WO2013191012A1 - エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物 - Google Patents

エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物 Download PDF

Info

Publication number
WO2013191012A1
WO2013191012A1 PCT/JP2013/065806 JP2013065806W WO2013191012A1 WO 2013191012 A1 WO2013191012 A1 WO 2013191012A1 JP 2013065806 W JP2013065806 W JP 2013065806W WO 2013191012 A1 WO2013191012 A1 WO 2013191012A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
carbon atoms
resin
acid
formula
Prior art date
Application number
PCT/JP2013/065806
Other languages
English (en)
French (fr)
Inventor
越後 雅敏
直哉 内山
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP13806776.4A priority Critical patent/EP2865695A1/en
Priority to CN201380032495.XA priority patent/CN104395370A/zh
Priority to US14/410,516 priority patent/US20150322308A1/en
Priority to JP2014521302A priority patent/JPWO2013191012A1/ja
Priority to KR1020147035059A priority patent/KR20150033608A/ko
Publication of WO2013191012A1 publication Critical patent/WO2013191012A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • C08G10/02Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only of aldehydes
    • C08G10/04Chemically-modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1494Polycondensates modified by chemical after-treatment followed by a further chemical treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal

Definitions

  • the present invention relates to an epoxy resin and a method for producing the same, an epoxy resin composition, and a cured product.
  • Patent Document 1 is excellent in flame retardancy obtained by reacting an aromatic hydrocarbon formaldehyde resin with a novolak-type phenol resin obtained by reacting a phenol containing at least naphthol and another phenol compound with an epihalohydrin.
  • An epoxy resin is disclosed.
  • a copper clad laminate is usually manufactured using a prepreg formed by impregnating a thermosetting resin into a reinforcing base material as an insulating layer.
  • glass-based epoxy resin copper-clad laminates are mainly used in industrial electronic devices such as computers and control devices, and consumer electronic devices such as video cameras and video games.
  • conventional glass-based epoxy resin copper-clad laminates cannot satisfy the requirements in terms of heat resistance, high adhesion, etc.
  • the above-mentioned novolac type epoxy resin improves the heat resistance, which is a disadvantage of the conventional epi-bis type epoxy resin, but when used alone or when blended in a large amount in the epi-bis type resin, delamination While strength falls, it has the faults, such as copper foil peel strength falling and moisture resistance falling.
  • the epoxy resin described in Patent Document 1 has a defect that heat resistance, high adhesiveness and moisture resistance are not sufficient.
  • the present invention aims to eliminate the drawbacks of conventional epoxy resins, and is useful for composite materials in the aircraft field and laminates in the electronics field, coating materials, semiconductor encapsulants, and molding materials. It aims at obtaining the epoxy resin excellent in heat resistance, high adhesiveness, and moisture resistance.
  • an epoxy resin obtained by reacting with an epihalohydrin through a modification treatment with a compound represented by the formula (3) after performing a specific treatment in (3) can solve the above-mentioned problems. Reached.
  • Y 1 independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group, q represents a number of 0 to 3, and A represents 0 to Represents the number of 2.
  • Y 2 independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group, and r represents a number of 0 to 3).
  • X independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group
  • Y 3 independently represents one having 1 to 10 carbon atoms.
  • the compound represented by the formula (1) is benzene, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, decylbenzene, cyclohexylbenzene, biphenyl, methylbiphenyl, naphthalene, methylnaphthalene, dimethylnaphthalene, ethylnaphthalene, anthracene, methylanthracene.
  • the compound represented by the formula (3) is phenol, methoxyphenol, benzoxyphenol, catechol, resorcinol, hydroquinone, cresol, phenylphenol, naphthol, methoxynaphthol, benzoxynaphthol, dihydroxynaphthalene, hydroxyanthracene, methoxyanthracene, benzo
  • the amount of the acidic catalyst used is 0.0001 to 100 parts by mass with respect to 100 parts by mass of the aromatic hydrocarbon formaldehyde resin, and the amount of water used is the aromatic hydrocarbon formaldehyde resin.
  • the amount of the compound represented by the formula (3) used is 0.1 to 5 mol with respect to 1 mol of oxygen contained in the acid-treated resin.
  • a method for producing an epoxy resin comprising the following steps (a) to (d): (A): a step of obtaining an aromatic hydrocarbon formaldehyde resin by reacting a compound represented by the following formula (1) and / or (2) with formaldehyde in the presence of a catalyst; (B): a step of obtaining an acid-treated resin by treating the aromatic hydrocarbon formaldehyde resin obtained in step (a) with an acidic catalyst and water; (C): a step of obtaining a modified resin by treating the acid-treated resin obtained in step (b) with an acidic catalyst and a compound represented by the following formula (3); (D): A step of obtaining an epoxy resin by reacting the modified resin obtained in the step (c) with epihalohydrin.
  • Y 1 independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group, q represents a number of 0 to 3, and A represents 0 to Represents the number of 2.
  • Y 2 independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group, and r represents a number of 0 to 3).
  • X independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group
  • Y 3 independently represents one having 1 to 10 carbon atoms.
