WO2014002387A1 - ホール起電力補正装置及びホール起電力補正方法 - Google Patents

ホール起電力補正装置及びホール起電力補正方法 Download PDF

Info

Publication number
WO2014002387A1
WO2014002387A1 PCT/JP2013/003467 JP2013003467W WO2014002387A1 WO 2014002387 A1 WO2014002387 A1 WO 2014002387A1 JP 2013003467 W JP2013003467 W JP 2013003467W WO 2014002387 A1 WO2014002387 A1 WO 2014002387A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall
electromotive force
correction
hall electromotive
hall element
Prior art date
Application number
PCT/JP2013/003467
Other languages
English (en)
French (fr)
Inventor
泰介 藤田
茂樹 岡武
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to CN201380024243.2A priority Critical patent/CN104303065B/zh
Priority to EP13809803.3A priority patent/EP2871488B1/en
Priority to US14/406,836 priority patent/US9864038B2/en
Priority to JP2014522394A priority patent/JPWO2014002387A1/ja
Publication of WO2014002387A1 publication Critical patent/WO2014002387A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • G01D3/0365Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves the undesired influence being measured using a separate sensor, which produces an influence related signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a hall electromotive force correction apparatus and a hall electromotive force correction method, and more particularly, to a hall electromotive force correction apparatus and a hall electromotive force correction that can simultaneously correct an influence due to stress applied to a hall element and an influence due to temperature. Regarding the method.
  • a magnetic sensor semiconductor integrated circuit incorporating a Hall element As a magnetic sensor semiconductor integrated circuit incorporating a Hall element, a current sensor that detects a magnetic field generated by a current, a rotation angle sensor that detects rotation of a magnet, a position sensor that detects movement of a magnet, and the like have been known. Yes. It is known that the magnetic sensitivity of such a Hall element changes with temperature. Therefore, in order to correct the magnetic sensitivity of the Hall element with high accuracy, it is necessary to correct the influence of temperature. Furthermore, it is known that the magnetic sensitivity of the Hall element changes not only by the influence of temperature but also by stress (piezo Hall effect).
  • FIG. 1 is a cross-sectional configuration diagram in which a semiconductor integrated circuit of a magnetic sensor is sealed in a package.
  • the lead frame 1 On the lead frame 1, there is a semiconductor integrated circuit 3 of a magnetic sensor in which a Hall element 2 is incorporated, and a mold resin 4 is provided around it.
  • the lead frame 1 and the mold resin 4 are different, stress is generated in each place including on the silicon surface. Furthermore, the stress changes as the temperature, humidity, etc. of the use environment change. Therefore, there has been a problem that the magnetic sensitivity of the semiconductor integrated circuit of the magnetic sensor changes depending on the use environment.
  • Patent Document 1 For the problem that the magnetic sensitivity of the semiconductor integrated circuit of the magnetic sensor changes due to such a use environment, it is possible to detect a change in stress using a change in the offset of the Hall element and correct the magnetic sensitivity. For example, it is disclosed in Patent Document 1.
  • Patent Document 3 to Patent Document 5 and Non-Patent Document 1 disclose that the magnetic sensitivity is corrected based on the stress detection result using a stress detection element separately from the Hall element.
  • Patent Document 6 discloses a method of reducing the stress applied to the Hall element by devising the package material and the package structure.
  • Patent Document 7 discloses that magnetic sensitivity is corrected by providing a one-chip microcomputer that controls the power supply voltage of the Hall element to solve the problem that the magnetic sensitivity of the Hall element changes depending on temperature. Has been.
  • Patent Document 1 a connection switching of a chopper switch provided so as to select a terminal pair for energizing a Hall driving current and a terminal pair for detecting Hall electromotive force from a Hall element according to a chopper clock.
  • the present invention relates to a circuit configuration for acquiring not only the Hall electromotive force but also information relating to stress in the Hall element by detecting the Hall electromotive force and the Hall element offset in a time-sharing manner.
  • FIG. 2 is a diagram showing the bridge model of the Hall element and the direction of stress, and shows the relationship between the offset of the Hall element and the stress.
  • the Hall element can be generally described using a bridge model.
  • this bridge model when a current is passed in the direction of the arrow shown in FIG. 2, the offset voltage is represented by a voltage difference (V 1 ⁇ V 3 ) between the terminals facing each other.
  • the bridge resistances Rb 1 , Rb 2 , Rb 3 , Rb 4 change depending on the stresses ⁇ X , ⁇ Y and can be expressed by the following formula (1).
  • ⁇ L Piezoresistance coefficient parallel to the direction of current flow
  • ⁇ T Piezoresistance coefficient perpendicular to the direction of current flow
  • Rb 10 Resistance value of the bridge resistance Rb 1 when the stress is 0
  • Rb 20 When the stress is 0
  • Rb 30 resistance value of the bridge resistance Rb 3 when the stress is 0
  • Rb 40 resistance value of the bridge resistance Rb 4 when the stress is 0
  • the offset The voltage (V 1 -V 3 ) can be expressed by the following equation (2).
  • the offset voltage (V 1 ⁇ V 3 ) can be expressed by the following equation (4) when calculated using the following equation (3).
  • a value including the stresses ⁇ X and ⁇ Y can be obtained using the offset of the Hall element.
  • the following formula (5) shows the Hall electromotive force and the magnetic sensitivity of the Hall element.
  • SI (T, ⁇ ) is the magnetic sensitivity of the Hall element and depends on temperature (T) and stress ( ⁇ ).
  • T temperature
  • stress
  • the stress is a tensor amount, and it is difficult to obtain the sum of the stresses ⁇ 1 and ⁇ 2 from the above equation (4). For this reason, in Patent Document 1 described above, it is difficult to correct the stress dependence of the magnetic sensitivity.
  • FIG. 3 is a circuit configuration diagram for explaining an example of driving the Hall element
  • FIGS. 4A and 4B are diagrams for explaining Hall resistance values with respect to two current directions.
  • the Hall electromotive force V H and the magnetic sensitivity of the Hall element shown in FIG. 3 are shown in the following equations (6) and (7).
  • the Hall resistance value depends on the temperature (T) and the stress ( ⁇ ), and the Hall resistance values R 1 and R 2 shown in FIG. 4 have the piezoresistance coefficients ⁇ L and ⁇ Using T , it can be expressed as the following equation (8).
  • FIG. 5 is a diagram showing the calculation result of the left side of the above equation (12).
  • the left side of the equation (12) is a value close to 1, but ⁇ PR ( ⁇ ), ⁇ PH ( It can be seen that as the absolute value of ( ⁇ ) increases, the left side of the above equation (12) deviates from 1. This indicates that when the absolute value of the stress is large, the above equation (12) does not hold, and the stress correction effect is significantly deteriorated. That is, the correction of the magnetic sensitivity in the above-described Patent Document 2 has a low accuracy and a narrow range of stress for which the correction is effective.
  • Patent Document 3 discloses a technology related to a semiconductor integrated circuit having a sensor function for detecting a physical quantity signal such as a magnetic field signal.
  • a sensor is used for the purpose of correcting a detection error of sensor signal detection that occurs in a sensor function due to the influence of stress generated in a semiconductor integrated circuit, in particular, a semiconductor integrated circuit enclosed in a package.
  • the stress detection element provided separately from the physical quantity detection unit having a function is used to detect the stress described above, and based on the stress detection result, the influence of the stress described above on the sensor function is controlled, and finally 1 shows a configuration of a semiconductor integrated circuit that reduces an error in sensor signal detection caused by the stress described above.
  • Patent Document 4 described above discloses the concept of compensating and reducing the detection error of the sensor signal detection caused by the internal stress of the semiconductor integrated circuit having the sensor function. It is.
  • the specific content of the technique disclosed in Patent Document 4 is to combine the above-described stress-dependent signals output from the first and second elements having sensitivity to the stress described above. Thus, the influence of the stress on the output signal of the semiconductor integrated circuit is controlled.
  • Patent Document 5 discloses the concept of compensating and reducing the detection error of the sensor signal detection caused by the internal stress of the semiconductor integrated circuit having the sensor function. It is.
  • the technique disclosed in Patent Document 5 is characterized in that two stress detection elements provided separately from a physical quantity detection unit having a sensor function are used. In this patent document 5, it is supposed that the information regarding the stress mentioned above can be detected with high accuracy by combining two signals obtained from these two elements.
  • Non-Patent Document 1 describes the magnetic sensitivity of the Hall element caused by the internal stress of the semiconductor integrated circuit when the Hall element is realized using the semiconductor integrated circuit formed on the silicon (100) surface. 1 shows a circuit that compensates for fluctuations in
  • the above-described stress is detected by combining two elements having sensitivity to stress of N-type diffusion resistance and P-type diffusion resistance.
  • Non-Patent Document 1 an N-type diffused resistor and a P-type diffused resistor are prepared for the purpose of detecting stress acting on a Hall element built in a semiconductor integrated circuit.
  • Patent Document 3 Patent Document 4, and Patent Document 5 described above
  • the technology disclosed in these documents is arranged at a position different from the sensor portion in the semiconductor integrated circuit.
  • the internal stress of the semiconductor integrated circuit is detected by using the stress detecting element. That is, in the methods described in Patent Document 3, Patent Document 4, Patent Document 5, and Non-Patent Document 1 described above, the difference in stress due to the different positions of the Hall elements is ignored. Furthermore, by placing the stress detection element separately from the Hall element, an increase in layout area and an increase in current consumption occur.
  • Patent Document 6 described above discloses a method of reducing the stress applied to the sensor by devising the package. This technique defines the package shape and size, and is a method with a limited range of use.
  • Patent Document 7 described above discloses a method of temperature dependence of the magnetic sensitivity of the Hall element, but the stress dependence cannot be corrected.
  • the accuracy of stress correction can be increased by separating the Hall element and the stress detection element as in the methods shown in Patent Document 3, Patent Document 4, Patent Document 5, and Non-Patent Document 1, There were problems such as an increase in layout area and an increase in current consumption.
  • the present invention has been made in view of such a problem.
  • the object of the present invention is to use a Hall element and a temperature sensor to suppress stress correction while suppressing an increase in layout area and an increase in current consumption.
  • An object of the present invention is to provide a Hall electromotive force correction device and a Hall electromotive force correction method that more easily correct the magnetic sensitivity of the Hall element with high accuracy by performing temperature correction.
  • the Hall electromotive force correction apparatus of the present invention corrects a Hall element (11) that generates Hall electromotive force and the Hall electromotive force of the Hall element. And a correction signal generation unit (20) for generating a signal for generating the correction signal generation unit (20), wherein the correction signal generation unit (20) is information corresponding to a resistance value between different terminals of the Hall element. And a signal for correcting the Hall electromotive force of the Hall element based on the temperature information of the Hall element. (FIG. 6; Example 1)
  • a Hall electromotive force correction unit (19) that corrects a physical quantity based on the Hall electromotive force based on a correction signal from the correction signal generation unit.
  • the correction signal generation unit may generate a signal for correcting the Hall electromotive force of the Hall element based on information on the magnetic sensitivity temperature characteristic of the Hall element.
  • the correction signal generation unit may generate a signal for correcting the Hall electromotive force of the Hall element based on information on the temperature characteristic of the resistance value of the Hall element.
  • the correction signal generation unit may generate a signal for correcting the Hall electromotive force of the Hall element based on information on the temperature characteristic of the piezoelectric coefficient of the Hall element.
  • the information on the temperature characteristic of the piezo coefficient of the Hall element is information on the temperature characteristic of the piezo Hall coefficient of the Hall element and / or information on the temperature characteristic of the piezo resistance coefficient of the Hall element.
  • a chopper switch (12) connected to the first to fourth electrodes of the Hall element is provided, and the chopper switch is configured to drive a Hall driving voltage between the first electrode and the second electrode by chopper driving. Is applied to supply the Hall driving current (I), the Hall resistance value (V R ) is measured between the first electrode and the second electrode, and the second electrode and the fourth electrode are measured. A hall driving voltage is applied between them to supply a hall driving current, and the Hall electromotive force (V H ) is measured from between the first electrode and the third electrode. . (FIGS. 17 and 18; Example 5)
  • the Hall electromotive force measurement unit (14) for measuring the Hall electromotive force (V H ) of the Hall element and the resistance value (V R ) between different terminals of the Hall element were measured, and the resistance value was A hall resistance measurement unit (13) for outputting information, and a temperature measurement unit (15) for measuring environmental temperature of the Hall element and outputting temperature information of the Hall element are provided.
  • the Hall resistance measurement unit (13), the Hall electromotive force measurement unit (14), and the temperature measurement unit (15) include a shared A / D conversion circuit (31). To do. (FIG. 12; Example 2)
  • the Hall resistance measurement unit measures a resistance value between different terminals of the Hall element having a cross shape.
  • the temperature measuring unit is a temperature sensor.
  • the correction signal generation unit includes a correction coefficient calculation circuit (21). Further, the Hall electromotive force is corrected by the correction coefficient from the correction coefficient calculation circuit (21) with respect to the current of the Hall driving current source (23) for driving the Hall element. (FIG. 13; Example 3)
  • an amplification circuit (33) for amplifying the Hall electromotive force from the Hall electromotive force measuring unit is provided, and the Hall electromotive force is corrected by the correction coefficient from the correction coefficient calculation circuit for the amplification factor of the amplification circuit.
  • a stress correction circuit (41) and a temperature correction circuit (42) are provided after the Hall electromotive force measurement unit, and the Hall electromotive force is corrected by the stress correction coefficient and the temperature correction coefficient from the correction coefficient calculation circuit. It is characterized by that.
  • the Hall electromotive force correction method of the present invention includes a Hall element that generates Hall electromotive force, and a correction signal generation unit that generates a signal for correcting the Hall electromotive force of the Hall element.
  • the correction signal generation step by the correction signal generation unit is based on information according to a resistance value between different terminals of the Hall element and temperature information of the Hall element. A signal for correcting the Hall electromotive force of the Hall element is generated.
  • the physical quantity based on the Hall electromotive force is corrected by the Hall electromotive force correction unit based on the correction signal from the correction signal generation unit.
  • the correction signal generation step by the correction signal generation unit may generate a signal for correcting the Hall electromotive force of the Hall element based on information on the magnetic sensitivity temperature characteristic of the Hall element. Further, the correction signal generation step by the correction signal generation unit generates a signal for correcting the Hall electromotive force of the Hall element based on information on the temperature characteristic of the resistance value of the Hall element.
  • the correction signal generation step by the correction signal generation unit may generate a signal for correcting the Hall electromotive force of the Hall element based on information on temperature characteristics of the piezoelectric coefficient of the Hall element.
  • the information on the temperature characteristic of the piezo coefficient of the Hall element is information on the temperature characteristic of the piezo Hall coefficient of the Hall element and / or information on the temperature characteristic of the piezo resistance coefficient of the Hall element.
  • a chopper switch connected to the first to fourth electrodes of the Hall element, wherein the chopper switch applies a Hall driving voltage between the first electrode and the second electrode by chopper driving; Hall drive current is supplied, the Hall resistance value is measured from between the first electrode and the second electrode, and a Hall drive voltage is applied between the second electrode and the fourth electrode. A drive current is supplied, and the Hall electromotive force is measured from between the first electrode and the third electrode.
  • a Hall electromotive force measurement step for measuring the Hall electromotive force of the Hall element; a Hall resistance measurement step for measuring a resistance value between different terminals of the Hall element; and outputting information corresponding to the resistance value;
  • a temperature measuring step of measuring an ambient temperature of the Hall element and outputting temperature information of the Hall element.
  • measurement is performed in a time-sharing manner using an A / D conversion circuit in which the resistance value obtained by the Hall resistance measurement step, the Hall electromotive force obtained by the Hall electromotive force measurement step, and the temperature value obtained by the temperature measurement step are shared. It is characterized by.
  • the Hall resistance measurement step may measure a resistance value between different terminals of the Hall element having a cross shape.
  • the temperature measuring step is characterized by measuring using a temperature sensor. Further, the correction signal generation step by the correction signal generation unit generates a correction signal by a correction coefficient calculation circuit. Further, the Hall electromotive force is corrected by correcting a current of a Hall driving current source for driving the Hall element with a correction coefficient from the correction coefficient calculation circuit. In addition, an amplification circuit for amplifying the Hall electromotive force from the Hall electromotive force measurement step is provided, and the Hall electromotive force is corrected by the correction coefficient from the correction coefficient calculation circuit for the amplification factor of the amplification circuit. .
  • a stress correction circuit and a temperature correction circuit are provided after the Hall electromotive force measurement in the Hall electromotive force measurement step, and the Hall electromotive force is corrected by the stress correction coefficient and the temperature correction coefficient from the correction coefficient calculation circuit. It is characterized by that.
  • the influence due to the stress applied to the Hall element and the influence due to the temperature can be corrected at the same time.
  • using one Hall element and the temperature sensor while suppressing an increase in layout area and an increase in current consumption,
  • stress correction and temperature correction it is possible to realize a Hall electromotive force correction device and a Hall electromotive force correction method that more easily correct the magnetic sensitivity of the Hall element with high accuracy.
  • FIG. 1 is a cross-sectional configuration diagram in which a semiconductor integrated circuit of a magnetic sensor is sealed in a package.
  • FIG. 2 is a diagram showing the bridge model of the Hall element and the direction of stress.
  • FIG. 3 is a circuit configuration diagram for explaining an example of driving the Hall element.
  • 4A and 4B are diagrams for explaining the Hall resistance values with respect to two current directions.
  • FIG. 5 is a diagram showing the calculation result of the left side of the equation (12).
  • FIG. 6 is a configuration block diagram for explaining the first embodiment of the Hall electromotive force correction apparatus according to the present invention.
  • FIG. 7 is a view showing an example of the outer shape of the Hall element shown in FIG.
  • FIG. 8 is a circuit configuration diagram for explaining an example of driving the Hall element (Phase 1).
  • FIG. 1 is a cross-sectional configuration diagram in which a semiconductor integrated circuit of a magnetic sensor is sealed in a package.
  • FIG. 2 is a diagram showing the bridge model of the Hall element and the direction
  • FIG. 9 is a circuit configuration diagram for explaining an example of driving the Hall element (Phase 2).
  • FIG. 10 is a flowchart for explaining the Hall electromotive force correction method by the correction coefficient calculation circuit shown in FIG.
  • FIG. 11 is a block diagram of a specific configuration of the correction coefficient arithmetic circuit shown in FIG.
  • FIG. 12 is a configuration block diagram for explaining a second embodiment of the Hall electromotive force correction apparatus according to the present invention.
  • FIG. 13 is a configuration block diagram for explaining a third embodiment of the Hall electromotive force correction apparatus according to the present invention.
  • FIG. 14 is a configuration diagram of the hall driving current source shown in FIG.
  • FIG. 15 is a block diagram for explaining a fourth embodiment of the Hall electromotive force correction apparatus according to the present invention.
  • FIG. 16 is a block diagram of the amplifier circuit shown in FIG.
  • FIG. 17 is a configuration block diagram for explaining a fifth embodiment of the Hall electromotive force correction device according to the present invention, and is a circuit configuration diagram for explaining an example of driving a Hall element (Phase 1; Hall resistance value measurement).
  • FIG. 18 is a configuration block diagram for explaining a fifth embodiment of the Hall electromotive force correction apparatus according to the present invention, and is a circuit configuration diagram for explaining an example of driving a Hall element (Phase 2; Hall electromotive force measurement).
  • FIG. 19 is a block diagram illustrating a sixth embodiment of the Hall electromotive force correction apparatus according to the present invention.
  • FIG. 20 is a diagram showing a magnetic sensitivity image depending on temperature and stress in FIG. FIG.
  • FIG. 21 is a diagram showing a case where the stress in FIG. 19 is corrected to zero.
  • FIG. 22 is a diagram showing an image of magnetic sensitivity when the stress in FIG. 19 is zero.
  • FIG. 23 is a diagram showing the outer shape of the Hall element.
  • FIG. 24 is a flowchart for explaining a Hall electromotive force correction method corresponding to Embodiment 1 of the Hall electromotive force correction apparatus according to the present invention.
  • FIG. 6 is a block diagram for explaining the first embodiment of the Hall electromotive force correction apparatus according to the present invention.
  • reference numeral 11 denotes a Hall element
  • 12 denotes a chopper switch
  • 13 denotes a Hall resistance measuring unit (A / D).
  • Conversion circuit) 14 is a hall electromotive force measurement unit (A / D conversion circuit)
  • 15 is a temperature sensor (temperature measurement unit)
  • 16 is an A / D conversion circuit
  • 19 is a hall electromotive force correction unit
  • 20 is a correction signal generator.
  • 21 is a correction coefficient calculation circuit
  • 22 is a Hall electromotive force correction circuit
  • 23 is a Hall drive current source
  • 24 is a magnetic sensitivity temperature characteristic information storage unit
  • 25 is a resistance temperature characteristic information storage unit
  • 26 is a piezo coefficient temperature characteristic.
  • storage part is shown.
  • the Hall electromotive force correction apparatus of the present invention is a Hall electromotive force correction apparatus configured to perform stress correction and temperature correction for Hall electromotive force based on stress and temperature that affect the magnetic sensitivity of the Hall element 11.
  • the Hall electromotive force correction apparatus includes a Hall element 11 that generates electric power and a correction signal generation unit 20 that generates a signal for correcting the Hall electromotive force of the Hall element 11.
  • the correction signal generation unit 20 generates a signal for correcting the Hall electromotive force of the Hall element 11 based on the information corresponding to the resistance value between the different terminals of the Hall element 11 and the temperature information of the Hall element 11.
  • a correction coefficient calculation circuit 21 is provided.
  • the Hall electromotive force correction device of the present invention includes a Hall electromotive force correction unit 19 that corrects a physical quantity based on the Hall electromotive force based on a correction signal from the correction signal generation unit 20.
  • the correction signal generation unit 20 generates a signal for correcting the Hall electromotive force of the Hall element 11 based on the information on the magnetic sensitivity temperature characteristic of the Hall element 11, and the temperature of the resistance value of the Hall element 11.
  • a signal for correcting the Hall electromotive force of the Hall element 11 is generated based on the information on the characteristics, and further, the Hall electromotive force of the Hall element 11 is corrected based on the information on the temperature characteristics of the piezoelectric coefficient of the Hall element 11. The signal is generated.
  • the Hall resistance measuring unit 13 is configured to measure a Hall resistance value V R between different terminals of the Hall element 11.
  • the Hall electromotive force measurement unit 14 measures the Hall electromotive force V H of the Hall element 11.
  • the temperature measuring unit 15 measures the environmental temperature of the Hall element 11.
  • Hall electromotive force correcting unit 19 is composed of a correction coefficient calculation circuit 21 and the Hall electromotive force correction circuit 22., based on the temperature output value T of the Hall resistance V R and the temperature measuring unit 17 by Hall resistance measuring unit 13 Thus, the physical quantity based on the Hall electromotive force V H is corrected.
  • a Hall element 11 and a Hall drive current source 23 that drives the Hall element 11 are provided, and a chopper switch 12 that is a switch group for driving the Hall element 11 by chopper is provided.
  • the magnetic sensitivity temperature characteristic information storage unit 24 stores information related to the magnetic sensitivity temperature characteristic of the Hall element 11, and the correction signal generation unit 20 uses the information related to the magnetic sensitivity temperature characteristic of the Hall element 11 to generate Hall occurrence. Correct the power.
  • the resistance value temperature characteristic information storage unit 25 stores information related to the temperature characteristic of the resistance value of the Hall element 11, and the correction signal generation unit 20 uses information related to the temperature characteristic of the resistance value of the Hall element 11. Correct the hall electromotive force.
  • the piezo coefficient temperature characteristic storage unit 26 stores the temperature characteristic of the piezo coefficient of the Hall element 11, and the correction signal generation unit 20 uses the information about the temperature characteristic of the piezo coefficient of the Hall element 11 to use the Hall electromotive force. A signal for correcting the above is generated.
  • the piezo coefficient temperature characteristic storage unit 26 stores information on the temperature characteristic of the piezo Hall coefficient of the Hall element 11 and information on the temperature characteristic of the piezo resistance coefficient.
  • a signal for correcting the Hall electromotive force is generated using information on the temperature characteristics of the piezo Hall coefficient of the element 11 and information on the temperature characteristics of the piezo resistance coefficient.
  • the piezo coefficient includes a piezo hall coefficient and a piezo resistance coefficient.
  • FIG. 7 is a view showing an example of the outer shape of the Hall element shown in FIG.
  • the connection from the electrode 1 to the electrode 4 is controlled by the chopper switch 12.
  • Hall resistance value V R and the Hall electromotive force V H of the Hall element 11 is supplied to an analog / digital converter (A / D conversion circuit).
  • FIG. 8 is a circuit configuration diagram for explaining an example of driving the Hall element (Phase 1)
  • FIG. 9 is a circuit configuration diagram for explaining an example of driving the Hall element (Phase 2).
  • Supply of the Hall resistance V R and the Hall electromotive force V H to the A / D conversion circuit, as shown in FIG. 8 (Phase1) and FIG. 9 (Phase2), is performed while the chopper drive.
  • the Hall electromotive force V H and the Hall resistance V R can be expressed by the following equation (14).
  • the Hall resistance value at the time of Phase 1 and Phase 2 described above is the Hall resistance value when the Hall element is driven as shown in FIGS.
  • the equation (15) is modified, the sum of stress components in two directions can be obtained as in the following equation (16).
  • the piezo hole coefficient and the piezo resistance coefficient on the silicon (100) surface are reported in Non-Patent Document 2 described above, and are known values and are shown in Table 1 below.
  • the temperature characteristic ( ⁇ SI ) of the Hall element magnetic sensitivity the temperature characteristic ( ⁇ R ) of the Hall resistance value, the reference magnetic sensitivity (SI 0 ), and the reference Hall resistance value (R 0 ) If it is a measurable value and sample variation can be tolerated, it may be a representative value measured in advance. Hall drive current can also be measured by inspection before shipment.
  • the information regarding the temperature characteristic ( ⁇ SI ) of the magnetic sensitivity and the temperature characteristic ( ⁇ R ) of the Hall resistance value may be either “hold by equation” or “hold by table”.
  • the magnetic sensitivity can be accurately calculated. Since the magnetic sensitivity can be accurately calculated, it is possible to detect an accurate magnetic field.
  • the magnetic field B can be expressed by the equations (17) and (18).
  • the ⁇ SI (T) SI 0 portion in the equation (18) represents a temperature correction coefficient KT , and 1 + Q (T) (R 1 + R 2 ⁇ 2 ⁇ R (T) R 0 ) / ⁇ R (T)
  • the R 0 portion indicates the stress correction coefficient K ⁇ .
  • the correction coefficient K in the above equation (18) is calculated by the correction coefficient calculation circuit 21 shown in FIG.
  • the fluctuation of the Hall electromotive force of the Hall element 11 due to stress and temperature can be corrected, and an accurate magnetic field B can be obtained.
  • FIG. 10 is a flowchart for explaining the Hall electromotive force correction method by the correction coefficient calculation circuit shown in FIG.
  • step S1 to measure the Hall resistance value R 1, to measure the Hall electromotive force V H (step S1). Then, enter the Hall resistance value R 1 to the A / D conversion circuit, by entering the holes electromotive force V H to the A / D converter circuit, data held as a digital signal (step S2). Then, in Phase2 shown in FIG. 9, to measure the Hall resistance value R 2, measuring the hole electromotive force V H (step S3). Then, enter the Hall resistance value R 2 to A / D conversion circuit, by entering the holes electromotive force V H to the A / D converter circuit, data held as a digital signal (step S4). Further, the temperature value T measured by the temperature sensor 15 is input to the A / D conversion circuit 16 and data is held as a digital signal (step S5).
  • FIG. 11 is a block diagram of a specific configuration of the correction coefficient arithmetic circuit shown in FIG.
  • symbol is attached
  • the Hall resistance value R 1 is measured and inputted to the A / D conversion circuit
  • the Hall resistance value R 2 is measured and inputted to the A / D conversion circuit.
  • the temperature value T measured by the temperature sensor 15 is input to the A / D conversion circuit 16.
  • B ⁇ R (T) R 0 .
  • the stress correction coefficient K ⁇ 1 + Q (T) (R 1 + R 2 ⁇ 2 ⁇ R (T) R 0 ) / ⁇ R (T) R Get 0 .
  • the temperature correction coefficient K T ⁇ SI (by multiplying the magnetic sensitivity temperature characteristic ⁇ SI (T) of the Hall element based on the temperature value T by the magnetic sensitivity SI 0 of the Hall element at the reference temperature when the stress is zero. T) Get SI 0 .
  • the correction factor K is found to be composed of a (18) As is apparent from the equation, the stress correction factor K ⁇ and temperature correction coefficient K T.
  • the Hall electromotive force V H converted into a digital signal by the A / D conversion circuit is calculated by the Hall electromotive force correction circuit 22 as V H ⁇ K, a correction value of the Hall electromotive force is obtained.
  • the correction coefficient K from the correction coefficient calculation circuit 21 described above includes temperature characteristic influence correction and stress influence correction of magnetic sensitivity. Since it is possible to obtain the correction coefficient K for simultaneously correcting the temperature characteristic influence and the stress influence without preparing a special circuit, it is possible to provide a method for more easily correcting the magnetic sensitivity of the Hall element with high accuracy. It becomes possible.
  • FIG. 12 is a block diagram for explaining a second embodiment of the Hall electromotive force correction apparatus according to the present invention.
  • reference numeral 31 denotes a shared A / D conversion circuit.
  • symbol is attached
  • the notation of the Hall resistance measurement unit 13 and the Hall electromotive force measurement unit 15 is omitted.
  • the Hall electromotive force correction apparatus according to the second embodiment includes an A / D conversion circuit 31 that is shared by the Hall resistance measurement unit 13, the Hall electromotive force measurement unit 14, and the temperature measurement unit 15.
  • the resistance value from the Hall resistance measurement unit 13, the Hall electromotive force measurement unit 14 from the Hall electromotive force, and the temperature measurement unit 15 from the A / D conversion circuit 31 are used to measure in a time-sharing manner.
  • stress and temperature change gradually with respect to time it is not necessary to always measure. Therefore, as shown in FIG. 12, it is possible to measure in a time division manner with a common A / D conversion circuit.
  • FIG. 13 is a configuration block diagram for explaining a third embodiment of the Hall electromotive force correction apparatus according to the present invention, and is a configuration block diagram configured to correct the Hall electromotive force by the Hall drive current.
  • FIG. 14 is a configuration diagram of the hall driving current source shown in FIG. 13.
  • Reference numeral 32 in the figure indicates an A / D conversion circuit 32 shared by the Hall resistance measurement unit 13 and the temperature measurement unit 15.
  • symbol is attached
  • the Hall electromotive force is corrected by the correction coefficient K from the correction coefficient calculation circuit 21 for the current I of the Hall drive current source 23 that drives the Hall element 11.
  • Switches 23a and 23b for selecting a hall driving current according to the value of the correction coefficient K are provided.
  • FIG. 15 is a block diagram for explaining a Hall electromotive force correction apparatus according to a fourth embodiment of the present invention.
  • FIG. 15 is a block diagram of the configuration configured to correct the Hall electromotive force by the amplifier circuit.
  • FIG. 16 is a configuration diagram of the amplifier circuit shown in FIG. 15.
  • reference numeral 33 denotes an amplifier circuit
  • 33a denotes an operational amplifier.
  • symbol is attached
  • the Hall electromotive force correction apparatus includes an amplification circuit 33 that amplifies the Hall electromotive force from the Hall electromotive force measurement unit 15, and the amplification factor of the amplification circuit 33 is calculated as a correction coefficient K from the correction coefficient calculation circuit 21.
  • the amplification factor of the amplification circuit 33 may be corrected by the correction coefficient K.
  • the correction coefficient of the (18) it is also possible to extract only the temperature correction coefficient K T, may execute only the temperature compensation. This corresponds to correction using the following equation (19), which is a part of the correction coefficient K of equation (18).
  • FIG. 17 is a configuration block diagram for explaining Example 5 of the Hall electromotive force correction device according to the present invention, and is a circuit configuration diagram for explaining an example of driving a Hall element (Phase 1; Hall resistance value measurement).
  • FIG. 17 is a configuration block diagram for explaining Example 5 of the Hall electromotive force correction device according to the present invention, and is a circuit configuration diagram for explaining an example of driving a Hall element (Phase 1; Hall resistance value measurement).
  • FIG. 18 is a configuration block diagram for explaining a fifth embodiment of the Hall electromotive force correction apparatus according to the present invention, and is a circuit configuration diagram for explaining an example of driving a Hall element (Phase 2; Hall electromotive force measurement).
  • a chopper switch 12 connected to the electrodes 1 to 4 of the Hall element 11 is provided, and the chopper switch 12 applies a Hall driving voltage between the electrode 1 and the electrode 2 by chopper driving to generate a Hall driving current I. supplied, Hall resistance value V R from between the electrode 1 and the electrode 2 is measured, and supplies the Hall drive current I is applied to Hall drive voltage between electrodes 2 and 4, holes caused from between the electrode 1 and the electrode 3 The power V H is measured.
  • FIG. 19 is a configuration block diagram for explaining the sixth embodiment of the Hall electromotive force correction device according to the present invention, and is a configuration block in the case where the stress correction circuit and the temperature correction circuit are separated.
  • reference numeral 41 denotes a stress correction circuit
  • 42 denotes a temperature correction circuit.
  • symbol is attached
  • a stress correction circuit 41 and a temperature correction circuit 42 are provided after the Hall electromotive force measurement unit 14, and the Hall electromotive force is calculated from the stress correction coefficient K ⁇ and the temperature from the correction coefficient calculation circuit 21.
  • the correction coefficient K T for correcting the hole electromotive force That is, stress correction can be performed first, and then correction for temperature can be performed.
  • 20 is a diagram showing an image of magnetic sensitivity depending on temperature and stress in FIG. 19
  • FIG. 21 is a diagram showing a case where the stress in FIG. 19 is corrected to 0
  • FIG. 22 is a diagram in which the stress in FIG. It is a figure which shows the magnetic sensitivity image at the time of.
  • FIG. 23 is a diagram showing the outer shape of the Hall element.
  • the direction of the current for driving the Hall element matches the direction of the piezoresistance coefficient, and the accuracy of stress correction can be further improved. That is, the Hall resistance measuring unit 13 measures the resistance value in the energization direction of two or more directions of the Hall element having a cross shape. Further, as shown in FIG. 11 described above, the Hall electromotive force instead of performing correction on, as in the following equation (21), the magnetic field B correction by multiplying the correction coefficient after obtaining the pre-magnetic field B correction You may ask for the rest.
  • FIG. 24 is a flowchart for explaining a Hall electromotive force correction method corresponding to Embodiment 1 of the Hall electromotive force correction apparatus according to the present invention.
  • This Hall electromotive force correction method is a Hall electromotive force correction method in a Hall electromotive force correction apparatus configured to perform stress correction and temperature correction for Hall electromotive force based on stress and temperature affecting the magnetic sensitivity of the Hall element 11. It is.
  • the Hall resistance value V R of the two or more directions of current direction between a plurality of electrodes having the Hall element 11 is measured by the Hall resistance measuring unit 13 (step S11).
  • a hole electromotive force V H of the Hall element 11 is measured by the Hall electromotive force measurement unit 14 (step S12).
  • the ambient temperature of the Hall element 11 is measured by the temperature measuring unit 15 (step S13). Then, it calculates the Hall resistance value V R measured by the Hall resistance measuring unit 13, the correction coefficient calculation circuit 21 the correction coefficient K from the temperature output value T measured by the temperature measuring section 15 (step S14).
  • a hole electromotive force V H is corrected by a Hall electromotive force correction circuit 22 based on the temperature output value T of the Hall resistance V R and the temperature measuring section 15 by Hall resistance measuring unit 13, calculated by the correction coefficient calculation circuit 21
  • the hall electromotive force is corrected using the corrected correction coefficient K (step S15).
  • a Hall electromotive force correction method for correction can be realized.

Abstract

 本発明は、レイアウト面積の増大や消費電流の増加を抑えつつ、応力補正と温度補正を行うことで、ホール素子の磁気感度を高精度に補正するホール起電力補正装置及びホール起電力補正方法に関する。ホール抵抗測定部(13)は、ホール素子(11)の有する複数の電極間の2方向以上の通電方向のホール抵抗値(V)を測定する。ホール起電力測定部(14)は、ホール素子のホール起電力(V)を測定する。温度測定部(15)は、ホール素子の環境温度を測定する。補正信号生成部(20)は、ホール抵抗測定部によるホール抵抗値と温度測定部の温度出力値(T)とに基づいてホール起電力を補正する。補正係数演算回路(21)は、ホール抵抗測定部により測定されたホール抵抗値と、温度測定部により測定された温度出力値とから補正係数(K)を算出する。補正係数は、応力補正係数(Kσ)と温度補正係数(K)とからなる。

Description

ホール起電力補正装置及びホール起電力補正方法
 本発明は、ホール起電力補正装置及びホール起電力補正方法に関し、より詳細には、ホール素子に加わる応力による影響と温度による影響を同時に補正できるようにしたホール起電力補正装置及びホール起電力補正方法に関する。
 従来から、ホール素子を内蔵した磁気センサ半導体集積回路として、電流が発生させる磁場を検出する電流センサや、磁石の回転を検出する回転角センサ、磁石の移動を検出するポジションセンサなどが知られている。
 このようなホール素子の磁気感度は、温度によって変化することが知られている。そのため、高精度にホール素子の磁気感度を補正するには、温度による影響を補正する必要がある。さらに、ホール素子の磁気感度は、温度による影響だけでなく、応力によっても変化する(ピエゾホール効果)ことが知られている。
 図1は、磁気センサの半導体集積回路がパッケージ封止された断面構成図である。リードフレーム1上に、ホール素子2が組み込まれた磁気センサの半導体集積回路3があり、その周りにモールド樹脂4を設けた構造になっている。この構造では、シリコンとリードフレーム1とモールド樹脂4などの熱膨張係数が異なるため、シリコン表面上を含め各場所に応力が発生する。さらに、使用環境の温度・湿度等が変化することによって、その応力が変化する。そのため、使用環境によって磁気センサの半導体集積回路の磁気感度が変化してしまうという問題が生じていた。
 このような使用環境によって磁気センサの半導体集積回路の磁気感度が変化してしまうという問題に対して、ホール素子のオフセットの変化を用いて応力の変化を検出し、磁気感度を補正することが、例えば、特許文献1に開示されている。
 さらに、ホール素子の抵抗値(ホール抵抗値)の変化を用いて応力の変化を検出し、ホール素子の駆動電流(ホール駆動電流)にフィードバックさせて磁気感度を補正することが、例えば、特許文献2に開示されている。
 また、ホール素子とは別に、応力検出素子を使用して、その応力検出結果に基づいて磁気感度を補正することが、例えば、特許文献3から特許文献5及び非特許文献1に開示されている。
 また、パッケージ材料やパッケージ構造を工夫することによって、ホール素子に印加される応力を低減させるという方法も、例えば、特許文献6に開示されている。
 また、ホール素子の磁気感度が温度によって変化してしまう問題に対して、ホール素子の電源電圧を制御するワンチップマイコンを備えることで、磁気感度を補正することが、例えば、特許文献7に開示されている。
米国特許第6362618号明細書(B2) 米国特許第6483301号明細書(B2) 米国特許第6906514号明細書(B2) 米国特許第7437260号明細書(B2) 米国特許第7302357号明細書(B2) 特開2008-292182号公報 特開2009-139213号公報
IEEE Sensors Jouranal, Vol.,No.11, November 2007 Udo Ausserlechner, Mario Motz, Michael Holliber著 Piezo-Hall Coefficients of n-type Silicon , J. Appl. Phys., vol.64, pp.276-282,1988. B.Halg著
 本発明が解決しようとする課題を説明するために上述した各先行技術文献について説明する。
 まず、特許文献1に示されているものは、ホール駆動電流を通電する端子対とホール素子からホール起電力を検出する端子対をチョッパークロックにしたがって選択するように設けられたチョッパースイッチの接続切替によって、ホール起電力とホール素子のオフセットを時間分割して検出することにより、ホール起電力だけでなく、ホール素子における応力に関する情報を取得する回路構成に関するものである。
 図2は、ホール素子のブリッジモデルと応力の方向を示す図で、ホール素子のオフセットと応力の関係を示している。ホール素子は、一般的にブリッジモデルを用いて説明することが出来る。このブリッジモデルにおいて、図2に示した矢印の向きに電流を流したとき、オフセット電圧は向かい合う端子間の電圧差(V-V)で表される。ブリッジ抵抗Rb,Rb,Rb,Rbは、応力σ,σによって変化し、以下の(1)式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 π:電流を流す方向に平行なピエゾ抵抗係数
 π:電流を流す方向に垂直なピエゾ抵抗係数
 Rb10:応力が0の時のブリッジ抵抗Rbの抵抗値
 Rb20:応力が0の時のブリッジ抵抗Rbの抵抗値
 Rb30:応力が0の時のブリッジ抵抗Rbの抵抗値
 Rb40:応力が0の時のブリッジ抵抗Rbの抵抗値
 この(1)式を用いて、オフセット電圧(V-V)は、以下の(2)式で表すことが出来る。
Figure JPOXMLDOC01-appb-M000002
 ここで計算を簡単にするために、以下の(3)式を用いて計算すると、オフセット電圧(V-V)は、以下の(4)式で表すことができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 上記(4)式から、ホール素子のオフセットを用いて、応力σとσを含んだ値を求めることが出来る。ホール起電力及びホール素子の磁気感度を、以下の(5)式に示す。SI(T,σ)は、ホール素子の磁気感度であり、温度(T)と応力(σ)に依存している。磁気感度の応力依存性を補正するには、以下の(5)式から分かるとおり、応力σとσの和が必要である。応力はテンソル量であり、上記(4)式から応力σとσの和を求めることは困難である。そのため、上述した特許文献1では、磁気感度の応力依存性を補正することは困難である。
Figure JPOXMLDOC01-appb-M000005
 次に、上述した特許文献2の応力補正方法について図3及び図4を用いて説明する。
 図3は、ホール素子の駆動例を説明するための回路構成図で、図4(a),(b)は、2方向の電流方向に対するホール抵抗値を説明するための図である。
 図3に示したホール起電力V及びホール素子の磁気感度を、以下の(6)式と(7)式に示す。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ホール素子の磁気感度と同様に、ホール抵抗値も温度(T)と応力(σ)に依存しており、図4に示したホール抵抗値R及びRは、ピエゾ抵抗係数πとπを用いて、以下の(8)式のように表すことができる。
Figure JPOXMLDOC01-appb-M000008
 上述した特許文献2においては、ホール駆動電流を2方向のホール抵抗値の平均値に比例した値にするため、上記(8)式を用いて、
Figure JPOXMLDOC01-appb-M000009
 となる。
 上記(7)及び(9)式を(6)式に代入すると、以下の(10)式となる。
Figure JPOXMLDOC01-appb-M000010
 上述した特許文献2においては、上記(10)式のように、ホール駆動電流を2方向のホール抵抗値に比例させることで、応力による影響を補正しているが、(10)式が一定となるには、以下の(11)式及び(12)式が成り立つ必要がある。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 上述した特許文献2では、温度センサがないため、上記(11)式の温度依存性を、ホール駆動電流の温度特性として持つ必要があるが、高次の係数を持つ関数となり非常に難しく、精度の確保が難しい。
 さらに、上記(12)式については、上述した特許文献2にも記載されているように、
Figure JPOXMLDOC01-appb-M000013
 を前提にしているが、実際には室温においても-P12≒π+πであり、温度が変化することでも上記(13)式の関係は成立しない。
 図5は、上記(12)式の左辺の計算結果を示す図である。この図5から分かるとおり、αPR(σ),αPH(σ)の絶対値が小さいときは、(12)式の左辺が1に近い値となるが、αPR(σ),αPH(σ)の絶対値が大きくなると、上記(12)式の左辺が1から逸脱していくことがわかる。これは、応力の絶対値が大きいとき、上記(12)式は成り立たず、応力の補正効果が著しく悪化することを示している。
 つまり、上述した特許文献2における磁気感度の補正は、精度が低く、かつ補正が有効な応力の範囲も狭い。
 次に、上述した特許文献3は、磁界信号といった物理量の信号を検出するセンサ機能を有する半導体集積回路に関する技術を開示したものである。この特許文献3においては、半導体集積回路、特に、パッケージに封入された半導体集積回路のなかに生じる応力の影響に起因して、センサ機能において生じるセンサ信号検出の検出誤差を補正する目的で、センサ機能を持つ物理量検出部とは別に設けられた応力検出素子を使用して、上述した応力を検出し、その応力検出結果に基づいて、センサ機能における上述した応力の影響を制御し、最終的に、上述した応力に起因するセンサ信号検出の誤差を低減する半導体集積回路の構成が示されている。
 次に、上述した特許文献4は、センサ機能を有する半導体集積回路の内部の応力に起因して生じるセンサ信号検出の検出誤差に対して、この検出誤差を補償して低減する概念を開示したものである。この特許文献4のなかで開示された技術の具体的な内容は、上述した応力に対して感度を持つ第1,第2の素子のそれぞれから出力される上記の応力に依存した信号を組み合わせることにより、半導体集積回路の出力信号に対する上記の応力の影響を制御するというものである。
 次に、上述した特許文献5は、センサ機能を有する半導体集積回路の内部の応力に起因して生じるセンサ信号検出の検出誤差に対して、この検出誤差を補償して低減する概念を開示したものである。この特許文献5に示された技術においては、センサ機能を持つ物理量検出部とは別に設けられた2つの応力検出素子を使うことが特徴である。この特許文献5において、これらの2つの素子から得られる2つの信号を組み合わせることにより、上述した応力に関する情報を高精度に検出できるとされている。
 次に、上述した非特許文献1は、シリコン(100)面に形成した半導体集積回路を使ってホール素子を実現する場合に、半導体集積回路の内部の応力に起因して生じるホール素子の磁気感度の変動を補償する回路を示したものである。ここでは、N型拡散抵抗とP型拡散抵抗という応力に対する感度を持つ2つの素子を組み合わせることにより、上述した応力を検出している。
 また、非特許文献1に示された技術においては、半導体集積回路の内部に作り込まれたホール素子に働く応力を検出する目的で、N型拡散抵抗とP型拡散抵抗が用意されている。非特許文献1だけでなく、上述した特許文献3,特許文献4,特許文献5についても、これら文献のなかで開示されている技術は、半導体集積回路のなかのセンサ部分とは異なる位置に配置された応力検出素子を使用して、半導体集積回路の内部の応力を検出するものである。
 つまり、上述した特許文献3,特許文献4,特許文献5及び非特許文献1に記載の方法では、ホール素子の位置が異なることによる応力の差を無視している。さらに、応力検出素子をホール素子とは別に置くことによって、レイアウト面積の増大や消費電流の増加が発生する。
 次に、上述した特許文献6は、パッケージを工夫することにより、センサに印加される応力を低減させる方法を開示したものである。この技術は、パッケージ形状や大きさを規定するものであり、使用範囲は限られる方法である。
 次に、上述した特許文献7は、ホール素子の磁気感度の温度依存性の方法について開示されているが、応力依存性を補正することは出来ない。
 このように、上述した従来技術では、特許文献1及び特許文献2に示された方法のように、ホール素子1個から磁気感度と応力信号を測定する場合、応力補正の精度が低いという課題があった。さらに、特許文献3,特許文献4,特許文献5及び非特許文献1で示された方法のように、ホール素子と応力検出素子を分離することで、応力補正の精度を上げることはできるが、レイアウト面積の増大や消費電流の増加といった課題があった。
 さらに、ホール素子の磁気感度の応力依存性及び温度依存性の両方に有効な技術については、上述した従来技術には何ら開示されていない。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、ホール素子1個と温度センサを用いて、レイアウト面積の増大や消費電流の増加を抑えつつ、応力補正と温度補正を行うことで、より簡便にホール素子の磁気感度を高精度に補正するホール起電力補正装置及びホール起電力補正方法を提供することにある。
 本発明は、このような目的を達成するためになされたもので、本発明のホール起電力補正装置は、ホール起電力を発生するホール素子(11)と、該ホール素子のホール起電力を補正するための信号を生成する補正信号生成部(20)とを有するホール起電力補正装置であって、前記補正信号生成部(20)は、前記ホール素子の異なる端子間の抵抗値に応じた情報と、前記ホール素子の温度情報とに基づいて、前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。(図6;実施例1)
 また、前記補正信号生成部からの補正信号に基づいて、前記ホール起電力に基づく物理量を補正するホール起電力補正部(19)を備えていることを特徴とする。
 また、前記補正信号生成部が、前記ホール素子の磁気感度温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。
 また、前記補正信号生成部が、前記ホール素子の抵抗値の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。
