WO2014003067A1 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- WO2014003067A1 WO2014003067A1 PCT/JP2013/067550 JP2013067550W WO2014003067A1 WO 2014003067 A1 WO2014003067 A1 WO 2014003067A1 JP 2013067550 W JP2013067550 W JP 2013067550W WO 2014003067 A1 WO2014003067 A1 WO 2014003067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- layer
- positive electrode
- secondary battery
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to the technology of a non-aqueous electrolyte secondary battery.
- lithium ion secondary battery As the non-aqueous electrolyte secondary battery, for example, a lithium ion secondary battery is well known.
- lithium ion secondary batteries have become increasingly important as on-vehicle power sources mounted on hybrid vehicles and electric vehicles, or as power sources mounted on personal computers, portable terminals, and other electrical products.
- Lithium ion secondary batteries include, for example, a box-shaped battery case, an electrode body housed inside the battery case, and a sealing body that seals the opening of the battery case by being joined to the battery case by laser welding ( Lid).
- the electrode body of the lithium ion secondary battery is configured as a wound electrode body that is wound in a state in which a negative electrode, a separator, and a positive electrode are stacked and further formed into a flat shape.
- Patent Document 1 discloses a powdery negative electrode material having a structure in which a carbonaceous material with lower crystallinity is coated on a graphite-based carbonaceous material in order to improve input characteristics and suppress electrode expansion.
- the resistance (R) of the negative electrode for a lithium secondary battery produced from the negative electrode material and the binder is 6.5 ohms or less, and the double layer capacity (Cdl) at the negative electrode / electrolyte interface is 7.0.
- a negative electrode material for a lithium secondary battery characterized by being in the range of 10 ⁇ 10 ⁇ 4 F or more and less than 10 ⁇ 10 ⁇ 4 F is disclosed.
- the electric double layer capacity disclosed in Patent Document 1 is an electric double layer capacity measured after charging and discharging the battery. When the electric double layer capacity of the surface film (SEI film) and the battery are used, the vehicle There was a problem that the input characteristics for satisfying the performance could not be secured.
- the problem to be solved by the present invention is to provide a nonaqueous electrolyte secondary battery capable of improving both input characteristics and safety.
- a wound electrode body configured by winding a positive electrode and a negative electrode through a separator
- a negative electrode mixture layer is formed on a surface of the negative electrode.
- a non-aqueous electrolyte secondary battery including a negative electrode active material and having a heat-resistant layer formed on at least one surface of the separator, wherein the negative electrode active material has a capacitance of 1.0 F or more and 1.6 F or less.
- the thickness of the heat-resistant layer is 2 ⁇ m or more and 10 ⁇ m or less.
- nonaqueous electrolyte secondary battery of the present invention both input characteristics and safety can be improved.
- the schematic diagram which showed the whole structure of the lithium ion secondary battery The cross-sectional schematic diagram which showed the electrode body.
- the schematic diagram which showed the capacitance measuring apparatus The graph which showed the characteristic of capacitance.
- the graph which showed the characteristic of the thickness of the HRL layer in a separator The schematic diagram which showed the whole structure of the lithium ion secondary battery.
- the configuration of the lithium ion secondary battery 100 will be described with reference to FIG. 1, the battery case 40, the wound electrode body 55, and the lid body 60 are separated and schematically shown for easy understanding.
- the lithium ion secondary battery 100 is an embodiment according to the non-aqueous electrolyte secondary battery of the present invention.
- the lithium ion secondary battery 100 includes a battery case 40, a wound electrode body 55, and a lid body 60.
- the battery case 40 is configured as a substantially rectangular parallelepiped box having an upper surface opened.
- the opened upper surface of the battery case 40 is sealed by the lid body 60.
- a wound electrode body 55 is accommodated in the battery case 40.
- the wound electrode body 55 is obtained by winding an electrode body 50 (see FIG. 2) in which the negative electrode 20, the positive electrode 10, and the separator 30 are laminated so that the separator 30 is interposed between the negative electrode 20 and the positive electrode 10. It is formed into a shape.
- the wound electrode body 55 is accommodated in the battery case 40 so that the axial direction of the wound electrode body 55 and the sealing direction of the opening of the battery case 40 by the lid body 60 are orthogonal to each other.
- a positive electrode current collector 51 (in which only the current collector foil 11 described later is wound) is exposed at the end on one side in the axial direction of the wound electrode body 55.
- a negative electrode current collector 52 (only a current collector foil 21 to be described later is wound) is exposed at the end of the wound electrode body 55 on the other side in the axial direction.
- the lid 60 seals the upper surface of the battery case 40. More specifically, the lid 60 seals the upper surface of the battery case 40 by being joined to the upper surface of the battery case 40 by laser welding. That is, in the lithium ion secondary battery 100, the opening of the battery case 40 is sealed by joining the lid 60 to the opening of the battery case 40 by laser welding.
- a positive electrode current collector terminal 61 and a negative electrode current collector terminal 62 are provided on the upper surface of the lid 60.
- the positive current collecting terminal 61 is formed with a leg portion 71 extending downward.
- the negative electrode current collecting terminal 62 is formed with a leg portion 72 extending downward.
- the positive electrode current collector 51 of the wound electrode body 55 is joined to the leg portion 71 of the positive electrode current collector terminal 61.
- the negative electrode current collector 52 of the wound electrode body 55 is joined to the leg portion 72 of the negative electrode current collector terminal 62. That is, the wound electrode body 55 is accommodated in the battery case 40 in a state where the wound electrode body 55 is joined to the lid body 60 including the positive electrode current collector terminal 61 and the negative electrode current collector terminal 62.
- a liquid injection hole 63 is provided on the upper surface of the lid 60, and the wound electrode body 55 is attached to the battery case 40 in a state where the wound electrode body 55 is joined to the lid 60 having the positive electrode current collector terminal 61 and the negative electrode current collector terminal 62.
- the battery is completed by injecting the electrolytic solution from the liquid injection hole 63 after being accommodated and joining the lid 60 and the upper surface of the battery case 40 by laser welding.
- the electrode body 50 will be described with reference to FIG. In FIG. 2, a part of the electrode body 50 is schematically shown in a cross-sectional view.
- the electrode body 50 is obtained by stacking the negative electrode 20, the positive electrode 10, and the separator 30 so that the separator 30 is interposed between the negative electrode 20 and the positive electrode 10.
- the positive electrode 10 includes a current collector foil 11 and a positive electrode mixture layer 12.
- the positive electrode mixture layer 12 is formed on both surfaces of the current collector foil 11.
- Positive electrode mixture layer 12 the positive electrode active material (for example, Li 1. 14 Ni 0. 34 Co 0. 33 Mn 0. 33 O 2) and a conductive agent (e.g., acetylene black (AB)) and, a binder
- a positive electrode mixture prepared by kneading for example, polyvinylidene fluoride (PVDF)
- PVDF polyvinylidene fluoride
- NMP N-methyl-2-pyrrolidone
- the positive electrode mixture forming the positive electrode mixture layer 12 of the positive electrode 10 includes a positive electrode active material that inserts and desorbs lithium ions.
- the positive electrode active material include lithium transition metal composite oxides (LiNiO 2 , LiCoO 2 , LiNiCoMnO 2, etc.) typically having a layered crystal structure (typically a layered rock salt structure belonging to a hexagonal system).
- LiMn 2 O 4 LiNiMn 2 O 4 , and the like
- lithium transition metal complex oxides LiFePO 4, etc.
- a conductive material In addition to the positive electrode active material, additives such as a conductive material and a binder (binder) are added to the positive electrode mixture as necessary.
- a conductive material carbon powder (carbon black such as acetylene black (AB), furnace black and ketjen black, graphite powder, graphite powder, etc.), and conductive substances such as conductive carbon fiber are used alone. Or it can contain as a mixture of 2 or more types.
- Bind materials include various polymer materials.
- a polymer material that is dissolved or dispersed in water can be preferably used as the binder.
- water-soluble or water-dispersible polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC), fluorine resins such as polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), vinyl acetate polymer, and styrene butadiene.
- examples thereof include rubbers such as rubber (SBR).
- a solvent mainly composed of an organic solvent such as N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium
- a polymer material such as polyvinylidene fluoride (PVDF) or polyalkylene oxide such as polyethylene oxide (PEO)
- PVDF polyvinylidene fluoride
- PEO polyethylene oxide
- the aforementioned binders may be used in combination of two or more, and may be used as a thickener and other additives.
- the ratio of each constituent component of the positive electrode active material, the conductive material, the binder, and the like in the positive electrode mixture is determined from the viewpoint of the retention of the positive electrode mixture layer 12 on the current collector foil 11 and the battery performance.
- the positive electrode active material is preferably about 75 to 95 wt%
- the conductive material is about 3 to 18 wt%
- the binder is about 2 to 7 wt%.
- a positive electrode active material, a conductive material, a binder and the like are mixed with an appropriate solvent to prepare a positive electrode mixture.
- This mixing preparation can be performed, for example, using a kneader such as a planetary mixer, a homodisper, Claremix (registered trademark), and Fillmix (registered trademark).
- the positive electrode mixture thus prepared is applied to the current collector foil 11 by a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark), and the solvent is evaporated by drying and then pressed.