  • An alkyl group, an aryl group having 6 to 10 carbon atoms or a cyclohexyl group, p represents a number of 1 to 3, s represents a number of 0 to 3, and B represents a number of 0 to 3)
  • the epoxy resin of the present invention has excellent heat resistance, high adhesion, and excellent moisture resistance, so it is useful as a resin for laminates, semiconductor sealing, molding materials, adhesives, coatings, etc. It is.
  • the epoxy resin in this embodiment is An epoxy resin obtained through the following steps (a) to (d).
  • Step (a) is a step of obtaining an aromatic hydrocarbon formaldehyde resin by reacting the compound represented by the formula (1) and / or (2) with formaldehyde in the presence of a catalyst.
  • the production method of the aromatic hydrocarbon formaldehyde resin used in the present embodiment is not particularly limited, and by applying a known method from the compounds represented by the following formulas (1) and / or (2) Obtainable.
  • a resin can be obtained.
  • the aromatic hydrocarbon formaldehyde resin obtained by the method as described above can be identified by measuring gel permeation chromatography, organic element analysis, softening point, hydroxyl value and the like.
  • Y 1 independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group, q represents a number of 0 to 3, and A represents 0 to Represents the number of 2.
  • Y 2 independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group, and r represents a number of 0 to 3).
  • Examples of the compound represented by the formula (1) include benzene, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, decylbenzene, cyclohexylbenzene, biphenyl, methylbiphenyl, naphthalene, methylnaphthalene, dimethylnaphthalene, ethylnaphthalene, anthracene, methylanthracene. , Dimethylanthracene, ethylanthracene, binaphthyl and the like.
  • biphenyl naphthalene, methylnaphthalene, dimethylnaphthalene, anthracene, methylanthracene, and dimethylanthracene are preferable, and from the viewpoint of industrial use, biphenyl is more preferable.
  • Naphthalene, methylnaphthalene and dimethylnaphthalene are preferable.
  • Examples of the compound represented by the formula (2) include phenanthrene, methylphenanthrene, dimethylphenanthrene, ethylphenanthrene, decylphenanthrene, cyclohexylphenanthrene, phenylphenanthrene, naphthylphenanthrene and the like. Moreover, from the viewpoint of combining heat resistance and solubility in a balanced manner, phenanthrene, cyclohexylphenanthrene, and phenylphenanthrene are preferable, and phenanthrene is more preferable.
  • Step (b) is a step of obtaining an acid-treated resin by treating the aromatic hydrocarbon formaldehyde resin obtained in step (a) with an acidic catalyst and water.
  • the acid-treated resin used in this embodiment can be obtained by treating the aromatic hydrocarbon formaldehyde resin using an acidic catalyst and water.
  • the naphthalene ring is crosslinked with — (CH 2 ) 1 — and / or CH 2 A—.
  • A represents — (OCH 2 ) m —
  • l represents a number from 1 to 10
  • m represents a number from 0 to 10.
  • the acid-treated resin is also referred to as “deacetal-bonded aromatic hydrocarbon formaldehyde resin”.
  • the deacetal-bonded aromatic hydrocarbon formaldehyde resin has further improved thermal decomposition resistance as compared with the resin not subjected to the acid treatment.
  • the acidic catalyst and the acidic catalyst that can be used for the treatment with water can be appropriately selected from known inorganic acids and organic acids.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluene
  • Organic acids such as sulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid; zinc chloride, aluminum chloride, iron chloride, trifluoride
  • Lewis acids such as boron
  • solid acids such as silicotungstic acid, phosphotungstic acid,
  • sulfuric acid oxalic acid, citric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and phosphotungstic acid are preferable from the viewpoint of production.
  • the treatment with the acidic catalyst and water is usually carried out at normal pressure in the presence of the acidic catalyst, and the water used is dropped into the system or as water vapor at a temperature higher than the temperature at which the raw materials used are compatible (usually 80 to 300 ° C.) Perform while spraying.
  • the water in the system may be distilled off or refluxed. However, it is preferable that the water is distilled off together with low-boiling components such as formaldehyde generated in the reaction because the acetal bond can be efficiently removed.
  • the pressure may be normal pressure or increased pressure. Moreover, you may ventilate inert gas, such as nitrogen, helium, and argon, in a system as needed.
  • a solvent inert to the reaction can be used.
  • the solvent include aromatic hydrocarbons such as toluene, ethylbenzene and xylene; saturated aliphatic hydrocarbons such as heptane and hexane; alicyclic hydrocarbons such as cyclohexane; ethers such as dioxane and dibutyl ether; 2-propanol Alcohols such as methyl isobutyl ketone; carboxylic acid esters such as ethyl propionate; carboxylic acids such as acetic acid.
  • the amount of the acidic catalyst used is preferably 0.0001 to 100 parts by mass, more preferably 0.001 to 85 parts by mass, and still more preferably 0.001 to 70 parts by mass with respect to 100 parts by mass of the aromatic hydrocarbon formaldehyde resin. Part.
  • the acidic catalyst may be charged all at once or charged in parts.