 また、前記補正信号生成部が、前記ホール素子のピエゾ係数の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。
 また、前記ホール素子のピエゾ係数の温度特性に関する情報が、前記ホール素子のピエゾホール係数の温度特性に関する情報及び/又は前記ホール素子のピエゾ抵抗係数の温度特性に関する情報であることを特徴とする。
 また、前記ホール素子の第1乃至第4の電極に接続されたチョッパースイッチ(12)を備え、該チョッパースイッチが、チョッパー駆動により、前記第1の電極と前記第2の電極間にホール駆動電圧を印加してホール駆動電流(I)を供給し、前記第1の電極と前記第2の電極間から前記ホール抵抗値(V)を測定し、前記第2の電極と前記第4の電極間にホール駆動電圧を印加してホール駆動電流を供給し、前記第1電極と前記第3の電極間から前記ホール起電力(V)を測定するように構成されていることを特徴とする。(図17,図18;実施例5)
 また、前記ホール素子のホール起電力(V)を測定するホール起電力測定部(14)と、前記ホール素子の異なる端子間の抵抗値(V)を測定し、該抵抗値に応じた情報を出力するホール抵抗測定部(13)と、前記ホール素子の環境温度を測定し、前記ホール素子の温度情報を出力する温度測定部(15)とを備えていることを特徴とする。
 また、前記ホール抵抗測定部(13)と前記ホール起電力測定部(14)と前記温度測定部(15)とが、共有化したA/D変換回路(31)を備えていることを特徴とする。(図12;実施例2)
 また、前記ホール抵抗測定部が、十字型の形状を有するホール素子の異なる端子間の抵抗値を測定することを特徴とする。
 また、前記温度測定部が、温度センサであることを特徴とする。
 また、前記補正信号生成部が、補正係数演算回路(21)を備えていることを特徴とする。
 また、前記ホール素子を駆動するホール駆動電流源(23)の電流を前記補正係数演算回路(21)からの補正係数により前記ホール起電力を補正することを特徴とする。(図13;実施例3)
 また、前記ホール起電力測定部からのホール起電力を増幅する増幅回路(33)を設け、該増幅回路の増幅率を前記補正係数演算回路からの補正係数により前記ホール起電力を補正することを特徴とする。(図15;実施例4)
 また、前記ホール起電力測定部の後段に応力補正回路(41)と温度補正回路(42)を設け、前記補正係数演算回路からの応力補正係数と温度補正係数とにより前記ホール起電力を補正することを特徴とする。(図19;実施例6)
 また、本発明のホール起電力補正方法は、ホール起電力を発生するホール素子と、該ホール素子のホール起電力を補正するための信号を生成する補正信号生成部とを有するホール起電力補正装置におけるホール起電力補正方法であって、前記補正信号生成部による補正信号生成ステップは、前記ホール素子の異なる端子間の抵抗値に応じた情報と、前記ホール素子の温度情報とに基づいて、前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。
 また、前記補正信号生成部からの補正信号に基づいて、ホール起電力補正部により前記ホール起電力に基づく物理量を補正することを特徴とする。
 また、前記補正信号生成部による補正信号生成ステップが、前記ホール素子の磁気感度温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。
 また、前記補正信号生成部による補正信号生成ステップが、前記ホール素子の抵抗値の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。
 また、前記補正信号生成部による補正信号生成ステップが、前記ホール素子のピエゾ係数の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする。
 また、前記ホール素子のピエゾ係数の温度特性に関する情報が、前記ホール素子のピエゾホール係数の温度特性に関する情報及び/又は前記ホール素子のピエゾ抵抗係数の温度特性に関する情報であることを特徴とする。
 また、前記ホール素子の第1乃至第4の電極に接続されたチョッパースイッチを備え、該チョッパースイッチが、チョッパー駆動により、前記第1の電極と前記第2の電極間にホール駆動電圧を印加してホール駆動電流を供給し、前記第1の電極と前記第2の電極間から前記ホール抵抗値を測定し、前記第2の電極と前記第4の電極間にホール駆動電圧を印加してホール駆動電流を供給し、前記第1電極と前記第3の電極間から前記ホール起電力を測定することを特徴とする。
 また、前記ホール素子のホール起電力を測定するホール起電力測定ステップと、前記ホール素子の異なる端子間の抵抗値を測定し、該抵抗値に応じた情報を出力するホール抵抗測定ステップと、前記ホール素子の環境温度を測定し、前記ホール素子の温度情報を出力する温度測定ステップとを有することを特徴とする。
 また、前記ホール抵抗測定ステップによる抵抗値と、前記ホール起電力測定ステップによるホール起電力と、前記温度測定ステップによる温度値とを共有化したA/D変換回路を用いて時分割で測定することを特徴とする。
 また、前記ホール抵抗測定ステップが、十字型の形状を有するホール素子の異なる端子間の抵抗値を測定することを特徴とする。
 また、前記温度測定ステップが、温度センサを用いて測定することを特徴とする。
 また、前記補正信号生成部による補正信号生成ステップが、補正係数演算回路により補正信号を生成することを特徴とする。
 また、前記ホール素子を駆動するホール駆動電流源の電流を前記補正係数演算回路からの補正係数により前記ホール起電力を補正することを特徴とする。
 また、前記ホール起電力測定ステップからのホール起電力を増幅する増幅回路を設け、該増幅回路の増幅率を前記補正係数演算回路からの補正係数により前記ホール起電力を補正することを特徴とする。
 また、前記ホール起電力測定ステップによるホール起電力の測定の後段に応力補正回路と温度補正回路を設け、前記補正係数演算回路からの応力補正係数と温度補正係数とにより前記ホール起電力を補正することを特徴とする。
 本発明によれば、ホール素子に加わる応力による影響と温度による影響を同時に補正できるようにしたので、ホール素子1個と温度センサを用いて、レイアウト面積の増大や消費電流の増加を抑えつつ、応力補正と温度補正を行うことで、より簡便にホール素子の磁気感度を高精度に補正するホール起電力補正装置及びホール起電力補正方法を実現することができる。
図1は、磁気センサの半導体集積回路がパッケージ封止された断面構成図である。 図2は、ホール素子のブリッジモデルと応力の方向を示す図である。 図3は、ホール素子の駆動例を説明するための回路構成図である。 図4(a),(b)は、2方向の電流方向に対するホール抵抗値を説明するための図である。 図5は、(12)式の左辺の計算結果を示す図である。 図6は、本発明に係るホール起電力補正装置の実施例1を説明するための構成ブロック図である。 図7は、図6に示したホール素子の外形例を示す図である。 図8は、ホール素子の駆動例(Phase1)を説明するための回路構成図である。 図9は、ホール素子の駆動例(Phase2)を説明するための回路構成図である。 図10は、図6に示した補正係数演算回路によるホール起電力補正方法を説明するためのフローチャートを示す図である。 図11は、図6に示した補正係数演算回路の具体的な構成ブロック図である。 図12は、本発明に係るホール起電力補正装置の実施例2を説明するための構成ブロック図である。 図13は、本発明に係るホール起電力補正装置の実施例3を説明するための構成ブロック図である。 図14は、図13に示したホール駆動電流源の構成図である。 図15は、本発明に係るホール起電力補正装置の実施例4を説明するための構成ブロック図である。 図16は、図15に示した増幅回路の構成図である。 図17は、本発明に係るホール起電力補正装置の実施例5を説明するための構成ブロック図で、ホール素子の駆動例(Phase1;ホール抵抗値測定)を説明するための回路構成図である。 図18は、本発明に係るホール起電力補正装置の実施例5を説明するための構成ブロック図で、ホール素子の駆動例(Phase2;ホール起電力測定)を説明するための回路構成図である。 図19は、本発明に係るホール起電力補正装置の実施例6を説明するための構成ブロック図である。 図20は、図19における温度及び応力に依存する磁気感度イメージを示す図である。 図21は、図19における応力が0に補正する場合を示す図で、 図22は、図19における応力が0の時の磁気感度イメージを示す図である。 図23は、ホール素子の外形形状を示す図である。 図24は、本発明に係るホール起電力補正装置の実施例1に相当するホール起電力補正方法を説明するためのフローチャートを示す図である。
 以下、図面を参照して本発明の各実施例について説明する。 
 図6は、本発明に係るホール起電力補正装置の実施例1を説明するための構成ブロック図で、図中符号11はホール素子、12はチョッパースイッチ、13はホール抵抗測定部(A/D変換回路)、14はホール起電力測定部(A/D変換回路)、15は温度センサ(温度測定部)、16はA/D変換回路、19はホール起電力補正部、20は補正信号生成部、21は補正係数演算回路、22はホール起電力補正回路、23はホール駆動電流源、24は磁気感度温度特性情報記憶部、25は抵抗値温度特性情報記憶部、26はピエゾ係数温度特性記憶部を示している。
 本発明のホール起電力補正装置は、ホール素子11の磁気感度に影響を及ぼす応力と温度に基づくホール起電力に対する応力補正と温度補正を行うように構成されたホール起電力補正装置で、ホール起電力を発生するホール素子11と、このホール素子11のホール起電力を補正するための信号を生成する補正信号生成部20とを有するホール起電力補正装置である。
 補正信号生成部20は、ホール素子11の異なる端子間の抵抗値に応じた情報と、ホール素子11の温度情報とに基づいて、ホール素子11のホール起電力を補正するための信号を生成するもので、補正係数演算回路21を備えている。
 また、本発明のホール起電力補正装置は、補正信号生成部20からの補正信号に基づいて、ホール起電力に基づく物理量を補正するホール起電力補正部19を備えている。
 また、補正信号生成部20は、ホール素子11の磁気感度温度特性に関する情報に基づきホール素子11のホール起電力を補正するための信号を生成するもので、また、ホール素子11の抵抗値の温度特性に関する情報に基づきホール素子11ホール起電力を補正するための信号を生成するもので、さらには、ホール素子11のピエゾ係数の温度特性に関する情報に基づきホール素子11のホール起電力を補正するための信号を生成するものである。
 また、ホール抵抗測定部13は、ホール素子11の異なる端子間のホール抵抗値Vを測定するものである。また、ホール起電力測定部14は、ホール素子11のホール起電力Vを測定するものである。さらに、温度測定部15は、ホール素子11の環境温度を測定するものである。
 また、ホール起電力補正部19は、補正係数演算回路21とホール起電力補正回路22とからなり、ホール抵抗測定部13によるホール抵抗値Vと温度測定部17の温度出力値Tとに基づいてホール起電力Vに基づく物理量を補正するものである。このホール起電力Vに基づく物理量は、ホール起電力Vだけではなく、V=SI(T,σ)×I×Bに基づき、ホール素子の磁気感度SI(T,σ)、ホール駆動電流I及び磁場Bを含んでいる。
 また、ホール素子11及びこのホール素子11を駆動するホール駆動電流源23を備え、ホール素子11をチョッパー駆動するためのスイッチ群であるチョッパースイッチ12を備えている。
 また、磁気感度温度特性情報記憶部24は、ホール素子11の磁気感度温度特性に関する情報を記憶するもので、補正信号生成部20は、ホール素子11の磁気感度温度特性に関する情報を用いてホール起電力を補正する。
 また、抵抗値温度特性情報記憶部25は、ホール素子11の抵抗値の温度特性に関する情報を記憶するもので、補正信号生成部20は、ホール素子11の抵抗値の温度特性に関する情報を用いてホール起電力を補正する。
 また、ピエゾ係数温度特性記憶部26は、ホール素子11のピエゾ係数の温度特性について記憶するもので、補正信号生成部20は、ホール素子11のピエゾ係数の温度特性に関する情報を用いてホール起電力を補正するための信号を生成する。
 本実施例1では、ピエゾ係数温度特性記憶部26に、ホール素子11のピエゾホール係数の温度特性に関する情報とピエゾ抵抗係数の温度特性に関する情報が記憶されており、補正信号生成部20は、ホール素子11のピエゾホール係数の温度特性に関する情報と、ピエゾ抵抗係数の温度特性に関する情報を用いてホール起電力を補正するための信号を生成する。ピエゾ係数は、ピエゾホール係数とピエゾ抵抗係数を含むものとする。
 図7は、図6に示したホール素子の外形例を示す図である。電極1から電極4の接続をチョッパースイッチ12によって制御する。ホール素子11のホール抵抗値V及びホール起電力Vは、それぞれアナログ/デジタル変換回路(A/D変換回路)に供給される。
 図8は、ホール素子の駆動例(Phase1)を説明するための回路構成図で、図9は、ホール素子の駆動例(Phase2)を説明するための回路構成図である。A/D変換回路へのホール抵抗値Vとホール起電力Vとの供給は、図8(Phase1)及び図9(Phase2)に示すように、チョッパー駆動しながら行われる。
 つまり、図8に示すPhase1において、ホール駆動電圧を電極1と電極3間に印加してホール駆動電流Iを供給すると、電極1と電極3間からホール抵抗値Vが測定され、電極2と電極4間からホール起電力Vが測定される。次に、図9に示すPhase2において、ホール駆動電圧を電極2と電極4間に印加してホール駆動電流Iを供給すると、電極2と電極4間からホール抵抗値Vが測定され、電極1と電極3間からホール起電力Vが測定される。
 さらに、温度センサ及び温度センサ出力をデジタル信号に変換するA/D変換回路16を備え、ホール抵抗値V及び温度のデジタル信号Tが、補正信号生成部20の補正係数演算回路21に供給される。ホール起電力Vとホール抵抗値Vは、以下の(14)式で表すことができる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 上述したPhase1及びPhase2の時のホール抵抗値は、図8及び図9のように、ホール素子を駆動したときのホール抵抗値である。
