WO2014002939A1 - 非水電解質二次電池及び非水電解質二次電池の製造方法 - Google Patents

非水電解質二次電池及び非水電解質二次電池の製造方法 Download PDF

Info

Publication number
WO2014002939A1
WO2014002939A1 PCT/JP2013/067221 JP2013067221W WO2014002939A1 WO 2014002939 A1 WO2014002939 A1 WO 2014002939A1 JP 2013067221 W JP2013067221 W JP 2013067221W WO 2014002939 A1 WO2014002939 A1 WO 2014002939A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
positive electrode
amount
Prior art date
Application number
PCT/JP2013/067221
Other languages
English (en)
French (fr)
Inventor
敬士 徳永
哲也 早稲田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157001477A priority Critical patent/KR20150033661A/ko
Priority to US14/410,658 priority patent/US20150194702A1/en
Priority to CN201380034038.4A priority patent/CN104412442A/zh
Publication of WO2014002939A1 publication Critical patent/WO2014002939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a technique for manufacturing a non-aqueous electrolyte secondary battery.
  • lithium ion secondary battery As the non-aqueous electrolyte secondary battery, for example, a lithium ion secondary battery is well known.
  • lithium ion secondary batteries have become increasingly important as vehicle-mounted power sources mounted on hybrid vehicles and electric vehicles, or power sources mounted on personal computers, portable terminals, and other electrical products.
  • an electrolytic solution is filled in a battery case so as to be interposed between a positive electrode and a negative electrode.
  • the electrolytic solution is an electrically conductive solution prepared by dissolving a lithium salt such as LiPF 6 as an electrolyte in a solvent such as ethylene carbonate (EC).
  • a film Solid Electrolyte Interface film
  • SEI film Solid Electrolyte Interface film
  • Patent Documents 1 and 2 describe nonaqueous electrolytes containing an oxalatoborate type compound (for example, lithium bis (oxalato) borate).
  • an oxalatoborate type compound for example, lithium bis (oxalato) borate
  • the oxalatoborate type compound decomposes during the initial charging of the secondary battery to form a SEI film on the negative electrode active material. Since this film is difficult to be formed excessively with charge and discharge, the increase in the film thickness is suppressed and the negative electrode resistance is suppressed from increasing.
  • the SEI film formed by the oxalatoborate type compound has a high resistance itself, and there is a problem that the initial negative electrode resistance, that is, the initial input resistance in the battery is increased compared to the SEI film not containing the compound. there were.
  • nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries
  • natural graphite, artificial graphite, graphitized mesophase carbon particles, graphitized mesophase carbon fibers, and the like are used as the negative electrode active material.
  • Patent Document 3 describes that the filling performance of the negative electrode plate is improved by mixing a large particle carbon material and a small particle carbon material having a predetermined particle diameter and BET specific surface area at a predetermined ratio. In addition, it is disclosed that a negative electrode plate excellent in initial efficiency and cycle characteristics can be produced.
  • the problem to be solved by the present invention is to provide a non-aqueous electrolyte secondary battery and a method for manufacturing the non-aqueous electrolyte secondary battery that can satisfy the input characteristics, storage durability and safety standards in a well-balanced manner. .
  • a wound electrode body configured by winding a positive electrode and a negative electrode with a separator interposed therebetween, and an electrolytic solution interposed between the positive electrode and the negative electrode,
  • a fine powder having a negative electrode mixture layer containing a negative electrode active material formed on the surface, an average particle diameter of the negative electrode active material of 5 ⁇ m to 20 ⁇ m, and a cumulative frequency of the negative electrode active material having a particle diameter of 3 ⁇ m or less
  • a non-aqueous electrolyte secondary battery having an amount of 10% or more and 50% or less, wherein the electrolyte includes 0.1M or more and 0.4M or less oxalate borate type compound and 0.06M or more difluorophosphorus And an acid compound.
  • a wound electrode body configured by winding a positive electrode and a negative electrode with a separator interposed therebetween, and an electrolyte solution interposed between the positive electrode and the negative electrode are provided on the surface of the negative electrode.
  • the input characteristics, storage durability and safety standards can be satisfied in a well-balanced manner.
  • the configuration of the lithium ion secondary battery 100 will be described with reference to FIG. 1, the battery case 40, the wound electrode body 55, and the lid body 60 are separated and schematically shown for easy understanding.
  • the lithium ion secondary battery 100 is an embodiment according to the non-aqueous electrolyte secondary battery of the present invention.
  • the lithium ion secondary battery 100 includes a battery case 40, a wound electrode body 55, and a lid body 60.
  • the battery case 40 is configured as a substantially rectangular parallelepiped box having an upper surface opened.
  • the opened upper surface of the battery case 40 is sealed by the lid body 60.
  • a wound electrode body 55 is accommodated in the battery case 40 together with the electrolytic solution.
  • the wound electrode body 55 is obtained by winding an electrode body 50 (see FIG. 2) in which the negative electrode 20, the positive electrode 10, and the separator 30 are laminated so that the separator 30 is interposed between the negative electrode 20 and the positive electrode 10. It is formed into a shape.
  • the wound electrode body 55 is accommodated in the battery case 40 so that the axial direction of the wound electrode body 55 and the sealing direction of the opening of the battery case 40 by the lid body 60 are orthogonal to each other.
  • a positive electrode current collector 51 (in which only the current collector foil 11 described later is wound) is exposed at the end on one side in the axial direction of the wound electrode body 55.
  • a negative electrode current collector 52 (only a current collector foil 21 to be described later is wound) is exposed at the end of the wound electrode body 55 on the other side in the axial direction.
  • the lid 60 seals the upper surface of the battery case 40. More specifically, the lid 60 seals the upper surface of the battery case 40 by being joined to the upper surface of the battery case 40 by laser welding. That is, in the lithium ion secondary battery 100, the opening of the battery case 40 is sealed by joining the lid 60 to the opening of the battery case 40 by laser welding.
  • a positive electrode current collector terminal 61 and a negative electrode current collector terminal 62 are provided on the upper surface of the lid 60.
  • the positive current collecting terminal 61 is formed with a leg portion 71 extending downward.
  • the negative electrode current collecting terminal 62 is formed with a leg portion 72 extending downward.
  • a liquid injection hole 63 is provided on the upper surface of the lid 60, and the wound electrode body 55 is attached to the battery case 40 in a state where the wound electrode body 55 is joined to the lid 60 having the positive current collector terminal 61 and the negative current collector terminal 62.
  • the battery is completed by injecting the electrolytic solution from the liquid injection hole 63 after being accommodated and joining the lid 60 and the upper surface of the battery case 40 by laser welding.
  • the electrode body 50 will be described with reference to FIG. In FIG. 2, a part of the electrode body 50 is schematically shown in a cross-sectional view.
  • the electrode body 50 is obtained by stacking the negative electrode 20, the positive electrode 10, and the separator 30 so that the separator 30 is interposed between the negative electrode 20 and the positive electrode 10.
  • the positive electrode 10 includes a current collector foil 11 and a positive electrode mixture layer 12.
  • the positive electrode mixture layer 12 is formed on both surfaces of the current collector foil 11.
  • Positive electrode mixture layer 12 the positive electrode active material (for example, Li 1. 14 Ni 0. 34 Co 0. 33 Mn 0. 33 O 2) and a conductive agent (e.g., acetylene black (AB)) and, a binder
  • a positive electrode mixture prepared by kneading for example, polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture forming the positive electrode mixture layer 12 of the positive electrode 10 includes a positive electrode active material that inserts and desorbs lithium ions.
  • the positive electrode active material include lithium transition metal composite oxides (LiNiO 2 , LiCoO 2 , LiNiCoMnO 2, etc.) typically having a layered crystal structure (typically a layered rock salt structure belonging to a hexagonal system).
  • LiMn 2 O 4 LiNiMn 2 O 4 , and the like
  • lithium transition metal complex oxides LiFePO 4, etc.
  • a conductive material In addition to the positive electrode active material, additives such as a conductive material and a binder (binder) are added to the positive electrode mixture as necessary.
  • a conductive material carbon powder (carbon black such as acetylene black (AB), furnace black and ketjen black, graphite powder, graphite powder, etc.), and conductive substances such as conductive carbon fiber are used alone. Or it can contain as a mixture of 2 or more types.
  • Bind materials include various polymer materials.
  • a polymer material that dissolves or disperses in water can be preferably used as the binder.
  • water-soluble or water-dispersible polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC), fluorine resins such as polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), vinyl acetate polymer, and styrene butadiene.
  • examples thereof include rubbers such as rubber (SBR).
  • a solvent mainly composed of an organic solvent such as N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium
  • a polymer material such as polyalkylene oxide such as polyvinylidene fluoride (PVDF) or polyethylene oxide (PEO) can be used as a binder.
  • PVDF polyvinylidene fluoride
  • PEO polyethylene oxide
  • the aforementioned binders may be used in combination of two or more, and may be used as a thickener and other additives.
  • the ratio of each constituent component such as the positive electrode active material, the conductive material, and the binder in the positive electrode mixture is determined from the viewpoint of the retention of the positive electrode mixture layer 12 on the current collector foil 11 and the battery performance.
  • the positive electrode active material is preferably about 75 to 95 wt%
  • the conductive material is about 3 to 18 wt%
  • the binder is about 2 to 7 wt%.
  • a positive electrode active material, a conductive material, a binder and the like are mixed with an appropriate solvent to prepare a positive electrode mixture.
  • This mixing preparation can be performed, for example, using a kneader such as a planetary mixer, a homodisper, Claremix (registered trademark), and Fillmix (registered trademark).
  • the positive electrode mixture thus prepared is applied to the current collector foil 11 by a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark), and the solvent is evaporated by drying and then pressed.
  • a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark)