  • the water that can be used for the treatment is not particularly limited as long as it can be used industrially, and examples thereof include tap water, distilled water, ion-exchanged water, pure water, and ultrapure water.
  • the amount of water used is preferably 0.1 to 10000 parts by mass, more preferably 1 to 5000 parts by mass, and even more preferably 10 to 3000 parts by mass with respect to 100 parts by mass of the aromatic hydrocarbon formaldehyde resin.
  • the treatment time is preferably 0.5 to 20 hours, more preferably 1 to 15 hours, and further preferably 2 to 10 hours. By setting the treatment time within the above range, a resin having the desired properties tends to be obtained economically and industrially.
  • the treatment temperature is preferably 80 to 300 ° C, more preferably 85 to 270 ° C, and further preferably 90 to 240 ° C. By setting the treatment temperature within the above range, a resin having the desired properties tends to be obtained economically and industrially.
  • the acidic catalyst is completely removed by washing with water, and the two phases are separated by standing, and the resin phase and the aqueous phase are oil phases. Then, the added solvent and the like are removed by a general method such as distillation to obtain a deacetal-bonded aromatic hydrocarbon formaldehyde resin (acid-treated resin).
  • the deacetal-bonded aromatic hydrocarbon formaldehyde resin has a lower oxygen concentration and a higher softening point than the aromatic hydrocarbon formaldehyde resin.
  • the amount of the acidic catalyst used is 0.05 parts by mass with respect to 100 parts by mass of the aromatic hydrocarbon formaldehyde resin
  • the amount of water used is 2000 parts by mass with respect to 100 parts by mass of the aromatic hydrocarbon formaldehyde resin.
  • Step (c) is a step of obtaining a modified resin by treating the acid-treated resin obtained in step (b) with an acidic catalyst and a compound represented by the following formula (3).
  • Modified resin modified deacetal bonded aromatic hydrocarbon formaldehyde resin
  • the modified resin used in this embodiment is a modification of the deacetal-bonded aromatic hydrocarbon formaldehyde resin (acid-treated resin) and the compound represented by the formula (3) by heating in the presence of an acidic catalyst. Is obtained.
  • the modified resin is also referred to as “modified deacetal-bonded aromatic hydrocarbon formaldehyde resin”.
  • X independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group
  • Y 3 independently represents one having 1 to 10 carbon atoms.
  • An alkyl group, an aryl group having 6 to 10 carbon atoms or a cyclohexyl group, p represents a number of 1 to 3, s represents a number of 0 to 3, and B represents a number of 0 to 3)
  • X is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group from the viewpoint of production.
  • Y 3 is preferably an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclohexyl group.
  • p is preferably 1 to 2
  • s is preferably 0 to 2.
  • Examples of the compound represented by the formula (3) include phenol, methoxyphenol, benzoxyphenol, catechol, resorcinol, hydroquinone, cresol, phenylphenol, naphthol, methoxynaphthol, benzoxynaphthol, dihydroxynaphthalene, hydroxyanthracene, and methoxyanthracene. , Benzoxyanthracene, dihydroxyanthracene and the like.
  • a phenol derivative containing a conjugated structure involving at least two unshared electron pairs of a benzene ring is preferable because of excellent thermal decomposition resistance, and phenylphenol, naphthol, methoxynaphthol, benzoxynaphthol, dihydroxynaphthalene, hydroxy Anthracene, methoxyanthracene, benzoxyanthracene, and dihydroxyanthracene are more preferable.
  • a compound having a hydroxy group is preferable because of its excellent crosslinkability with an acid crosslinking agent, and phenylphenol, naphthol, dihydroxynaphthalene, hydroxyanthracene, and dihydroxyanthracene are more preferable.
  • the amount of the compound represented by the formula (3) is preferably 0.1 to 5 moles per mole of oxygen contained in the deacetal-bonded aromatic hydrocarbon formaldehyde resin (acid-treated resin).
  • the amount is preferably 0.2 to 4 mol, more preferably 0.3 to 3 mol.
  • the modification treatment is usually performed at normal pressure in the presence of an acidic catalyst, and heated at reflux or higher (usually 80 to 300 ° C.) or higher while distilling off generated water.
  • the pressure may be normal pressure or increased pressure.
  • an inert gas such as nitrogen, helium, or argon may be passed through the system.
  • a solvent inert to the condensation reaction can also be used.
  • the solvent include aromatic hydrocarbons such as toluene, ethylbenzene and xylene; saturated aliphatic hydrocarbons such as heptane and hexane; alicyclic hydrocarbons such as cyclohexane; ethers such as dioxane and dibutyl ether; 2-propanol Alcohols such as methyl isobutyl ketone; carboxylic acid esters such as ethyl propionate; carboxylic acids such as acetic acid.
  • the acidic catalyst that can be used for the modification treatment can be appropriately selected from known inorganic acids and organic acids.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluene
  • Organic acids such as sulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid; zinc chloride, aluminum chloride, iron chloride, trifluoride
  • Lewis acids such as boron
  • solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic
  • sulfuric acid oxalic acid, citric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and phosphotungstic acid are preferable from the viewpoint of production.
  • the amount of the acidic catalyst used is preferably 0.0001 to 100 parts by mass, more preferably 0.001 to 85 parts by mass with respect to 100 parts by mass of the deacetal-bonded aromatic hydrocarbon formaldehyde resin (acid-treated resin). More preferably, it is 0.001 to 70 parts by mass.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 15 hours, and further preferably 2 to 10 hours. By making reaction time into the said range, it exists in the tendency which can obtain resin which has the target property economically and industrially.
  • the reaction temperature is preferably 80 to 300 ° C, more preferably 85 to 270 ° C, and further preferably 90 to 240 ° C. By setting the reaction temperature within the above range, a resin having the desired properties tends to be obtained economically and industrially.
  • the acidic catalyst is completely removed by washing with water, and the two phases are separated by standing, and the resin phase and the aqueous phase are oil phases. Then, the added solvent and / or unreacted raw material is removed by a general method such as distillation to obtain a modified deacetal-bonded aromatic hydrocarbon formaldehyde resin.
  • the modified deacetal-bonded aromatic hydrocarbon formaldehyde resin has improved thermal decomposition resistance as compared with a modified aromatic hydrocarbon formaldehyde resin obtained by directly modifying the aromatic hydrocarbon formaldehyde resin without acid treatment.
  • the modified deacetal-bonded aromatic hydrocarbon formaldehyde resin has higher heat decomposability and hydroxyl value than the deacetal-bonded aromatic hydrocarbon formaldehyde resin.
  • the amount of the acidic catalyst used is 0.05 parts by mass with respect to 100 parts by mass of the deacetal-bonded aromatic hydrocarbon formaldehyde resin, and the reaction time is 5 hours and the reaction temperature is 200 ° C.
  • the thermal decomposition resistance is 1 to About 50%
  • the hydroxyl value [mgKOH / g] increases by about 1 to 300.
  • Step (d) is a step of obtaining an epoxy resin by reacting the modified resin obtained in step (c) with epihalohydrin.
  • Epoxy resin The epoxy resin in the present embodiment is obtained by reacting the modified deacetal-bonded aromatic hydrocarbon formaldehyde resin with epihalohydrin, the phenolic hydroxyl group of the modified deacetal-bonded aromatic hydrocarbon formaldehyde resin, epihalohydrin, and Can be obtained by reacting and epoxidizing by a known method. Specifically, for example, the reaction can be carried out according to the method described in JP-A-2009-108147.
  • the epoxy resin composition in this embodiment contains the epoxy resin in this embodiment mentioned above.
  • the epoxy resin composition may contain an epoxy resin other than the epoxy resin in the present embodiment, and such an epoxy resin is used for a laminated board, a sealing resin, an adhesive, a paint, and the like.
  • a publicly known thing can be used, and what is generally used conventionally can be used, without limiting in particular, in the range which does not impair the effect of the present invention.
  • the epoxy resin that can be used by being mixed with the epoxy resin in the present embodiment is not particularly limited.
  • a novolac type epoxy resin a bisphenol A type epoxy resin, a biphenyl type epoxy resin, a triphenylmethane type epoxy resin, Examples thereof include phenol aralkyl type epoxy resins.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxy
  • the proportion of the epoxy resin of the present embodiment in the total epoxy resin is preferably 30% by mass or more, and more preferably 40% by mass or more. However, when the epoxy resin of this embodiment is used as a modifier for the epoxy resin composition, it is preferably added in a proportion of 1 to 30% by mass.
  • curing agent, etc. can be mix
  • a hardening accelerator and a catalyst you may use what is generally used for an epoxy resin, such as imidazoles or imidazolines, amines.
  • the blending amount of the curing accelerator and the catalyst can be used within a range that does not impair the effects of the present invention, but is usually required within a range of 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the epoxy resin. Depending on the use.
  • curing agent various known curing agents can be used depending on the use of the epoxy resin composition.
  • the curing agent for sealing include novolak type phenol resins.
  • the curing agent for the laminate include dicyandiamide and the like, and may be used in combination with the above catalyst.
  • the curing agent for casting and filament winding include acid anhydrides such as phthalic anhydride.
  • the curing agent for adhesives and anticorrosion coatings include low-temperature curing curing agents such as aromatic amines such as metaxylenediamine, aliphatic amines, and polyamines.
  • the blending amount of the curing agent can be used within a range that does not impair the effects of the present invention, but is usually preferably used within a range of 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin. . When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • the epoxy resin composition is applied or impregnated on a predetermined substrate and then dried to produce a B-stage prepreg.
  • a plurality of sheets are overlapped, and copper foils are further overlapped appropriately, and are manufactured by pressurizing and heating.
  • glass fiber cloth is generally used as the reinforcing substrate, but in addition, aromatic polyamide fiber, aromatic polyester fiber, aromatic polyesterimide fiber, and the like can be used. Polyester, aromatic polyamide, aromatic polyester fiber, aromatic polyesterimide fiber and the like can also be used.
  • the blending amount of the reinforcing substrate can be used within a range that does not impair the effects of the present invention, but is usually used in a range of 0.05 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin composition, From the viewpoint of flame retardancy and heat resistance of the cured product, it is preferably used in the range of 0.05 to 20 parts by mass.
  • Application and impregnation to the reinforcing substrate are carried out under normal conditions, for example, about room temperature to 60 ° C., and dried at 100 ° C. to 180 ° C. for 3 minutes to 20 minutes to obtain a B-stage prepreg.
  • the heating and pressurization is usually performed by appropriately selecting from a temperature range of 120 ° C. to 230 ° C., a pressure of 5 kg / cm 2 to 150 kg / cm 2 , and a range of 30 minutes to 240 minutes.
  • the epoxy resin composition in the present embodiment is used as a sealing resin, it is usually difficult to use inorganic fillers such as silica, mold release agents such as carnauba wax, coupling agents such as epoxy silane, antimony trioxide, and halogen compounds.
  • Additives such as a flame retardant are selected according to the purpose of use, added to the epoxy resin composition, and heated and kneaded using a biaxial kneader, a heat roll, a Hensyl mixer, or the like. Further, the obtained molded powder is appropriately tableted, and is first cured at 20 kg / cm 2 to 100 kg / cm 2 and 150 ° C. to 200 ° C. by compression or transfer molding using a mold, and then 180 Post-curing is performed for 2 hours to 12 hours at a temperature of 230 ° C. to 230 ° C.
  • the above additives may be used alone or in combination of two or more.
  • the additive can be used in a range that does not impair the effects of the present invention, but is usually used in the range of 0 to 95% by mass in the epoxy resin composition, from the viewpoint of flame retardancy and mechanical strength. , Preferably 50% by mass or more, more preferably 70% by mass or more.
  • the epoxy resin composition in the present embodiment is excellent in heat resistance, high adhesiveness, moisture resistance, plasticity during heating, stress relaxation, etc., and further excellent in electrical performance, particularly high frequency characteristics. Therefore, in addition to the above, it can be suitably used as a resin composition for adhesion and heat-resistant coating.
  • Carbon and oxygen concentrations (mass%) in the resin were measured by organic elemental analysis.
  • the softening point of the resin was measured according to JIS-K5601.
  • Example 1 Preparation of naphthalene formaldehyde resin
  • 150 g of a mass% formalin aqueous solution (2 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 79.7 g of 98 mass% sulfuric acid (manufactured by Kanto Chemical Co., Ltd.) were charged, stirred at 100 ° C. under normal pressure, and refluxed for 6 hours.
  • the carbon concentration was 86.4% by mass
  • the oxygen concentration was 8.0% by mass (the number of moles of oxygen contained per 1 g of resin was 0.0050 mol / g).
  • the softening point was 84 ° C. and the hydroxyl value was 25 mgKOH / g.
  • the carbon concentration was 87.9% by mass and the oxygen concentration was 5.9% by mass (the number of moles of oxygen contained per 1 g of resin was 0.0037 mol / g).
  • the softening point was 107 ° C. and the hydroxyl value was 32 mgKOH / g.
  • Example 2 Manufacture of copper-clad laminate
  • 30 parts of the epoxy resin obtained in Example 1 was blended with 70 parts of a brominated epoxy compound (manufactured by Tohto Kasei Co., Ltd., product number: FX132, epoxy equivalent 485 WPE), and further 3.1 parts of dicyandiamide (abbreviated DICY) as a curing agent
  • An epoxy resin composition was prepared by adding 0.08 part of 2-ethyl-4-methylimidazole (abbreviation 2E4MZ) as a catalyst, 32 parts of methyl ethyl ketone and 8 parts of dimethylformamide as a solvent.
  • 2E4MZ 2-ethyl-4-methylimidazole
  • the resin composition was impregnated into a glass cloth (# 7628-SV657, 0.2 mm thickness) and dried in a dryer at 150 ° C. for 15 minutes to obtain a prepreg. 4 sheets of this prepreg are stacked, both sides of 18 ⁇ m and 35 ⁇ m roughened copper foils are stacked, and pressure forming is performed at a pressure of 80kg / cm 2 and a temperature of 170 ° C for 90 minutes. I got a plate.
  • the obtained double-sided copper clad laminate was tested in accordance with JIS S-6481, K-6911, and as a result, it was confirmed that it had high heat resistance, low water absorption, solder crack resistance, and high adhesion.
  • Example 3 Manufacture of resin composition for semiconductor encapsulation 60 parts of the epoxy resin obtained in Example 1 was blended with 20 parts of a brominated phenol novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., product name: BREN, epoxy equivalent 285), and bisphenol A novolac (as a curing agent) Dainippon Ink Co., Ltd., product name: LF7911) 41 parts, 2,4,6-tris (diaminomethyl) phenol (abbreviation DMP-30) 1 part as a curing accelerator, carnauba wax 2 parts as a release agent, The binder was pulverized and mixed.
  • ⁇ -glycidoxypropyltrimethoxysilane manufactured by Nippon Unicar Co., Ltd., product name: A-187
  • carbon black 1 part
  • antimony trioxide powder 5 parts
  • a filler composed of 350 parts of synthetic silica powder as a filler was mixed with a Hensyl mixer.
  • roll kneading at 70 to 80 ° C. for 10 minutes, coarse pulverization, and tableting were performed to obtain a resin composition for semiconductor encapsulation.
  • the obtained resin composition was transfer-molded on a mold having an upper mold with an aluminum foil attached at 180 ° C. for 2 minutes at 70 kg / cm 2 to obtain a cured resin test piece.
  • the workability during molding was good, and high heat resistance and high moisture resistance. Furthermore, it was confirmed that no cracks were generated due to the cold-resistant cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 以下の工程(a)~(d)を経て得られるエポキシ樹脂。 (a):式(1)及び/又は(2)で示される化合物とホルムアルデヒドとを触媒の存在下で反応させることにより芳香族炭化水素ホルムアルデヒド樹脂を得る工程、 (b):工程(a)において得られた芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を用いて処理することにより酸性処理した樹脂を得る工程、 (c):工程(b)において得られた酸性処理した樹脂を、酸性触媒及び式(3)で示される化合物を用いて処理することにより変性樹脂を得る工程、 (d):工程(c)において得られた変性樹脂を、エピハロヒドリンと反応させることによりエポキシ樹脂を得る工程。

Description

エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物
 本発明は、エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物に関する。
 従来、エポキシ化合物としては、ビスフェノールAのジグリシジルエーテルによるエピ-ビス型や、クレゾールノボラックのジグリシジルエーテルによるノボラック型が一般に用いられている。
 航空機部材に使用されるコンポジット材料、及びエレクトロニクス分野の積層板やコーティング材、半導体封止材、成形材は、おおむね3官能以上の多官能性エポキシ樹脂が用いられ、一般的には、ノボラック型エポキシ樹脂が多く用いられている。ノボラック型エポキシ樹脂の代表的なものとしては、フェノールノボラック型及びクレゾールノボラック型エポキシ樹脂が挙げられる。ノボラック型エポキシ樹脂は多官能性であるため、硬化後の架橋密度が高くなり、その結果、高耐熱性、高耐薬品性などが期待できるが、その反面、硬くて脆くなる傾向にある。また、耐湿性に劣り、特に金属との密着性に劣るので、湿度による半田クラックが生じ易くなるという欠点がクローズアップされてきている。
 特許文献1には、芳香族炭化水素ホルムアルデヒド樹脂に少なくともナフトール及び他のフェノール化合物を含むフェノール類を反応させて得られるノボラック型フェノール樹脂と、エピハロヒドリンとを反応させることによって得られる難燃性に優れたエポキシ樹脂について開示されている。
 また、銅張積層板は、通常、絶縁層として補強基材に熱硬化樹脂を含浸してなるプリプレグを用いて製造される。特に、ガラス基材エポキシ樹脂銅張積層板が、コンピューター、制御機器等の産業用電子機器や、ビデオカメラ、テレビゲーム等の民生用電子機器に主に使用されている。しかし、高密度配線回路化、高多層化が進展するにつれ、従来のガラス基材エポキシ樹脂銅張積層板では、耐熱性、高密着性などの点で要求を満足できない状況となり、耐熱性、高密着性、耐湿性に優れた銅張積層板の開発が要望されていた。
特開2009-108147号公報
 上記したノボラック型エポキシ樹脂は、従来のエピ-ビス型エポキシ樹脂の欠点である耐熱性は改善するが、単独で用いた場合や、エピ-ビス型樹脂に多量に配合した場合には、層間剥離強度が低下すると共に、銅箔ピール強度が低下し、耐湿性が低下するなどの欠点を有する。
 また、特許文献1に記載されたエポキシ樹脂は、耐熱性、高接着性及び耐湿性が十分ではないという欠点を有する。
 本発明は、従来のエポキシ樹脂の欠点を解消することを目的とするものであり、航空機分野におけるコンポジット材料やエレクトロニクス分野における積層板、コーティング材、半導体封止材、及び成形材用途に有用な、耐熱性、高接着性及び耐湿性に優れたエポキシ樹脂を得ることを目的としたものである。
 本発明者らは鋭意検討を行った結果、式(1)及び/又は(2)で示される化合物及びホルムアルデヒドを触媒の存在下で反応させて得られる樹脂(以下、「芳香族炭化水素ホルムアルデヒド樹脂」とも言う。)に特定の処理をした後、式(3)で示される化合物による変性処理を経て、エピハロヒドリンと反応させることによって得られるエポキシ樹脂が、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は以下のとおりである。
[1]
 以下の工程(a)~(d)を経て得られるエポキシ樹脂。
(a):下記式(1)及び/又は(2)で示される化合物とホルムアルデヒドとを触媒の存在下で反応させることにより芳香族炭化水素ホルムアルデヒド樹脂を得る工程、
(b):工程(a)において得られた芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を用いて処理することにより酸性処理した樹脂を得る工程、
(c):工程(b)において得られた酸性処理した樹脂を、酸性触媒及び下記式(3)で示される化合物を用いて処理することにより変性樹脂を得る工程、
(d):工程(c)において得られた変性樹脂を、エピハロヒドリンと反応させることによりエポキシ樹脂を得る工程。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、qは0~3の数を表し、Aは0~2の数を表す。)
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、rは0~3の数を表す。)
Figure JPOXMLDOC01-appb-C000009
(式(3)中、Xは独立して水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、pは1~3の数を表し、sは0~3の数を表し、Bは0~3の数を表す。)
[2]
 前記式(1)で示される化合物が、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、デシルベンゼン、シクロヘキシルベンゼン、ビフェニル、メチルビフェニル、ナフタレン、メチルナフタレン、ジメチルナフタレン、エチルナフタレン、アントラセン、メチルアントラセン、ジメチルアントラセン、エチルアントラセン及びビナフチルからなる群より選ばれる少なくとも1種である、上記[1]記載のエポキシ樹脂。
[3]
 前記式(2)で示される化合物が、フェナントレン、メチルフェナントレン、ジメチルフェナントレン、エチルフェナントレン、デシルフェナントレン、シクロヘキシルフェナントレン、フェニルフェナントレン及びナフチルフェナントレンからなる群より選ばれる少なくとも1種である、上記[1]又は[2]記載のエポキシ樹脂。
[4]
 前記式(3)で示される化合物が、フェノール、メトキシフェノール、ベンゾキシフェノール、カテコール、レゾルシノール、ヒドロキノン、クレゾール、フェニルフェノール、ナフトール、メトキシナフトール、ベンゾキシナフトール、ジヒドロキシナフタレン、ヒドロキシアントラセン、メトキシアントラセン、ベンゾキシアントラセン及びジヒドロキシアントラセンからなる群より選ばれる少なくとも1種である、上記[1]~[3]のいずれか記載のエポキシ樹脂。
[5]
 前記工程(b)において、前記酸性触媒の使用量が前記芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して0.0001~100質量部であり、前記水の使用量が前記芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して0.1~10000質量部である、上記[1]~[4]のいずれか記載のエポキシ樹脂。
[6]
 前記工程(c)において、前記式(3)で示される化合物の使用量が前記酸性処理した樹脂中の含有酸素モル数1モルに対して0.1~5モルである、上記[1]~[5]のいずれか記載のエポキシ樹脂。
[7]
 上記[1]~[6]のいずれか記載のエポキシ樹脂を含有するエポキシ樹脂組成物。
[8]
 上記[7]記載のエポキシ樹脂組成物を硬化してなる硬化物。
[9]
 上記[1]~[6]のいずれか記載のエポキシ樹脂を含有する銅張積層板。
[10]
 上記[1]~[6]のいずれか記載のエポキシ樹脂を含有する半導体封止用樹脂組成物。
[11]
 以下の工程(a)~(d)を含むエポキシ樹脂の製造方法。
(a):下記式(1)及び/又は(2)で示される化合物とホルムアルデヒドとを触媒の存在下で反応させることにより芳香族炭化水素ホルムアルデヒド樹脂を得る工程、
(b):工程(a)において得られた芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を用いて処理することにより酸性処理した樹脂を得る工程、
(c):工程(b)において得られた酸性処理した樹脂を、酸性触媒及び下記式(3)で示される化合物を用いて処理することにより変性樹脂を得る工程、
(d):工程(c)において得られた変性樹脂を、エピハロヒドリンと反応させることによりエポキシ樹脂を得る工程。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、qは0~3の数を表し、Aは0~2の数を表す。)
Figure JPOXMLDOC01-appb-C000011
(式(2)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、rは0~3の数を表す。)
Figure JPOXMLDOC01-appb-C000012
(式(3)中、Xは独立して水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、pは1~3の数を表し、sは0~3の数を表し、Bは0~3の数を表す。)
 本発明のエポキシ樹脂は、耐熱性に優れ、高接着性であると共に、耐湿性にも優れるため、積層板用、半導体封止用、成形材用、接着材用、コーティング用等の樹脂として有用である。
 以下、本発明を実施するための形態(以下「本実施形態」とも言う。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態におけるエポキシ樹脂は、
 以下の工程(a)~(d)を経て得られるエポキシ樹脂である。
(a):上記式(1)及び/又は(2)で示される化合物とホルムアルデヒドとを触媒の存在下で反応させることにより芳香族炭化水素ホルムアルデヒド樹脂を得る工程、
(b):工程(a)において得られた芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を用いて処理することにより酸性処理した樹脂を得る工程、
(c):工程(b)において得られた酸性処理した樹脂を、酸性触媒及び上記式(3)で示される化合物を用いて処理することにより変性樹脂を得る工程、
(d):工程(c)において得られた変性樹脂を、エピハロヒドリンと反応させることによりエポキシ樹脂を得る工程。
[工程(a)]
 工程(a)は、式(1)及び/又は(2)で示される化合物とホルムアルデヒドを触媒の存在下で反応させることにより芳香族炭化水素ホルムアルデヒド樹脂を得る工程である。
[芳香族炭化水素ホルムアルデヒド樹脂]
 本実施形態において用いられる芳香族炭化水素ホルムアルデヒド樹脂の製造方法としては、特に制限されるものではなく、下記式(1)及び/又は(2)で示される化合物から公知の方法を適用することにより得ることができる。