- a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark)
- the basis weight per unit area (mg / cm 2 ) of the positive electrode mixture on the current collector foil 11 is not limited to energy in high output applications such as hybrid vehicles, and the electron conductivity in the positive electrode mixture layer 12 and in view of the lithium ion diffusibility, it is preferable that the per side 6mg / cm 2 ⁇ 20mg / cm 2 of collector foil 11. For the same reason also the density of the positive electrode mixture layer 12, it is preferable to 1.7g / cm 3 ⁇ 2.8g / cm 3.
- a conductive member made of a highly conductive metal is preferably used, and aluminum or an alloy mainly composed of aluminum can be used.
- the shape and thickness of the current collector foil 11 are not particularly limited, and the shape may be a sheet shape, a foil shape, a mesh shape, or the like, and the thickness may be, for example, 10 ⁇ m to 30 ⁇ m.
- the negative electrode 20 includes a current collector foil 21 and a negative electrode mixture layer 22.
- the negative electrode mixture layer 22 is formed on both surfaces of the current collector foil 21.
- the negative electrode mixture layer 22 kneads a negative electrode active material, a thickener (for example, carboxymethyl cellulose (CMC)), and a binder (for example, styrene butadiene rubber (SBR)) with water at a predetermined ratio.
- CMC carboxymethyl cellulose
- SBR styrene butadiene rubber
- the negative electrode mixture prepared in this manner was applied onto the current collector foil 21 and dried, and then pressed.
- the negative electrode active material of the present embodiment is prepared by mixing and impregnating a predetermined proportion of pitch with spheroidized natural graphite coated with low crystalline carbon and firing it in an inert atmosphere.
- the negative electrode mixture forming the negative electrode mixture layer 22 of the negative electrode 20 includes a negative electrode active material that inserts and desorbs lithium ions.
- the negative electrode active material include various oxides such as lithium titanate, simple substances such as silicon materials and tin materials, alloys, compounds, and composite materials using the above materials in combination.
- a carbon material mainly composed of graphite it is most preferable to employ as the negative electrode active material.
- a composite material in which the surface of particles having graphite as a core is coated with amorphous carbon which can improve lithium ion insertion / extraction, is more preferable.
- carbon materials other than graphite such as non-graphitizable amorphous carbon and easily graphitizable amorphous carbon may be mixed.
- a thickener and a binder are added to the negative electrode mixture.
- Various polymer materials are mentioned as a thickener and a binder.
- a polymer material that dissolves or disperses in water can be preferably used as the thickener and the binder.
- water-soluble or water-dispersible polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC), fluorine resins such as polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), vinyl acetate polymer, and styrene butadiene.
- Examples thereof include rubbers such as rubber (SBR).
- SBR rubber
- a solvent mainly composed of an organic solvent such as N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium
- a polymer material such as polyvinylidene fluoride (PVDF) or polyalkylene oxide such as polyethylene oxide (PEO)
- PVDF polyvinylidene fluoride
- PEO polyethylene oxide
- the proportions of the respective constituent components such as the negative electrode active material, the thickener and the binder in the negative electrode mixture are determined from the viewpoint of the retention of the negative electrode mixture layer 22 on the current collector foil 21 and the battery performance. .
- the negative electrode active material is, for example, about 90 to 99 wt%, and the thickener and the binder are about 1 to 10 wt%.
- a negative electrode active material, a thickener, a binder and the like are mixed with an appropriate solvent to prepare a negative electrode mixture.
- This mixing preparation can be performed, for example, using a kneader such as a planetary mixer, a homodisper, Claremix (registered trademark), and Fillmix (registered trademark).
- the negative electrode mixture thus prepared is applied to the current collector foil 21 by a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark), and the solvent is evaporated by drying and then pressed.
- a coating device such as a slit coater, a die coater, a gravure coater, and a comma coater (registered trademark)
- the basis weight per unit area (mg / cm 2 ) of the negative electrode mixture on the current collector foil 21 is not only energy, but also the electronic conductivity in the negative electrode mixture layer 22 in high output applications such as hybrid vehicles. in view of the lithium ion diffusibility, it is preferable that one surface per 3mg / cm 2 ⁇ 10mg / cm 2 of collector foil 21. For the same reason also the density of the negative electrode mixture layer 22, it is preferable to 1.0g / cm 3 ⁇ 1.4g / cm 3.
- a conductive member made of a metal having good conductivity is preferably used, and copper or an alloy containing copper as a main component can be used.
- the shape and thickness of the current collector foil 21 are not particularly limited, and the shape may be a sheet shape, a foil shape, a mesh shape, or the like, and the thickness may be, for example, 5 ⁇ m to 20 ⁇ m.
- the separator 30 includes a base material layer 31 and a Heat Resistance layer (HRL) layer 32 as a heat resistant layer.
- the HRL layer 32 is formed on both surfaces of the base material layer 31.
- the HRL layer 32 of the present embodiment is formed from a porous inorganic filler.
- the thickness of the HRL layer 32 is defined as a thickness T.
- the separator 30 insulates the positive electrode mixture layer 12 and the negative electrode mixture layer 22 and allows the electrolyte to move during normal use.
- a high temperature eg, 130 ° C. or higher
- a mechanism for blocking the movement of the electrolyte is provided.
- a porous resin can be adopted as the base material layer 31 of the separator 30.
- polyolefin resin such as polyethylene (PE) and polypropylene (PP) can be suitably employed as the base material layer 31.
- PP polypropylene
- the base material layer 31 can be made porous by, for example, uniaxial stretching or biaxial stretching.
- uniaxial stretching in the longitudinal direction is suitable as an element of the separator 30 constituting the wound electrode body 55 because there is little thermal contraction in the width direction.
- the thickness of the separator 30 is not particularly limited, but is preferably about 10 to 30 ⁇ m, typically about 15 to 25 ⁇ m. When the thickness of the separator 30 is within the above range, the ion permeability of the separator 30 is further improved, and film breakage due to shrinkage at high temperature and melting is particularly difficult to occur.
- the HRL layer 32 is configured on at least one surface of the base material layer 31, and suppresses shrinkage of the base material layer 31 when the inside of the battery becomes high temperature. Even so, a short circuit due to direct contact between the positive electrode 10 and the negative electrode 20 is suppressed.
- the HRL layer 32 is mainly composed of inorganic fillers such as inorganic oxides such as alumina, boehmite, silica, titania, zirconia, calcia, and magnesia, inorganic nitrides, carbonates, sulfates, fluorides, and covalent crystals. Include as.
- alumina, boehmite, silica, titania, zirconia, zirconia, calcia or magnesia is included in the HRL layer 32, and that boehmite or alumina is included in the HRL layer 32 because it is excellent in heat resistance and cycle characteristics. preferable.
- the shape of the inorganic filler is not particularly limited, but is preferably a plate-like (flaky) particle from the viewpoint of suppressing a short circuit between the positive electrode 10 and the negative electrode 20 when the base material layer 31 is broken.
- the average particle size of the inorganic filler is not particularly limited, but it is suitably from 0.1 ⁇ m to 5 ⁇ m from the viewpoint of smoothness of the film surface, input / output performance, and function at high temperature.
- the HRL layer 32 preferably contains an additive such as a binder from the viewpoint of retention on the base material layer 31.
- the HRL layer 32 is generally formed by preparing a paste by dispersing an inorganic filler and an additive in a solvent, applying the paste onto the base material layer 31, and drying the paste.
- the dispersion solvent is not particularly limited, such as an aqueous solvent or an organic solvent, but it is preferable to use an aqueous solvent in consideration of cost and handleability.
- an additive when the aqueous solvent is used, a polymer that is dispersed or dissolved in the aqueous solvent can be used.
- polyolefin resins such as styrene butadiene rubber (SBR) and polyethylene (PE), cellulose polymers such as carboxymethyl cellulose (CMC), fluororesins such as polyvinyl alcohol (PVA), or polyethylene oxide (PEO) Alkylene oxide
- SBR styrene butadiene rubber
- PE polyethylene
- CMC carboxymethyl cellulose
- PVA polyvinyl alcohol
- PEO polyethylene oxide
- acrylics such as homopolymers obtained by polymerizing monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, methyl methacrylate, 2-ethylhexyl acrylate and butyl acrylate in one kind Based resins.
- the additive may be a copolymer obtained by polymerizing two or more of the monomers. Further, a mixture of two or more of the above homopolymers and copoly
- the proportion of the inorganic filler in the entire HRL layer 32 is not particularly limited, but is preferably 90% by mass or more, and typically 95% by mass or more from the viewpoint of securing the function at high temperature.
- the thickness of the HRL layer 32 is preferably 2 ⁇ m to 10 ⁇ m.
- the HRL layer 32 can be formed by the following method, for example. First, the above-described inorganic filler and additive are dispersed in a dispersion medium to produce a paste.
- a dispersion medium for paste preparation, dispersyl (registered trademark), Claremix (registered trademark), fillmix (registered trademark), a kneader such as a ball mill, a homodisper, and an ultrasonic disperser can be used.
- the obtained paste is coated on the surface of the base material layer 31 with a coating apparatus such as a gravure coater, slit coater, die coater, comma coater (registered trademark), dip coater, and the like, and dried to form the HRL layer 32. It is preferable that the drying temperature is equal to or lower than the temperature at which the separator 30 contracts (for example, 110 ° C. or lower).
- Non-aqueous electrolyte As the non-aqueous solvent and the electrolyte salt constituting the electrolytic solution injected into the lithium ion secondary battery 100, those used in conventional lithium ion secondary batteries can be used without any particular limitation.
- the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2 -Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, and ⁇ - Butyrolactone can be used, and one of these can be
- electrolyte salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ).
- LiPF 6 LiPF 6
- LiBF 4 LiBF 4
- LiClO 4 LiAsF 6
- LiCF 3 SO 3 LiC 4 F 9 SO 3
- LiN (CF 3 SO 2 ) 2 LiC (CF 3 SO 2 ).
- LiC (CF 3 SO 2 ) LiN (CF 3 SO 2 ) 2
- LiC (CF 3 SO 2 ) LiC (CF 3 SO 2 ).
- concentration of the electrolyte salt is not particularly limited, but can typically be 0.8 mol / L to 1.5 mol / L.
- the electrolytic solution may contain an additive as long as the object of the present invention is not significantly impaired.
- the additive include fluorophosphate (preferably difluorophosphate.
- fluorophosphate preferably difluorophosphate.
- lithium difluorophosphate represented by LiPO 2 F 2
- LiBOB lithium bisoxalate borate
- concentration of each additive in the electrolytic solution can be appropriately changed according to the purpose, and is, for example, 0.01 to 0.1 mol / L.
- the hybrid vehicle (HV), plug-in hybrid vehicle (PHV), and electric vehicle (EV) are particularly preferred.
- a power source for a drive source such as a drive motor of an automobile equipped with an electric motor such as a fuel cell automobile (typically, a battery pack formed by connecting a plurality of them in series).
- the positive electrode active material, AB (conductive material), and PVDF (binder) are mixed with NMP (dispersion medium) so that the mass ratio of these materials is 90: 8: 2, An agent was prepared.
- This positive electrode mixture was applied to both surfaces of an aluminum foil (current collector foil) having a thickness of 15 ⁇ m.
- the coating amount of the positive electrode mixture on both sides was adjusted to be about 11.3 mg / cm 2 (on a solid basis after drying).
- the coated positive electrode mixture was dried and then pressed with a rolling press to adjust the density of the positive electrode mixture layer to 1.8 to 2.4 g / cm 3 .
- the obtained electrode was slit to produce a strip-shaped positive electrode having a length of 3000 mm and a width of 98 mm.
- the particle size of natural graphite powder was adjusted using an air classifier to obtain natural graphite powder having different particle sizes.
- negative electrode active materials having different amounts of fine powder and different surface areas were obtained.
- This negative electrode active material, SBR, and CMC were mixed with ion-exchanged water at a weight ratio of 97.0: 1.5: 1.5, and sheared with a planetary mixer to prepare a negative electrode mixture.
- This negative electrode mixture was applied to both sides of a 10 ⁇ m thick copper foil.
- the coating amount of the negative electrode mixture on both sides was adjusted to about 7.0 mg / cm 2 (after drying, based on solid content).
- the coated negative electrode mixture was dried and then pressed by a rolling press to adjust the density of the negative electrode mixture layer to about 0.9 g / cm 3 to 1.3 g / cm 3 .
- the obtained electrode was slit to produce a strip-shaped negative electrode having a length of 3200 mm and a width of 102 mm.
- a paste was prepared by kneading with ion-exchanged water as a solvent. This paste was applied to one side of a polyethylene single-layer porous sheet having a thickness of 20 ⁇ m and dried at 70 ° C. to form an inorganic porous layer (heat-resistant layer) to obtain a heat-resistant separator. The amount of paste applied (weight per unit area) was adjusted to 0.7 mg / cm 2 on a solid basis. The thickness of the inorganic porous layer after drying was 4 ⁇ m.
- the electrolyte was prepared by dissolving 1.1 mol / L LiPF 6 in a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) at 3: 3: 4, and an additive. It was prepared by dissolving difluorophosphate (LiPO 2 F 2 ) and lithium bisoxalate borate (LiBOB). The mixing ratio of the additive is as described above.
- Capacitance measurement method The amount of fine powder was measured using a flow type particle image analyzer (manufactured by Sysmex Corporation: FPIA (registered trademark) -3000). Dispersion conditions were performed using RO water and a surfactant (Naroacti (registered trademark)) at a stirring speed of 300 rpm.
- FIG. 3 schematically shows a capacitance measuring device 80 that measures the capacitance C of the negative electrode active material.
- Capacitance C is the electric capacity of the negative electrode active material and is an index of how much lithium ion can adsorb lithium ion. Capacitance C is measured by a capacitance measuring device 80.
- the capacitance measuring device 80 is opposed to the cell 81 filled with the electrolytic solution with the negative electrode mixture layer 22 formed on one side of the current collector foil 21 through the separator 30 so that the negative electrode mixture layer 22 faces. It is arranged.
- the cell 81 is regarded as a virtual capacitor, and a voltage is applied to the cell 81 (between a pair of negative electrode mixture layers 22) to measure the capacitance of the virtual capacitor. The capacitance C of the active material) is measured.
- electrolytic solution EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate) were mixed in a ratio of 3: 4: 3 (weight ratio), and LiPF 6 was added. Those dissolved at a concentration of 1.1 mol / L are used.
- FIG. 4A shows the relationship between the capacitance C and the input characteristics, where the horizontal axis is the capacitance C of the negative electrode active material, and the vertical axis is the charging resistance ratio R indicating the input characteristics of the lithium ion secondary battery 100.
- FIG. 4B shows the relationship between the capacitance C and safety, where the horizontal axis is the capacitance C of the negative electrode active material and the vertical axis is the leakage current J indicating the safety of the lithium ion secondary battery 100. Yes.
- the charging resistance ratio R indicates the value of the charging resistance for each capacitance C when the charging resistance value of the lithium ion secondary battery 100 for a certain capacitance C is 100, and the charging resistance for each capacitance C. Is made dimensionless.
- the capacitance C is required to be 1.0 F or more when the charge resistance ratio R criteria (determination condition for satisfying the standard) indicating the input characteristics of the lithium ion secondary battery 100 is R1 or less.
- the leakage current J is the maximum value of the leakage current value measured under a predetermined condition.
- the capacitance C is required to be 1.6F or less.
- the capacitance C of the negative electrode active material of the present embodiment is 1.0F or more and 1.6F or less.
- the Kr gas adsorption method is a method for adsorbing molecules (Kr) whose occupied area is known on the surface of powder particles and obtaining the specific surface area of the sample powder from the amount of adsorption.
- the specific surface area is the sum of the surface areas of all particles contained in the powder of unit mass.
- the capacitance C changes, for example, when the specific surface area of the negative electrode active material increases or decreases, and in order to increase the capacitance C of the negative electrode active material, the proportion of the spherical active graphite having a small particle diameter is increased.
- the specific surface area of the negative electrode active material may be increased by decreasing the ratio of the pitch mixed with the spheroidized natural graphite. Therefore, negative electrode active materials having different capacitances C can be created by appropriately adjusting the specific surface area of the negative electrode active material.
- FIG. 5A shows the relationship between the thickness T and the input characteristics, where the horizontal axis is the thickness T of the HRL layer 32 and the vertical axis is the charging resistance ratio R indicating the input characteristics of the lithium ion secondary battery 100.
- FIG. 5B shows the relationship between the thickness T and safety, where the horizontal axis is the thickness T of the HRL layer 32 and the vertical axis is the leakage current J indicating the safety of the lithium ion secondary battery 100. Yes.
- the thickness T of the HRL layer 32 As shown in FIG. 5A, there is a correlation between the thickness T of the HRL layer 32 and the charging resistance ratio R, and it is known that the charging resistance ratio R increases as the thickness T increases.
- the criterion of the charging resistance ratio R determination condition for satisfying the standard
- the thickness T is required to be 10 ⁇ m or less.
- the thickness T of the HRL layer 32 and the leakage current J have a correlation.
- the criterion of the leakage current J determination condition for satisfying the standard
- the thickness T is required to be 2 ⁇ m or more.
- the thickness T of the separator 30 of this embodiment is 2 ⁇ m or more and 10 ⁇ m or less.
- the input characteristics and the safety can be improved at the same time. That is, since there is a correlation between the capacitance C of the negative electrode active material and the charging resistance ratio R, and there is a correlation between the capacitance C and the leakage current J, the charging resistance ratio R, which is an index of input characteristics, and the safety By defining the capacitance C that satisfies the criteria with the leakage current J that is an index, both input characteristics and safety can be improved.