  • the basis weight per unit area (mg / cm 2 ) of the positive electrode mixture on the current collector foil 11 is not limited to energy in high output applications such as hybrid vehicles, and the electronic conductivity in the positive electrode mixture layer 12 and in view of the lithium ion diffusibility, it is preferable that the per side 6mg / cm 2 ⁇ 20mg / cm 2 of collector foil 11. For the same reason also the density of the positive electrode mixture layer 12, it is preferable to 1.7g / cm 3 ⁇ 2.8g / cm 3.
  • a conductive member made of a metal having good conductivity is preferably used, and aluminum or an alloy mainly composed of aluminum can be used.
  • the shape and thickness of the current collector foil 11 are not particularly limited, and the shape may be a sheet shape, a foil shape, a mesh shape, or the like, and the thickness may be, for example, 10 ⁇ m to 30 ⁇ m.
  • the negative electrode 20 includes a current collector foil 21 and a negative electrode mixture layer 22.
  • the negative electrode mixture layer 22 is formed on both surfaces of the current collector foil 21.
  • the negative electrode mixture layer 22 kneads a negative electrode active material, a thickener (for example, carboxymethyl cellulose (CMC)), and a binder (for example, styrene butadiene rubber (SBR)) with water at a predetermined ratio.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the negative electrode mixture prepared in this manner was applied onto the current collector foil 21 and dried, and then pressed.
  • the negative electrode active material of the present embodiment is prepared by mixing and impregnating a predetermined proportion of pitch with spheroidized natural graphite coated with low crystalline carbon and firing it in an inert atmosphere.
  • the negative electrode mixture forming the negative electrode mixture layer 22 of the negative electrode 20 includes a negative electrode active material that inserts and desorbs lithium ions.
  • the negative electrode active material include various oxides such as lithium titanate, simple substances such as silicon materials and tin materials, alloys, compounds, and composite materials using the above materials in combination.
  • a carbon material mainly composed of graphite it is most preferable to employ as the negative electrode active material.
  • a composite material in which the surface of particles having graphite as a core is coated with amorphous carbon which can improve lithium ion insertion / extraction, is more preferable.
  • carbon materials other than graphite such as non-graphitizable amorphous carbon and easily graphitizable amorphous carbon may be mixed.
  • spheroidized natural graphite can be used as the negative electrode active material.
  • the spheronization treatment is usually performed by applying stress in a direction parallel to the graphite crystal basal surface (AB surface) of the scaly graphite particles or the like by mechanical treatment, so that the graphite crystal basal surface is concentrically or folded. It is made spherical while taking a fold structure.
  • spheroidized natural graphite having a desired particle size can be obtained.
  • Classification can be performed by a method such as air classification, wet classification, or specific gravity classification, but the use of an air classifier is preferred. In this case, the target particle size distribution can be adjusted by controlling the air volume and the wind speed.
  • a graphitization process can be added by adding coke, a pitch, a thermosetting resin, etc. to said spherical natural graphite, and heat-processing.
  • this graphitized product By subjecting this graphitized product to pulverization or grinding, and sieving or classification, the desired particle size can be obtained.
  • Classification can be performed by a method such as air classification, wet classification, or specific gravity classification, but the use of an air classifier is preferred.
  • the target particle size distribution can be adjusted by controlling the air volume and the wind speed.
  • the average particle size of the negative electrode active material is preferably in the range of 5 ⁇ m to 20 ⁇ m.
  • the BET specific surface area of the negative electrode active material is preferably in the range of, for example, 1.0 to 10.0 m 2 / g, and more preferably in the range of 3.0 to 6.0 m 2 / g.
  • a thickener and a binder are added to the negative electrode mixture.
  • Various polymer materials can be used as the thickener and the binder.
  • a polymer material that dissolves or disperses in water can be preferably used as the thickener and the binder.
  • water-soluble or water-dispersible polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC), fluorine resins such as polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), vinyl acetate polymer, and styrene butadiene.
  • Examples thereof include rubbers such as rubber (SBR).
  • SBR rubber
  • a solvent mainly composed of an organic solvent such as N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium
  • PVDF polyvinylidene fluoride
  • PEO polyethylene oxide
  • a polymer material such as can be used as a thickener and a binder.
  • the above thickener and binder may be used in combination of two or more.
  • the proportions of the respective constituent components such as the negative electrode active material, the thickener and the binder in the negative electrode mixture are determined from the viewpoints of the retention of the negative electrode mixture layer 22 on the current collector foil 21 and the battery performance. .
  • the negative electrode active material is, for example, about 90 to 99 wt%, and the thickener and the binder are about 1 to 10 wt%.
  • a negative electrode active material, a thickener, a binder and the like are mixed with an appropriate solvent to prepare a negative electrode mixture.
  • This mixing preparation can be performed, for example, using a kneader such as a planetary mixer, a homodisper, Claremix (registered trademark), and Fillmix (registered trademark).
  • the negative electrode mixture thus prepared is applied to the current collector foil 21 by a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark), and the solvent is evaporated by drying and then pressed.
  • a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark)
  • the basis weight per unit area (mg / cm 2 ) of the negative electrode mixture on the current collector foil 21 is not only energy, but also the electronic conductivity in the negative electrode mixture layer 22 in high output applications such as hybrid vehicles. in view of the lithium ion diffusibility, it is preferable that one surface per 3mg / cm 2 ⁇ 10mg / cm 2 of collector foil 21. For the same reason also the density of the negative electrode mixture layer 22, it is preferable to 1.0g / cm 3 ⁇ 1.4g / cm 3.
  • a conductive member made of a metal having good conductivity is preferably used, and copper or an alloy containing copper as a main component can be used.
  • the shape and thickness of the current collector foil 21 are not particularly limited, and the shape may be a sheet shape, a foil shape, a mesh shape, or the like, and the thickness may be, for example, 5 ⁇ m to 20 ⁇ m.
  • the separator 30 includes a base material layer 31 and a Heat Resistance layer (HRL) layer 32 as a heat resistant layer.
  • the HRL layer 32 is formed on both surfaces of the base material layer 31.
  • the HRL layer 32 of the present embodiment is formed from a porous inorganic filler.
  • the separator 30 insulates the positive electrode mixture layer 12 and the negative electrode mixture layer 22 and allows the electrolyte to move during normal use.
  • a high temperature eg, 130 ° C. or higher
  • a mechanism for blocking the movement of the electrolyte is provided.
  • a porous resin can be adopted as the base material layer 31 of the separator 30.
  • polyolefin resin such as polyethylene (PE) and polypropylene (PP) can be suitably employed as the base material layer 31.
  • PP polypropylene
  • the base material layer 31 can be made porous by, for example, uniaxial stretching or biaxial stretching.
  • uniaxial stretching in the longitudinal direction is suitable as an element of the separator 30 constituting the wound electrode body 55 because there is little thermal contraction in the width direction.
  • the thickness of the separator 30 is not particularly limited, but is preferably about 10 to 30 ⁇ m, typically about 15 to 25 ⁇ m. When the thickness of the separator 30 is within the above range, the ion permeability of the separator 30 is further improved, and in particular, film breakage due to shrinkage and melting at high temperatures is less likely to occur.
  • the HRL layer 32 is configured on at least one surface of the base material layer 31, and suppresses shrinkage of the base material layer 31 when the inside of the battery becomes high temperature. Even so, a short circuit due to direct contact between the positive electrode 10 and the negative electrode 20 is suppressed.
  • the HRL layer 32 is mainly composed of inorganic fillers such as inorganic oxides such as alumina, boehmite, silica, titania, zirconia, calcia and magnesia, inorganic nitrides, carbonates, sulfates, fluorides, and covalent crystals. Include as.
  • alumina, boehmite, silica, titania, zirconia, calcia, or magnesia is preferably used, and boehmite or alumina is particularly preferably used because of excellent heat resistance and cycle characteristics.
  • the shape of the inorganic filler is not particularly limited, but is preferably a plate-like (flaked) particle from the viewpoint of suppressing a short circuit between the positive electrode 10 and the negative electrode 20 when the base material layer 31 is broken.
  • the average particle size of the inorganic filler is not particularly limited, but is suitably from 0.1 ⁇ m to 5 ⁇ m from the viewpoint of smoothness of the film surface, input / output performance, and function at high temperature.
  • the HRL layer 32 preferably contains an additive such as a binder from the viewpoint of retention on the base material layer 31.
  • the HRL layer 32 is generally formed by preparing a paste by dispersing an inorganic filler and an additive in a solvent, applying the paste onto the base material layer 31, and drying the paste.
  • the dispersion solvent is not particularly limited, such as an aqueous solvent or an organic solvent, but it is preferable to use an aqueous solvent in consideration of cost and handleability.
  • an additive when an aqueous solvent is used, a polymer that is dispersed or dissolved in the aqueous solvent can be used.
  • polyolefin resins such as styrene butadiene rubber (SBR) and polyethylene (PE), cellulose polymers such as carboxymethyl cellulose (CMC), fluorine resins such as polyvinyl alcohol (PVA), or polyoxygen such as polyethylene oxide (PEO).
  • Alkylene oxide can be used.
  • acrylics such as homopolymers obtained by polymerizing monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, methyl methacrylate, 2-ethylhexyl acrylate and butyl acrylate in one kind Based resins.
  • the additive may be a copolymer obtained by polymerizing two or more of the monomers. Further, a mixture of two or more of the homopolymers and copolymers may be used.
  • the proportion of the inorganic filler in the entire HRL layer 32 is not particularly limited, but is preferably 90% by mass or more, and typically 95% by mass or more from the viewpoint of securing the function at high temperature.
  • the HRL layer 32 can be formed by the following method, for example. First, the above-described inorganic filler and additive are dispersed in a dispersion medium to produce a paste.
  • a kneader such as Dispamyl (registered trademark), Claremix (registered trademark), Fillmix (registered trademark), ball mill, homodisper, and ultrasonic disperser can be used.
  • the obtained paste is coated on the surface of the base material layer 31 with a coating apparatus such as a gravure coater, slit coater, die coater, comma coater (registered trademark), and dip coater and dried to form the HRL layer 32. It is preferable that the drying temperature is equal to or lower than the temperature at which the separator 30 contracts (for example, 110 ° C. or lower).
  • Non-aqueous electrolyte As the non-aqueous solvent and the electrolyte salt constituting the electrolytic solution injected into the lithium ion secondary battery 100, those used in conventional lithium ion secondary batteries can be used without any particular limitation.
  • the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2 -Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, and ⁇ - Butyrolactone can be used, and one of these can be
  • electrolyte salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 1 or 2 or more types of lithium compounds (lithium salt), such as 3 and LiI, can be used.
  • the concentration of the electrolyte salt is not particularly limited, but can be typically 0.8 mol / L to 1.5 mol / L.
  • the non-aqueous electrolyte contains an oxalatoborate type compound and a difluorophosphate compound as additives.
  • the oxalatoborate type compound and the difluorophosphoric acid compound may be partially or wholly decomposed.
  • the oxalatoborate type compound is represented by the formula (I) in the following chemical formula 1 or the formula (II) in the chemical formula 2 below.
  • R 1 and R 2 in the formula (I) are a halogen atom (for example, F, Cl, Br, preferably F) and a perfluoro having 1 to 10 carbon atoms (preferably 1 to 3). Selected from alkyl groups.
  • a + in formulas (I) and (II) may be either an inorganic cation or an organic cation.
  • a compound represented by the above formula (II) can be preferably used.
  • LiBOB lithium bis (oxalato) borate
  • the difluorophosphate compound can be various salts having a difluorophosphate anion (PO 2 F 2 ⁇ ).
  • the cation (counter cation) in the difluorophosphate compound may be either an inorganic cation or an organic cation. Specific examples of the inorganic cation include alkali metal cations such as Li, Na, and K, and alkaline earth metal cations such as Be, Mg, and Ca.
  • organic cation examples include ammonium cations such as tetraalkylammonium and trialkylammonium.
  • a difluorophosphate compound can be produced by a known method, or can be obtained by purchasing a commercially available product.
  • a salt of a difluorophosphate anion and an inorganic cation for example, an alkali metal cation
  • lithium difluorophosphate LiPO 2 F 2
  • the lithium ion secondary battery 100 having such a configuration is excellent in both input / output characteristics and thermal stability during overcharge, it is particularly a hybrid vehicle (HV), a plug-in hybrid vehicle (PHV), and an electric vehicle (EV). ), Or a power source for a drive source such as a drive motor of an automobile equipped with an electric motor such as a fuel cell automobile (typically, a battery pack formed by connecting a plurality of them in series).
  • HV hybrid vehicle
  • PV plug-in hybrid vehicle
  • EV electric vehicle
  • a power source for a drive source such as a drive motor of an automobile equipped with an electric motor such as a fuel cell automobile (typically, a battery pack formed by connecting a plurality of them in series).
  • the horizontal axis represents the particle diameter D of the negative electrode active material
  • the vertical axis represents the cumulative frequency of the amount of the negative electrode active material having a particle diameter D or less with respect to the total amount of the negative electrode active material.
  • the particle diameter D of the negative electrode active material shows non-uniform variation between 0 ⁇ m and 10 ⁇ m.
  • the negative electrode active material having a particle diameter D of 3 ⁇ m or less is referred to as fine powder
  • the cumulative frequency of the negative electrode active material having a particle diameter D of 3 ⁇ m or less is defined as the fine powder amount P. That is, if the fine powder amount P is 15%, the cumulative frequency with a particle diameter D of 3 ⁇ m or less is 15%.
  • the average particle diameter Dm is 5 micrometers or more and 20 micrometers or less.
  • the characteristics of the fine powder amount P and the LiBOB amount L will be described with reference to FIG.
  • the LiBOB amount L is the concentration of LiBOB in the electrolytic solution.
  • the horizontal axis is the fine powder amount P of the negative electrode active material
  • the vertical axis is the charging resistance ratio R indicating the input characteristics of the lithium ion secondary battery 100, and the relationship between the fine powder quantity P and the input characteristics. Represents.
  • FIG. 4A shows a case where the LiBOB amount L is added to a concentration of 0.4M and a case where the LiBOB amount L is added to a concentration of 0.1M. It shows.
  • the charging resistance ratio R indicates the value of the charging resistance with respect to another fine powder amount P when the charge resistance value of the lithium ion secondary battery 100 with respect to a certain fine powder amount P is 100, and each fine powder amount.
  • the charge resistance with respect to P is made dimensionless.
  • the horizontal axis is the fine powder amount P of the negative electrode active material
  • the vertical axis is the capacity reduction rate W indicating the storage durability of the lithium ion secondary battery 100
  • the fine powder amount P and the capacity reduction rate W Represents the relationship.
  • the capacity decrease rate W is an index indicating how much the capacity has decreased after charging a lithium ion secondary battery under a predetermined condition and leaving it for a predetermined period.
  • FIG. 4B shows a case where the LiBOB amount L is added to a concentration of 0.4M and a case where the LiBOB amount L is added to a concentration of 0.1M. It shows.
  • the charging resistance ratio R is reduced, and the input characteristics of the lithium ion secondary battery 100 can be improved. More is preferable.
  • the LiBOB amount L is preferably small from the viewpoint of improving input characteristics.
  • the criteria of the charge resistance ratio R indicating the input characteristics of the lithium ion secondary battery 100 determination conditions for satisfying the standard Is less than or equal to R1 (see FIG. 4A), and the criteria for the capacity reduction rate W indicating the storage durability of the lithium ion secondary battery 100 is less than or equal to W1 (see FIG. 4B). Satisfies both the input characteristics and storage durability of the secondary battery 100. Therefore, the fine powder amount P of the negative electrode active material and the LiBOB amount L of the electrolytic solution are preferably set to values in the following ranges.
  • the fine powder amount P is set to 10% or more and 50% or less.
  • the LiBOB amount L is set to a concentration of 0.1 M or more and 0.4 M or less. Specifically, in the initial step of the lithium ion secondary battery 100, LiBOB is added to the electrolyte so that the LiBOB amount L is 0.1 M or more and 0.4 M or less.
  • the specific surface area measured by the Kr gas adsorption method is 2.0 to 5.0 m 2 / g.
  • the Kr gas adsorption method is a method for obtaining a specific surface area of a sample powder from the adsorption amount by adsorbing molecules (Kr) whose occupying area is known on the surface of the powder particles.
  • the specific surface area is the total surface area of all particles contained in a unit mass of powder.
  • the horizontal axis represents P1 amount S which is the amount of P1 (P1 concentration), and the vertical axis represents leakage indicating the safety of the lithium ion secondary battery 100.
  • the current J the relationship between the P1 amount S and the safety is shown.
  • the P1 amount S of the electrolyte As shown in FIG. 5, it is known that there is a correlation between the P1 amount S of the electrolyte and the leakage current J.
  • the criterion of the leakage current J determination condition for satisfying the criterion
  • the P1 amount S is required to be 0.06M or more.
  • the P1 amount S of the electrolytic solution of the present embodiment is set to 0.06M or more. That is, in the initial step of the lithium ion secondary battery 100, P1 is added to the electrolytic solution so that the P1 amount S is 0.06M or more.
  • the effect of the lithium ion secondary battery 100 will be described.
  • the lithium ion secondary battery 100 can satisfy the input characteristics, storage durability, and safety standards in a well-balanced manner.
  • the charging resistance ratio that is an index of input characteristics
  • Non-aqueous electrolyte secondary batteries were prepared as in the examples and comparative examples in Table 1 below, and the performance of each non-aqueous electrolyte secondary battery was evaluated.
  • a mixed solution of Ni sulfate, Co sulfate, and Mn sulfate solution was neutralized with Na hydroxide, and Ni 0 . 34 Co 0 . 33 Mn 0 .
  • a precursor based on 33 (OH) 2 was prepared. The obtained precursor was mixed with Li carbonate, and optionally calcined at 800 to 950 ° C. for 5 to 15 hours in an air atmosphere to obtain Li 1 . 14 Ni 0 . 34 Co 0 . 33 Mn 0 . 33 O 2 was produced.
  • This positive electrode active material was adjusted to have a particle size D50 of 3 to 8 ⁇ m and a specific surface area of 0.5 to 1.9 m 2 / g.
  • the positive electrode active material, AB (conductive material), and PVDF (binder) are mixed with NMP (dispersion medium) so that the mass ratio of these materials is 90: 8: 2, An agent was prepared.
  • This positive electrode mixture was applied to both surfaces of an aluminum foil (current collector foil) having a thickness of 15 ⁇ m.
  • the coating amount of the positive electrode mixture on both sides was adjusted to be about 11.3 mg / cm 2 (on a solid basis after drying).
  • the coated positive electrode mixture was dried and then pressed with a rolling press to adjust the density of the positive electrode mixture layer to 1.8 to 2.4 g / cm 3 .
  • the obtained electrode was slit to produce a strip-shaped positive electrode having a length of 3000 mm and a width of 98 mm.
  • the particle size of natural graphite powder was adjusted using an air classifier to obtain natural graphite powder having different particle sizes.
  • negative electrode active materials having different amounts of fine powder and different surface areas were obtained.
  • This negative electrode active material, SBR, and CMC were mixed with ion-exchanged water at a weight ratio of 97.0: 1.5: 1.5, and sheared with a planetary mixer to prepare a negative electrode mixture.
  • This negative electrode mixture was applied to both sides of a 10 ⁇ m thick copper foil.
  • the coating amount of the negative electrode mixture on both sides was adjusted to about 7.0 mg / cm 2 (after drying, based on solid content).
  • the coated negative electrode mixture was dried and then pressed by a rolling press to adjust the density of the negative electrode mixture layer to about 0.9 g / cm 3 to 1.3 g / cm 3 .
  • the obtained electrode was slit to produce a strip-shaped negative electrode having a length of 3200 mm and a width of 102 mm.
  • the electrolyte was prepared by dissolving 1.1 mol / L LiPF 6 in a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) at 3: 3: 4, and an additive. And lithium bis (oxalato) borate (LiBOB) and lithium difluorophosphate (LiPO 2 F 2 ) were dissolved.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • LiBOB lithium bis (oxalato) borate
  • LiPO 2 F 2 lithium difluorophosphate
  • the present invention can be used for a non-aqueous electrolyte secondary battery and a method for producing a non-aqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 入力特性、安全性及び保存耐久性の基準をバランスよく満たすことができる非水電解質二次電池を提供する。正極10と負極20とをセパレータ30を介して捲回して構成される捲回電極体55と、正極10と負極20との間に介在する電解液と、を備え、負極20の表面には負極活物質を含む負極合剤層22が形成され、負極活物質の平均粒子径が5μm以上かつ20μm以下であって、粒子径Dが3μm以下の負極活物質の累積頻度である微粉量Pが10%以上かつ50%以下であるリチウムイオン二次電池100であって、電解液には、0.1M以上かつ0.4M以下のオキサラトボレート型化合物と0.06M以上のジフルオロリン酸化合物とが含まれる。

Description

非水電解質二次電池及び非水電解質二次電池の製造方法
 本発明は、非水電解質二次電池及び非水電解質二次電池の製造方法の技術に関する。
 非水電解質二次電池は、例えばリチウムイオン二次電池が良く知られている。リチウムイオン二次電池は、近年、ハイブリッド自動車及び電気自動車等に搭載される車両搭載用電源、又は、パソコン及び携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。
 リチウムイオン二次電池等の非水電解質二次電池では、正極と負極との間に介在するように電池ケース内部に電解液が充填されている。電解液とは、電解質であるLiPFなどのリチウム塩を、エチレンカーボネート(EC)等の溶媒に溶解させて作製した電気伝導性を有する溶液である。
 ところで、リチウムイオン二次電池等の非水電解質二次電池では、充電の際に非水電解質及び溶媒の一部が分解され、皮膜(Solid Electrolyte Interphase皮膜;以下「SEI皮膜」と記す)が負極活物質の表面に生成される。このようなSEI皮膜は、充放電を繰り返すことによって、過剰に形成されて皮膜厚みが増大する。これにより、負極の抵抗が高くなって電池性能が低下する。
 このような課題を解決する手段として各種添加剤が知られている。特許文献1、2にはオキサラトボレート型の化合物(例えば、リチウムビス(オキサラト)ボレート)を含む非水電解質が記載されている。
 オキサラトボレート型の化合物は二次電池の初期充電時に分解して負極活物質上にSEI皮膜を形成する。この皮膜は、充放電に伴って過剰に形成され難いため、皮膜厚みの増大を抑制し、負極抵抗が高くなるのを抑制する。
 しかしながら、オキサラトボレート型の化合物により形成されるSEI皮膜は、それ自体の抵抗が高く、該化合物を含まないSEI皮膜よりも初期の負極抵抗、すなわち上記電池における初期の入力抵抗が増大する問題があった。
 一方、リチウムイオン二次電池等の非水電解質二次電池では、負極活物質として、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子、及び黒鉛化メソフェーズカーボン繊維などが用いられている。
 上記の炭素材料は、粒子径を大きくすることで初期効率が向上するものの、合剤層の導電性が悪化し、特にハイブリッド自動車等の用途にリチウムイオン二次電池を用いる場合、車両性能を満足するための入力特性を確保することができないという課題があった。また粒子径を小さくすると反応面積が増大し入力特性は向上するものの、電解液との反応が過剰となり、サイクル特性が悪化するという課題があった。
 上記課題を解決するため、特許文献3には、所定の粒子径及びBET比表面積を持つ大粒子炭素材料及び小粒子炭素材料を所定の割合で混合することにより、負極極板の充填性が向上し、初期効率及びサイクル特性に優れた負極極板を作製できることが開示されている。
 しかしながら、大粒径及び小粒径の炭素材料を混合することで、入力特性が改善した負極極板を作製できるものの、小粒径炭素材料を単独で用いた負極極板より、反応面積は減少するため、ハイブリッド自動車に必要な入力特性を満たすことは出来なかった。また小粒径炭素材料を用いることで電解液との反応が過剰となり、過充電時の発熱反応が増大することも分かった。
特開2011-34893号公報 特開2007-165125号公報 特開2010-176973号公報
 本発明の解決しようとする課題は、入力特性、保存耐久性及び安全性の基準をバランスよく満たすことができる非水電解質二次電池及び非水電解質二次電池の製造方法を提供することである。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、請求項1においては、正極と負極とをセパレータを介して捲回して構成される捲回電極体と、前記正極と前記負極との間に介在する電解液と、を備え、前記負極の表面には負極活物質を含む負極合剤層が形成され、前記負極活物質の平均粒子径が5μm以上かつ20μm以下であって、粒子径が3μm以下の前記負極活物質の累積頻度である微粉量が10%以上かつ50%以下である非水電解質二次電池であって、前記電解液には、0.1M以上かつ0.4M以下のオキサラトボレート型化合物と0.06M以上のジフルオロリン酸化合物とが含まれるものである。
 請求項2においては、正極と負極とをセパレータを介して捲回して構成される捲回電極体と、前記正極と前記負極との間に介在する電解液と、を備え、前記負極の表面には負極活物質を含む負極合剤層が形成され、前記負極活物質の平均粒子径が5μm以上かつ20μm以下であって、粒子径が3μm以下の前記負極活物質の累積頻度である微粉量が10%以上かつ50%以下である非水電解質二次電池の製造方法であって、前記電解液に、0.1M以上かつ0.4M以下のオキサラトボレート型化合物と0.06M以上のジフルオロリン酸化合物とを添加するものである。
 本発明によれば、入力特性、保存耐久性及び安全性の基準をバランスよく満たすことができる。
リチウムイオン二次電池の全体的な構成を示した模式図。 電極体を示した断面模式図。 微粉量を示したグラフ図。 微粉量及びLiBOB量の特性を示したグラフ図。 P1量の特性を示したグラフ図。
 図1を用いて、リチウムイオン二次電池100の構成について説明する。
 なお、図1では、説明を分かり易くするため、電池ケース40と、捲回電極体55と、蓋体60と、を分離して模式的に表している。
 リチウムイオン二次電池100は、本発明の非水電解質二次電池に係る一実施形態である。リチウムイオン二次電池100は、電池ケース40と、捲回電極体55と、蓋体60と、を具備している。
 電池ケース40は、上面が開口された略直方体の箱体として構成されている。電池ケース40の開口された上面は、蓋体60によって封口される。また、電池ケース40の内部には、電解液とともに捲回電極体55が収容される。
 捲回電極体55は、負極20と正極10との間にセパレータ30が介在するように、負極20と正極10とセパレータ30とを積層した電極体50(図2参照)を捲回し、さらに偏平状に成形させたものである。
 捲回電極体55は、捲回電極体55の軸方向と蓋体60による電池ケース40の開口部の封口方向とが直交するように電池ケース40に収容される。
 捲回電極体55の軸方向一側の端部には、正極集電体51(後述する集電箔11のみが捲かれたもの)が露出している。一方、捲回電極体55の軸方向他側の端部には、負極集電体52(後述する集電箔21のみが捲かれたもの)が露出している。
 蓋体60は、電池ケース40の上面を封口するものである。より詳しくは、蓋体60は、電池ケース40の上面にレーザ溶接によって接合されることで、電池ケース40の上面を封口するものである。すなわち、リチウムイオン二次電池100においては、電池ケース40の開口部に蓋体60をレーザ溶接により接合することで、電池ケース40の開口部が封口される。
 蓋体60の上面には、正極集電端子61と、負極集電端子62と、が設けられている。正極集電端子61には、下方に延設される脚部71が形成されている。同様に、負極集電端子62には、下方に延設される脚部72が形成されている。
 蓋体60の上面には注液孔63が設けられており、捲回電極体55が正極集電端子61及び負極集電端子62を備えた蓋体60と接合された状態で電池ケース40に収容され、蓋体60と電池ケース40の上面とをレーザ溶接によって接合した後、注液孔63から電解液を注入することで電池が完成する。
 図2を用いて、電極体50について説明する。
 なお、図2では、電極体50の一部を断面視にて模式的に表している。
 電極体50は、負極20と正極10との間にセパレータ30が介在するように、負極20と正極10とセパレータ30とを積層したものである。
 正極10は、集電箔11と、正極合剤層12と、を具備している。正極合剤層12は、集電箔11の両面に形成されている。正極合剤層12は、正極活物質(例えば、Li14Ni34Co33Mn33)と、導電剤(例えば、アセチレンブラック(AB))と、結着剤(例えば、ポリフッ化ビニリデン(PVDF))とを所定の割合で、溶媒(例えば、N-メチル-2-ピロリドン(NMP))と共に混練することによって作製した正極合剤を、集電箔11上に塗布し乾燥させた後にプレスしたものである。
 [正極活物質]
 正極10の正極合剤層12を成す正極合剤は、リチウムイオンを挿入脱離する正極活物質を含む。正極活物質としては、典型的には層状の結晶構造(典型的には、六方晶系に属する層状岩塩型構造)を有するリチウム遷移金属複合酸化物(LiNiO、LiCoO、LiNiCoMnO等。一部W、Cr、Mo、Zr、Mg、Ca、Na、Fe、Zn、Si、Sn、Al等の添加元素を含んでもよい)、スピネル型の結晶構造を有するリチウム遷移金属複合酸化物(LiMn、LiNiMn等)、及びオリビン型構造の結晶構造を有するリチウム遷移金属複合酸化物(LiFePO等)が挙げられる。
 [正極合剤]
 正極合剤には、正極活物質の他、必要に応じて導電材、結着材(バインダ)等の添加材が添加される。
 導電材としては、カーボン粉末(アセチレンブラック(AB)、ファーネスブラック及びケッチェンブラック等のカーボンブラック、黒鉛粉末、並びにグラファイト粉末等)、及び導電性炭素繊維等の導電性物質を1種単独で、又は2種以上の混合物として含ませることができる。
 結着材としては、各種のポリマー材料が挙げられる。例えば、分散媒として水を主体とする溶媒を用いる場合には、水に溶解又は分散するポリマー材料を結着材として好ましく採用し得る。水溶性又は水分散性のポリマー材料としては、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルアルコール(PVA)、酢酸ビニル重合体、及びスチレンブタジエンゴム(SBR)等のゴム類が挙げられる。分散媒としてN-メチル-2-ピロリドン(NMP)等の有機溶媒系を主体とする溶媒を用いる場合には、ポリフッ化ビニリデン(PVDF)、又はポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドといったポリマー材料を結着材として用いることができる。前述の結着材は、2種以上を組み合わせて用いてもよく、増粘材その他の添加材としても使用され得る。
 正極合剤中の正極活物質、導電材及び結着材等の各構成成分割合は、集電箔11上における正極合剤層12の保持性及び電池性能の観点から決定されるものである。典型的には、正極活物質が、例えば、75~95wt%、導電材が3~18wt%、結着材が2~7wt%程度であることが好ましい。
 [正極の作製方法]
 まず、正極活物質、導電材及び結着材等を適当な溶媒と共に混合して正極合剤を調製する。この混合調製は、例えば、プラネタリーミキサー、ホモディスパー、クレアミックス(登録商標)及びフィルミックス(登録商標)等の混練機を用いて行うことができる。
 こうして調製した正極合剤を、スリットコーター、ダイコーター、グラビアコーター及びコンマコーター(登録商標)等の塗工装置により集電箔11に塗工し、乾燥により溶媒を揮発させた後にプレスする。以上の工程により、正極合剤層12が集電箔11上に形成された正極10が得られる。
 集電箔11上への正極合剤の単位面積当たりの目付量(mg/cm)は、ハイブリッド自動車等の高出力用途においてはエネルギーだけでなく、正極合剤層12中の電子伝導性及びリチウムイオン拡散性の観点から、集電箔11の片面当たり6mg/cm~20mg/cmとすることが好ましい。正極合剤層12の密度についても同様の理由から、1.7g/cm~2.8g/cmとすることが好ましい。
 集電箔11には、導電性の良好な金属からなる導電性部材が好ましく用いられ、アルミニウム又はアルミニウムを主成分とする合金を用いることができる。集電箔11の形状、厚みについて特に制限はなく、形状は、シート状、箔状又はメッシュ状等とすることができ、厚みは、例えば、10μm~30μmとすることができる。
 負極20は、集電箔21と、負極合剤層22と、を具備している。負極合剤層22は、集電箔21の両面に形成されている。負極合剤層22は、負極活物質と、増粘剤(例えば、カルボキシメチルセルロース(CMC))と、結着剤(例えば、スチレンブタジエンゴム(SBR))とを、所定の割合で水と共に混練することによって作製した負極合剤を、集電箔21上に塗布し乾燥させた後にプレスしたものである。本実施形態の負極活物質は、低結晶性炭素に被覆された球形化天然黒鉛に対して、所定割合のピッチを混合及び含浸させ、不活性雰囲気下において焼成して作製されたものである。
 [負極活物質]
 負極20の負極合剤層22を成す負極合剤は、リチウムイオンを挿入脱離する負極活物質を含む。負極活物質としては、チタン酸リチウム等の酸化物、ケイ素材料及びスズ材料等の単体、合金、化合物、並びに上記材料を併用した複合材料等、種々挙げられる。しかしながら、コスト、生産性、エネルギー密度及び長期信頼性の各観点を総合すると、黒鉛を主成分とする炭素材料を負極活物質として採用することが最も好ましい。特に、ハイブリッド自動車等の高出力用途においては、リチウムイオンの挿入脱離性を向上させ得る、黒鉛を核とした粒子の表面を非晶質炭素で被覆した複合材料がより好適である。また、難黒鉛性非晶質炭素及び易黒鉛性非晶質炭素等の黒鉛以外の炭素材料を混合してもよい。
 上記黒鉛の中で、例えば球形化天然黒鉛を負極活物質として用いることができる。球形化処理は通常、機械的な処理により鱗片状黒鉛粒子等の黒鉛結晶ベーサル面(AB面)に平行方向に応力を加えることにより、黒鉛結晶ベーサル面が同心円状に、あるいは折り畳まれた状態で褶曲構造をとりながら球形化される。粉砕又は磨砕、及び篩分け又は分級を行うことで、目的の粒度の球形化天然黒鉛を得ることができる。分級は、風力分級、湿式分級又は比重分級等の方法で行うことができるが、風力分級機の使用が好ましい。この場合、風量及び風速を制御することで、目的の粒度分布に調整することができる。
 上記の球形化天然黒鉛にコークス、ピッチ及び熱硬化性樹脂等を添加し、熱処理を施すことで黒鉛化処理を加えることができる。この黒鉛化処理物に対して、粉砕又は磨砕、及び篩分け又は分級を行うことにより、目的の粒度を得ることができる。分級は、風力分級、湿式分級又は比重分級等の方法で行うことができるが、風力分級機の使用が好ましい。この場合、風量及び風速を制御することで、目的の粒度分布に調整することができる。
 負極活物質の平均粒子径は、5μm~20μmの範囲にあることが好ましい。
 負極活物質のBET比表面積は、例えば1.0~10.0m/gの範囲にあることが好ましく、より好ましくは3.0~6.0m/gの範囲にあることが好ましい。
 [負極合剤]
 負極合剤には、負極活物質の他、増粘材及び結着材等の添加材が添加される。
 増粘材及び結着材としては、各種のポリマー材料が挙げられる。例えば、分散媒として水を主体とする溶媒を用いる場合には、水に溶解又は分散するポリマー材料を増粘材及び結着材として好ましく採用し得る。水溶性又は水分散性のポリマー材料としては、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルアルコール(PVA)、酢酸ビニル重合体、及びスチレンブタジエンゴム(SBR)等のゴム類が挙げられる。分散媒としてN-メチル-2-ピロリドン(NMP)等の有機溶媒系を主体とする溶媒を用いる場合には、ポリフッ化ビニリデン(PVDF)、又はポリエチレンオキサイド(PEO)等に代表されるポリアルキレンオキサイド、といったポリマー材料を増粘材及び結着材として用いることができる。前述の増粘材及び結着材は、それぞれ、2種以上を組み合わせて用いてもよい。
 負極合剤中の負極活物質、増粘材及び結着材等の各構成成分割合は、集電箔21上における負極合剤層22の保持性及び電池性能の観点から決定されるものである。典型的には、負極活物質が、例えば、90~99wt%、増粘材及び結着材が1~10wt%程度であることが好ましい。
 [負極の作製方法]
 まず、負極活物質、増粘材及び結着材等を適当な溶媒と共に混合して負極合剤を調製する。この混合調製は、例えば、プラネタリーミキサー、ホモディスパー、クレアミックス(登録商標)及びフィルミックス(登録商標)等の混練機を用いて行うことができる。
 こうして調製した負極合剤を、スリットコーター、ダイコーター、グラビアコーター及びコンマコーター(登録商標)等の塗工装置により集電箔21に塗工し、乾燥により溶媒を揮発させた後にプレスする。以上の工程により、負極合剤層22が集電箔21上に形成された負極20が得られる。
 集電箔21上への負極合剤の単位面積当たりの目付量(mg/cm)は、ハイブリッド自動車等の高出力用途においてはエネルギーだけでなく、負極合剤層22中の電子伝導性及びリチウムイオン拡散性の観点から、集電箔21の片面当たり3mg/cm~10mg/cmとすることが好ましい。負極合剤層22の密度についても同様の理由から、1.0g/cm~1.4g/cmとすることが好ましい。
 集電箔21には、導電性の良好な金属からなる導電性部材が好ましく用いられ、銅又は銅を主成分とする合金を用いることができる。集電箔21の形状及び厚みについて特に制限はなく、形状は、シート状、箔状又はメッシュ状等とすることができ、厚みは、例えば、5μm~20μmとすることができる。
 セパレータ30は、基材層31と、耐熱層としてのHeat Resistance layer(HRL)層32と、を具備している。HRL層32は、基材層31の両面に形成されている。本実施形態のHRL層32は、多孔質の無機フィラーから形成されている。
 [セパレータ]
 セパレータ30は、正極合剤層12と負極合剤層22とを絶縁するとともに、通常使用時は電解質の移動を許容し、電池内部が異常現象により高温(例えば130℃以上)になった場合に電解質の移動を遮断する機構を備える。セパレータ30の基材層31としては、多孔質樹脂を採用できる。例えば、基材層31として、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン系樹脂を好適に採用することができる。特に、PP、PE及びPPが順に積層された三層構造のセパレータを採用することが好ましい。
 基材層31は、例えば一軸延伸又は二軸延伸することによって多孔質化することができる。特に、長手方向に一軸延伸する場合は幅方向の熱収縮が少ないため、上記捲回電極体55を構成するセパレータ30の一要素として好適である。
 セパレータ30の厚さは特に限定されるものではないが、例えば10μm~30μm、典型的には15μm~25μm程度が好ましい。セパレータ30の厚さが上記の範囲内であることにより、セパレータ30のイオン通過性がより良好となり、また、特に高温時収縮及び溶融による破膜が生じにくくなる。
 HRL層32は、基材層31の少なくとも片方の面に構成されるものであり、電池内部が高温になった際に基材層31の収縮を抑制し、さらには基材層31が破膜しても正極10と負極20との直接接触による短絡を抑制する。HRL層32は、例えば、アルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシア及びマグネシア等の無機酸化物、無機窒化物、炭酸塩、硫酸塩、フッ化物並びに共有結合性結晶等の無機フィラーを主成分として含む。なかでも、耐熱性及びサイクル特性に優れるという理由から、アルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシア又はマグネシアを採用することが好ましく、ベーマイト又はアルミナを採用することが特に好ましい。
 無機フィラーの形状は、特に限定するものではないが、基材層31破膜時の正極10及び負極20間の短絡を抑制するという観点から、板状(フレーク状)の粒子であることが好ましい。無機フィラーの平均粒径は特に限定されないが、膜表面の平滑性、入出力性能及び高温時機能確保の観点から0.1μm~5μmとするのが適当である。
 HRL層32は、基材層31上での保持性の観点から、結着材等の添加材を含有することが好ましい。HRL層32は、一般的には無機フィラー及び添加材を溶媒に分散させてペーストを作製し、当該ペーストを基材層31上へ塗工し、乾燥させることで形成される。分散溶媒としては、水系溶媒又は有機溶媒等、特に限定されるものではないが、コスト及び取り扱い性を考慮すると、水系溶媒を使用することが好ましい。水系溶媒を用いる際の添加材としては、水系溶媒に分散又は溶解するポリマーを用いることができる。例えば、スチレンブタジエンゴム(SBR)、ポリエチレン(PE)等のポリオレフィン系樹脂、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー、ポリビニルアルコール(PVA)等のフッ素系樹脂、又はポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドを用いることができる。また、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、メチルメタクリレート、2-エチルヘキシルアクリレート及びブチルアクリレート等のモノマーを1種で重合した単独重合体等のアクリル系樹脂が挙げられる。前記添加材は前記モノマーを2種以上重合した共重合体であってもよい。さらに、前記単独重合体及び共重合体を2種以上混合したものであってもよい。
 HRL層32全体に占める無機フィラーの割合は、特に限定されないが、高温時機能確保の観点から、90質量%以上、典型的には95質量%以上であることが好ましい。
 HRL層32は、例えば、以下の方法によって形成することができる。
 まず、上述した無機フィラー及び添加材を分散媒中に分散させ、ペーストを作製する。ペースト作製は、ディスパミル(登録商標)、クレアミックス(登録商標)、フィルミックス(登録商標)、ボールミル、ホモディスパー及び超音波分散機等の混練機が使用可能である。得られたペーストを基材層31表面にグラビアコーター、スリットコーター、ダイコーター、コンマコーター(登録商標)及びディップコーター等の塗工装置で塗工し、乾燥させることでHRL層32を形成する。乾燥時の温度は、セパレータ30の収縮が発生する温度以下(例えば110℃以下)であることが好ましい。
 [非水電解液]
 リチウムイオン二次電池100に注入される電解液を構成する非水溶媒及び電解質塩は、従来のリチウムイオン二次電池に用いられるものを特に限定なく使用することができる。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、及びγ-ブチロラクトンが挙げられ、これらの内の1種を単独で又は2種以上を混合して用いることができる。特に、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合溶媒を用いることが好ましい。
 また、上記電解質塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO及びLiI等のリチウム化合物(リチウム塩)の1種又は2種以上を用いることができる。なお、電解質塩の濃度は、特に限定されないが、典型的には0.8mol/L~1.5mol/Lとすることができる。
 上記非水電解液は、添加剤としてのオキサラトボレート型化合物及びジフルオロリン酸化合物を含有する。なお、オキサラトボレート型化合物及びジフルオロリン酸化合物は、それぞれ一部又は全部が分解したものであってもよい。
 [オキサラトボレート型化合物]
 オキサラトボレート型化合物は、下記の化1における式(I)、又は下記の化2における式(II)で表される。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 ここで、式(I)中のR及びRは、ハロゲン原子(例えば、F,Cl,Brであり、好ましくはF)及び炭素原子数1~10(好ましくは1~3)のパーフルオロアルキル基から選択される。式(I)及び(II)中のAは、無機カチオン及び有機カチオンのいずれでもよい。
 オキサラトボレート型化合物として、上記式(II)で表される化合物を好ましく用いることができる。なかでも、オキサラトボレート型化合物として、下記の化3における式(III)で表されるリチウムビス(オキサラト)ボレート(以下「LiBOB」と表記)を用いることがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 [ジフルオロリン酸化合物]
 ジフルオロリン酸化合物は、ジフルオロリン酸アニオン(PO )を有する各種の塩であり得る。かかるジフルオロリン酸化合物におけるカチオン(カウンターカチオン)は、無機カチオン及び有機カチオンのいずれでもよい。無機カチオンの具体例としては、Li、Na及びK等のアルカリ金属のカチオン、並びにBe、Mg及びCa等のアルカリ土類金属のカチオン等が挙げられる。有機カチオンの具体例としては、テトラアルキルアンモニウム及びトリアルキルアンモニウム等のアンモニウムカチオンが挙げられる。このようなジフルオロリン酸化合物は、公知の方法により作製することができ、あるいは市販品の購入等により入手することができる。通常は、ジフルオロリン酸化合物として、ジフルオロリン酸アニオンと無機カチオン(例えばアルカリ金属のカチオン)との塩を用いることが好ましい。ここに開示される技術におけるジフルオロリン酸化合物の一好適例として、ジフルオロリン酸リチウム(LiPO)が挙げられる。
 このような構成を有するリチウムイオン二次電池100は、入出力特性及び過充電時における熱安定性の双方に優れるため、特にハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)、又は燃料電池自動車のような、電動機を備える自動車の駆動モータ等の駆動源用の電源(典型的には複数直列接続してなる組電池)として好適に利用することができる。
 図3を用いて、微粉量Pについて説明する。
 なお、図3は、横軸を負極活物質の粒子径Dとし、縦軸を負極活物質の全体量に対する、粒子径D以下である負極活物質の量の累積頻度として表している。
 図3に示すように、負極活物質の粒子径Dは、0μmから10μmまでの間で不均一なバラつきを示している。ここで、粒子径Dが3μm以下の負極活物質を微粉と称し、粒子径Dが3μm以下の負極活物質の累積頻度を、微粉量Pと定義する。すなわち、微粉量Pが15%であれば、粒子径Dが3μm以下の累積頻度が15%ということになる。なお、本実施形態の負極活物質の粒子径Dについて、平均粒子径Dm(粒径D50)を5μm以上かつ20μm以下としている。
 図4を用いて、微粉量P及びLiBOB量Lの特性について説明する。
 LiBOB量Lとは、電解液中のLiBOBの濃度である。
 なお、図4(A)は、横軸を負極活物質の微粉量Pとし、縦軸をリチウムイオン二次電池100の入力特性を示す充電抵抗比Rとして、微粉量Pと入力特性との関係を表している。
 微粉量Pと充電抵抗比Rとの関係は、LiBOB量Lが異なる複数のリチウムイオン二次電池100について示している。具体的には、図4(A)は、LiBOB量Lが0.4Mの濃度となるように添加されている場合と、LiBOB量Lが0.1Mの濃度となるように添加されている場合とを示している。
 なお、充電抵抗比Rとは、ある微粉量Pに対するリチウムイオン二次電池100の充電抵抗値を100としたときの、他の微粉量Pに対する充電抵抗の値を示すものであり、各微粉量Pに対する充電抵抗を無次元化したものである。
 また、図4(B)は、横軸を負極活物質の微粉量Pとし、縦軸をリチウムイオン二次電池100の保存耐久性を示す容量低下率Wとして、微粉量Pと容量低下率Wとの関係を表している。
 容量低下率Wとは、リチウムイオン二次電池を所定の条件で充電し、所定期間放置した後にどれくらい容量が低下したかを示す指標である。
 微粉量Pと容量低下率Wとの関係は、LiBOB量Lが異なる複数のリチウムイオン二次電池100について示している。具体的には、図4(B)は、LiBOB量Lが0.4Mの濃度となるように添加されている場合と、LiBOB量Lが0.1Mの濃度となるように添加されている場合とを示している。
 図4(A)に示すように、負極活物質の微粉量Pと充電抵抗比Rとの間には相関があり、微粉量Pが多いほど充電抵抗比Rは小さくなることが分かっている。この理由としては、微粉が少ない負極では、負極合剤層における負極活物質間の隙間が大きいため、導電性が低下し、微粉が多い負極では、比較的大きな粒子径Dを有する負極活物質間の隙間に微粉が入り込むため、導電性が上昇するからである。
 このように、負極活物質の微粉量Pが多いほど充電抵抗比Rは小さくなり、リチウムイオン二次電池100の入力特性を向上することができため、入力特性向上の観点からは微粉量Pが多いほうが好ましい。
 しかしながら、図4(B)に示すように、負極活物質の微粉量Pと容量低下率Wとには相関があり、微粉量Pが大きいほど容量低下率Wが高くなることが分かっている。このように、負極活物質の微粉量Pが多いほど容量低下率Wが高くなるため、容量低下率W向上の観点からは、負極活物質の微粉量Pが多すぎるのは好ましくない。
 一方、図4(B)に示すように、LiBOB量Lと容量低下率Wとの間には相関があり、LiBOB量Lが大きいほど容量低下率Wは小さくなることが分かっている。このように、電解液に添加するLiBOBの量を増加させることにより、容量低下率Wを低下させることができるため、容量低下率W低下の観点からは、LiBOB量Lを増加させることが好ましい。
 しかしながら、図4(A)に示すように、LiBOB量Lと充電抵抗比Rとの間には相関があり、LiBOB量Lが大きいほど充電抵抗比Rは大きくなることが分かっている。このように、電解液に添加するLiBOBの量を増加させることにより、充電抵抗比Rが大きくなるため、入力特性向上の観点からはLiBOB量Lは小さい方が好ましい。
 負極活物質の微粉量P及び電解液のLiBOB量Lは、このような特性を有するため、リチウムイオン二次電池100の入力特性を示す充電抵抗比Rのクライテリア(基準を満たすための判定条件)をR1(図4(A)参照)以下とし、リチウムイオン二次電池100の保存耐久性を示す容量低下率WのクライテリアをW1(図4(B)参照)以下とした場合に、リチウムイオン二次電池100の入力特性及び保存耐久性の両方の基準を満たす。そのため、負極活物質の微粉量P及び電解液のLiBOB量Lは、下記のような範囲の値に設定することが好ましい。
 すなわち、微粉量Pを10%以上かつ50%以下に設定する。同様に、LiBOB量Lを0.1M以上かつ0.4M以下の濃度に設定する。具体的には、リチウムイオン二次電池100の初期工程において、LiBOB量Lが0.1M以上かつ0.4M以下となるように、LiBOBを電解液に添加する。
 なお、10%以上かつ50%以下の微粉量Pである負極活物質については、Krガス吸着法によって測定される比表面積が2.0~5.0m/gとなることが分かっている。なお、Krガス吸着法とは、粉体粒子の表面に占有面積の分かった分子(Kr)を吸着させ、その吸着量から試料粉体の比表面積を求める手法である。また、比表面積とは、単位質量の粉体中に含まれる全粒子の表面積の総和のことである。
 図5を用いて、ジフルオロリン酸化合物(P1)の特性について説明する。
 なお、図5は、微粉量Pが50%である場合において、横軸をP1の量(P1の濃度)であるP1量Sとし、縦軸をリチウムイオン二次電池100の安全性を示す漏れ電流Jとして、P1量Sと安全性との関係を表している。
 図5に示すように、電解質のP1量Sと漏れ電流Jとの間には相関があることが分かっている。ここで、漏れ電流Jのクライテリア(基準を満たすための判定条件)をJ1以下としたとき、P1量Sは、0.06M以上であることが要求される。
 以上を踏まえ、安全性のクライテリアを考慮して、本実施形態の電解液のP1量Sを、0.06M以上とする。すなわち、リチウムイオン二次電池100の初期工程において、P1量Sが0.06M以上となるように、P1を電解液に添加する。
 リチウムイオン二次電池100の効果について説明する。
 リチウムイオン二次電池100によれば、入力特性、保存耐久性及び安全性の基準をバランスよく満たすことができる。
 すなわち、負極活物質の微粉量Pと充電抵抗比Rとの間には相関があり、微粉量Pと容量低下率Wとの間には相関があることから、入力特性の指標である充電抵抗比Rと、保存耐久性の指標である容量低下率Wとのクライテリアを満足する微粉量Pを定義することで、良好な入力特性及び保存耐久性を両立させることができる。
 また、電解液の添加剤であるLiBOB量Lと充電抵抗比Rとには相関があり、LiBOB量Lと容量低下率Wとには相関があることから、入力特性の指標である充電抵抗比Rと保存耐久性の指標である容量低下率Wとのクライテリアを満足するLiBOB量Lを定義することで、良好な入力特性及び保存耐久性を両立させることができる。
 さらに、電解液の添加剤であるP1量Sと漏れ電流Eとの間には相関があることから、安全性の指標である漏れ電流Eのクライテリアを満足するP1量Sを定義することで、安全性を保障することができる。
 下記の表1における実施例及び比較例の如く非水電解質二次電池を作製し、各非水電解質二次電池の性能を評価した。
 [正極の作製]
 硫酸Niと硫酸Coと硫酸Mn溶液の混合液を水酸化Naにて中和し、Ni34Co33Mn33(OH)を基本構成とする前駆体を作製した。得られた前駆体を炭酸Liと混合し、大気雰囲気中にて800~950℃で5~15時間、任意に焼成を実施し、正極活物質としてのLi14Ni34Co33Mn33を作製した。この正極活物質は、粒径D50が3~8μm、比表面積が0.5~1.9m/gとなるように調整した。
 上記正極活物質と、AB(導電材)と、PVDF(結着材)とを、これらの材料の質量比が90:8:2となるようにNMP(分散媒)と混合して、正極合剤を作製した。この正極合剤を、厚さ15μmのアルミニウム箔(集電箔)の両面に塗付した。両面に対する正極合剤の塗付量が約11.3mg/cm(乾燥後、固形分基準)となるように調節した。塗付した正極合剤を、乾燥させた後、圧延プレス機によりプレスして、正極合剤層の密度を1.8~2.4g/cmに調整した。得られた電極をスリットし、長さ3000mm、幅98mmの帯状の正極を作製した。
 [負極の作製]
 風力分級機を用いて天然黒鉛粉末の粒度を調整し、異なる粒径の天然黒鉛粉末を得た。得られた天然黒鉛粉末をピッチと混合して(天然黒鉛粉末及びピッチの質量比=96:4)、N雰囲気下において800~1300℃で10時間焼成した。上記工程により、異なる微粉量と、異なる表面積とを持つ負極活物質を得た。この負極活物質とSBRとCMCとを、重量比97.0:1.5:1.5でイオン交換水と混合し、プラネタリーミキサーにてせん断を加え、負極合剤を作製した。この負極合剤を、厚さ10μmの銅箔の両面に塗付した。両面に対する負極合剤の塗付量が約7.0mg/cm(乾燥後、固形分基準)となるように調節した。塗付した負極合剤を、乾燥させた後、圧延プレス機によりプレスして、負極合剤層の密度を約0.9g/cm~1.3g/cmに調整した。得られた電極をスリットし、長さ3200mm、幅102mmの帯状の負極を作製した。
 [耐熱性セパレータの作製]
 無機フィラーとしてのアルミナ粉末(Al)と、アクリル系バインダと、増粘剤としてのCMCとを、Al:バインダ:CMCの配合比が98:1.3:0.7となるように、溶媒としてのイオン交換水と共に混練してペーストを作製した。このペーストを、厚さ20μmのポリエチレン製単層多孔質シートの片面に塗付し、70℃で乾燥させて無機多孔質層(耐熱層)を形成することにより耐熱性セパレータを得た。上記ペーストの塗付量(目付量)は、固形分基準で0.7mg/cmとなるように調整した。
 [電解液の調整]
 電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:3:4で混合したものに、1.1mol/LのLiPFを溶解させ、さらに添加剤としてのリチウムビス(オキサラト)ボレート(LiBOB)及びジフルオロリン酸リチウム(LiPO)を溶解させて作製した。
 [セルの作製]
 上記正極及び負極を、2枚の上記耐熱性セパレータを介して重ね合わせ、偏平形状の捲回電極体を作製した。
 この捲回電極体を、電解液とともに箱型の電池ケースに密閉した。
 上記のように作製した電池セルに対し、初回充放電を実施後、セル評価を行った。
 [粒度分布測定法]
 フロー式粒子像分析装置(シスメックス社製:FPIA(登録商標)-3000)を用いて微粉量の測定を行った。分散条件は、RO水と界面活性剤(ナロアクティー(登録商標))を用いて、攪拌速度300rpmで行った。
 [漏れ電流測定法]
 セルを-10℃で、SOC30%に調整し、電流値40Aで充電を行い、セパレータ基材がシャットダウンした後の10分後の最大電流値を測定した。
Figure JPOXMLDOC01-appb-T000004
 本発明は、非水電解質二次電池及び非水電解質二次電池の製造方法に利用できる。
 10   正極
 11   金属箔
 12   正極合剤層
 20   負極
 21   金属箔
 22   負極合剤層
 30   セパレータ
 55   捲回電極体
 100  リチウムイオン二次電池

Claims (2)

  1.  正極と負極とをセパレータを介して捲回して構成される捲回電極体と、前記正極と前記負極との間に介在する電解液と、を備え、前記負極の表面には負極活物質を含む負極合剤層が形成され、前記負極活物質の平均粒子径が5μm以上かつ20μm以下であって、粒子径が3μm以下の前記負極活物質の累積頻度である微粉量が10%以上かつ50%以下である非水電解質二次電池であって、
     前記電解液には、0.1M以上かつ0.4M以下のオキサラトボレート型化合物と0.06M以上のジフルオロリン酸化合物とが含まれる、
     非水電解質二次電池。
  2.  正極と負極とをセパレータを介して捲回して構成される捲回電極体と、前記正極と前記負極との間に介在する電解液と、を備え、前記負極の表面には負極活物質を含む負極合剤層が形成され、前記負極活物質の平均粒子径が5μm以上かつ20μm以下であって、粒子径が3μm以下の前記負極活物質の累積頻度である微粉量が10%以上かつ50%以下である非水電解質二次電池の製造方法であって、
     前記電解液に、0.1M以上かつ0.4M以下のオキサラトボレート型化合物と、0.06M以上のジフルオロリン酸化合物とを添加する、
     非水電解質二次電池の製造方法。
PCT/JP2013/067221 2012-06-29 2013-06-24 非水電解質二次電池及び非水電解質二次電池の製造方法 WO2014002939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157001477A KR20150033661A (ko) 2012-06-29 2013-06-24 비수 전해질 2차 전지 및 비수 전해질 2차 전지의 제조 방법
US14/410,658 US20150194702A1 (en) 2012-06-29 2013-06-24 Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
CN201380034038.4A CN104412442A (zh) 2012-06-29 2013-06-24 非水电解质二次电池和非水电解质二次电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012147896A JP5692174B2 (ja) 2012-06-29 2012-06-29 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2012-147896 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002939A1 true WO2014002939A1 (ja) 2014-01-03

Family

ID=49783085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067221 WO2014002939A1 (ja) 2012-06-29 2013-06-24 非水電解質二次電池及び非水電解質二次電池の製造方法

Country Status (5)

Country Link
US (1) US20150194702A1 (ja)
JP (1) JP5692174B2 (ja)
KR (1) KR20150033661A (ja)
CN (1) CN104412442A (ja)
WO (1) WO2014002939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066174A1 (ja) 2019-10-04 2021-04-08 旭化成株式会社 非水系リチウム蓄電素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398326B2 (ja) * 2014-05-27 2018-10-03 株式会社Gsユアサ 非水電解質二次電池
JP2016146341A (ja) * 2015-02-02 2016-08-12 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
JP7019284B2 (ja) * 2016-04-06 2022-02-15 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP2018163833A (ja) * 2017-03-27 2018-10-18 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP7239277B2 (ja) * 2017-06-13 2023-03-14 株式会社イノアック技術研究所 導電性発泡体
CN111732096B (zh) * 2019-03-25 2022-02-22 中信国安盟固利动力科技有限公司 一种高功率锂离子电池的负极材料及其制备方法
JP2022060673A (ja) * 2020-10-05 2022-04-15 本田技研工業株式会社 非水電解質二次電池用負極及びこれを備える非水電解質二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831420A (ja) * 1994-07-11 1996-02-02 Osaka Gas Co Ltd リチウム電池の電極用炭素材およびその製造方法
JP2007165125A (ja) * 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2009205950A (ja) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678539B2 (ja) * 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831420A (ja) * 1994-07-11 1996-02-02 Osaka Gas Co Ltd リチウム電池の電極用炭素材およびその製造方法
JP2007165125A (ja) * 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2009205950A (ja) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066174A1 (ja) 2019-10-04 2021-04-08 旭化成株式会社 非水系リチウム蓄電素子
KR20220044994A (ko) 2019-10-04 2022-04-12 아사히 가세이 가부시키가이샤 비수계 리튬 축전 소자

Also Published As

Publication number Publication date
US20150194702A1 (en) 2015-07-09
JP5692174B2 (ja) 2015-04-01
KR20150033661A (ko) 2015-04-01
CN104412442A (zh) 2015-03-11
JP2014011072A (ja) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5692174B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
KR101678798B1 (ko) 비수 전해액 2차 전지의 제조 방법
US20150249269A1 (en) Electrolyte for lithium secondary batteries and lithium secondary battery including the same
KR20160072220A (ko) 비수 전해액 이차 전지
WO2015028869A1 (en) Nonaqueous electrolyte secondary battery
JP6037586B2 (ja) リチウム二次電池用電解液及びそれを含むリチウム二次電池
JP7484725B2 (ja) 蓄電素子及び蓄電素子の製造方法
JP2016119154A (ja) リチウムイオン二次電池
WO2016056181A1 (en) Nonaqueous electrolyte secondary battery
JP7205717B2 (ja) 正極
JP6191602B2 (ja) リチウムイオン二次電池
JP2014093145A (ja) 非水電解質二次電池及びその負極
KR101556486B1 (ko) 비수 전해질 2차 전지
WO2014002561A1 (ja) 非水電解質二次電池
JP2020123465A (ja) 負極及び負極の製造方法
JP5614431B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP5838952B2 (ja) 非水電解質二次電池及びその製造方法
WO2014003067A1 (ja) 非水電解質二次電池
JP7148872B2 (ja) リチウム二次電池用非水電解液
JP2014049296A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP6181762B2 (ja) リチウム二次電池用電解液及びそれを含むリチウム二次電池
JP5975291B2 (ja) 非水電解液二次電池の製造方法
JP6593029B2 (ja) リチウムイオン二次電池用負極の製造方法
WO2023276863A1 (ja) 非水電解質蓄電素子
US20220223863A1 (en) Graphite-based negative electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14410658

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157001477

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13808777

Country of ref document: EP

Kind code of ref document: A1