WO2014000404A1 - Processus de recyclage de terres rares dans un déchet d'aimant permanent de déchet électronique - Google Patents

Processus de recyclage de terres rares dans un déchet d'aimant permanent de déchet électronique Download PDF

Info

Publication number
WO2014000404A1
WO2014000404A1 PCT/CN2012/087752 CN2012087752W WO2014000404A1 WO 2014000404 A1 WO2014000404 A1 WO 2014000404A1 CN 2012087752 W CN2012087752 W CN 2012087752W WO 2014000404 A1 WO2014000404 A1 WO 2014000404A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
waste
chloride
cobalt
nickel
Prior art date
Application number
PCT/CN2012/087752
Other languages
English (en)
Chinese (zh)
Inventor
王勤
杜修平
王文华
Original Assignee
荆门市格林美新材料有限公司
深圳市格林美高新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荆门市格林美新材料有限公司, 深圳市格林美高新技术股份有限公司 filed Critical 荆门市格林美新材料有限公司
Publication of WO2014000404A1 publication Critical patent/WO2014000404A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to an electronic waste recycling process, in particular to a process for recovering rare earth in an electronic waste permanent magnet waste.
  • the electronic waste contains a large amount of permanent magnet materials containing rare earth elements, such as acoustic speakers, rare earth permanent magnet motors widely used in home appliances such as air conditioners and refrigerators, computer hard disk drives, computer magneto-optical disks, etc., whose main component is NdFeB. , samarium and cobalt, etc., which mainly contain rare earth elements such as lanthanum, cerium and lanthanum.
  • the rare earths recovered can not only promote the comprehensive utilization of resources, but also reduce the environmental damage of these wastes.
  • Rare earth magnetic materials are generally concentrated on some components of electronic products, such as motors for computer hard disk drives, magnetic bodies for rare earth permanent magnet motors, etc., so these magnetic materials are first removed and collected centrally, and then concentrated for processing. Recover rare earth and other valuable metals such as cobalt and nickel.
  • the invention provides a process for recovering rare earth in permanent waste of electronic waste in order to solve the problem of pollution of electronic waste and waste of rare earth resources in permanent magnet materials.
  • the process for recovering rare earth in the electronic waste permanent magnet waste of the present invention comprises the following steps:
  • chlorine gas is introduced and chlorinated by adding carbon powder; or hydrogen chloride is added and chlorinated by adding carbon powder; or chlorination is carried out by adding sodium chloride and carbon powder; or chlorination is carried out by adding calcium chloride and carbon powder.
  • the mass ratio of the alloy particles to the chlorine gas and the carbon powder is 1:0.2 to 0.6:2 to 4
  • hydrogen chloride is added or other chloride is added
  • the mass ratio of alloy particles to chloride to carbon powder is 1:0.2 to 0.6:2 to 4
  • the baking time is 2 to After 5 hours, the generated tail gas is absorbed by alkali solution or water spray;
  • step (2) The chlorinated calcined powder of step (2) is washed with hot dilute hydrochloric acid in a two-stage countercurrent to dissolve soluble metal chloride salt, solid-liquid ratio 1:4 ⁇ 8 , the filtrate and the filter residue are obtained by filtration, and the filter residue is returned to roasting;
  • step (4) adjusting the pH of the filtrate obtained in step (4) to 1.5 to 2.5
  • hydrogen sulfide gas is introduced to precipitate all the cobalt nickel, and the pH of the solution is adjusted to 3.3 to 3.7, and the iron ions are removed by precipitation; Pr, Nd, and P517 or P204 are separated and separated.
  • cobalt sulfide nickel slag is calcined by sulphation, and after acid dissolution, use P507 or P204 or Cyanex272 Extraction and separation of cobalt nickel and recovery of cobalt nickel.
  • the step (1) of the electronic waste permanent magnet waste in the 800 ⁇ 1500 Oxidation at high temperature °C into alloy particles and grinding, grinding to the particles can pass through 60 ⁇ 80 mesh sieve.
  • step (2) the mass ratio of the alloy particles to the chloride to the carbon powder is 1:0.4:3, and the baking time is 3 to 4 In an hour, the produced tail gas is sprayed and absorbed with an alkali solution of 2 to 10 mol/l.
  • the hot dilute hydrochloric acid in the step (4) is a concentration of 0.1 to 0.3 mol/l at 35 to 65 °C. Hydrochloric acid.
  • the solid-liquid ratio in the step (4) is 1:5 to 6.
  • Step (5) When the iron ions are precipitated, the pH of the solution is adjusted to 3.4 to 3.6.
  • the invention can recover the rare earth in the permanent waste material of the electronic waste well, can solve the problem of the pollution of the electronic waste, and extract the rare earth element in the permanent magnet material, realizes the comprehensive utilization of resources and saves resources.
  • the electronic waste permanent magnet waste is oxidized and oxidized at 1500 °C into alloy particles and ground, and the particles can pass through 100. Screen.
  • Steps (2) The boron chloride gas in the alkali solution is sprayed and absorbed, and the solution is a mixed solution of borate and chloride salt. After multi-step recrystallization, the borate and the chloride salt are separately recovered, and the borate can be directly sold. The chloride salt is returned to the chlorination roasting.
  • Step (2) of the chlorinated calcined powder with hot dilute hydrochloric acid (temperature 65 ° C, concentration 0.1 mol / l)
  • the second-stage countercurrent washing dissolves the soluble metal chloride salt, and the solid-liquid ratio is 1:8.
  • the filtrate and the filter residue are filtered, and the filter residue is returned to the roasting.
  • the filtrate contains a chloride such as rare earth, cobalt or nickel, and also contains a small amount of chloride such as iron. Adjust the pH of the solution to 2.5 At the same time, hydrogen sulfide gas is introduced at the same time to completely precipitate cobalt nickel, and the rare earth ions are all left in the solution, and the pH of the solution is adjusted to 3.7, and the iron ions are removed by precipitation. Extraction and separation of Pr and Nd with P507 , Sm, Dy, etc., obtain Pr, Nd, Sm, Dy rare earth salts with a purity of 99.9%, and then use oxalic acid precipitation roasting to obtain rare earth oxides for sale.
  • a chloride such as rare earth, cobalt or nickel
  • a small amount of chloride such as iron.
  • Adjust the pH of the solution to 2.5
  • hydrogen sulfide gas is introduced at the same time to completely precipitate cobalt nickel, and the rare earth ions are all left in the solution, and the pH of the solution
  • the cobalt sulfide nickel slag is calcined by sulfation, that is, it is baked at 600 °C for 2 hours under air or oxygen atmosphere, and then used. Dissolve 0.5mol/l sulfuric acid, solid-liquid ratio 1:4, react at 80 °C for 3 hours, use P507 for 12-stage extraction, 10 wash, 6 The stage is stripped, and the raffinate is obtained as a pure nickel solution and the stripping solution is a pure cobalt solution, and then cobalt nickel is recovered.
  • the electronic waste permanent magnet waste is oxidized and oxidized at 1000 °C into alloy particles and ground, and the particles can all pass through 80 Screen.
  • Steps (2) The boron chloride gas in the alkali solution is sprayed and absorbed, and the solution is a mixed solution of borate and chloride salt. After multi-step recrystallization, the borate and the chloride salt are separately recovered, and the borate can be directly sold. The chloride salt is returned to the chlorination roasting.
  • Step (2) of the chlorinated roasting powder with hot dilute hydrochloric acid (temperature 50 ° C, concentration 0.2mol/l) two-stage countercurrent washing, dissolving soluble metal chloride salt, solid-liquid ratio 1:6, filtering to obtain filtrate and filter residue, and returning the filter residue to roasting.
  • the filtrate of the step (4) which contains a chloride such as rare earth, cobalt or nickel, and further contains a small amount of chloride such as iron.
  • the pH of the solution was adjusted to about 2.2, and hydrogen sulfide gas was introduced to precipitate all the cobalt nickel.
  • the rare earth ions were all left in the solution, and the pH of the solution was adjusted to about 3.5, and the iron ions were removed by precipitation.
  • Pr, Nd, Sm, Dy, etc. were extracted by P507 to obtain Pr, Nd, Sm and Dy rare earth salts with a purity of 99.9%, and then calcined with oxalic acid to obtain rare earth oxides.
  • the cobalt sulfide nickel slag is calcined by sulfation, that is, it is baked at 600 °C for 2 hours under air or oxygen atmosphere, and then used. Dissolve 0.5mol/l sulfuric acid, solid-liquid ratio 1:4, react at 80 °C for 3 hours, use P507 for 12-stage extraction, 10 wash, 6 The stage is stripped, and the raffinate is obtained as a pure nickel solution and the stripping solution is a pure cobalt solution, and then cobalt nickel is recovered.
  • the electronic waste permanent magnet waste is oxidized and oxidized at 800 °C into alloy particles and ground, and the particles can all pass 50 Screen.
  • Steps (2) The boron chloride gas in the alkali solution is sprayed and absorbed, and the solution is a mixed solution of borate and chloride salt. After multi-step recrystallization, the borate and the chloride salt are separately recovered, and the borate can be directly sold. The chloride salt is returned to the chlorination roasting.
  • Step (2) of the chlorinated roasting powder with hot dilute hydrochloric acid (temperature 35 ° C, concentration 0.3 mol/l) two-stage countercurrent washing, dissolving soluble metal chloride salt, solid-liquid ratio 1:4, filtering to obtain filtrate and filter residue, and returning the filter residue to roasting.
  • the filtrate of the step (4) which contains a chloride such as rare earth, cobalt or nickel, and further contains a small amount of chloride such as iron.
  • the pH of the solution Adjusted to 1.5, while introducing hydrogen sulfide gas, the cobalt nickel is completely precipitated, and the rare earth ions are all left in the solution, and then the pH of the solution is adjusted to about 3.3, and the iron ions are precipitated and removed. Extraction separation with P204 Pr, Nd, Sm, Dy, etc., get Pr, Nd, Sm, Dy rare earth salts with a purity of 99.9%, and then calcined with oxalic acid to obtain rare earth oxides for sale.
  • the cobalt sulfide nickel slag is calcined by sulfation, calcined at 600 °C for 2 hours, and then 0.5 mol/l
  • the sulfuric acid is dissolved, the solid-liquid ratio is 1:4, the reaction is carried out at 80 °C for 3 hours, and the P204 is subjected to 12-stage extraction, 10 stages of washing, 6 The stage is stripped, and the raffinate is obtained as a pure nickel solution and the stripping solution is a pure cobalt solution, and then cobalt nickel is recovered.
  • the electronic waste permanent magnet waste is oxidized at 1200 °C to form alloy particles and ground, and the particles can pass through 70. Screen.
  • Steps (2) The boron chloride gas in the water is sprayed and absorbed, and the solution is borate and solution. After multi-step recrystallization, the borate and the chloride salt are separately recovered. The borate can be directly sold, and the chloride salt is returned to the chlorination roasting. .
  • the filtrate of the step (4) which contains a chloride such as rare earth, cobalt or nickel, and further contains a small amount of chloride such as iron.
  • the pH of the solution Adjusted to 2.5, while introducing hydrogen sulfide gas, the cobalt nickel is completely precipitated, and the rare earth ions are all left in the solution, and then the pH of the solution is adjusted to 3.7, and the iron ions are removed by precipitation. Extraction separation with P507 Pr , Nd, Sm, Dy, etc., get Pr, Nd, Sm, Dy rare earth salts with a purity of 99.9%, and then roast with oxalic acid to obtain rare earth oxides for sale.
  • the cobalt sulfide nickel slag is calcined by sulphation, that is, calcined at 600 ° C under air or oxygen atmosphere 2 Hour, then dissolve with 0.5mol/l sulfuric acid, solid-liquid ratio 1:4, react at 80 °C for 3 hours, use P507 for 12-stage extraction, 10 wash, 6 The stage is stripped, and the raffinate is obtained as a pure nickel solution and the stripping solution is a pure cobalt solution, and then cobalt nickel is recovered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne un processus de recyclage de terres rares dans un déchet d'aimant permanent de déchet électronique, consistant à : 1) oxyder et faire fondre le déchet à haute température pour obtenir des particules d'alliage et pulvériser les particules d'alliage ; 2) à haute température, faire griller les particules d'alliage avec une poudre de chlorure et de carbone ; 3) recycler les borates et les chlorures au moyen d'un liquide d'absorption de gaz résiduaire passant par de multiples étapes de recristallisation ; 4) soumettre la poudre, après grillage chlorurant, à un lavage à contre-courant à deux étages au moyen d'un acide chlorhydrique chaud dilué, pour dissoudre les chlorures métalliques solubles ; 5) faire passer le filtrat à travers un sulfure d'hydrogène gazeux dans une condition d'acidité, de sorte que le cobalt et le nickel sont complètement précipités, puis éliminer les ions ferriques par précipitation ; extraire et séparer Pr, Nd, Sm et Dy, puis précipiter les produits avec de l'acide oxalique et les faire griller pour obtenir des oxydes de terres rares ; 6) soumettre la scorie de sulfures de cobalt et de nickel à un grillage chlorurant, après dissolution du produit dans un acide, extraire et séparer le cobalt et le nickel, et recycler le cobalt et le nickel.
PCT/CN2012/087752 2012-06-28 2012-12-28 Processus de recyclage de terres rares dans un déchet d'aimant permanent de déchet électronique WO2014000404A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210216652.X 2012-06-28
CN201210216652.XA CN103509952B (zh) 2012-06-28 2012-06-28 一种电子废弃物永磁废料中回收稀土的工艺

Publications (1)

Publication Number Publication Date
WO2014000404A1 true WO2014000404A1 (fr) 2014-01-03

Family

ID=49782152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087752 WO2014000404A1 (fr) 2012-06-28 2012-12-28 Processus de recyclage de terres rares dans un déchet d'aimant permanent de déchet électronique

Country Status (2)

Country Link
CN (1) CN103509952B (fr)
WO (1) WO2014000404A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044999A (zh) * 2019-05-06 2019-07-23 中国工程物理研究院化工材料研究所 一种超高纯铈化合物中十四种痕量杂质稀土金属离子含量的检测方法
WO2020151478A1 (fr) * 2019-01-21 2020-07-30 中国科学院金属研究所 Procédé de récupération d'un élément des terres rares à partir de déchets de néodyme-fer-bore par extraction à l'aide de bismuth métallique liquide
CN112609076A (zh) * 2020-11-27 2021-04-06 中国科学院长春应用化学研究所 一种从废稀土抛光粉中回收稀土氧化物的方法
CN113667822A (zh) * 2021-07-15 2021-11-19 江西理工大学 一种镁化焙烧回收钕铁硼废料的方法
CN115418505A (zh) * 2022-08-25 2022-12-02 萍乡泽昊新材料有限责任公司 一种稀土料液除铈及非稀土杂质的方法
CN116043016A (zh) * 2022-07-19 2023-05-02 江苏南方永磁科技有限公司 一种氧化钕的制备方法及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715482A1 (fr) 2019-03-29 2020-09-30 Tata Consultancy Services Limited Procédé et système de séparation d'éléments de terre rare de sources secondaires
CN112853107A (zh) * 2021-01-19 2021-05-28 连云港高品再生资源有限公司 一种稀土永磁废料的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230732A (ja) * 1988-03-09 1989-09-14 Sumitomo Light Metal Ind Ltd 希土類金属の回収方法
CN1693493A (zh) * 2005-05-08 2005-11-09 西安西骏新材料有限公司 钕铁硼废料中有价元素的回收方法
CN101817547A (zh) * 2010-05-07 2010-09-01 沈阳工业大学 一种从钕铁硼永磁材料废料中回收混合稀土氯化物的方法
CN102011020A (zh) * 2009-12-14 2011-04-13 包头市玺骏稀土有限责任公司 从钕铁硼废料中回收稀土元素的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255560C (zh) * 2004-06-28 2006-05-10 辽宁美宝稀土材料有限公司 从钕铁硼废料中回收稀土的新工艺
JP2012041588A (ja) * 2010-08-17 2012-03-01 Akita Univ 塩化揮発法による希土類元素の分離方法及び分離システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230732A (ja) * 1988-03-09 1989-09-14 Sumitomo Light Metal Ind Ltd 希土類金属の回収方法
CN1693493A (zh) * 2005-05-08 2005-11-09 西安西骏新材料有限公司 钕铁硼废料中有价元素的回收方法
CN102011020A (zh) * 2009-12-14 2011-04-13 包头市玺骏稀土有限责任公司 从钕铁硼废料中回收稀土元素的方法
CN101817547A (zh) * 2010-05-07 2010-09-01 沈阳工业大学 一种从钕铁硼永磁材料废料中回收混合稀土氯化物的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020151478A1 (fr) * 2019-01-21 2020-07-30 中国科学院金属研究所 Procédé de récupération d'un élément des terres rares à partir de déchets de néodyme-fer-bore par extraction à l'aide de bismuth métallique liquide
CN110044999A (zh) * 2019-05-06 2019-07-23 中国工程物理研究院化工材料研究所 一种超高纯铈化合物中十四种痕量杂质稀土金属离子含量的检测方法
CN112609076A (zh) * 2020-11-27 2021-04-06 中国科学院长春应用化学研究所 一种从废稀土抛光粉中回收稀土氧化物的方法
CN113667822A (zh) * 2021-07-15 2021-11-19 江西理工大学 一种镁化焙烧回收钕铁硼废料的方法
CN116043016A (zh) * 2022-07-19 2023-05-02 江苏南方永磁科技有限公司 一种氧化钕的制备方法及应用
CN115418505A (zh) * 2022-08-25 2022-12-02 萍乡泽昊新材料有限责任公司 一种稀土料液除铈及非稀土杂质的方法

Also Published As

Publication number Publication date
CN103509952A (zh) 2014-01-15
CN103509952B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2014000404A1 (fr) Processus de recyclage de terres rares dans un déchet d'aimant permanent de déchet électronique
WO2016202271A1 (fr) Procédé de récupération de terre rare, d'aluminium et de silicium à partir de déchets d'aluminium-silicium contenant une terre rare
CN104928475B (zh) 一种含稀土的铝硅废料的回收方法
JP2012172223A (ja) リチウム回収方法
WO2014082461A1 (fr) Procédé de séparation et de récupération de pierrailles de monazite
CN110055402B (zh) 一种钨废料的处理方法及处理装置
CN110607537A (zh) 一种同步高效提取高值回用钕铁硼废料中稀土和铁的方法
KR20170061206A (ko) 폐 리튬 이온 전지를 이용한 전구체 원료의 회수 방법
CN111254276A (zh) 基于还原钠化焙烧物相转化的废锂离子电池粉末选择性提取有价金属方法
CN111187927A (zh) 一种选择性硫酸化回收钕铁硼废料中稀土的方法
WO2022055272A1 (fr) Procédé de récupération de matériau de cathode
CN113388738B (zh) 一种回收含铅废渣中铅的方法及其应用
CN110540252B (zh) 从白合金中制备电池级硫酸钴和高纯二氧化锗的方法
CN113337718A (zh) 一种从锂离子电池正极材料中回收钴的方法
JP4215547B2 (ja) コバルトの回収方法
CN114480835B (zh) 混合稀土精矿的分解方法和组合物的用途
JP2013209267A (ja) 硫酸マンガンの製造方法
CN108677024B (zh) 一种从熔炼渣中回收稀有金属镧铈和锆的方法
CN110541074B (zh) 白合金中提取锗和钴的提取方法
JP2004182533A (ja) コバルト回収方法
CN114480860B (zh) 一种从赤泥中选择性浸出稀土元素的方法
CN110523751B (zh) 一种铝电解槽废旧阴极浸出渣中炭素物质资源化的方法
CN114318019B (zh) 一种从离子型稀土矿山浸出液中分离稀土和铝的方法
CN114990365B (zh) 一种从钕铁硼废料中回收稀土和主元素铁的方法、熔盐体系及作为软磁铁氧体原料的应用
WO2024128555A1 (fr) Procédé de récupération de lithium à partir de minerai de lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879633

Country of ref document: EP

Kind code of ref document: A1