- the charging resistance ratio R which is an index of input characteristics
- the present invention can be used for a non-aqueous electrolyte secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
入力特性および安全性の向上を両立することができる非水電解質二次電池を提供する。正極10と負極20とをセパレータ30を介して捲回して構成される捲回電極体55を備え、負極20の表面には負極合剤層22が形成され、負極合剤層22には負極活物質が含まれ、セパレータ30の少なくとも一方の表面にHRL層32が形成されるリチウムイオン二次電池100であって、負極活物質のキャパシタンスが1.0F以上かつ1.6F以下であって、HRL層32の厚みTが2μm以上かつ10μmである。
Description
本発明は、非水電解質二次電池の技術に関する。
非水電解質二次電池は、例えばリチウムイオン二次電池が良く知られている。リチウムイオン二次電池は、近年、ハイブリッド自動車および電気自動車等に搭載される車両搭載用電源、または、パソコンおよび携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。
リチウムイオン二次電池は、例えば、箱形の電池ケースと、電池ケースの内部に収容される電極体と、電池ケースにレーザ溶接により接合されることで電池ケースの開口部を封口する封口体(蓋体)と、から構成されている。また、リチウムイオン二次電池の電極体は、例えば、負極とセパレータと正極とを積層した状態で捲回し、さらに偏平状に成形させた捲回電極体として構成されている。
例えば、特許文献1には、入力特性を向上させ、かつ電極の膨張を抑制すべく、黒鉛系炭素質物に、より結晶性の劣る炭素材料を被覆させた構造を有する粉体状の負極材料であって、該負極材料と結着剤とから作製されたリチウム二次電池用負極の抵抗(R)が、6.5ohm以下、負極/電解液界面の二重層容量(Cdl)が、7.0×10-4F以上、10×10-4F未満の範囲にあることを特徴とするリチウム二次電池用負極材料が開示されている。しかし、上記特許文献1に開示される電気二重層容量は電池を充放電させた後に測定される電気二重層容量であり、表面皮膜(SEI皮膜)の電気二重層容量と電池を用いる場合、車両性能を満足するための入力特性を確保することが出来ないという課題があった。
また、特許文献2に記載の技術においては、負極活物質における小さい粒子径の割合を多くすると、比表面積が大きくなり、電解液との接触面積が大きいと、電解液の分解が起り易く、ガスが発生することによって電池の内部圧力が上がり、安全性に課題があった。
本発明の解決しようとする課題は、入力特性および安全性の向上を両立することができる非水電解質二次電池を提供することである。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、請求項1においては、正極と負極とをセパレータを介して捲回して構成される捲回電極体を備え、前記負極の表面には負極合剤層が形成され、前記負極合剤層には負極活物質が含まれ、前記セパレータの少なくとも一方の表面に耐熱層が形成される非水電解質二次電池であって、前記負極活物質のキャパシタンスが1.0F以上かつ1.6F以下であって、前記耐熱層の厚みが2μm以上かつ10μm以下である。
本発明の非水電解質二次電池によれば、入力特性および安全性の向上を両立することができる。
図1を用いて、リチウムイオン二次電池100の構成について説明する。
なお、図1では、説明を分かり易くするため、電池ケース40と、捲回電極体55と、蓋体60と、を分離して模式的に表している。
なお、図1では、説明を分かり易くするため、電池ケース40と、捲回電極体55と、蓋体60と、を分離して模式的に表している。
リチウムイオン二次電池100は、本発明の非水電解質二次電池に係る一実施形態である。リチウムイオン二次電池100は、電池ケース40と、捲回電極体55と、蓋体60と、を具備している。
電池ケース40は、上面が開口された略直方体の箱体として構成されている。電池ケース40の開口された上面は、蓋体60によって封口される。また、電池ケース40の内部には、捲回電極体55が収容される。
捲回電極体55は、負極20と正極10との間にセパレータ30が介在するように、負極20と正極10とセパレータ30とを積層した電極体50(図2参照)を捲回し、さらに偏平状に成形させたものである。
捲回電極体55は、捲回電極体55の軸方向と蓋体60による電池ケース40の開口部の封口方向とが直交するように電池ケース40に収容される。
捲回電極体55の軸方向一側の端部には、正極集電体51(後述する集電箔11のみが捲かれたもの)が露出している。一方、捲回電極体55の軸方向他側の端部には、負極集電体52(後述する集電箔21のみが捲かれたもの)が露出している。
蓋体60は、電池ケース40の上面を封口するものである。より詳しくは、蓋体60は、電池ケース40の上面にレーザ溶接によって接合されることで、電池ケース40の上面を封口するものである。すなわち、リチウムイオン二次電池100においては、電池ケース40の開口部に蓋体60をレーザ溶接により接合することで、電池ケース40の開口部が封口される。
蓋体60の上面には、正極集電端子61と、負極集電端子62と、が設けられている。正極集電端子61には、下方に延設される脚部71が形成されている。同様に、負極集電端子62には、下方に延設される脚部72が形成されている。
捲回電極体55が電池ケース40に収容されるときには、正極集電端子61の脚部71に、捲回電極体55の正極集電体51が接合される。同様に、捲回電極体55が電池ケース40に収容されるときには、負極集電端子62の脚部72に、捲回電極体55の負極集電体52が接合される。つまり、捲回電極体55は、正極集電端子61および負極集電端子62を備えた蓋体60と接合された状態で、電池ケース40に収容される。
蓋体60の上面には注液孔63が設けられており、捲回電極体55が正極集電端子61および負極集電端子62を備えた蓋体60と接合された状態で電池ケース40に収容され、蓋体60と電池ケース40の上面とをレーザ溶接によって接合した後、注液孔63から電解液を注入することで電池が完成する。
図2を用いて、電極体50について説明する。
なお、図2では、電極体50の一部を断面視にて模式的に表している。
なお、図2では、電極体50の一部を断面視にて模式的に表している。
電極体50は、負極20と正極10との間にセパレータ30が介在するように、負極20と正極10とセパレータ30とを積層したものである。
正極10は、集電箔11と、正極合剤層12と、を具備している。正極合剤層12は、集電箔11の両面に形成されている。正極合剤層12は、正極活物質(例えば、Li1.14Ni0.34Co0.33Mn0.33O2)と、導電剤(例えば、アセチレンブラック(AB))と、結着剤(例えば、ポリフッ化ビニリデン(PVDF))とを所定の割合で、溶媒(例えば、N-メチル-2-ピロリドン(NMP))と共に混練することによって作製した正極合剤を、集電箔11上に塗布し乾燥させた後にプレスしたものである。
[正極活物質]
正極10の正極合剤層12を成す正極合剤は、リチウムイオンを挿入脱離する正極活物質を含む。正極活物質としては、典型的には層状の結晶構造(典型的には、六方晶系に属する層状岩塩型構造)を有するリチウム遷移金属複合酸化物(LiNiO2、LiCoO2、LiNiCoMnO2等。一部W、Cr、Mo、Zr、Mg、Ca、Na、Fe、Zn、Si、Sn、Al等の添加元素を含んでもよい)、スピネル型の結晶構造を有するリチウム遷移金属複合酸化物(LiMn2O4、LiNiMn2O4等)、およびオリビン型構造の結晶構造を有するリチウム遷移金属複合酸化物(LiFePO4等)が挙げられる。
正極10の正極合剤層12を成す正極合剤は、リチウムイオンを挿入脱離する正極活物質を含む。正極活物質としては、典型的には層状の結晶構造(典型的には、六方晶系に属する層状岩塩型構造)を有するリチウム遷移金属複合酸化物(LiNiO2、LiCoO2、LiNiCoMnO2等。一部W、Cr、Mo、Zr、Mg、Ca、Na、Fe、Zn、Si、Sn、Al等の添加元素を含んでもよい)、スピネル型の結晶構造を有するリチウム遷移金属複合酸化物(LiMn2O4、LiNiMn2O4等)、およびオリビン型構造の結晶構造を有するリチウム遷移金属複合酸化物(LiFePO4等)が挙げられる。
[正極合剤]
正極合剤には、正極活物質の他、必要に応じて導電材、結着材(バインダ)等の添加材が添加される。
導電材としては、カーボン粉末(アセチレンブラック(AB)、ファーネスブラックおよびケッチェンブラック等のカーボンブラック、黒鉛粉末、ならびにグラファイト粉末等)、および導電性炭素繊維等の導電性物質を1種単独で、または2種以上の混合物として含ませることができる。
正極合剤には、正極活物質の他、必要に応じて導電材、結着材(バインダ)等の添加材が添加される。
導電材としては、カーボン粉末(アセチレンブラック(AB)、ファーネスブラックおよびケッチェンブラック等のカーボンブラック、黒鉛粉末、ならびにグラファイト粉末等)、および導電性炭素繊維等の導電性物質を1種単独で、または2種以上の混合物として含ませることができる。
結着材としては、各種のポリマー材料が挙げられる。例えば、分散媒として水を主体とする溶媒を用いる場合には、水に溶解または分散するポリマー材料を結着材として好ましく採用し得る。水溶性または水分散性のポリマー材料としては、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルアルコール(PVA)、酢酸ビニル重合体、およびスチレンブタジエンゴム(SBR)等のゴム類が挙げられる。分散媒としてN-メチル-2-ピロリドン(NMP)等の有機溶媒系を主体とする溶媒を用いる場合には、ポリフッ化ビニリデン(PVDF)、またはポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドといったポリマー材料を結着材として用いることができる。前述の結着材は、2種以上を組み合わせて用いてもよく、増粘材その他の添加材としても使用され得る。
正極合剤中の正極活物質、導電材および結着材等の各構成成分割合は、集電箔11上における正極合剤層12の保持性および電池性能の観点から決定されるものである。典型的には、正極活物質が、例えば、75~95wt%、導電材が3~18wt%、結着材が2~7wt%程度であることが好ましい。
[正極の作製方法]
まず、正極活物質、導電材および結着材等を適当な溶媒と共に混合して正極合剤を調製する。この混合調製は、例えば、プラネタリーミキサー、ホモディスパー、クレアミックス(登録商標)およびフィルミックス(登録商標)等の混練機を用いて行うことができる。
まず、正極活物質、導電材および結着材等を適当な溶媒と共に混合して正極合剤を調製する。この混合調製は、例えば、プラネタリーミキサー、ホモディスパー、クレアミックス(登録商標)およびフィルミックス(登録商標)等の混練機を用いて行うことができる。
こうして調製した正極合剤を、スリットコーター、ダイコーター、グラビアコーターおよびコンマコーター(登録商標)等の塗工装置により集電箔11に塗工し、乾燥により溶媒を揮発させた後にプレスする。以上の工程により、正極合剤層12が集電箔11上に形成された正極10が得られる。
集電箔11上への正極合剤の単位面積当たりの目付量(mg/cm2)は、ハイブリッド自動車等の高出力用途においてはエネルギーだけでなく、正極合剤層12中の電子伝導性およびリチウムイオン拡散性の観点から、集電箔11の片面当たり6mg/cm2~20mg/cm2とすることが好ましい。正極合剤層12の密度についても同様の理由から、1.7g/cm3~2.8g/cm3とすることが好ましい。
集電箔11には、導電性の良好な金属からなる導電性部材が好ましく用いられ、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。集電箔11の形状、厚みについて特に制限はなく、形状は、シート状、箔状またはメッシュ状等とすることができ、厚みは、例えば、10μm~30μmとすることができる。
負極20は、集電箔21と、負極合剤層22と、を具備している。負極合剤層22は、集電箔21の両面に形成されている。負極合剤層22は、負極活物質と、増粘剤(例えば、カルボキシメチルセルロース(CMC))と、結着剤(例えば、スチレンブタジエンゴム(SBR))とを、所定の割合で水と共に混練することによって作製した負極合剤を、集電箔21上に塗布し乾燥させた後にプレスしたものである。本実施形態の負極活物質は、低結晶性炭素に被覆された球形化天然黒鉛に対して、所定割合のピッチを混合および含浸させ、不活性雰囲気下において焼成して作製されたものである。
[負極活物質]
負極20の負極合剤層22を成す負極合剤は、リチウムイオンを挿入脱離する負極活物質を含む。負極活物質としては、チタン酸リチウム等の酸化物、ケイ素材料およびスズ材料等の単体、合金、化合物、ならびに上記材料を併用した複合材料等、種々挙げられる。しかしながら、コスト、生産性、エネルギー密度および長期信頼性の各観点を総合すると、黒鉛を主成分とする炭素材料を負極活物質として採用することが最も好ましい。特に、ハイブリッド自動車等の高出力用途においては、リチウムイオンの挿入脱離性を向上させ得る、黒鉛を核とした粒子の表面を非晶質炭素で被覆した複合材料がより好適である。また、難黒鉛性非晶質炭素および易黒鉛性非晶質炭素等の黒鉛以外の炭素材料を混合してもよい。
負極20の負極合剤層22を成す負極合剤は、リチウムイオンを挿入脱離する負極活物質を含む。負極活物質としては、チタン酸リチウム等の酸化物、ケイ素材料およびスズ材料等の単体、合金、化合物、ならびに上記材料を併用した複合材料等、種々挙げられる。しかしながら、コスト、生産性、エネルギー密度および長期信頼性の各観点を総合すると、黒鉛を主成分とする炭素材料を負極活物質として採用することが最も好ましい。特に、ハイブリッド自動車等の高出力用途においては、リチウムイオンの挿入脱離性を向上させ得る、黒鉛を核とした粒子の表面を非晶質炭素で被覆した複合材料がより好適である。また、難黒鉛性非晶質炭素および易黒鉛性非晶質炭素等の黒鉛以外の炭素材料を混合してもよい。
[負極合剤]
負極合剤には、負極活物質の他、増粘材および結着材等の添加材が添加される。
増粘材および結着材としては、各種のポリマー材料が挙げられる。例えば、分散媒として水を主体とする溶媒を用いる場合には、水に溶解または分散するポリマー材料を増粘材および結着材として好ましく採用し得る。水溶性または水分散性のポリマー材料としては、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルアルコール(PVA)、酢酸ビニル重合体、およびスチレンブタジエンゴム(SBR)等のゴム類が挙げられる。分散媒としてN-メチル-2-ピロリドン(NMP)等の有機溶媒系を主体とする溶媒を用いる場合には、ポリフッ化ビニリデン(PVDF)、またはポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドといったポリマー材料を増粘材および結着材として用いることができる。前述の増粘材および結着材は、それぞれ、2種以上を組み合わせて用いてもよい。
負極合剤には、負極活物質の他、増粘材および結着材等の添加材が添加される。
増粘材および結着材としては、各種のポリマー材料が挙げられる。例えば、分散媒として水を主体とする溶媒を用いる場合には、水に溶解または分散するポリマー材料を増粘材および結着材として好ましく採用し得る。水溶性または水分散性のポリマー材料としては、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルアルコール(PVA)、酢酸ビニル重合体、およびスチレンブタジエンゴム(SBR)等のゴム類が挙げられる。分散媒としてN-メチル-2-ピロリドン(NMP)等の有機溶媒系を主体とする溶媒を用いる場合には、ポリフッ化ビニリデン(PVDF)、またはポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドといったポリマー材料を増粘材および結着材として用いることができる。前述の増粘材および結着材は、それぞれ、2種以上を組み合わせて用いてもよい。
負極合剤中の負極活物質、増粘材および結着材等の各構成成分割合は、集電箔21上における負極合剤層22の保持性および電池性能の観点から決定されるものである。典型的には、負極活物質が、例えば、90~99wt%、増粘材および結着材が1~10wt%程度であることが好ましい。
[負極の作製方法]
まず、負極活物質、増粘材および結着材等を適当な溶媒と共に混合して負極合剤を調製する。この混合調製は、例えば、プラネタリーミキサー、ホモディスパー、クレアミックス(登録商標)およびフィルミックス(登録商標)等の混練機を用いて行うことができる。
まず、負極活物質、増粘材および結着材等を適当な溶媒と共に混合して負極合剤を調製する。この混合調製は、例えば、プラネタリーミキサー、ホモディスパー、クレアミックス(登録商標)およびフィルミックス(登録商標)等の混練機を用いて行うことができる。
こうして調製した負極合剤を、スリットコーター、ダイコーター、グラビアコーターおよびコンマコーター(登録商標)等の塗工装置により集電箔21に塗工し、乾燥により溶媒を揮発させた後にプレスする。以上の工程により、負極合剤層22が集電箔21上に形成された負極20が得られる。
集電箔21上への負極合剤の単位面積当たりの目付量(mg/cm2)は、ハイブリッド自動車等の高出力用途においてはエネルギーだけでなく、負極合剤層22中の電子伝導性およびリチウムイオン拡散性の観点から、集電箔21の片面当たり3mg/cm2~10mg/cm2とすることが好ましい。負極合剤層22の密度についても同様の理由から、1.0g/cm3~1.4g/cm3とすることが好ましい。
集電箔21には、導電性の良好な金属からなる導電性部材が好ましく用いられ、銅または銅を主成分とする合金を用いることができる。集電箔21の形状、厚みについて特に制限はなく、形状は、シート状、箔状またはメッシュ状等とすることができ、厚みは、例えば、5μm~20μmとすることができる。
セパレータ30は、基材層31と、耐熱層としてのHeat Resistance layer(HRL)層32と、を具備している。HRL層32は、基材層31の両面に形成されている。本実施形態のHRL層32は、多孔質の無機フィラーから形成されている。ここで、HRL層32の厚みを、厚みTと定義する。
[セパレータ]
セパレータ30は、正極合剤層12と負極合剤層22とを絶縁するとともに、通常使用時は電解質の移動を許容し、電池内部が異常現象により高温(例えば130℃以上)になった場合に電解質の移動を遮断する機構を備える。セパレータ30の基材層31としては、多孔質樹脂を採用できる。例えば、基材層31として、ポリエチレン(PE)およびポリプロピレン(PP)等のポリオレフィン系樹脂を好適に採用することができる。特に、PP、PEおよびPPが順に積層された三層構造のセパレータを採用することが好ましい。
セパレータ30は、正極合剤層12と負極合剤層22とを絶縁するとともに、通常使用時は電解質の移動を許容し、電池内部が異常現象により高温(例えば130℃以上)になった場合に電解質の移動を遮断する機構を備える。セパレータ30の基材層31としては、多孔質樹脂を採用できる。例えば、基材層31として、ポリエチレン(PE)およびポリプロピレン(PP)等のポリオレフィン系樹脂を好適に採用することができる。特に、PP、PEおよびPPが順に積層された三層構造のセパレータを採用することが好ましい。
基材層31は、例えば一軸延伸または二軸延伸することによって多孔質化することができる。特に、長手方向に一軸延伸する場合は幅方向の熱収縮が少ないため、上記捲回電極体55を構成するセパレータ30の一要素として好適である。
セパレータ30の厚さは特に限定されるものではないが、例えば10μm~30μm、典型的には15μm~25μm程度が好ましい。セパレータ30の厚さが上記の範囲内であることにより、セパレータ30のイオン通過性がより良好となり、また、特に高温時収縮および溶融による破膜が生じにくくなる。
HRL層32は、基材層31の少なくとも片方の面に構成されるものであり、電池内部が高温になった際に基材層31の収縮を抑制し、さらには基材層31が破膜しても正極10と負極20との直接接触による短絡を抑制する。HRL層32は、例えば、アルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシアおよびマグネシア等の無機酸化物、無機窒化物、炭酸塩、硫酸塩、フッ化物ならびに共有結合性結晶等の無機フィラーを主成分として含む。なお、耐熱性およびサイクル特性に優れるという理由から、アルミナ、ベーマイト、シリカ、チタニア、ジルコニア、カルシアまたはマグネシアがHRL層32に含まれることが好ましく、ベーマイトまたはアルミナがHRL層32に含まれることが特に好ましい。
無機フィラーの形状は特に限定するものではないが、基材層31破膜時の正極10および負極20間の短絡を抑制するという観点から、板状(フレーク状)の粒子であることが好ましい。無機フィラーの平均粒径は特に限定されないが、膜表面の平滑性、入出力性能および高温時機能確保の観点から0.1μm~5μmとするのが適当である。
HRL層32は、基材層31上での保持性の観点から、結着材等の添加材を含有することが好ましい。HRL層32は、一般的には無機フィラーおよび添加材を溶媒に分散させてペーストを作製し、当該ペーストを基材層31上へ塗工し、乾燥させることで形成される。分散溶媒としては、水系溶媒または有機溶媒等、特に限定されるものではないが、コストおよび取り扱い性を考慮すると、水系溶媒を使用することが好ましい。水系溶媒を用いる際の添加材としては、水系溶媒に分散または溶解するポリマーを用いることができる。例えば、スチレンブタジエンゴム(SBR)、ポリエチレン(PE)等のポリオレフィン系樹脂、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー、ポリビニルアルコール(PVA)等のフッ素系樹脂、またはポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドを用いることができる。また、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、メチルメタクリレート、2-エチルヘキシルアクリレートおよびブチルアクリレート等のモノマーを1種で重合した単独重合体等のアクリル系樹脂が挙げられる。前記添加材は前記モノマーを2種以上重合した共重合体であってもよい。さらに、前記単独重合体および共重合体を2種以上混合したものであってもよい。
HRL層32全体に占める無機フィラーの割合は、特に限定されないが、高温時機能確保の観点から、90質量%以上、典型的には95質量%以上であることが好ましい。
HRL層32の厚さは、2μm~10μmであることが好ましい。
HRL層32は、例えば、以下の方法によって形成することができる。
まず、上述した無機フィラーおよび添加材を分散媒中に分散させ、ペーストを作製する。ペースト作製は、ディスパミル(登録商標)、クレアミックス(登録商標)、フィルミックス(登録商標)、ボールミル、ホモディスパーおよび超音波分散機等の混練機が使用可能である。得られたペーストを基材層31表面にグラビアコーター、スリットコーター、ダイコーター、コンマコーター(登録商標)およびディップコーター等の塗工装置で塗工し、乾燥させることでHRL層32を形成する。乾燥時の温度は、セパレータ30の収縮が発生する温度以下(例えば110℃以下)であることが好ましい。
まず、上述した無機フィラーおよび添加材を分散媒中に分散させ、ペーストを作製する。ペースト作製は、ディスパミル(登録商標)、クレアミックス(登録商標)、フィルミックス(登録商標)、ボールミル、ホモディスパーおよび超音波分散機等の混練機が使用可能である。得られたペーストを基材層31表面にグラビアコーター、スリットコーター、ダイコーター、コンマコーター(登録商標)およびディップコーター等の塗工装置で塗工し、乾燥させることでHRL層32を形成する。乾燥時の温度は、セパレータ30の収縮が発生する温度以下(例えば110℃以下)であることが好ましい。
[非水電解液]
リチウムイオン二次電池100に注入される電解液を構成する非水溶媒および電解質塩は、従来のリチウムイオン二次電池に用いられるものを特に限定なく使用することができる。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ-ブチロラクトンが挙げられ、これらの内の1種を単独でまたは2種以上を混合して用いることができる。特に、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)の混合溶媒が好ましい。
リチウムイオン二次電池100に注入される電解液を構成する非水溶媒および電解質塩は、従来のリチウムイオン二次電池に用いられるものを特に限定なく使用することができる。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ-ブチロラクトンが挙げられ、これらの内の1種を単独でまたは2種以上を混合して用いることができる。特に、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)の混合溶媒が好ましい。
また、上記電解質塩としては、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiC4F9SO3、LiN(CF3SO2)2、LiC(CF3SO2)3およびLiI等のリチウム化合物(リチウム塩)の1種または2種以上を用いることができる。なお、電解質塩の濃度は特に限定されないが、典型的には0.8mol/L~1.5mol/Lとすることができる。
電解液は、本発明の目的を大きく損なわない範囲で添加剤を含んでもよい。添加剤は、例えば、フルオロリン酸塩(好ましくはジフルオロリン酸塩。例えば、LiPO2F2で表されるジフルオロリン酸リチウム)、およびリチウムビスオキサレートボレート(LiBOB)等が挙げられ、出力性能の向上および耐久信頼性の向上(容量低下および抵抗上昇の抑制等)等の目的で使用され得る。電解液における各添加剤の濃度は、目的に応じて適宜変更可能であり、例えば0.01~0.1mol/Lである。
このような構成を有するリチウムイオン二次電池100は、入出力特性および過充電時における熱安定性の双方に優れるため、特にハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)、または燃料電池自動車のような、電動機を備える自動車の駆動モータ等の駆動源用の電源(典型的には複数直列接続してなる組電池)として好適に利用することができる。
(正極の作製)
硫酸Niと硫酸Coと硫酸Mn溶液の混合液を水酸化Naにて中和し、Ni0.34Co0.33Mn0.33(OH)2を基本構成とする前駆体を作製した。得られた前駆体を炭酸Liと混合し、大気雰囲気中にて800~950℃で5~15時間、任意に焼成を実施し、正極活物質としてのLi1.14Ni0.34Co0.33Mn0.33O2を作製した。この正極活物質は、粒径D50が3~8μm、比表面積が0.5~1.9m2/gの範囲で調整した。
硫酸Niと硫酸Coと硫酸Mn溶液の混合液を水酸化Naにて中和し、Ni0.34Co0.33Mn0.33(OH)2を基本構成とする前駆体を作製した。得られた前駆体を炭酸Liと混合し、大気雰囲気中にて800~950℃で5~15時間、任意に焼成を実施し、正極活物質としてのLi1.14Ni0.34Co0.33Mn0.33O2を作製した。この正極活物質は、粒径D50が3~8μm、比表面積が0.5~1.9m2/gの範囲で調整した。
上記正極活物質と、AB(導電材)と、PVDF(結着材)とを、これらの材料の質量比が90:8:2となるようにNMP(分散媒)と混合して、正極合剤を作製した。この正極合剤を、厚さ15μmのアルミニウム箔(集電箔)の両面に塗付した。両面に対する正極合剤の塗付量が約11.3mg/cm2(乾燥後、固形分基準)となるように調節した。塗付した正極合剤を、乾燥させた後、圧延プレス機によりプレスして、正極合剤層の密度を1.8~2.4g/cm3に調整した。得られた電極をスリットし、長さ3000mm、幅98mmの帯状の正極を作製した。
[負極の作製]
風力分級機を用いて天然黒鉛粉末の粒度を調整し、異なる粒径の天然黒鉛粉末を得た。得られた天然黒鉛粉末をピッチと混合して(天然黒鉛粉末およびピッチの質量比=96:4)、N2雰囲気下において800~1300℃で10時間焼成した。上記工程により、異なる微粉量と、異なる表面積とを持つ負極活物質を得た。この負極活物質とSBRとCMCとを、重量比97.0:1.5:1.5でイオン交換水と混合し、プラネタリーミキサーにてせん断を加え、負極合剤を作製した。この負極合剤を、厚さ10μmの銅箔の両面に塗付した。両面に対する負極合剤の塗付量が約7.0mg/cm2(乾燥後、固形分基準)となるように調節した。塗付した負極合剤を、乾燥させた後、圧延プレス機によりプレスして、負極合剤層の密度を約0.9g/cm3~1.3g/cm3に調整した。得られた電極をスリットし、長さ3200mm、幅102mmの帯状の負極を作製した。
風力分級機を用いて天然黒鉛粉末の粒度を調整し、異なる粒径の天然黒鉛粉末を得た。得られた天然黒鉛粉末をピッチと混合して(天然黒鉛粉末およびピッチの質量比=96:4)、N2雰囲気下において800~1300℃で10時間焼成した。上記工程により、異なる微粉量と、異なる表面積とを持つ負極活物質を得た。この負極活物質とSBRとCMCとを、重量比97.0:1.5:1.5でイオン交換水と混合し、プラネタリーミキサーにてせん断を加え、負極合剤を作製した。この負極合剤を、厚さ10μmの銅箔の両面に塗付した。両面に対する負極合剤の塗付量が約7.0mg/cm2(乾燥後、固形分基準)となるように調節した。塗付した負極合剤を、乾燥させた後、圧延プレス機によりプレスして、負極合剤層の密度を約0.9g/cm3~1.3g/cm3に調整した。得られた電極をスリットし、長さ3200mm、幅102mmの帯状の負極を作製した。
[耐熱性セパレータの作製]
無機フィラーとしてのアルミナ粉末(Al2O3)と、アクリル系バインダと、増粘剤としてのCMCとを、Al2O3:バインダ:CMCの配合比が98:1.3:0.7となるように、溶媒としてのイオン交換水と共に混練してペーストを作製した。このペーストを、厚さ20μmのポリエチレン製単層多孔質シートの片面に塗付し、70℃で乾燥させて無機多孔質層(耐熱層)を形成することにより耐熱性セパレータを得た。上記ペーストの塗付量(目付量)は、固形分基準で0.7mg/cm2となるように調整した。乾燥後の無機多孔質層の厚みは4μmであった。
無機フィラーとしてのアルミナ粉末(Al2O3)と、アクリル系バインダと、増粘剤としてのCMCとを、Al2O3:バインダ:CMCの配合比が98:1.3:0.7となるように、溶媒としてのイオン交換水と共に混練してペーストを作製した。このペーストを、厚さ20μmのポリエチレン製単層多孔質シートの片面に塗付し、70℃で乾燥させて無機多孔質層(耐熱層)を形成することにより耐熱性セパレータを得た。上記ペーストの塗付量(目付量)は、固形分基準で0.7mg/cm2となるように調整した。乾燥後の無機多孔質層の厚みは4μmであった。
[電解液の調製]
電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:3:4で混合したものに、1.1mol/LのLiPF6を溶解させ、さらに添加剤としてのジフルオロリン酸塩(LiPO2F2)およびリチウムビスオキサレートボレート(LiBOB)を溶解させて作製した。添加剤の混合比率は前述の通りである。
電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:3:4で混合したものに、1.1mol/LのLiPF6を溶解させ、さらに添加剤としてのジフルオロリン酸塩(LiPO2F2)およびリチウムビスオキサレートボレート(LiBOB)を溶解させて作製した。添加剤の混合比率は前述の通りである。
[セルの作製]
上記正極および負極を、2枚の上記耐熱性セパレータを介して重ね合わせ、偏平形状の捲回電極体を作製した。
この捲回電極体を、電解液とともに箱型の電池ケースに密閉した。
上記のように作製した電池セルに対し、初回充放電を実施後、セル評価を行った。
上記正極および負極を、2枚の上記耐熱性セパレータを介して重ね合わせ、偏平形状の捲回電極体を作製した。
この捲回電極体を、電解液とともに箱型の電池ケースに密閉した。
上記のように作製した電池セルに対し、初回充放電を実施後、セル評価を行った。
[キャパシタンス測定法]
フロー式粒子像分析装置(シスメックス社製:FPIA(登録商標)-3000)を用いて微粉量の測定を行った。分散条件は、RO水と界面活性剤(ナロアクティー(登録商標))を用いて、攪拌速度300rpmで行った。
フロー式粒子像分析装置(シスメックス社製:FPIA(登録商標)-3000)を用いて微粉量の測定を行った。分散条件は、RO水と界面活性剤(ナロアクティー(登録商標))を用いて、攪拌速度300rpmで行った。
[漏れ電流測定法]
セルを-10℃で、SOC30%に調整し、電流値40Aで充電を行い、セパレータ基材がシャットダウンした後の10分後の最大電流値を測定した。
セルを-10℃で、SOC30%に調整し、電流値40Aで充電を行い、セパレータ基材がシャットダウンした後の10分後の最大電流値を測定した。
[充電抵抗測定法]
SOC60%に調整されたセルの25℃における充電抵抗を、以下の手順(1)~(4)により測定した。
(1)25℃の温度環境にて、1Cの定電流で3VからSOC60%まで充電(CC充電)し、次いで同電圧で2.5時間充電(CV充電)する。
(2)(1)後の電池を、25℃にて充電させ、充電開始から電圧が4.15V(充電カット電圧)になるまでの秒数を測定する。
(3)(2)の定ワット充電における充電入力(定ワット充電の充電電力量)を80W~200Wの間で異ならせて(より具体的には、手順(3)の定ワット放電における充電入力を、1回目80W、2回目90W、3回目100W・・・と10Wずつ200Wまで上げながら)、上記手順(1)~(3)を繰り返す。
(4)手順(3)の各定ワット放電において測定された電圧2.0Vまでの秒数を横軸にとり、そのときの定ワット充電入力を縦軸にとった近似曲線から、電圧4.15Vまでの秒数が2秒となるときの入力値(SOC60%入力)を求める。
SOC60%に調整されたセルの25℃における充電抵抗を、以下の手順(1)~(4)により測定した。
(1)25℃の温度環境にて、1Cの定電流で3VからSOC60%まで充電(CC充電)し、次いで同電圧で2.5時間充電(CV充電)する。
(2)(1)後の電池を、25℃にて充電させ、充電開始から電圧が4.15V(充電カット電圧)になるまでの秒数を測定する。
(3)(2)の定ワット充電における充電入力(定ワット充電の充電電力量)を80W~200Wの間で異ならせて(より具体的には、手順(3)の定ワット放電における充電入力を、1回目80W、2回目90W、3回目100W・・・と10Wずつ200Wまで上げながら)、上記手順(1)~(3)を繰り返す。
(4)手順(3)の各定ワット放電において測定された電圧2.0Vまでの秒数を横軸にとり、そのときの定ワット充電入力を縦軸にとった近似曲線から、電圧4.15Vまでの秒数が2秒となるときの入力値(SOC60%入力)を求める。
図3を用いて、キャパシタンスCについて説明する。
なお、図3は、負極活物質のキャパシタンスCを測定するキャパシタンス測定装置80を模式的に表している。
なお、図3は、負極活物質のキャパシタンスCを測定するキャパシタンス測定装置80を模式的に表している。
キャパシタンスCとは、負極活物質の電気容量であって、負極活物質がリチウムイオンンをどれくらい吸着できるかの指標である。キャパシタンスCは、キャパシタンス測定装置80によって測定される。
キャパシタンス測定装置80は、電解液を満たしたセル81内に、集電箔21の片面に負極合剤層22を形成したものを負極合剤層22が対向するように、セパレータ30を介して対向させて配置している。キャパシタンス測定装置80では、セル81を仮想コンデンサとして捉え、セル81(一対の負極合剤層22間)に電圧を印加して仮想コンデンサの電気容量を測定することによって、負極合剤層22(負極活物質)のキャパシタンスCを測定するものである。
なお、前記電解液としては、EC(エチレンカーボネート)、DMC(ジメチルカーボネート)、およびEMC(エチルメチルカーボネート)を、3:4:3(重量比)の割合にて混合した溶媒に、LiPF6を1.1mol/Lの濃度で溶解させたものが用いられている。
図4を用いて、キャパシタンスCの特性について説明する。
なお、図4(A)は、横軸を負極活物質のキャパシタンスCとし、縦軸をリチウムイオン二次電池100の入力特性を示す充電抵抗比Rとして、キャパシタンスCと入力特性との関係を表している。また、図4(B)は、横軸を負極活物質のキャパシタンスCとし、縦軸をリチウムイオン二次電池100の安全性を示す漏れ電流Jとして、キャパシタンスCと安全性との関係を表している。
なお、図4(A)は、横軸を負極活物質のキャパシタンスCとし、縦軸をリチウムイオン二次電池100の入力特性を示す充電抵抗比Rとして、キャパシタンスCと入力特性との関係を表している。また、図4(B)は、横軸を負極活物質のキャパシタンスCとし、縦軸をリチウムイオン二次電池100の安全性を示す漏れ電流Jとして、キャパシタンスCと安全性との関係を表している。
図4(A)に示すように、負極活物質のキャパシタンスCと充電抵抗比Rとには相関があり、キャパシタンスCが大きいほど充電抵抗比Rは小さくなることが分かっている。
なお、充電抵抗比Rとは、あるキャパシタンスCに対するリチウムイオン二次電池100の充電抵抗値を100としたときの、各キャパシタンスCに対する充電抵抗の値を示すものであり、各キャパシタンスCに対する充電抵抗を無次元化したものである。ここで、リチウムイオン二次電池100の入力特性を示す充電抵抗比Rのクライテリア(基準を満たすための判定条件)をR1以下としたとき、キャパシタンスCは、1.0F以上であることが要求される。
図4(B)に示すように、負極活物質のキャパシタンスCと漏れ電流Jとには相関があることが分かっている。なお、漏れ電流Jとは、所定の条件で測定された漏れ電流値の最大値である。ここで、リチウムイオン二次電池100の安全性を示す漏れ電流Jのクライテリア(基準を満たすための判定条件)をE1以下としたとき、キャパシタンスCは、1.6F以下であることが要求される。
以上を踏まえ、入力特性および安全性のクライテリアを考慮して、本実施形態の負極活物質のキャパシタンスCは、1.0F以上かつ1.6F以下とする。
なお、1.0F以上かつ1.6F以下のキャパシタンスCである負極活物質については、Krガス吸着法によって測定される比表面積が2.0~5.0m2/gとなることが分かっている。前記Krガス吸着法とは、紛体粒子の表面に占有面積の分かった分子(Kr)を吸着させ、その吸着量から試料紛体の比表面積を求める手法である。また、比表面積とは、単位質量の紛体中に含まれる全粒子の表面積の総和のことである。
また、キャパシタンスCは、例えば負極活物質の比表面積が増減することにより変化し、負極活物質のキャパシタンスCを増加させるには、負極活物質の球形化天然黒鉛について粒子径の小さいものの割合を増やす、或いは、球形化天然黒鉛に混合されるピッチの割合を少なくして、負極活物質の比表面積を増加させることなどが挙げられる。そのため、従って、負極活物質の比表面積の大きさを適宜調整することによって、キャパシタンスCが異なる負極活物質を作成することができる。
図5を用いて、厚みTの特性について説明する。
なお、図5(A)は、横軸をHRL層32の厚みTとし、縦軸をリチウムイオン二次電池100の入力特性を示す充電抵抗比Rとして、厚みTと入力特性との関係を表している。また、図5(B)は、横軸をHRL層32の厚みTとし、縦軸をリチウムイオン二次電池100の安全性を示す漏れ電流Jとして、厚みTと安全性との関係を表している。
なお、図5(A)は、横軸をHRL層32の厚みTとし、縦軸をリチウムイオン二次電池100の入力特性を示す充電抵抗比Rとして、厚みTと入力特性との関係を表している。また、図5(B)は、横軸をHRL層32の厚みTとし、縦軸をリチウムイオン二次電池100の安全性を示す漏れ電流Jとして、厚みTと安全性との関係を表している。
図5(A)に示すように、HRL層32の厚みTと充電抵抗比Rとには相関があり、厚みTが大きいほど充電抵抗比Rは大きくなることが分かっている。ここで、充電抵抗比Rのクライテリア(基準を満たすための判定条件)をR1以下としたとき、厚みTは、10μm以下であることが要求される。
図5(B)に示すように、HRL層32の厚みTと漏れ電流Jとは相関があることが分かっている。ここで、漏れ電流Jのクライテリア(基準を満たすための判定条件)をE1以下としたとき、厚みTは、2μm以上であることが要求される。
以上を踏まえ、入力特性及び安全性のクライテリアを考慮して、本実施形態のセパレータ30の厚みTは、2μm以上かつ10μm以下とする。
リチウムイオン二次電池100の効果について説明する。
リチウムイオン二次電池100によれば、入力特性および安全性の向上を両立することができる。
すなわち、負極活物質のキャパシタンスCと充電抵抗比Rとには相関があり、キャパシタンスCと漏れ電流Jとには相関があることから、入力特性の指標である充電抵抗比Rと、安全性の指標である漏れ電流Jとのクライテリアを満足するキャパシタンスCを定義することで、入力特性および安全性の向上を両立することができる。
リチウムイオン二次電池100によれば、入力特性および安全性の向上を両立することができる。
すなわち、負極活物質のキャパシタンスCと充電抵抗比Rとには相関があり、キャパシタンスCと漏れ電流Jとには相関があることから、入力特性の指標である充電抵抗比Rと、安全性の指標である漏れ電流Jとのクライテリアを満足するキャパシタンスCを定義することで、入力特性および安全性の向上を両立することができる。
また、HRL層32の厚みTと充電抵抗比Rとには相関があり、HRL層32の厚みTと漏れ電流Jとには相関があることから、入力特性の指標である充電抵抗比Rと、安全性の指標である漏れ電流Jとのクライテリアを満足する厚みTを定義することで、入力特性および安全性の向上を両立することができる。
本発明は、非水電解質二次電池に利用できる。
10 正極
11 集電箔
12 正極合剤層
20 負極
21 集電箔
22 負極合剤層
30 セパレータ
55 捲回電極体
100 リチウムイオン二次電池
11 集電箔
12 正極合剤層
20 負極
21 集電箔
22 負極合剤層
30 セパレータ
55 捲回電極体
100 リチウムイオン二次電池
Claims (1)
- 正極と負極とをセパレータを介して捲回して構成される捲回電極体を備え、前記負極の表面には負極合剤層が形成され、前記負極合剤層には負極活物質が含まれ、前記セパレータの少なくとも一方の表面に耐熱層が形成される非水電解質二次電池であって、
前記負極活物質のキャパシタンスが1.0F以上かつ1.6F以下であって、
前記耐熱層の厚みが2μm以上かつ10μm以下である、
非水電解質二次電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012146152A JP2014010989A (ja) | 2012-06-28 | 2012-06-28 | 非水電解質二次電池 |
JP2012-146152 | 2012-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014003067A1 true WO2014003067A1 (ja) | 2014-01-03 |
Family
ID=49783208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067550 WO2014003067A1 (ja) | 2012-06-28 | 2013-06-26 | 非水電解質二次電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014010989A (ja) |
WO (1) | WO2014003067A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017216821A1 (en) * | 2016-06-13 | 2017-12-21 | Nec Corporation | Fast Chargeable Lithium Ion Batteries with Oxide-Nanoparticle Coated Carbon Anodes and Imide Anion Based Lithium Salt Included Electrolyte |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6098885B2 (ja) * | 2013-09-05 | 2017-03-22 | トヨタ自動車株式会社 | 非水電解質二次電池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003272621A (ja) * | 2002-03-15 | 2003-09-26 | Mitsubishi Chemicals Corp | リチウム二次電池用負極材料及びそれから製造された負極シート |
JP2003272627A (ja) * | 2002-03-18 | 2003-09-26 | Mitsubishi Chemicals Corp | リチウム二次電池用負極材料及びそれから製造された負極シート |
JP2011154936A (ja) * | 2010-01-28 | 2011-08-11 | Hitachi Maxell Ltd | 電池用セパレータおよびリチウム二次電池 |
JP2011192543A (ja) * | 2010-03-15 | 2011-09-29 | Hitachi Maxell Energy Ltd | リチウムイオン二次電池 |
JP2012074297A (ja) * | 2010-09-29 | 2012-04-12 | Mitsubishi Chemicals Corp | 非水系二次電池用複層構造炭素材、及びそれを用いた負極材並びに非水系二次電池 |
-
2012
- 2012-06-28 JP JP2012146152A patent/JP2014010989A/ja active Pending
-
2013
- 2013-06-26 WO PCT/JP2013/067550 patent/WO2014003067A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003272621A (ja) * | 2002-03-15 | 2003-09-26 | Mitsubishi Chemicals Corp | リチウム二次電池用負極材料及びそれから製造された負極シート |
JP2003272627A (ja) * | 2002-03-18 | 2003-09-26 | Mitsubishi Chemicals Corp | リチウム二次電池用負極材料及びそれから製造された負極シート |
JP2011154936A (ja) * | 2010-01-28 | 2011-08-11 | Hitachi Maxell Ltd | 電池用セパレータおよびリチウム二次電池 |
JP2011192543A (ja) * | 2010-03-15 | 2011-09-29 | Hitachi Maxell Energy Ltd | リチウムイオン二次電池 |
JP2012074297A (ja) * | 2010-09-29 | 2012-04-12 | Mitsubishi Chemicals Corp | 非水系二次電池用複層構造炭素材、及びそれを用いた負極材並びに非水系二次電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017216821A1 (en) * | 2016-06-13 | 2017-12-21 | Nec Corporation | Fast Chargeable Lithium Ion Batteries with Oxide-Nanoparticle Coated Carbon Anodes and Imide Anion Based Lithium Salt Included Electrolyte |
Also Published As
Publication number | Publication date |
---|---|
JP2014010989A (ja) | 2014-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5692174B2 (ja) | 非水電解質二次電池及び非水電解質二次電池の製造方法 | |
CN103872385B (zh) | 非水电解质二次电池 | |
KR20160072220A (ko) | 비수 전해액 이차 전지 | |
EP3113247A1 (en) | Lithium ion secondary battery | |
US11757084B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5741936B2 (ja) | リチウムイオン二次電池 | |
JP2021044138A (ja) | 非水電解液二次電池 | |
JP7205717B2 (ja) | 正極 | |
EP3151311B1 (en) | Lithium ion secondary battery | |
WO2014002561A1 (ja) | 非水電解質二次電池 | |
KR101556486B1 (ko) | 비수 전해질 2차 전지 | |
KR102453758B1 (ko) | 비수전해질 이차 전지 | |
WO2014003067A1 (ja) | 非水電解質二次電池 | |
US11302905B2 (en) | Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same | |
JP7436227B2 (ja) | 二次電池用電解液および二次電池 | |
JP7177990B2 (ja) | リチウムイオン二次電池 | |
JP7032221B2 (ja) | 非水電解液二次電池 | |
JP6618386B2 (ja) | リチウムイオン二次電池 | |
JP2020119867A (ja) | リチウム二次電池用非水電解液 | |
EP4030498B1 (en) | Graphite-based negative electrode active material | |
JP7343544B2 (ja) | 非水電解液および該非水電解液を用いた二次電池 | |
JP7085136B2 (ja) | 非水電解液リチウムイオン二次電池 | |
EP3416212B1 (en) | Power storage element | |
KR20210030862A (ko) | 비수 전해액 이차 전지 | |
JP2020191193A (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13809793 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13809793 Country of ref document: EP Kind code of ref document: A1 |