 上記(15)式を変形すると、以下の(16)式のように2方向の応力成分の和を求めることが出来る。
Figure JPOXMLDOC01-appb-M000016
 シリコン(100)面におけるピエゾホール係数及びピエゾ抵抗係数は、上述した非特許文献2において報告されており、既知の値で、以下の表1に示してある。
Figure JPOXMLDOC01-appb-T000001
 さらに、ホール素子の磁気感度の温度特性(αSI)とホール抵抗値の温度特性(α)と基準磁気感度(SI)と基準ホール抵抗値(R)は、パッケージ前の検査にて測定できる値であり、サンプルバラつきを許容できる場合は、あらかじめ測定しておいた代表値でもよい。ホール駆動電流も出荷前に検査にて測定することが出来る。
 また、磁気感度の温度特性(αSI)及びホール抵抗値の温度特性(αR)に関する情報は、「式で保持」「テーブルで保持」どちらでもよい。
 このように(14)~(16)式におけるパラメータ値は、全て既知もしくは測定できる値であるため、正確に磁気感度を計算することが出来る。正確に磁気感度を計算することができるため、正確な磁場を検出することが可能である。
 具体的には、(14)式(16)式を用いると、磁場Bは(17)式及び(18)式で表すことが出来る。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 なお、(18)式中のαSI(T)SI部分は、温度補正係数Kを示し、1+Q(T)(R+R-2α(T)R)/α(T)R部分は、応力補正係数Kσを示している。
 上記(18)式における補正係数Kは、図6に示した補正係数演算回路21において算出する。この補正係数演算回路21において算出した補正係数Kを用いて、ホール素子11のホール起電力の応力と温度による変動分を補正し、正確な磁場Bを求めることが出来る。
 図10は、図6に示した補正係数演算回路によるホール起電力補正方法を説明するためのフローチャートを示す図である。
 まず、図8に示すPhase1において、ホール抵抗値Rを測定し、ホール起電力Vを測定する(ステップS1)。次に、ホール抵抗値RをA/D変換回路に入力し、ホール起電力VをA/D変換回路に入力して、デジタル信号としてデータ保持する(ステップS2)。次に、図9に示すPhase2において、ホール抵抗値Rを測定し、ホール起電力Vを測定する(ステップS3)。次に、ホール抵抗値RをA/D変換回路に入力し、ホール起電力VをA/D変換回路に入力して、デジタル信号としてデータ保持する(ステップS4)。また、温度センサ15により測定された温度値TをA/D変換回路16に入力して、デジタル信号としてデータ保持する(ステップS5)。
 次に、補正信号生成部20の補正係数演算回路21にホール抵抗値Rとホール抵抗値Rと温度値Tとを入力して補正係数Kを算出する(ステップS6)。次に、補正係数演算回路21により算出された補正係数Kをホール起電力補正回路22に入力してホール起電力Vを補正する(ステップS7)。
 図11は、図6に示した補正係数演算回路の具体的な構成ブロック図である。なお、図6と同じ機能を有する構成要素には同一の符号を付してある。
 図8に示すPhase1において、ホール抵抗値Rを測定してA/D変換回路に入力し、図9に示すPhase2において、ホール抵抗値Rを測定してA/D変換回路に入力する。一方、温度センサ15により測定された温度値TをA/D変換回路16に入力する。
 補正係数演算回路21において、A/D変換回路16によりデジタル信号に変換された温度値Tに基づくホール素子の抵抗値の温度特性α(T)と、応力0の時の基準温度におけるホール抵抗値Rとを掛け合わせてB=α(T)Rを得る。また、A/D変換回路によりデジタル信号に変換されたホール抵抗値RとRを加算するとともに、このR+Rに、B=α(T)Rに-2を掛け合わせた-2α(T)Rを加算して、A=R+R-2α(T)Rを得る。
 次に、A÷Bを演算して、A/B=(R+R-2α(T)R)/α(T)Rを得る。これに温度値Tに基づくQ(T)を掛け合わせて1を加算すると、応力補正係数Kσ=1+Q(T)(R+R-2α(T)R)/α(T)Rを得る。また、温度値Tに基づくホール素子の磁気感度温度特性αSI(T)と、応力0の時の基準温度におけるホール素子の磁気感度SIとを掛け合わせて温度補正係数K=αSI(T)SIを得る。
 次に、応力補正係数Kσと温度補正係数Kとを掛け合わせて、さらにホール駆動電流Iを掛け合わせて補正係数K=αSI(T)SI(1+Q(T)(R+R-2α(T)R)/α(T)R)Iを得る。つまり、上述した(18)式を得る。この補正係数Kは、(18)式から明らかなように、応力補正係数Kσと温度補正係数Kとからなっていることがわかる。
 さらに、A/D変換回路によりデジタル信号に変換されたホール起電力Vを、ホール起電力補正回路22でV÷Kを演算するとホール起電力の補正値が得られる。このようにして、図11に示した応力補正係数Kσ及び温度補正係数Kを合わせた補正係数Kを求めることで、ホール起電力の補正を行うことが出来る。
 上述した補正係数演算回路21からの補正係数Kは、磁気感度の温度特性影響補正と応力影響補正が含まれている。特別な回路を用意することなしに、温度特性影響と応力影響を同時に補正する補正係数Kを求めることが出来るため、より簡便にホール素子の磁気感度を高精度に補正する方法を提供することが可能となる。
 図12は、本発明に係るホール起電力補正装置の実施例2を説明するための構成ブロック図で、図中符号31は共有化したA/D変換回路を示している。なお、図6と同じ機能を有する構成要素には同一の符号を付してある。また、ホール抵抗測定部13とホール起電力測定部15の表記は省略してある。
 本実施例2のホール起電力補正装置は、ホール抵抗測定部13とホール起電力測定部14と温度測定部15の共有化したA/D変換回路31を備えている。つまり、ホール抵抗測定部13からの抵抗値とホール起電力測定部14からホール起電力と温度測定部15からの温度値とを共有化したA/D変換回路31を用いて時分割で測定する。
 ここで応力や温度は、時間に対して緩やかに変化するものであるため、常時測定する必要はない。そのため、図12のように、A/D変換回路を共通化して時分割方式で測定することが可能である。
 図13は、本発明に係るホール起電力補正装置の実施例3を説明するための構成ブロック図で、ホール駆動電流によるホール起電力の補正を行うように構成された構成ブロック図で、図14は、図13に示したホール駆動電流源の構成図である。図中符号32は、ホール抵抗測定部13と温度測定部15とが、共有化したA/D変換回路32を示している。なお、図6と同じ機能を有する構成要素には同一の符号を付してある。また、ホール抵抗測定部13とホール起電力測定部14の表記は省略してある。
 本実施例3のホール起電力補正装置は、ホール素子11を駆動するホール駆動電流源23の電流Iを補正係数演算回路21からの補正係数Kによりホール起電力を補正する。補正係数Kの値によって、ホール駆動電流を選択するスイッチ23a,23bを設けている。
 図15は、本発明に係るホール起電力補正装置の実施例4を説明するための構成ブロック図で、増幅回路によるホール起電力の補正を行うように構成された構成ブロック図で、図16は、図15に示した増幅回路の構成図である。図中符号33は増幅回路、33aは演算増幅器を示している。なお、図6と同じ機能を有する構成要素には同一の符号を付してある。また、ホール抵抗測定部13とホール起電力測定部14の表記は省略してある。
 本実施例4のホール起電力補正装置は、ホール起電力測定部15からのホール起電力を増幅する増幅回路33を設け、この増幅回路33の増幅率を補正係数演算回路21からの補正係数Kによりホール起電力を補正する。つまり、ホール起電力を信号処理する経路に増幅回路33がある場合には、この増幅回路33の増幅率を補正係数Kで補正しても良い。
 さらに、上記(18)式の補正係数から、温度補正係数Kだけを抜き出すことも可能であり、温度補正のみを実行しても良い。これは、上記(18)式の補正係数Kの中の一部分である以下の(19)式を用いて補正することに相当する。
Figure JPOXMLDOC01-appb-M000019
 さらに、上記(18)式の補正係数から、応力補正係数Kσだけを抜き出すことも可能であり、応力補正のみを実行しても良い。これは、上記(18)式の補正係数Kの中の一部分である以下の(20)式を用いて補正することに相当する。
Figure JPOXMLDOC01-appb-M000020
 また、応力の算出は、上述した図8及び図9のように、2方向の抵抗値を測定することで求めることが出来るが、図17のように電流を隣り合う端子に流すことで、1度に測定することも可能である。この場合、Phase1で応力成分を測定し(図17)、Phase2でホール起電力を測定する(図18)ことも可能である。
 図17は、本発明に係るホール起電力補正装置の実施例5を説明するための構成ブロック図で、ホール素子の駆動例(Phase1;ホール抵抗値測定)を説明するための回路構成図で、図18は、本発明に係るホール起電力補正装置の実施例5を説明するための構成ブロック図で、ホール素子の駆動例(Phase2;ホール起電力測定)を説明するための回路構成図である。A/D変換回路へのホール抵抗値Vとホール起電力Vとの供給は、図17(Phase1)及び図18(Phase2)に示すように、チョッパー駆動しながら行われる。
 まず、図17に示すPhase1において、ホール駆動電圧を電極1と電極2間に印加してホール駆動電流Iを供給すると、電極1と電極2間からホール抵抗値Vが測定される。次に、図18に示すPhase2において、ホール駆動電圧を電極2と電極4間に印加してホール駆動電流Iを供給すると、電極1と電極3間からホール起電力Vが測定される。
 つまり、ホール素子11の電極1乃至電極4に接続されたチョッパースイッチ12を備え、このチョッパースイッチ12が、チョッパー駆動により、電極1と電極2間にホール駆動電圧を印加してホール駆動電流Iを供給し、電極1と電極2間からホール抵抗値Vが測定され、電極2と電極4間にホール駆動電圧を印加してホール駆動電流Iを供給し、電極1と電極3間からホール起電力Vが測定される。
 図19は、本発明に係るホール起電力補正装置の実施例6を説明するための構成ブロック図で、応力補正回路と温度補正回路を分離して場合の構成ブロックである。図中符号41は応力補正回路、42は温度補正回路を示している。なお、図6と同じ機能を有する構成要素には同一の符号を付してある。また、ホール素子抵抗測定部13とホール素子起電力測定部14の表記は省略してある。
 本実施例6のホール起電力補正装置は、ホール起電力測定部14の後段に応力補正回路41と温度補正回路42を設け、ホール起電力を補正係数演算回路21からの応力補正係数Kσと温度補正係数Kとによりホール起電力を補正する。つまり、応力補正を先に行い、次に温度に対する補正を行うことも出来る。
 図20は、図19における温度及び応力に依存する磁気感度イメージを示す図で、図21は、図19における応力が0に補正する場合を示す図で、図22は、図19における応力が0の時の磁気感度イメージを示す図である。
 図20に示すように、温度と応力の2変数によって変化する磁気感度に対して、第1段階として、図21に示すように、応力=0の軸に変換し、図22に示すように、磁気感度を1変数関数にすることに相当する。また、温度補正を先に行い、次に応力補正を行うことも可能である。さらに、温度補正もしくは応力補正のどちらか一方のみを行うことも可能である。
 図23は、ホール素子の外形形状を示す図である。このホール素子の外形形状を十字型とすることで、ホール素子を駆動する電流の向きとピエゾ抵抗係数の向きが一致し、より応力補正の精度を向上させることが出来る。つまり、ホール抵抗測定部13は、十字型の形状を有するホール素子の2方向以上の通電方向の抵抗値を測定する。
 また、上述した図11に示すように、ホール起電力に対して補正を行うのではなく、以下の(21)式のように、磁場B補正前を求めた後に補正係数をかけて磁場B補正後を求めても良い。
Figure JPOXMLDOC01-appb-M000021
 このように、ホール素子1個と温度センサを用いて、レイアウト面積の増大や消費電流の増加を抑えつつ、応力補正と温度補正を行うことで、より簡便にホール素子の磁気感度を高精度に補正するホール起電力補正装置を実現することができる。
 図24は、本発明に係るホール起電力補正装置の実施例1に相当するホール起電力補正方法を説明するためのフローチャートを示す図である。
 このホール起電力補正方法は、ホール素子11の磁気感度に影響を及ぼす応力と温度に基づくホール起電力に対する応力補正と温度補正を行うように構成されたホール起電力補正装置におけるホール起電力補正方法である。
 まず、ホール素子11の有する複数の電極間の2方向以上の通電方向のホール抵抗値Vをホール抵抗測定部13により測定する(ステップS11)。次に、ホール素子11のホール起電力Vをホール起電力測定部14により測定する(ステップS12)。次に、ホール素子11の環境温度を温度測定部15により測定する(ステップS13)。
 次に、ホール抵抗測定部13により測定されたホール抵抗値Vと、温度測定部15により測定された温度出力値Tとから補正係数Kを補正係数演算回路21により算出する(ステップS14)。
 次に、ホール抵抗測定部13によるホール抵抗値Vと温度測定部15の温度出力値Tに基づいてホール起電力Vをホール起電力補正回路22により補正し、補正係数演算回路21により算出された補正係数Kを用いてホール起電力を補正する(ステップS15)。
 このように、ホール素子1個と温度センサを用いて、レイアウト面積の増大や消費電流の増加を抑えつつ、応力補正と温度補正を行うことで、より簡便にホール素子の磁気感度を高精度に補正するホール起電力補正方法を実現することができる。
1 リードフレーム
2 ホール素子
3 半導体集積回路
4 モールド樹脂
11 ホール素子
12 チョッパースイッチ
13 ホール抵抗測定部
14 ホール起電力測定部
15 温度センサ(温度測定部)
16 A/D変換回路
19 ホール起電力補正部
20 補正信号生成部
21 補正係数演算回路
22 ホール起電力補正回路
23 ホール駆動電流源
23a,23b スイッチ
24 磁気感度温度特性情報記憶部
25 抵抗値温度特性情報記憶部
26 ピエゾ係数温度特性記憶部
31,32 共有化したA/D変換回路
33 増幅回路
33a 演算増幅器
41 応力補正回路
42 温度補正回路

Claims (30)

  1.  ホール起電力を発生するホール素子と、該ホール素子のホール起電力を補正するための信号を生成する補正信号生成部とを有するホール起電力補正装置であって、
     前記補正信号生成部は、
     前記ホール素子の異なる端子間の抵抗値に応じた情報と、前記ホール素子の温度情報とに基づいて、前記ホール素子のホール起電力を補正するための信号を生成することを特徴とするホール起電力補正装置。
  2.  前記補正信号生成部からの補正信号に基づいて、前記ホール起電力に基づく物理量を補正するホール起電力補正部を備えていることを特徴とする請求項1に記載のホール起電力補正装置。
  3.  前記補正信号生成部が、前記ホール素子の磁気感度温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする請求項1又は2に記載のホール起電力補正装置。
  4.  前記補正信号生成部が、前記ホール素子の抵抗値の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする請求項1,2又は3に記載のホール起電力補正装置。
  5.  前記補正信号生成部が、前記ホール素子のピエゾ係数の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする請求項1乃至4のいずれかに記載のホール起電力補正装置。
  6.  前記ホール素子のピエゾ係数の温度特性に関する情報が、前記ホール素子のピエゾホール係数の温度特性に関する情報及び/又は前記ホール素子のピエゾ抵抗係数の温度特性に関する情報であることを特徴とする請求項5に記載のホール起電力補正装置。
  7.  前記ホール素子の第1乃至第4の電極に接続されたチョッパースイッチを備え、該チョッパースイッチが、チョッパー駆動により、前記第1の電極と前記第2の電極間にホール駆動電圧を印加してホール駆動電流を供給し、前記第1の電極と前記第2の電極間から前記ホール抵抗値を測定し、前記第2の電極と前記第4の電極間にホール駆動電圧を印加してホール駆動電流を供給し、前記第1電極と前記第3の電極間から前記ホール起電力を測定するように構成されていることを特徴とする請求項1乃至6のいずれかに記載のホール起電力補正装置。
  8.  前記ホール素子のホール起電力を測定するホール起電力測定部と、前記ホール素子の異なる端子間の抵抗値を測定し、該抵抗値に応じた情報を出力するホール抵抗測定部と、前記ホール素子の環境温度を測定し、前記ホール素子の温度情報を出力する温度測定部とを備えていることを特徴とする請求項1乃至7のいずれかに記載のホール起電力補正装置。
  9.  前記ホール抵抗測定部と前記ホール起電力測定部と前記温度測定部とが、共有化したA/D変換回路を備えていることを特徴とする請求項8に記載のホール起電力補正装置。
  10.  前記ホール抵抗測定部が、十字型の形状を有するホール素子の異なる端子間の抵抗値を測定することを特徴とする請求項8又は9に記載のホール起電力補正装置。
  11.  前記温度測定部が、温度センサであることを特徴とする請求項8乃至10のいずれかに記載のホール起電力補正装置。
  12.  前記補正信号生成部が、補正係数演算回路を備えていることを特徴とする請求項8乃至11のいずれかに記載のホール起電力補正装置。
  13.  前記ホール素子を駆動するホール駆動電流源の電流を前記補正係数演算回路からの補正係数により前記ホール起電力を補正することを特徴とする請求項12に記載のホール起電力補正装置。
  14.  前記ホール起電力測定部からのホール起電力を増幅する増幅回路を設け、該増幅回路の増幅率を前記補正係数演算回路からの補正係数により前記ホール起電力を補正することを特徴とする請求項12に記載のホール起電力補正装置。
  15.  前記ホール起電力測定部の後段に応力補正回路と温度補正回路を設け、前記補正係数演算回路からの応力補正係数と温度補正係数とにより前記ホール起電力を補正することを特徴とする請求項12に記載のホール起電力補正装置。
  16.  ホール起電力を発生するホール素子と、該ホール素子のホール起電力を補正するための信号を生成する補正信号生成部とを有するホール起電力補正装置におけるホール起電力補正方法であって、
     前記補正信号生成部による補正信号生成ステップは、前記ホール素子の異なる端子間の抵抗値に応じた情報と、前記ホール素子の温度情報とに基づいて、前記ホール素子のホール起電力を補正するための信号を生成することを特徴とするホール起電力補正方法。
  17.  前記補正信号生成部からの補正信号に基づいて、ホール起電力補正部により前記ホール起電力に基づく物理量を補正することを特徴とする請求項16に記載のホール起電力補正方法。
  18.  前記補正信号生成部による補正信号生成ステップが、前記ホール素子の磁気感度温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする請求項16又は17に記載のホール起電力補正方法。
  19.  前記補正信号生成部による補正信号生成ステップが、前記ホール素子の抵抗値の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする請求項16,17又は18に記載のホール起電力補正方法。
  20.  前記補正信号生成部による補正信号生成ステップが、前記ホール素子のピエゾ係数の温度特性に関する情報に基づき前記ホール素子のホール起電力を補正するための信号を生成することを特徴とする請求項16乃至19のいずれかに記載のホール起電力補正方法。
  21.  前記ホール素子のピエゾ係数の温度特性に関する情報が、前記ホール素子のピエゾホール係数の温度特性に関する情報及び/又は前記ホール素子のピエゾ抵抗係数の温度特性に関する情報であることを特徴とする請求項20に記載のホール起電力補正方法。
  22.  前記ホール素子の第1乃至第4の電極に接続されたチョッパースイッチを備え、該チョッパースイッチが、チョッパー駆動により、前記第1の電極と前記第2の電極間にホール駆動電圧を印加してホール駆動電流を供給し、前記第1の電極と前記第2の電極間から前記ホール抵抗値を測定し、前記第2の電極と前記第4の電極間にホール駆動電圧を印加してホール駆動電流を供給し、前記第1電極と前記第3の電極間から前記ホール起電力を測定することを特徴とする請求項16乃至21のいずれかに記載のホール起電力補正方法。
  23.  前記ホール素子のホール起電力を測定するホール起電力測定ステップと、前記ホール素子の異なる端子間の抵抗値を測定し、該抵抗値に応じた情報を出力するホール抵抗測定ステップと、前記ホール素子の環境温度を測定し、前記ホール素子の温度情報を出力する温度測定ステップとを有することを特徴とする請求項16乃至22のいずれかに記載のホール起電力補正方法。
  24.  前記ホール抵抗測定ステップによる抵抗値と、前記ホール起電力測定ステップによるホール起電力と、前記温度測定ステップによる温度値とを共有化したA/D変換回路を用いて時分割で測定することを特徴とする請求項23に記載のホール起電力補正方法。
  25.  前記ホール抵抗測定ステップが、十字型の形状を有するホール素子の異なる端子間の抵抗値を測定することを特徴とする請求項23又は24に記載のホール起電力補正方法。
  26.  前記温度測定ステップが、温度センサを用いて測定することを特徴とする請求項23,24又は25に記載のホール起電力補正方法。
  27.  前記補正信号生成部による補正信号生成ステップが、補正係数演算回路により補正信号を生成することを特徴とする請求項23乃至26のいずれかに記載のホール起電力補正方法。
  28.  前記ホール素子を駆動するホール駆動電流源の電流を前記補正係数演算回路からの補正係数により前記ホール起電力を補正することを特徴とする請求項27に記載のホール起電力補正方法。
  29.  前記ホール起電力測定ステップからのホール起電力を増幅する増幅回路を設け、該増幅回路の増幅率を前記補正係数演算回路からの補正係数により前記ホール起電力を補正することを特徴とする請求項27に記載のホール起電力補正方法。
  30.  前記ホール起電力測定ステップによるホール起電力の測定の後段に応力補正回路と温度補正回路を設け、前記補正係数演算回路からの応力補正係数と温度補正係数とにより前記ホール起電力を補正することを特徴とする請求項27に記載のホール起電力補正方法。
PCT/JP2013/003467 2012-06-29 2013-05-31 ホール起電力補正装置及びホール起電力補正方法 WO2014002387A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380024243.2A CN104303065B (zh) 2012-06-29 2013-05-31 霍尔电动势校正装置以及霍尔电动势校正方法
EP13809803.3A EP2871488B1 (en) 2012-06-29 2013-05-31 Hall electromotive force compensation device and hall electromotive force compensation method
US14/406,836 US9864038B2 (en) 2012-06-29 2013-05-31 Hall electromotive force compensation device and hall electromotive force compensation method
JP2014522394A JPWO2014002387A1 (ja) 2012-06-29 2013-05-31 ホール起電力補正装置及びホール起電力補正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012147709 2012-06-29
JP2012-147709 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002387A1 true WO2014002387A1 (ja) 2014-01-03

Family

ID=49782589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003467 WO2014002387A1 (ja) 2012-06-29 2013-05-31 ホール起電力補正装置及びホール起電力補正方法

Country Status (5)

Country Link
US (1) US9864038B2 (ja)
EP (1) EP2871488B1 (ja)
JP (2) JPWO2014002387A1 (ja)
CN (1) CN104303065B (ja)
WO (1) WO2014002387A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102702A (ja) * 2014-11-27 2016-06-02 エスアイアイ・セミコンダクタ株式会社 ホールセンサおよびホールセンサの温度によるオフセットの補償方法
JP2017227450A (ja) * 2016-06-20 2017-12-28 旭化成エレクトロニクス株式会社 制御回路および電流センサ
WO2018092336A1 (ja) * 2016-11-17 2018-05-24 株式会社村田製作所 電流センサ
JP2018115929A (ja) * 2017-01-17 2018-07-26 日立金属株式会社 電流センサの信号補正方法、及び電流センサ

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212272A1 (de) * 2012-07-13 2014-01-16 Robert Bosch Gmbh Hall-Sensor
GB201319627D0 (en) * 2013-11-06 2013-12-18 Melexis Technologies Nv Hall sensor readout system with offset determination using the hall element itself
US9442090B2 (en) * 2014-03-27 2016-09-13 Honeywell International Inc. Magnetic stimulus of ISFET-based sensor to enable trimming and self-compensation of sensor measurement errors
DE102015109009A1 (de) * 2015-06-08 2016-12-08 Infineon Technologies Ag Stromsensorchip mit Magnetfeldsensor
GB2539681A (en) * 2015-06-23 2016-12-28 Melexis Tech Sa Stress and temperature compensated hall sensor, and method
DE102016224958B4 (de) * 2015-12-14 2021-06-24 Infineon Technologies Ag Sensoranordnung mit Thermo-EMK-Kompensation
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
KR20170107819A (ko) * 2016-03-16 2017-09-26 삼성전기주식회사 홀 센서 옵셋 보정 회로 및 이를 갖는 카메라 모듈
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
CN107179517B (zh) * 2017-04-19 2021-12-14 广东恒沃动力科技有限公司 传感器校准方法
IT201700071189A1 (it) 2017-06-26 2018-12-26 St Microelectronics Srl Circuito di compensazione in temperatura, dispositivo e procedimento corrispondenti
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
EP3467522B1 (en) 2017-10-06 2023-02-22 STMicroelectronics S.r.l. A temperature compensation circuit, corresponding device and method
CN108089141B (zh) * 2017-11-16 2019-12-24 山东联合电力技术有限公司 一种基于分流器的电流测量装置的误差修正方法及装置
CN109342983B (zh) * 2018-11-09 2024-03-29 安徽工程大学 一种霍尔传感器校准装置及其校准标定方法
CN110398628B (zh) * 2019-05-09 2021-10-15 上海空间电源研究所 一种霍尔电流传感器温度补偿电路设计方法
DE102020206571A1 (de) 2020-05-26 2021-12-02 Infineon Technologies Ag Vorrichtung und verfahren zum ermitteln einer mechanischen spannungskomponente mittels einer hallsensorschaltung
DE102020212114A1 (de) 2020-09-11 2022-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Bestimmen einer Empfindlichkeit eines Hallsensorelements und Hallsensor mit zumindest einem Hallsensorelement
US20230236267A1 (en) * 2022-01-27 2023-07-27 Nxp Usa, Inc. Sensor calibration circuit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742865A (en) * 1980-08-28 1982-03-10 Matsushita Electric Ind Co Ltd Magnetic-field detector
US6362618B1 (en) 1998-12-19 2002-03-26 Micronas Gmbh Hall sensor for stress and temperature measurements in addition to magnetic field measurement
US6483301B2 (en) 2000-05-03 2002-11-19 Austria Mikro Systeme International Aktiengesellschaft Method for compensating mechanical stresses in measuring the magnetic field strength by hall sensors
JP2003014788A (ja) * 2001-07-02 2003-01-15 Victor Co Of Japan Ltd 電流センサ
US6906514B2 (en) 2001-11-07 2005-06-14 Infineon Technologies Ag Concept for compensating the influences of external disturbing quantities on physical functional parameters of integrated circuits
US7302357B2 (en) 2005-06-24 2007-11-27 Infineon Technologies Ag Concept for compensating piezo-influences on an integrated semiconductor circuit
JP2008096213A (ja) * 2006-10-10 2008-04-24 Toyota Motor Corp ホールセンサ及びホール電圧補正方法
US7437260B2 (en) 2004-01-26 2008-10-14 Infineon Technologies Ag Concept of compensating for piezo influences on integrated circuitry
JP2008292182A (ja) 2007-05-22 2008-12-04 Seiko Instruments Inc ホールセンサ
JP2009139213A (ja) 2007-12-06 2009-06-25 Ricoh Co Ltd 磁気センサ装置及びその制御方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206889A (ja) * 1986-03-07 1987-09-11 Seiko Instr & Electronics Ltd 磁気センサ
JPS6381867A (ja) * 1986-09-25 1988-04-12 Yokogawa Electric Corp 半導体拡散ストレンゲ−ジ
JPH06289111A (ja) 1993-04-02 1994-10-18 Stanley Electric Co Ltd ホール素子の駆動回路
US6104231A (en) * 1994-07-19 2000-08-15 Honeywell International Inc. Temperature compensation circuit for a hall effect element
US20020171420A1 (en) * 2001-05-11 2002-11-21 Murali Chaparala Method for tracking the state of a MEMS optical switch using magnetic sensor detection
US6879012B2 (en) * 2002-06-21 2005-04-12 The Regents Of The University Of California Giant planar hall effect in epitaxial ferromagnetic semiconductor devices
US20040164840A1 (en) * 2003-02-21 2004-08-26 Brown University Research Foundation Extraordinary hall effect sensors and arrays
DE10313642A1 (de) * 2003-03-26 2004-10-14 Micronas Gmbh Offset-reduzierter Hall-sensor
US6956342B1 (en) * 2004-04-30 2005-10-18 Datech Technology Co., Ltd. Driving circuit for a DC brushless fan motor
JP4736508B2 (ja) 2005-03-31 2011-07-27 株式会社デンソー 物理量検出方法及びセンサ装置
DE102006045141B9 (de) * 2006-09-25 2009-02-19 Infineon Technologies Ag Magnetfeld-Sensor-Vorrichtung
JP2008309626A (ja) * 2007-06-14 2008-12-25 Oki Electric Ind Co Ltd 感磁出力ic
US20080308886A1 (en) * 2007-06-15 2008-12-18 Infineon Technologies Ag Semiconductor Sensor
US7980138B2 (en) 2007-10-29 2011-07-19 Infineon Technologies Ag Integrated circuit with stress sensing element
JPWO2010010811A1 (ja) 2008-07-25 2012-01-05 アルプス電気株式会社 地磁気センサ用制御装置
JP5360503B2 (ja) 2010-07-08 2013-12-04 株式会社デンソー 磁気検出装置、および、これを用いた回転角度検出装置ならびにストローク量検出装置
US8350563B2 (en) 2010-10-12 2013-01-08 Allegro Microsystems, Inc. Magnetic field sensor and method used in a magnetic field sensor that adjusts a sensitivity and/or an offset over temperature
US9013167B2 (en) * 2010-11-09 2015-04-21 Texas Instruments Incorporated Hall effect device having voltage based biasing for temperature compensation
EP2490036B1 (de) * 2011-02-18 2013-08-28 Melexis Technologies NV Stresssensor zur Erfassung mechanischer Spannungen in einem Halbleiterchip und stresskompensierter Hallsensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742865A (en) * 1980-08-28 1982-03-10 Matsushita Electric Ind Co Ltd Magnetic-field detector
US6362618B1 (en) 1998-12-19 2002-03-26 Micronas Gmbh Hall sensor for stress and temperature measurements in addition to magnetic field measurement
US6483301B2 (en) 2000-05-03 2002-11-19 Austria Mikro Systeme International Aktiengesellschaft Method for compensating mechanical stresses in measuring the magnetic field strength by hall sensors
JP2003014788A (ja) * 2001-07-02 2003-01-15 Victor Co Of Japan Ltd 電流センサ
US6906514B2 (en) 2001-11-07 2005-06-14 Infineon Technologies Ag Concept for compensating the influences of external disturbing quantities on physical functional parameters of integrated circuits
US7437260B2 (en) 2004-01-26 2008-10-14 Infineon Technologies Ag Concept of compensating for piezo influences on integrated circuitry
US7302357B2 (en) 2005-06-24 2007-11-27 Infineon Technologies Ag Concept for compensating piezo-influences on an integrated semiconductor circuit
JP2008096213A (ja) * 2006-10-10 2008-04-24 Toyota Motor Corp ホールセンサ及びホール電圧補正方法
JP2008292182A (ja) 2007-05-22 2008-12-04 Seiko Instruments Inc ホールセンサ
JP2009139213A (ja) 2007-12-06 2009-06-25 Ricoh Co Ltd 磁気センサ装置及びその制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B.HALG: "Piezo-Hall Coefficients of n-type Silicon", J. APPL. PHYS., vol. 64, 1988, pages 276 - 282
See also references of EP2871488A4
UDO AUSSERLECHNER; MARIO MOTZ; MICHAEL HOLLIBER, IEEE SENSORS JOURANAL, no. 11, November 2007 (2007-11-01)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102702A (ja) * 2014-11-27 2016-06-02 エスアイアイ・セミコンダクタ株式会社 ホールセンサおよびホールセンサの温度によるオフセットの補償方法
JP2017227450A (ja) * 2016-06-20 2017-12-28 旭化成エレクトロニクス株式会社 制御回路および電流センサ
WO2018092336A1 (ja) * 2016-11-17 2018-05-24 株式会社村田製作所 電流センサ
CN109791169A (zh) * 2016-11-17 2019-05-21 株式会社村田制作所 电流传感器
JPWO2018092336A1 (ja) * 2016-11-17 2019-06-24 株式会社村田製作所 電流センサ
US10989741B2 (en) 2016-11-17 2021-04-27 Murata Manufacturing Co., Ltd. Current sensor
JP2018115929A (ja) * 2017-01-17 2018-07-26 日立金属株式会社 電流センサの信号補正方法、及び電流センサ

Also Published As

Publication number Publication date
JP2016224071A (ja) 2016-12-28
US20150115937A1 (en) 2015-04-30
EP2871488B1 (en) 2017-08-16
US9864038B2 (en) 2018-01-09
CN104303065A (zh) 2015-01-21
JP6346922B2 (ja) 2018-06-20
CN104303065B (zh) 2017-04-12
JPWO2014002387A1 (ja) 2016-05-30
EP2871488A1 (en) 2015-05-13
EP2871488A4 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6346922B2 (ja) ホール起電力補正装置及びホール起電力補正方法
US9551765B2 (en) Method for operating a hall sensor arrangement and hall sensor arrangement
US9157826B2 (en) Method and system to compensate for temperature and pressure in piezo resistive devices
JP2011209104A (ja) 力覚センサ用チップおよび加速度センサ用チップ
JP2021014986A (ja) 電流センサ及び電流センサの製造方法
JP6592200B2 (ja) 熱式湿度測定装置
JP5688572B2 (ja) 電流センサ
JP2013140133A (ja) 磁気ホールセンサ
JP6897107B2 (ja) 電流センサの信号補正方法、及び電流センサ
JP2017003441A (ja) 気体熱伝導式ガスセンサおよび気体熱伝導式ガスセンサの出力補正方法
JP2013130543A (ja) 磁気ホールセンサー
JP5891516B2 (ja) 電流センサ
US20210131847A1 (en) Thermal flow rate meter
JP2008096213A (ja) ホールセンサ及びホール電圧補正方法
JP6032518B2 (ja) オフセット電圧補償装置
Peng et al. The temperature compensation of the silicon piezo-resistive pressure sensor using the half-bridge technique
JP2014048237A (ja) 磁気ホールセンサー
JP2015099089A (ja) 磁気センサ
JP6706990B2 (ja) 装置
JPS6255629B2 (ja)
CN116861595B (zh) 一种基于热压电半导体复合薄膜的温度传感器设计方法
JP2014077730A (ja) 磁界測定装置及び磁界測定方法
JP2001272203A (ja) 歪み測定装置
KR20230079974A (ko) 박막 자기저항 센서의 구동 방법
JP4915105B2 (ja) ゲージ抵抗が接続されて用いられる回路及びその回路を備えたセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522394

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406836

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013809803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013809803

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE