja) * 2004-07-16 2006-02-23 Showa Denko Kk コンデンサ素子の製造方法
JP2006066549A (ja) * 2004-08-25 2006-03-09 Eamex Co 導電性高分子を電極に含む蓄電素子
JP2007128757A (ja) * 2005-11-04 2007-05-24 Erekuseru Kk 色素増感太陽電池
JP2007242932A (ja) * 2006-03-09 2007-09-20 Nec Tokin Corp 固体電解コンデンサの製造方法および伝送線路素子の製造方法
JP2008016442A (ja) 2006-06-09 2008-01-24 Dai Ichi Kogyo Seiyaku Co Ltd 光電変換素子
JP2011204546A (ja) * 2010-03-26 2011-10-13 Koji Segawa 多孔質半導体および色素増感太陽電池
WO2012133858A1 (ja) 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池
WO2012133859A1 (ja) 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4459578B2 (ja) * 2003-09-08 2010-04-28 株式会社フジクラ 色素増感太陽電池
JP2005116301A (ja) * 2003-10-07 2005-04-28 Sony Corp 光電変換素子およびその製造方法ならびに電子装置およびその製造方法ならびに電極およびその製造方法
JP2006351289A (ja) * 2005-06-14 2006-12-28 Japan Carlit Co Ltd:The 多孔性材料の製造方法、及び得られた多孔性材料を用いた製品
JP4924791B2 (ja) 2005-10-28 2012-04-25 アキレス株式会社 導電性高分子微粒子の製造方法及びその導電性高分子微粒子
EP2543688A4 (en) * 2010-03-01 2018-04-25 Nippon Chemi-Con Corporation Polymerization fluid, process for production thereof, transparent film made from the polymerization fluid, and transparent electrode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054449A (ja) * 2004-07-16 2006-02-23 Showa Denko Kk コンデンサ素子の製造方法
JP2006066549A (ja) * 2004-08-25 2006-03-09 Eamex Co 導電性高分子を電極に含む蓄電素子
JP2007128757A (ja) * 2005-11-04 2007-05-24 Erekuseru Kk 色素増感太陽電池
JP2007242932A (ja) * 2006-03-09 2007-09-20 Nec Tokin Corp 固体電解コンデンサの製造方法および伝送線路素子の製造方法
JP2008016442A (ja) 2006-06-09 2008-01-24 Dai Ichi Kogyo Seiyaku Co Ltd 光電変換素子
JP2011204546A (ja) * 2010-03-26 2011-10-13 Koji Segawa 多孔質半導体および色素増感太陽電池
WO2012133858A1 (ja) 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池
WO2012133859A1 (ja) 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池
JP2012216673A (ja) * 2011-03-31 2012-11-08 Tokyo Institute Of Technology 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMISTRY, vol. 71, no. 11, 2003, pages 944 - 946
See also references of EP2866297A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136571A (ja) * 2019-02-22 2020-08-31 日本ケミコン株式会社 ペロブスカイト型太陽電池およびその製造方法

Also Published As

Publication number Publication date
CN104412346A (zh) 2015-03-11
JP6218046B2 (ja) 2017-10-25
KR102032808B1 (ko) 2019-10-16
KR20150022830A (ko) 2015-03-04
EP2866297A1 (en) 2015-04-29
US20150332858A2 (en) 2015-11-19
US20150187511A1 (en) 2015-07-02
EP2866297B1 (en) 2021-01-06
JPWO2014003027A1 (ja) 2016-06-02
EP2866297A4 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6070542B2 (ja) 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池
JP4187782B2 (ja) 光電変換素子用電解質
US8377504B2 (en) Method for producing electroconductive polymer electrode, and dye-sensitized solar cell equipped with the same
Zhang et al. Influence of doping anions on structure and properties of electro-polymerized polypyrrole counter electrodes for use in dye-sensitized solar cells
Seo et al. Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells
US20160049260A1 (en) Dye-sensitized solar-cell element
Bidikoudi et al. Solidification of ionic liquid redox electrolytes using agarose biopolymer for highly performing dye-sensitized solar cells
JP5924514B2 (ja) 太陽電池用電極体の製造方法
JP6287845B2 (ja) 有機薄膜太陽電池
JP6218046B2 (ja) 色素増感太陽電池
Kurokawa et al. Controlling the electrocatalytic activities of conducting polymer thin films toward suitability as cost-effective counter electrodes of dye-sensitized solar cells
Bandara et al. N719 and N3 dyes for quasi-solid state dye sensitized solar cells-A comparative study using polyacrylonitrile and CsI based electrolytes
JP6024359B2 (ja) 色素増感太陽電池
JP2015141955A (ja) 光電変換素子
JP6519475B2 (ja) 色素増感太陽電池
JP2011165423A (ja) 光電変換素子
JP2016111049A (ja) 光電変換素子
KR20100130529A (ko) 올리고머를 포함하는 고체 고분자 전해질을 적용한 염료감응 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035317

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14410819

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE