WO2014003023A1 - パターン形成用組成物及びパターン形成方法 - Google Patents
パターン形成用組成物及びパターン形成方法 Download PDFInfo
- Publication number
- WO2014003023A1 WO2014003023A1 PCT/JP2013/067420 JP2013067420W WO2014003023A1 WO 2014003023 A1 WO2014003023 A1 WO 2014003023A1 JP 2013067420 W JP2013067420 W JP 2013067420W WO 2014003023 A1 WO2014003023 A1 WO 2014003023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- group
- block
- self
- film
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D153/00—Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
Definitions
- the present invention relates to a pattern forming composition and a pattern forming method.
- the present invention has been made based on the circumstances as described above, and the object thereof is to use a pattern forming composition capable of forming a sufficiently fine pattern and the pattern forming composition. It is to provide a pattern forming method.
- R 1 and R 3 are each independently a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
- R 2 is a monovalent organic group.
- R 4 is a (1 + b) -valent hydrocarbon group having 1 to 5 carbon atoms,
- R 5 is a monovalent group having a hetero atom, and
- m and n are each independently 10 to 5 A is an integer of 0 to 5.
- b is an integer of 1 to 3. When a and b are each 2 or more, a plurality of R 2 and R 5 may be the same. May be different.
- the pattern forming composition preferably further contains a solvent (hereinafter also referred to as “[B] solvent”).
- a solvent hereinafter also referred to as “[B] solvent”.
- -OSiR 6 3 as R 5 in the formula (II) -SiR 6 3, -OH, -NH 2, -OSiH 3, -COOH, preferably -COOR 6 or -COR 6, as R 6 is A monovalent hydrocarbon group having 1 to 5 carbon atoms or a monovalent silicon-containing group having 1 to 5 silicon atoms is preferable. However, when there are a plurality of R 6 s , they may be the same or different.
- the [A] block copolymer preferably has a group containing a hetero atom (hereinafter also referred to as “group ( ⁇ )”) at least at one end of the main chain.
- a pattern forming method comprising the steps of forming a self-assembled film having a phase separation structure on the upper surface side of a substrate using the pattern forming composition, and removing a part of the phases of the self-assembled film.
- the pattern forming method is: Before the self-assembled film forming step, A step of forming a lower layer film on the substrate, and a step of forming a pre-pattern on the lower layer film, In the self-assembled film forming step, a self-assembled film is formed in a region on the lower film separated by the pre-pattern, After the above self-assembled film forming step, It is preferable to further include a step of removing the prepattern.
- a line and space pattern or a hole pattern is preferable.
- a finer desired pattern can be formed.
- the present invention can provide a pattern forming composition capable of forming a sufficiently fine pattern and a pattern forming method using the same.
- the pattern forming composition and pattern forming method of the present invention are suitably used in lithography processes in the production of various electronic devices such as semiconductor devices and liquid crystal devices that are required to be further miniaturized.
- the pattern formation method of this invention it is a schematic diagram which shows an example of the state after forming a lower layer film
- the pattern formation method of this invention it is a schematic diagram which shows an example of the state after forming a pre pattern on a lower layer film.
- Self-organized refers to a phenomenon of spontaneously constructing an organization or structure, not only due to control from an external factor.
- a film having a phase separation structure by self-organization is formed by applying a pattern forming composition on a substrate, and a part of the phases in the self-assembled film is formed. By removing, a pattern can be formed.
- the pattern forming composition of the present invention contains a block copolymer including [A] block (I) and block (II). Since the composition for pattern formation has two types of blocks having a large ⁇ parameter, phase separation is easy, and a pattern having a sufficiently fine microdomain structure can be formed.
- the pattern forming composition may contain optional components such as a [B] solvent and a surfactant, as long as the effects of the present invention are not impaired.
- each component will be described in detail.
- a block copolymer is a block copolymer containing block (I) and block (II).
- the block (I) is a block composed of a structural unit derived from a styrene compound
- the block (II) is a block composed of a structural unit derived from a (meth) acrylate ester containing a group having a hetero atom. is there.
- the block copolymer has a structure in which a plurality of blocks including at least the block (I) and the block (II) are combined. Each of the blocks basically has a chain structure of structural units derived from one kind of monomer.
- the [A] block copolymer having such a plurality of blocks is dissolved in an appropriate solvent, the same type of blocks aggregate to form a phase composed of the same type of blocks.
- phases formed from different types of blocks do not mix with each other, it is presumed that a phase separation structure having an ordered pattern in which different types of phases are alternately repeated can be formed.
- the block copolymer may be a block copolymer consisting of only the block (I) and the block (II), or in addition to the block (I) and the block (II), A block may be further included.
- Examples of the [A] block copolymer comprising only the block (I) and the block (II) include, for example, a diblock copolymer, a triblock copolymer, and a tetrablock copolymer comprising the block (I) and the block (II).
- a polymer etc. are mentioned. Among these, from the viewpoint that a pattern having a desired fine microdomain structure can be easily formed, a diblock copolymer and a triblock copolymer are preferable, and a diblock copolymer is more preferable.
- Block (I) is represented by the above formula (I).
- R ⁇ 1 > is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group, and a hydrogen atom and a methyl group are preferable.
- R 2 is a monovalent organic group, and examples thereof include a carboxyl group, a cyano group, and a hydrocarbon group having 1 to 20 carbon atoms.
- hydrocarbon group having 1 to 20 carbon atoms examples include alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, and t-butyl group; ethenyl group, 2- Alkenyl groups such as propenyl group, 3-butenyl group, 4-pentenyl group, 5-hexenyl group, 7-octenyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group; phenyl group, naphthyl group Aryl groups such as benzyl groups, aralkyl groups such as phenethyl groups, and the like. Among these, an alkyl group and an alkenyl group are preferable.
- M is an integer of 10 to 5,000.
- a is an integer of 0 to 5, preferably 0 or 1.
- the block (I) include, for example, a polystyrene block, a poly ( ⁇ -methylstyrene) block, and a poly (4- (7′-octenyl) styrene) block.
- a block (I) can be formed by polymerizing a corresponding styrenic monomer.
- Block (II) is represented by the above formula (II).
- R 3 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group, a hydrogen atom or a methyl group.
- R 4 is a (1 + b) -valent hydrocarbon group having 1 to 5 carbon atoms.
- b is 1, an alkanediyl group such as a methanediyl group, an ethanediyl group, or an n-propanediyl group; a cyclobutanediyl group; And cycloalkanediyl groups such as cyclopentanediyl group.
- R 4 is preferably an alkanediyl group, more preferably a methanediyl group or ethanediyl group, and even more preferably an ethanediyl group.
- R 5 is a monovalent group having a hetero atom, and is preferably —OSiR 6 3 , —SiR 6 3 , —OH, —NH 2 , —OSiH 3 , —COOH, —COOR 6 or —COR 6 Yes, —OSiR 6 3 , —SiR 6 3 , —OSiH 3 , —COOR 6 or —COR 6 are more preferred, and —OSiR 6 3 is particularly preferred.
- R 6 is preferably a monovalent hydrocarbon group having 1 to 5 carbon atoms or a monovalent silicon-containing group having 1 to 5 silicon atoms. However, when there are a plurality of R 6 s , they may be the same or different, and a combination of a hydrocarbon group and a silicon atom-containing group may be used.
- the monovalent hydrocarbon group having 1 to 5 carbon atoms include those having 1 to 5 carbon atoms among the groups exemplified as the hydrocarbon group for R 2 , and among these, an alkyl group is Preferably, a methyl group is more preferable.
- Examples of the monovalent silicon-containing group having 1 to 5 silicon atoms include a trialkylsiloxy group and a trialkylsilyl group.
- a trialkylsiloxy group is preferable, and a trimethylsiloxy group is more preferable.
- a pattern having a finer microdomain structure can be formed by using the above group as R 5 and R 6 .
- N is an integer of 10 to 5,000.
- b is an integer of 1 to 3, preferably 1.
- the plurality of R 5 may be the same or different.
- Preferred examples of the block (II) include poly (hydroxyethyl methacrylate) block, poly (hydroxyethyl acrylate) block, poly (hydroxypropyl acrylate) block, poly (trimethylsiloxyethyl methacrylate) block, poly (trimethylsiloxyethyl acrylate). ) Block.
- This block (II) can be formed by polymerizing the corresponding (meth) acrylic acid ester.
- Examples of the other block include, for example, a block made of poly ((meth) acrylate) other than the block (II), a block made of polyvinyl acetal, a block made of polyurethane, a block made of polyurea, a block made of polyimide, and a polyamide. And a block composed of a structural unit derived from an epoxy compound, a block composed of a novolac-type phenol, a block composed of polyester, and the like. [A] As a content rate of the structural unit which comprises the other block in a block copolymer, 10 mol% or less is preferable with respect to all the structural units in a copolymer.
- the molar ratio of the structural unit constituting the block (I) to the structural unit constituting the block (II) in the block copolymer is preferably from 10/90 to 90/10, and from 20/80 to 80 / 20 or less is more preferable, and 30/70 or more and 70/30 or less is more preferable.
- the pattern forming composition can form a pattern having a finer microdomain structure. .
- the block copolymer is prepared by forming the block (I) and the block (II), and, if necessary, other blocks in a desired order, and then, if necessary, the polymerization terminal with an appropriate end treatment agent. It can synthesize
- the block copolymer has a hetero atom-containing group ( ⁇ ) at least at one end of the main chain, whereby phase separation is more likely to occur.
- an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a tin atom, and a silicon atom are preferable, and an oxygen atom, a nitrogen atom, and a sulfur atom are more.
- an oxygen atom is more preferable.
- the group ( ⁇ ) is preferably a group represented by the following formula (1).
- R 7 is a divalent organic group having 1 to 30 carbon atoms. * In the [A] block copolymer, the site
- Examples of the divalent organic group having 1 to 30 carbon atoms represented by R 7 include a divalent chain hydrocarbon group having 1 to 30 carbon atoms and a divalent alicyclic carbon group having 3 to 30 carbon atoms.
- Examples of the divalent chain hydrocarbon group having 1 to 30 carbon atoms include methanediyl group, ethanediyl group, n-propanediyl group, i-propanediyl group, n-butanediyl group, i-butanediyl group, and n-pentanediyl. Group, i-pentanediyl group, n-hexanediyl group, i-hexanediyl group and the like.
- a methanediyl group, an ethanediyl group, an i-propanediyl group, and an i-butanediyl group are preferred, and an i-butanediyl group is more preferred from the viewpoint that the composition for pattern formation is more likely to cause phase separation.
- Examples of the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include cyclopropanediyl group, cyclobutanediyl group, cyclopentanediyl group, cyclohexanediyl group, cyclooctanediyl group, norbornanediyl group, and adamantanediyl group. Groups and the like.
- Examples of the divalent aromatic hydrocarbon group having 6 to 30 carbon atoms include a phenylene group, a naphthylene group, and an anthrylene group.
- hetero atom of the group (x) examples include atoms similar to those exemplified as the hetero atom of the group ( ⁇ ).
- examples of the divalent group containing a group having a hetero atom between carbon and carbon of the hydrocarbon group include —O—, —COO—, —OCO—, —NO—, between the carbon and carbon of the hydrocarbon group.
- a group containing a group having at least one heteroatom such as —NH—.
- Examples of the group (x) include 3-butoxypropane-1,2-diyl group, 2-butoxybutane-2,4-diyl group, 3-octyloxypropane-1,2-diyl group, and 3-hexyl. Examples include oxy-1,2-diyl group. Examples of the group (y) include 1-cyanoethane-1,2-diyl group, di (4-diethylaminophenyl) methane-1,1-diyl group, 3-dimethylaminopropyl-2,2-diyl group, Examples include 3-dimethylaminopropyl-1,2-diyl group, dimethylaminomethane-1,1-diyl group, carbonyl group and the like.
- Examples of the group ( ⁇ ) include groups represented by the following formulas.
- R is a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent hydrocarbon group.
- the block having the group ( ⁇ ) of the block copolymer may be the block (I), the block (II), or another block. Or it is preferable that it is block (II), and it is more preferable that it is block (II). Since the group ( ⁇ ) is bonded to the ends of the main chain of these blocks, the pattern forming composition can form a pattern having a finer microdomain structure.
- the block copolymer can be synthesized by living anionic polymerization, living radical polymerization or the like. Among these, when obtaining a polymer having an arbitrary terminal structure, living anionic polymerization capable of forming a block copolymer relatively easily is preferable.
- the block copolymer is formed by, for example, linking the block (I), the block (II) and, if necessary, other blocks other than these in the desired order, and, if necessary, the polymerization terminal.
- the compound can be synthesized by treating with any terminal treating agent and introducing the group ( ⁇ ) such as the group represented by the formula (1).
- the polymerization environment is usually in a neutral region, living radical polymerization that can be stably synthesized can also be suitably used.
- an [A] block copolymer which is a diblock copolymer consisting of block (I) and block (II)
- an anionic polymerization initiator is used first and an appropriate solvent is used.
- the block (I) is formed by polymerizing the monomers forming the block (I).
- an intermediate such as diphenylethylene is introduced and linked to block (I), and the monomer forming block (II) is polymerized in the same manner in the presence of lithium ions or the like to form block (II).
- R 5 in the above formula (II) may be protected in advance and the protecting group may be dissociated after polymerization.
- Examples of the solvent used for the anionic polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, 2-butanone, 4-methyl-2
- the reaction temperature in the anionic polymerization may be appropriately determined according to the kind of the initiator, but is usually ⁇ 150 ° C. to 50 ° C., preferably ⁇ 80 ° C. to 40 ° C.
- the reaction time is usually 5 minutes to 24 hours, preferably 20 minutes to 12 hours.
- Examples of the initiator used for the anionic polymerization include alkyl lithium, alkyl magnesium halide, sodium naphthalene, alkylated lanthanoid compounds, and the like. Of these, alkyl lithium is preferred.
- Examples of the terminal treatment method include the method shown in the following scheme. That is, by adding a terminal treating agent such as 1,2-butylene oxide to the polymerization terminal of the obtained block copolymer, the terminal is modified, and demetallization treatment with an acid is performed, whereby the above formula (1)
- R 1 to R 5 , a, b, m and n are as defined in the above formulas (I) and (II).
- Examples of the end treatment agent include epoxy compounds such as 1,2-butylene oxide, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, propylene oxide, ethylene oxide, and epoxyamine; Isocyanate compound, thioisocyanate compound, imidazolidinone, imidazole, aminoketone, pyrrolidone, diethylaminobenzophenone, nitrile compound, aziridine, formamide, epoxyamine, benzylamine, oxime compound, azine, hydrazone, imine, azocarboxylate, aminostyrene, vinyl Nitrogen-containing compounds such as pyridine, aminoacrylate, aminodiphenylethylene, and imide compounds; Silane compounds such as alkoxysilane, aminosilane, ketinominosilane, isocyanate silane, siloxane, glycidylsilane, mercaptosilane, vinyl silane,
- the block copolymer can also be synthesized by living radical polymerization such as RAFT polymerization.
- [A] block copolymer which is a diblock copolymer composed of block (I) and block (II)
- RAFT agent chain transfer agent
- block (II) used to form block (II) by polymerizing monomers that form block (II) in a suitable solvent.
- a suitable radical polymerization initiator and a solvent are added again, and the monomer forming the block (I) is polymerized to synthesize a diblock body. Thereafter, the residual monomer is removed again using a reprecipitation method or the like to obtain the [A] block copolymer.
- the terminal formed from the RAFT agent may be removed by heating in a suitable solvent together with the radical polymerization initiator, or may be used as it is without being removed.
- Examples of the solvent used in the RAFT polymerization include the same solvents as those exemplified as the solvent used in the anionic polymerization.
- the reaction temperature in the RAFT polymerization may be appropriately determined according to the type of the initiator, but is usually 30 ° C to 150 ° C, preferably 40 ° C to 120 ° C.
- the reaction time is usually 2 to 48 hours, preferably 3 to 36 hours.
- Examples of the initiator used in the RAFT polymerization include azo initiators such as azobisisobutyronitrile and methyl azobisisobutyrate, and organic peroxides such as benzoyl peroxide. Is preferably used.
- the block copolymer obtained by the various methods described above is preferably recovered by a reprecipitation method. That is, after completion of the reaction, the target copolymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent.
- a reprecipitation solvent alcohols or alkanes can be used alone or in admixture of two or more.
- the copolymer can be recovered by removing low-molecular components such as monomers and oligomers by a liquid separation operation, a column chromatography operation, an ultrafiltration operation, and the like.
- the weight average molecular weight (Mw) of the block copolymer by gel permeation chromatography (GPC) is preferably 2,000 to 150,000, more preferably 3,000 to 120,000, and 4,000. More preferable is 100,000.
- Mw of a block copolymer By making Mw of a block copolymer into the said range, the said composition for pattern formation can form the pattern which has a finer micro domain structure.
- the ratio (Mw / Mn) between the Mw and the number average molecular weight (Mn) of the block copolymer is usually 1 to 5, preferably 1 to 3, more preferably 1 to 2, and more preferably 1 to 1. .5 is more preferable, and 1 to 1.2 is particularly preferable.
- Mw / Mn in such a range, the pattern forming composition can form a pattern having a finer and better microdomain structure.
- Mw and Mn are GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL, manufactured by Tosoh Corporation), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass%, sample
- GPC gel permeation chromatography
- the pattern forming composition usually contains a [B] solvent.
- a [B] solvent the solvent similar to the solvent illustrated in the synthesis method of a [A] block copolymer can be mentioned, for example.
- PGMEA propylene glycol monomethyl ether acetate
- these [B] solvents may be used independently and may use 2 or more types together.
- the pattern forming composition may further contain a surfactant.
- the said pattern formation composition can improve the applicability
- the pattern forming composition can be prepared, for example, by mixing [A] block copolymer, surfactant and the like in a predetermined ratio in the [B] solvent.
- the pattern forming composition can be prepared and used in a state of being dissolved or dispersed in an appropriate solvent.
- the pattern forming method of the present invention comprises: A step of forming a self-assembled film having a phase separation structure on a substrate using the composition for pattern formation (hereinafter also referred to as “self-assembled film forming step”), and a part of the self-assembled film Step for removing phase (hereinafter also referred to as “removal step”) including.
- a step of forming a lower layer film on the substrate (hereinafter also referred to as “lower layer film forming step”) and a step of forming a pre-pattern on the lower layer film (hereinafter referred to as “A pre-pattern forming step), and in the self-assembled film forming step, the self-assembled film is formed in a region on the lower layer film delimited by the pre-pattern to form the self-assembled film
- it is preferable to have a step of removing the pre-pattern (hereinafter also referred to as “pre-pattern removal step”).
- etching step etching the substrate (and the lower layer film as necessary) using the formed pattern as a mask after the removing step.
- etching step etching the substrate (and the lower layer film as necessary) using the formed pattern as a mask after the removing step.
- This step is a step of forming a lower layer film on the substrate using the lower layer film forming composition.
- a substrate with a lower layer film in which the lower layer film 102 is formed on the substrate 101 can be obtained, and the self-assembled film is formed on the lower layer film 102.
- the phase-separated structure (microdomain structure) of the self-assembled film has an interaction with the lower layer film 102 in addition to the interaction between the blocks of the [A] block copolymer contained in the pattern forming composition. Therefore, the structure control is facilitated by providing the lower layer film 102, and a desired pattern can be obtained. Further, when the self-assembled film is a thin film, the transfer process can be improved by having the lower layer film 102.
- the substrate 101 a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
- composition for forming an underlayer film a conventionally known organic underlayer film forming material can be used.
- the formation method of the lower layer film 102 is not particularly limited.
- a coating film formed by applying a known method such as a spin coating method on the substrate 101 is cured by exposure and / or heating. And the like.
- radiation used for this exposure include visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, ⁇ -rays, molecular beams, and ion beams.
- the temperature at which the coating film is heated is not particularly limited, but is preferably 90 ° C. to 550 ° C., more preferably 90 ° C. to 450 ° C., and further preferably 90 ° C. to 300 ° C.
- the thickness of the lower layer film 102 is not particularly limited, but is preferably 50 nm to 20,000 nm, and more preferably 70 nm to 1,000 nm.
- the lower layer film 102 preferably includes an SOC (Spin on carbon) film.
- a prepattern 103 is formed on the lower layer film 102 using a composition for forming a prepattern.
- the pattern shape obtained by phase separation of the pattern forming composition can be controlled by the pre-pattern 103, and a more desired fine pattern can be formed. That is, among the blocks of the [A] block copolymer contained in the pattern forming composition, the block having high affinity with the side surface of the prepattern forms a phase along the prepattern, and the block having low affinity is A phase is formed at a position away from the pre-pattern. Thereby, a more desired pattern can be formed.
- the structure of the pattern obtained by phase separation of the pattern forming composition can be controlled more finely depending on the material, size, shape, etc. of the prepattern.
- the pre-pattern can be appropriately selected according to the pattern to be finally formed. For example, a line and space pattern, a hole pattern, or the like can be used.
- a method for forming the pre-pattern 103 a method similar to a known resist pattern forming method can be used. Further, as the pre-pattern forming composition, a conventional resist composition can be used. As a specific method for forming the pre-pattern 103, for example, a chemically amplified resist composition such as ARX2928JN (manufactured by JSR) is used and applied onto the lower layer film 102 to form a resist film. Next, exposure is performed by irradiating a desired region of the resist film with radiation through a mask having a specific pattern. Examples of the radiation include ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
- the radiation include ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
- far ultraviolet rays such as ArF excimer laser light and KrF excimer laser light are preferable, and ArF excimer laser light is more preferable.
- immersion exposure can also be performed as an exposure method.
- post-exposure baking PEB is performed, and development is performed using an alkali developer, an organic solvent developer, or the like, so that a desired prepattern 103 can be formed.
- the surface of the pre-pattern 103 may be subjected to a hydrophobic treatment or a hydrophilic treatment.
- a hydrogenation treatment by exposing to hydrogen plasma for a certain period of time can be cited.
- self-organization of the pattern forming composition can be promoted.
- This step is a step of forming a self-assembled film having a phase separation structure on a substrate using the pattern forming composition.
- the pattern forming composition is directly applied onto the substrate to form a coating film, and a self-assembled film having a phase separation structure is formed.
- the pattern forming composition is applied to a region on the lower layer film 102 sandwiched between the prepatterns 103 to apply the coating film 104.
- a self-assembled film 105 having a phase separation structure having an interface substantially perpendicular to the substrate 101 is formed on the lower layer film 102 formed on the substrate 101.
- phase separation structure such as a sea-island structure, a cylinder structure, a bicontinuous structure, or a lamella structure.
- phase separation structures are substantially perpendicular to the substrate 101.
- a phase separation structure having an interface is preferable. In this step, phase separation easily occurs by using the pattern forming composition, so that a finer phase separation structure (microdomain structure) can be formed.
- the phase separation structure is preferably formed along the prepattern, and the interface formed by the phase separation is more preferably substantially parallel to the side surface of the prepattern.
- the phase of the block (I) is formed linearly along the prepattern 103 (105b)
- a lamellar phase separation structure in which the phase (105a) of the block (II) and the phase (105b) of the block (I) are alternately arranged in this order is formed.
- phase separation structure formed in this step is composed of a plurality of phases, and the interface formed from these phases is usually substantially vertical, but the interface itself is not necessarily clear.
- [A] length ratio of each block chain (block (I) chain, block (II) chain, etc.) in the block copolymer molecule, [A] length of the block copolymer molecule, pre-pattern The phase separation structure obtained can be controlled more precisely by the lower layer film or the like, and as a result, a more desired fine pattern can be obtained.
- the method for applying the pattern forming composition on a substrate to form the coating film 104 is not particularly limited, and examples thereof include a method of applying the pattern forming composition to be used by a spin coating method or the like.
- the pattern forming composition is filled between the prepatterns 103 on the lower layer film 102.
- annealing method for example, a method of heating at a temperature of 80 ° C. to 400 ° C. by an oven, a hot plate or the like can be mentioned.
- the annealing time is usually 1 minute to 120 minutes, preferably 5 minutes to 90 minutes.
- the film thickness of the self-assembled film 105 thus obtained is preferably 0.1 nm to 500 nm, and more preferably 0.5 nm to 100 nm.
- This step is a step of removing a part of the block phase (for example, 105a) in the phase separation structure of the self-assembled film 105 as shown in FIGS.
- the phase 105a of the block (II) can be removed by etching using the difference in the etching rate of each phase separated by self-organization.
- FIG. 5 shows a state after the phase 105a of the block (II) in the phase separation structure and the pre-pattern 103 are removed as described later.
- the radiation when the phase to be removed by etching is a phase of block (II), radiation of 254 nm can be used. Since the phase of the block (II) is decomposed by the radiation irradiation, the etching becomes easier.
- RIE reactive ion etching
- RIE reactive ion etching
- wet type chemical wet etching
- organic solvent examples include alkanes such as n-pentane, n-hexane and n-heptane, cycloalkanes such as cyclohexane, cycloheptane and cyclooctane, ethyl acetate, n-butyl acetate, i-butyl acetate and propionic acid.
- Saturated carboxylic acid esters such as methyl, ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone, methanol, ethanol, 1-propanol, 2-propanol, 4-methyl-2-pen
- alcohols such as tanol.
- these organic solvents may be used independently and may use 2 or more types together.
- Pre-pattern removal process This step is a step of removing the pre-pattern 103 as shown in FIGS. By removing the pre-pattern 103, a finer and more complicated pattern can be formed.
- the method of removing the pre-pattern 103 the above description of the method of removing a part of the block phases 105a in the phase separation structure can be applied. Moreover, this process may be performed simultaneously with the said removal process, and may be performed before or after a removal process.
- This step is a step of performing patterning by etching the lower layer film and the substrate using the pattern composed of the phase (105b) of the block (I) that is a part of the block phase of the remaining phase separation film after the removing step as a mask. .
- the phase used as a mask is removed from the substrate by dissolution treatment or the like, and a finally patterned substrate (pattern) can be obtained.
- the etching method the same method as in the removing step can be used, and the etching gas and the etching solution can be appropriately selected depending on the material of the lower layer film and the substrate.
- the substrate when the substrate is a silicon material, a mixed gas of chlorofluorocarbon gas and SF 4 or the like can be used.
- a mixed gas of BCl 3 and Cl 2 or the like can be used.
- the pattern obtained by the pattern forming method is preferably used for a semiconductor element and the like, and the semiconductor element is widely used for an LED, a solar cell, and the like.
- Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using Tosoh GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) under the following conditions.
- Eluent Tetrahydrofuran (Wako Pure Chemical Industries) Column temperature: 40 ° C Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass Sample injection volume: 100 ⁇ L
- Detector Differential refractometer Standard material: Monodisperse polystyrene
- 13 C-NMR analysis 13 C-NMR analysis was performed using JNM-EX400 manufactured by JEOL Ltd. and DMSO-d 6 as a measurement solvent. The content of each structural unit in the polymer was calculated from the area ratio of the peak corresponding to each structural unit in the spectrum obtained by 13 C-NMR.
- a composition for forming an organic underlayer film containing a crosslinking agent was spin-coated on a 12-inch silicon wafer using CLEAN TRACK ACT12 (manufactured by Tokyo Electron Ltd.), and baked at 205 ° C. for 60 seconds to have a film thickness of 77 nm. A lower layer film was formed.
- an ArF resist composition containing an acid dissociable resin, a photoacid generator and an organic solvent is spin-coated on this lower layer film, and then pre-baked (PB) at 120 ° C. for 60 seconds to form a resist having a film thickness of 60 nm. A film was formed.
- MIBK methyl isobutyl ketone
- IPA 2-propanol
- microdomain structure width (nm) When the microdomain structure width (nm) is 30 nm or less, it can be judged as “good”, and when it exceeds 30 nm or when the microdomain structure is not formed, it is judged as “bad”.
- the evaluation results are shown in Table 2. In Table 2, “ ⁇ ” indicates that the microdomain structure width could not be measured because the microdomain structure was not formed.
- the present invention it is possible to provide a pattern forming composition capable of forming a pattern having a sufficiently fine microdomain structure and a pattern forming method using the same. Therefore, the composition for pattern formation and the pattern formation method of the present invention are suitably used for lithography processes in the production of various electronic devices such as semiconductor devices and liquid crystal devices that require further miniaturization.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Graft Or Block Polymers (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
下記式(I)で表されるブロック(以下、「ブロック(I)」ともいう)及び下記式(II)で表されるブロック(以下、「ブロック(II)」ともいう)を含むブロック共重合体(以下、「[A]ブロック共重合体」ともいう)
を含有するパターン形成用組成物である。
(式(I)及び(II)中、R1及びR3は、それぞれ独立して、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。R2は、1価の有機基である。R4は、炭素数1~5の(1+b)価の炭化水素基である。R5は、ヘテロ原子を有する1価の基である。m及びnは、それぞれ独立して、10~5,000の整数である。aは、0~5の整数である。bは、1~3の整数である。a及びbがそれぞれ2以上の場合、複数のR2及びR5はそれぞれ同一でも異なっていてもよい。)
また、上記式(II)におけるR5としては-OSiR6 3、-SiR6 3、-OH、-NH2、-OSiH3、-COOH、-COOR6又は-COR6が好ましく、R6としては炭素数1~5の1価の炭化水素基又はケイ素数1~5の1価のケイ素含有基が好ましい。但し、R6が複数の場合は同一でも異なっていてもよい。
さらに、[A]ブロック共重合体は、主鎖の少なくとも一方の末端に、ヘテロ原子を含む基(以下、「基(α)」ともいう)を有することが好ましい。
当該パターン形成用組成物を用い、基板の上面側に相分離構造を有する自己組織化膜を形成する工程、及び
上記自己組織化膜の一部の相を除去する工程
を有するパターン形成方法である。
上記自己組織化膜形成工程前に、
基板上に下層膜を形成する工程、及び
上記下層膜上にプレパターンを形成する工程
をさらに有し、
上記自己組織化膜形成工程において、自己組織化膜を上記プレパターンによって区切られた上記下層膜上の領域に形成し、
上記自己組織化膜形成工程後に、
プレパターンを除去する工程
をさらに有することが好ましい。
自己組織化(Directed Self Assembly)とは、外的要因からの制御のみに起因せず、自発的に組織や構造を構築する現象を指す。本発明においては、パターン形成用組成物を基板上に塗布することにより、自己組織化による相分離構造を有する膜(自己組織化膜)を形成し、この自己組織化膜における一部の相を除去することにより、パターンを形成することができる。
[A]ブロック共重合体は、ブロック(I)及びブロック(II)を含むブロック共重合体である。上記ブロック(I)は、スチレン系化合物に由来する構造単位からなるブロックであり、上記ブロック(II)は、ヘテロ原子を有する基を含む(メタ)アクリル酸エステルに由来する構造単位からなるブロックである。
上記式(I)中、R1は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基であり、水素原子、メチル基が好ましい。
R2は、1価の有機基であり、例えば、カルボキシル基、シアノ基、炭素数1~20の炭化水素基等が挙げられる。上記炭素数1~20の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等のアルキル基;エテニル基、2-プロペニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基、7-オクテニル基等のアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。これらの中でも、アルキル基、アルケニル基が好ましい。
また、mは、10~5,000の整数である。aは、0~5の整数であり、好ましくは0又は1である。
上記式(II)中、R3は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基であり、水素原子、メチル基が好ましい。R4は、炭素数1~5の(1+b)価の炭化水素基であり、例えば、bが1の場合、メタンジイル基、エタンジイル基、n-プロパンジイル基等のアルカンジイル基;シクロブタンジイル基、シクロペンタンジイル基等のシクロアルカンジイル基等が挙げられる。R4としては、これらの中でも、アルカンジイル基が好ましく、メタンジイル基、エタンジイル基がより好ましく、エタンジイル基がさらに好ましい。R5は、ヘテロ原子を有する1価の基であり、好ましくは、-OSiR6 3、-SiR6 3、-OH、-NH2、-OSiH3、-COOH、-COOR6又は-COR6であり、-OSiR6 3、-SiR6 3、-OSiH3、-COOR6又は-COR6がより好ましく、-OSiR6 3が特に好ましい。また、R6としては炭素数1~5の1価の炭化水素基又はケイ素数1~5の1価のケイ素含有基が好ましい。但し、R6が複数の場合は同一でも異なっていてもよく、炭化水素基とケイ素原子含有基との組み合わせでもよい。上記炭素数1~5の1価の炭化水素基としては、例えば、上記R2の炭化水素基として例示した基のうち炭素数1~5のもの等が挙げられ、これらの中でアルキル基が好ましく、メチル基がより好ましい。上記ケイ素数1~5の1価のケイ素含有基としては、例えば、トリアルキルシロキシ基、トリアルキルシリル基等が挙げられ、トリアルキルシロキシ基が好ましく、トリメチルシロキシ基がより好ましい。当該パターン形成用組成物によれば、R5及びR6として上記基を用いることで、より微細なミクロドメイン構造を有するパターンを形成することができる。
また、nは、10~5,000の整数である。bは、1~3の整数であり、好ましくは1である。bが2以上の場合、複数のR5は同一でも異なっていてもよい。
[A]ブロック共重合体の各ブロックの含有率(モル%)の比を上記範囲とすることで、当該パターン形成用組成物は、より微細なミクロドメイン構造を有するパターンを形成することができる。
上記基(y)としては、例えば、1-シアノエタン-1,2-ジイル基、ジ(4-ジエチルアミノフェニル)メタン-1,1-ジイル基、3-ジメチルアミノプロピル-2,2-ジイル基、3-ジメチルアミノプロピル-1,2-ジイル基、ジメチルアミノメタン-1,1-ジイル基、カルボニル基等が挙げられる。
[A]ブロック共重合体は、リビングアニオン重合、リビングラジカル重合等によって合成することが出来る。これらのうち、任意の末端構造を有する重合体を得る場合においては、比較的容易にブロック共重合体を形成することが出来るリビングアニオン重合が好ましい。[A]ブロック共重合体は、例えばブロック(I)、ブロック(II)及び必要に応じてこれら以外の他のブロックを所望の順で形成しながら連結し、必要に応じて、その重合末端を、任意の末端処理剤で処理し、上記式(1)で表される基等の上記基(α)を導入することにより合成することができる。また、重合環境が通常、中性領域であるため、安定的に合成が可能であるリビングラジカル重合も、好適に用いることができる。
n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。
イソシアネート化合物、チオイソシアネート化合物、イミダゾリジノン、イミダゾール、アミノケトン、ピロリドン、ジエチルアミノベンゾフェノン、ニトリル化合物、アジリジン、ホルムアミド、エポキシアミン、ベンジルアミン、オキシム化合物、アジン、ヒドラゾン、イミン、アゾカルボン酸エステル、アミノスチレン、ビニルピリジン、アミノアクリレート、アミノジフェニルエチレン、イミド化合物等の含窒素化合物;
アルコキシシラン、アミノシラン、ケトイミノシラン、イソシアネートシラン、シロキサン、グリシジルシラン、メルカプトシラン、ビニルシラン、エポキシシラン、ピリジルシラン、ピペラジルシラン、ピロリドンシラン、シアノシラン、イソシアン酸シラン等のシラン化合物;
ハロゲン化スズ、ハロゲン化ケイ素、二酸化炭素等が挙げられる。これらのうち、エポキシ化合物が好ましく、1,2-ブチレンオキシド、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、プロピレンオキシドが好ましい。
当該パターン形成用組成物は、通常[B]溶媒を含有する。上記溶媒としては、例えば[A]ブロック共重合体の合成方法において例示した溶媒と同様の溶媒を挙げることができる。これらのうち、プロピレングリコールモノメチルエーテルアセテート(PGMEA)が好ましい。なお、これらの[B]溶媒は単独で使用してもよく2種以上を併用してもよい。
当該パターン形成用組成物は、さらに界面活性剤を含有してもよい。当該パターン形成用組成物は、界面活性剤を含有することで、基板等への塗布性を向上させることができる。
当該パターン形成用組成物は、例えば上記[B]溶媒中で、[A]ブロック共重合体、界面活性剤等を所定の割合で混合することにより調製できる。また、当該パターン形成用組成物は、適当な溶媒に溶解又は分散させた状態に調製され使用され得る。
本発明のパターン形成方法は、
当該パターン形成用組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程(以下、「自己組織化膜形成工程」ともいう)、及び
上記自己組織化膜の一部の相を除去する工程(以下、「除去工程」ともいう)
を含む。
さらに、上記除去工程後に、上記形成されたパターンをマスクとして、上記基板(及び必要に応じて下層膜)をエッチングする工程(以下、「エッチング工程」ともいう)をさらに有することが好ましい。以下、各工程について詳述する。なお、各工程については、図1~5を参照しながら説明する。
本工程は、下層膜形成用組成物を用いて、基板上に下層膜を形成する工程である。これにより、図1に示すように、基板101上に下層膜102が形成された下層膜付き基板を得ることができ、自己組織化膜はこの下層膜102上に形成される。上記自己組織化膜が有する相分離構造(ミクロドメイン構造)は、パターン形成用組成物が含有する[A]ブロック共重合体の各ブロック間の相互作用に加えて、下層膜102との相互作用によっても変化するため、下層膜102を有することで構造制御が容易となり、所望のパターンを得ることができる。さらに、自己組織化膜が薄膜である場合には、下層膜102を有することでその転写プロセスを改善することができる。
また、塗膜を加熱する際の温度としては、特に限定されないが、90℃~550℃であることが好ましく、90℃~450℃がより好ましく、90℃~300℃がさらに好ましい。なお、上記下層膜102の膜厚は特に限定されないが、50nm~20,000nmが好ましく、70nm~1,000nmがより好ましい。また、上記下層膜102は、SOC(Spin on carbon)膜を含むことが好ましい。
本工程は、図2に示すように、上記下層膜102上に、プレパターン形成用の組成物を用いてプレパターン103を形成する工程である。上記プレパターン103によってパターン形成用組成物の相分離によって得られるパターン形状を制御することができ、より所望の微細パターンを形成することができる。即ち、パターン形成用組成物が含有する[A]ブロック共重合体が有するブロックのうち、プレパターンの側面と親和性が高いブロックはプレパターンに沿って相を形成し、親和性の低いブロックはプレパターンから離れた位置に相を形成する。これにより、より所望のパターンを形成することができる。また、プレパターンの材質、サイズ、形状等により、パターン形成用組成物の相分離によって得られるパターンの構造をより細かく制御することができる。なお、プレパターンとしては、最終的に形成したいパターンに合わせて適宜選択することができ、例えばラインアンドスペースパターン、ホールパターン等を用いることができる。
本工程は、パターン形成用組成物を用い、基板上に相分離構造を有する自己組織化膜を形成する工程である。上記下層膜及びプレパターンを用いない場合には、基板上に直接当該パターン形成用組成物を塗布して塗膜を形成し、相分離構造を備える自己組織化膜を形成する。また、上記下層膜及びプレパターンを用いる場合には、図3及び図4に示すように、パターン形成用組成物をプレパターン103によって挟まれた下層膜102上の領域に塗布して塗膜104を形成し、基板101上に形成された下層膜102上に、基板101に対して略垂直な界面を有する相分離構造を備える自己組織化膜105を形成する。即ち、互いに不相溶な2種以上のブロックを有する[A]ブロック共重合体を含有するパターン形成用組成物を基板上に塗布し、アニーリング等を行うことで、同じ性質を有するブロック同士が集積して秩序パターンを自発的に形成する、いわゆる自己組織化を促進させることができる。これにより、海島構造、シリンダ構造、共連続構造、ラメラ構造等の相分離構造を有する自己組織化膜を形成することができるが、これらの相分離構造としては、基板101に対して略垂直な界面を有する相分離構造であることが好ましい。本工程において、当該パターン形成用組成物を用いることで、相分離が起こり易くなるため、より微細な相分離構造(ミクロドメイン構造)を形成することができる。
本工程は、図4及び図5に示すように、上記自己組織化膜105が有する相分離構造のうちの一部のブロック相(例えば105a)を除去する工程である。
自己組織化により相分離した各相のエッチングレートの差を用いて、例えばブロック(II)の相105aをエッチング処理により除去することができる。相分離構造のうちのブロック(II)の相105a及び後述するようにプレパターン103を除去した後の状態を図5に示す。なお、上記エッチング処理の前に、必要に応じて放射線を照射してもよい。上記放射線としては、エッチングにより除去する相がブロック(II)の相である場合には、254nmの放射線を用いることができる。上記放射線照射により、ブロック(II)の相が分解されるため、よりエッチングされ易くなる。
本工程は、図4及び図5に示すように、プレパターン103を除去する工程である。プレパターン103を除去することにより、より微細かつ複雑なパターンを形成することが可能となる。なお、プレパターン103の除去の方法については、相分離構造のうちの一部のブロック相105aの除去の方法についての上記説明を適用できる。また、本工程は、上記除去工程と同時に行ってもよいし、除去工程の前又は後に行ってもよい。
本工程は、上記除去工程後、残存した相分離膜の一部のブロック相であるブロック(I)の相105bからなるパターンをマスクとして、下層膜及び基板をエッチングすることによりパターニングする工程である。基板へのパターニングが完了した後、マスクとして使用された相は溶解処理等により基板上から除去され、最終的にパターニングされた基板(パターン)を得ることができる。上記エッチングの方法としては、上記除去工程と同様の方法を用いることができ、エッチングガス及びエッチング溶液は、下層膜及び基板の材質により適宜選択することができる。例えば、基板がシリコン素材である場合には、フロン系ガスとSF4との混合ガス等を用いることができる。また、基板が金属膜である場合には、BCl3とCl2との混合ガス等を用いることができる。なお、当該パターン形成方法により得られるパターンは半導体素子等に好適に用いられ、さらに上記半導体素子はLED、太陽電池等に広く用いられる。
重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー社製のGPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を使用し、以下の条件により測定した。
溶離液:テトラヒドロフラン(和光純薬工業社製)
カラム温度:40℃
流量:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
13C-NMR分析は、日本電子社製のJNM-EX400を使用し、測定溶媒としてDMSO-d6を使用して行った。ポリマーにおける各構造単位の含有率は、13C-NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。
[合成例1]
窒素置換された内容積0.5リットルの反応容器に、テトラヒドロフラン200gを投入し、開始剤としてのs-BuLi(s-ブチルリチウム)0.047gを含む1Nシクロヘキサン溶液0.27g及びスチレン10gを添加し-70℃で重合を行い、ブロック(I)を形成した。重合が完結していることを確認した後、ジフェニルエチレン0.40g、塩化リチウム0.063gを添加した。更に反応容器にメタクリル酸トリメチルシロキシエチルを10g添加して重合を行い、ブロック(II)を形成した。重合が完結していることを確認した後、所定量のメタノールを添加し重合を停止させた。重合の進行は、重合反応溶液をアルミ皿にサンプリングし150℃のホットプレートで加熱して残留固形分を測定して求めることにより追跡した。最終ブロックポリマーのGPCを測定したところ、Mwは36,800、Mw/Mnは1.11であった。
s-BuLiの1Nシクロヘキサン溶液の使用量、並びに、ブロック(I)及びブロック(II)を形成するモノマーの種類を表1に記載の通りとした以外は合成例1と同様の方法によりジブロック共重合体(A-2)~(A-6)並びに(a-1)及び(a-2)を合成した。各ブロック共重合体におけるブロック(I)及びブロック(II)を構成する構造単位の含有率、Mw及びMw/Mnを表1に示す。
[実施例1~5並びに比較例1及び2]
上記ジブロック共重合体を、それぞれプロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解し、1質量%溶液とした。これらの溶液を孔径200nmのメンブレンフィルターで濾過してパターン形成用組成物を調製し、下記の方法によりパターンを形成した。
12インチシリコンウエハ上に、架橋剤を含む有機下層膜形成用組成物を、CLEAN TRACK ACT12(東京エレクトロン社製)を使用してスピンコートした後、205℃で60秒間ベークして膜厚77nmの下層膜を形成した。次に、この下層膜上に、酸解離性樹脂、光酸発生剤及び有機溶媒を含有するArFレジスト組成物をスピンコートした後、120℃で60秒間プレベーク(PB)して膜厚60nmのレジスト膜を形成した。次いで、ArF液浸露光装置(NSR S610C、ニコン社製)を使用し、NA;1.30、CrossPole、σ=0.977/0.78の光学条件にて、マスクパターンを介して露光した。その後、115℃で60秒間PEBを行った後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液により23℃で30秒間現像し、水洗し、乾燥し、プレパターン(直径55nmホール/110nmピッチ)を得た。次いで、このプレパターンに254nmの紫外光を150mJ/cm2の条件で照射後、170℃で5分間ベークすることで下層膜及びプレパターンが形成されたシリコンウエハー基板を得た。
各パターン形成用組成物を上記得られたシリコンウエハー基板上に、形成される膜の厚さが30nmになるように塗布し、250℃で5分間加熱して相分離させ、ミクロドメイン構造を形成した。さらに、254nmの放射線を3,000mJ/cm2で照射し、メチルイソブチルケトン(MIBK)/2-プロパノール(IPA)=2/8(質量比)の溶液中に5分間浸漬させてブロック(II)の相を除去し、パターンを形成した。
上記形成したパターンについて、測長SEM(S-4800、日立製作所社製)を用いて観察し、その白く見える溝部分の幅を測定し、ミクロドメイン構造幅(nm)とした。ミクロドメイン構造幅(nm)が30nm以下である場合は「良好」と、30nmを超える場合及びミクロドメイン構造を形成しない場合は「不良」と判断できる。評価結果を表2に示す。なお、表2中の「-」は、ミクロドメイン構造を形成しなかったために、ミクロドメイン構造幅を測定できなかったことを示す。
102.下層膜
103.プレパターン
104.塗膜
105.自己組織化膜
105a.ブロック(II)の相
105b.ブロック(I)の相
Claims (7)
- さらに溶媒を含有する請求項1に記載のパターン形成用組成物。
- 上記式(II)におけるR5が-OSiR6 3、-SiR6 3、-OH、-NH2、-OSiH3、-COOH、-COOR6又は-COR6であり、R6が炭素数1~5の1価の炭化水素基又はケイ素数1~5の1価のケイ素含有基(R6が複数の場合は同一でも異なっていてもよい)である請求項1に記載のパターン形成用組成物。
- 上記ブロック共重合体が、主鎖の少なくとも一方の末端に、ヘテロ原子を含む基を有する請求項1に記載のパターン形成用組成物。
- 請求項1に記載のパターン形成用組成物を用い、基板の上面側に相分離構造を有する自己組織化膜を形成する工程、及び
上記自己組織化膜の一部の相を除去する工程
を有するパターン形成方法。 - 上記自己組織化膜形成工程前に、
基板上に下層膜を形成する工程、及び
上記下層膜上にプレパターンを形成する工程
をさらに有し、
上記自己組織化膜形成工程において、自己組織化膜を上記プレパターンによって区切られた上記下層膜上の領域に形成し、
上記自己組織化膜形成工程後に、
プレパターンを除去する工程
をさらに有する請求項5に記載のパターン形成方法。 - 得られるパターンがラインアンドスペースパターン又はホールパターンである請求項5に記載のパターン形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20157001452A KR20150036130A (ko) | 2012-06-29 | 2013-06-25 | 패턴 형성용 조성물 및 패턴 형성 방법 |
JP2014522649A JPWO2014003023A1 (ja) | 2012-06-29 | 2013-06-25 | パターン形成用組成物及びパターン形成方法 |
US14/566,841 US20150093508A1 (en) | 2012-06-29 | 2014-12-11 | Composition for pattern formation and pattern-forming method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012147712 | 2012-06-29 | ||
JP2012-147712 | 2012-06-29 | ||
JP2012-226521 | 2012-10-12 | ||
JP2012226521 | 2012-10-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/566,841 Continuation US20150093508A1 (en) | 2012-06-29 | 2014-12-11 | Composition for pattern formation and pattern-forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014003023A1 true WO2014003023A1 (ja) | 2014-01-03 |
Family
ID=49783165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067420 WO2014003023A1 (ja) | 2012-06-29 | 2013-06-25 | パターン形成用組成物及びパターン形成方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150093508A1 (ja) |
JP (1) | JPWO2014003023A1 (ja) |
KR (1) | KR20150036130A (ja) |
TW (1) | TW201410774A (ja) |
WO (1) | WO2014003023A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150092397A (ko) * | 2014-02-03 | 2015-08-13 | 삼성디스플레이 주식회사 | 블록 공중합체 및 이를 사용한 패턴 형성 방법 |
JP2015166438A (ja) * | 2014-02-13 | 2015-09-24 | Jsr株式会社 | パターン形成用組成物及びパターン形成方法 |
JP2015168732A (ja) * | 2014-03-05 | 2015-09-28 | Jsr株式会社 | パターン形成用組成物及びパターン形成方法 |
US20150277223A1 (en) * | 2014-03-28 | 2015-10-01 | Jsr Corporation | Composition for pattern formation, and pattern-forming method |
JP2015189951A (ja) * | 2014-03-28 | 2015-11-02 | Jsr株式会社 | パターン形成用組成物、パターン形成方法及びブロック共重合体の製造方法 |
US20150323870A1 (en) * | 2014-05-08 | 2015-11-12 | Jsr Corporation | Composition for pattern formation, and pattern-forming method |
JP2016035576A (ja) * | 2014-07-31 | 2016-03-17 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | パターン収縮法 |
JP2016192448A (ja) * | 2015-03-30 | 2016-11-10 | Jsr株式会社 | パターン形成用組成物、パターン形成方法及びブロック共重合体 |
JP2016224448A (ja) * | 2015-06-03 | 2016-12-28 | ダウ グローバル テクノロジーズ エルエルシー | パターン処理法 |
JP2017010016A (ja) * | 2015-06-03 | 2017-01-12 | ダウ グローバル テクノロジーズ エルエルシー | パターン処理法 |
KR20170134401A (ko) * | 2015-04-01 | 2017-12-06 | 제이에스알 가부시끼가이샤 | 패턴 형성용 조성물 및 패턴 형성 방법 |
JP2018027687A (ja) * | 2016-07-29 | 2018-02-22 | ダウ グローバル テクノロジーズ エルエルシー | コポリマー複層電解質を使用したネガ型現像方法及びそれから作製された物品 |
TWI748986B (zh) * | 2016-02-15 | 2021-12-11 | 日商Jsr股份有限公司 | 抗蝕劑底層膜形成用組成物、抗蝕劑底層膜及圖案化基板的製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI627220B (zh) * | 2015-06-03 | 2018-06-21 | 羅門哈斯電子材料有限公司 | 用於圖案處理之組合物及方法 |
TWI615460B (zh) * | 2015-06-03 | 2018-02-21 | 羅門哈斯電子材料有限公司 | 用於圖案處理的組合物和方法 |
KR102069485B1 (ko) * | 2016-11-30 | 2020-01-23 | 주식회사 엘지화학 | 블록 공중합체 |
KR102097819B1 (ko) * | 2016-11-30 | 2020-04-07 | 주식회사 엘지화학 | 블록 공중합체 |
KR101946775B1 (ko) * | 2016-11-30 | 2019-02-12 | 주식회사 엘지화학 | 블록 공중합체 |
JP6800105B2 (ja) * | 2017-07-21 | 2020-12-16 | 信越化学工業株式会社 | 有機膜形成用組成物、パターン形成方法、及び有機膜形成用樹脂 |
JP7507862B2 (ja) * | 2019-12-19 | 2024-06-28 | 株式会社レゾナック | アルカリ可溶性樹脂、感光性樹脂組成物、感光性エレメント、レジストパターンの形成方法、及び配線パターンの形成方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007132901A1 (ja) * | 2006-05-16 | 2007-11-22 | Nippon Soda Co., Ltd. | ブロックコポリマー |
JP2008280421A (ja) * | 2007-05-09 | 2008-11-20 | National Institute Of Advanced Industrial & Technology | 親水性フィルム及びその製造方法 |
JP2010143989A (ja) * | 2008-12-17 | 2010-07-01 | Dainippon Printing Co Ltd | 相分離構造の形成方法及び薄膜の製造方法 |
JP2010202723A (ja) * | 2009-03-02 | 2010-09-16 | Tosoh Corp | ブロック共重合体及びその製造方法 |
JP2012108369A (ja) * | 2010-11-18 | 2012-06-07 | Toshiba Corp | パターン形成方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100932949B1 (ko) * | 2008-07-14 | 2009-12-21 | 한국기계연구원 | 계층적 기공구조를 포함하는 다공성 세라믹 볼 및 이의제조방법 |
JP5222805B2 (ja) * | 2009-07-09 | 2013-06-26 | パナソニック株式会社 | 自己組織化パターン形成方法 |
-
2013
- 2013-06-25 KR KR20157001452A patent/KR20150036130A/ko not_active Application Discontinuation
- 2013-06-25 JP JP2014522649A patent/JPWO2014003023A1/ja active Pending
- 2013-06-25 WO PCT/JP2013/067420 patent/WO2014003023A1/ja active Application Filing
- 2013-06-28 TW TW102123212A patent/TW201410774A/zh unknown
-
2014
- 2014-12-11 US US14/566,841 patent/US20150093508A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007132901A1 (ja) * | 2006-05-16 | 2007-11-22 | Nippon Soda Co., Ltd. | ブロックコポリマー |
JP2008280421A (ja) * | 2007-05-09 | 2008-11-20 | National Institute Of Advanced Industrial & Technology | 親水性フィルム及びその製造方法 |
JP2010143989A (ja) * | 2008-12-17 | 2010-07-01 | Dainippon Printing Co Ltd | 相分離構造の形成方法及び薄膜の製造方法 |
JP2010202723A (ja) * | 2009-03-02 | 2010-09-16 | Tosoh Corp | ブロック共重合体及びその製造方法 |
JP2012108369A (ja) * | 2010-11-18 | 2012-06-07 | Toshiba Corp | パターン形成方法 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102160791B1 (ko) * | 2014-02-03 | 2020-09-29 | 삼성디스플레이 주식회사 | 블록 공중합체 및 이를 사용한 패턴 형성 방법 |
KR20150092397A (ko) * | 2014-02-03 | 2015-08-13 | 삼성디스플레이 주식회사 | 블록 공중합체 및 이를 사용한 패턴 형성 방법 |
JP2015166438A (ja) * | 2014-02-13 | 2015-09-24 | Jsr株式会社 | パターン形成用組成物及びパターン形成方法 |
TWI651357B (zh) * | 2014-02-13 | 2019-02-21 | 日商Jsr股份有限公司 | 圖型形成用組成物及圖型形成方法 |
JP2015168732A (ja) * | 2014-03-05 | 2015-09-28 | Jsr株式会社 | パターン形成用組成物及びパターン形成方法 |
US20150277223A1 (en) * | 2014-03-28 | 2015-10-01 | Jsr Corporation | Composition for pattern formation, and pattern-forming method |
JP2015189951A (ja) * | 2014-03-28 | 2015-11-02 | Jsr株式会社 | パターン形成用組成物、パターン形成方法及びブロック共重合体の製造方法 |
JP2015192111A (ja) * | 2014-03-28 | 2015-11-02 | Jsr株式会社 | パターン形成用組成物及びパターン形成方法 |
US9599892B2 (en) * | 2014-03-28 | 2017-03-21 | Jsr Corporation | Composition for pattern formation, and pattern-forming method |
US20150323870A1 (en) * | 2014-05-08 | 2015-11-12 | Jsr Corporation | Composition for pattern formation, and pattern-forming method |
US9587065B2 (en) * | 2014-05-08 | 2017-03-07 | Jsr Corporation | Composition for pattern formation, and pattern-forming method |
JP2015216180A (ja) * | 2014-05-08 | 2015-12-03 | Jsr株式会社 | パターン形成用組成物及びパターン形成方法 |
JP2016035576A (ja) * | 2014-07-31 | 2016-03-17 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | パターン収縮法 |
KR101742575B1 (ko) * | 2014-07-31 | 2017-06-05 | 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 | 패턴 축소 방법 |
JP2016192448A (ja) * | 2015-03-30 | 2016-11-10 | Jsr株式会社 | パターン形成用組成物、パターン形成方法及びブロック共重合体 |
KR20170134401A (ko) * | 2015-04-01 | 2017-12-06 | 제이에스알 가부시끼가이샤 | 패턴 형성용 조성물 및 패턴 형성 방법 |
JPWO2016159329A1 (ja) * | 2015-04-01 | 2018-02-01 | Jsr株式会社 | パターン形成用組成物及びパターン形成方法 |
KR102604419B1 (ko) * | 2015-04-01 | 2023-11-22 | 제이에스알 가부시끼가이샤 | 패턴 형성용 조성물 및 패턴 형성 방법 |
JP2017010016A (ja) * | 2015-06-03 | 2017-01-12 | ダウ グローバル テクノロジーズ エルエルシー | パターン処理法 |
JP2016224448A (ja) * | 2015-06-03 | 2016-12-28 | ダウ グローバル テクノロジーズ エルエルシー | パターン処理法 |
TWI748986B (zh) * | 2016-02-15 | 2021-12-11 | 日商Jsr股份有限公司 | 抗蝕劑底層膜形成用組成物、抗蝕劑底層膜及圖案化基板的製造方法 |
JP2018027687A (ja) * | 2016-07-29 | 2018-02-22 | ダウ グローバル テクノロジーズ エルエルシー | コポリマー複層電解質を使用したネガ型現像方法及びそれから作製された物品 |
Also Published As
Publication number | Publication date |
---|---|
US20150093508A1 (en) | 2015-04-02 |
JPWO2014003023A1 (ja) | 2016-06-02 |
KR20150036130A (ko) | 2015-04-07 |
TW201410774A (zh) | 2014-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014003023A1 (ja) | パターン形成用組成物及びパターン形成方法 | |
JP5994788B2 (ja) | パターン形成用自己組織化組成物及びパターン形成方法 | |
JP5835123B2 (ja) | パターン形成用自己組織化組成物及びパターン形成方法 | |
US9738746B2 (en) | Composition for pattern formation, pattern-forming method, and block copolymer | |
JP6394042B2 (ja) | パターン形成用組成物及びパターン形成方法 | |
WO2013073505A1 (ja) | パターン形成用自己組織化組成物及びパターン形成方法 | |
WO2016088785A1 (ja) | 自己組織化膜の形成方法、パターン形成方法及び自己組織化膜形成用組成物 | |
JP6966709B2 (ja) | パターン形成用組成物及びパターン形成方法 | |
US20170088740A1 (en) | Base film-forming composition, and directed self-assembly lithography method | |
JP2015168732A (ja) | パターン形成用組成物及びパターン形成方法 | |
JP2016161886A (ja) | 下層膜形成用組成物、下層膜の形成方法及び自己組織化リソグラフィープロセス | |
WO2016133115A1 (ja) | 自己組織化膜の形成方法、パターン形成方法及び自己組織化膜形成用組成物 | |
JP6264148B2 (ja) | パターン形成用組成物及びパターン形成方法 | |
JP7298428B2 (ja) | パターン形成方法及びパターン化された基板 | |
JP6652721B2 (ja) | パターン形成用組成物及びパターン形成方法 | |
WO2022049968A1 (ja) | 自己組織化膜形成用組成物及びパターン形成方法 | |
JP6172025B2 (ja) | ブロック共重合体の製造方法 | |
US9847232B1 (en) | Pattern-forming method | |
WO2022102304A1 (ja) | 下層膜形成用組成物、下層膜、及び、リソグラフィープロセス | |
JP2016134580A (ja) | パターン形成用組成物、パターン形成方法及びブロック共重合体 | |
TWI655235B (zh) | 基底膜形成用組成物及自我組織化微影製程 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13809446 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014522649 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157001452 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13809446 Country of ref document: EP Kind code of ref document: A1 |