 例えば、特公昭37-5747号公報に記載された方法により、下記式(1)及び/又は(2)で示される化合物とホルムアルデヒドとを、触媒の存在下で縮合反応させて芳香族炭化水素ホルムアルデヒド樹脂を得ることができる。上記のような方法により得られた芳香族炭化水素ホルムアルデヒド樹脂は、ゲル浸透クロマトグラフィー、有機元素分析、軟化点、水酸基価等を測定することにより同定することができる。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、qは0~3の数を表し、Aは0~2の数を表す。)
Figure JPOXMLDOC01-appb-C000014
(式(2)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、rは0~3の数を表す。)
 式(1)で示される化合物としては、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、デシルベンゼン、シクロヘキシルベンゼン、ビフェニル、メチルビフェニル、ナフタレン、メチルナフタレン、ジメチルナフタレン、エチルナフタレン、アントラセン、メチルアントラセン、ジメチルアントラセン、エチルアントラセン、ビナフチル等が挙げられる。また、耐熱性と溶解性とをバランスよく兼備する観点から、好ましくは、ビフェニル、ナフタレン、メチルナフタレン、ジメチルナフタレン、アントラセン、メチルアントラセン、ジメチルアントラセンであり、産業利用の観点から、より好ましくは、ビフェニル、ナフタレン、メチルナフタレン、ジメチルナフタレンである。
 式(2)で示される化合物としては、フェナントレン、メチルフェナントレン、ジメチルフェナントレン、エチルフェナントレン、デシルフェナントレン、シクロヘキシルフェナントレン、フェニルフェナントレン、ナフチルフェナントレン等が挙げられる。また、耐熱性と溶解性とをバランスよく兼備する観点から、好ましくは、フェナントレン、シクロヘキシルフェナントレン、フェニルフェナントレンであり、より好ましくは、フェナントレンである。
[工程(b)]
 工程(b)は、工程(a)において得られた芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を用いて処理することにより酸性処理した樹脂を得る工程である。
[酸性処理した樹脂(脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂)]
 本実施形態で用いられる酸性処理した樹脂は、前述の芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を使用して処理することにより得ることができる。酸性処理した樹脂は、ナフタレン環が、―(CH―及び/又はCHA―で架橋されている。ここで、Aは-(OCH-を、lは1~10の数を、mは0~10の数をそれぞれ表す。酸性触媒及び水を使用して処理することによりナフタレン環を介さないオキシメチレン等同士の結合が減り、l及び/又はmが少なくなる。即ち、ナフタレン環を介する位置にあるアセタール結合が減少する。
 本明細書においては、酸性処理した樹脂は、「脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂」とも言う。脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂は、上記酸性処理を行わない樹脂と比較して、耐熱分解性がさらに向上する。
 前記酸性触媒及び水による処理に使用し得る酸性触媒としては、公知の無機酸、有機酸から、適宜選択して用いることができる。例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、ギ酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸、リンモリブデン酸等の固体酸が挙げられる。中でも、製造上の観点から、硫酸、シュウ酸、クエン酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、リンタングステン酸が好ましい。
 前記酸性触媒及び水による処理は、酸性触媒存在下、通常常圧で行われ、使用する原料が相溶する温度以上(通常80~300℃)において、使用する水を系内に滴下あるいは水蒸気として噴霧しながら行う。系内の水は留去しても還流させてもよいが、アセタール結合を効率良く除去できるため、反応で発生するホルムアルデヒド等の低沸点成分と共に留去した方が好ましい。圧力は常圧でも加圧でもよい。また、必要に応じて、系内に窒素、ヘリウム、アルゴンなどの不活性ガスを通気してもよい。
 さらに、必要に応じて、反応に不活性な溶媒を使用することもできる。該溶媒としては、例えば、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素;ヘプタン、ヘキサン等の飽和脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ジオキサン、ジブチルエーテル等のエーテル;2-プロパノール等のアルコール;メチルイソブチルケトン等のケトン;エチルプロピオネート等のカルボン酸エステル;酢酸等のカルボン酸等が挙げられる。
 酸性触媒の使用量は、芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して、好ましくは0.0001~100質量部、より好ましくは0.001~85質量部、さらに好ましくは0.001~70質量部である。酸性触媒の使用量を上記範囲とすることで、適当な反応速度が得られ、かつ反応速度が大きいことに基づく樹脂粘度の増加を防ぐことができる傾向にある。また、酸性触媒は一括で仕込んでも分割で仕込んでもよい。
 上記処理に使用し得る水は、工業的に使用し得るものならば特に限定されず、例えば、水道水、蒸留水、イオン交換水、純水又は超純水などが挙げられる。
 水の使用量は、芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して、好ましくは0.1~10000質量部、より好ましくは1~5000質量部、さらに好ましくは10~3000質量部である。水の使用量を上記範囲とすることで、適当な反応速度が得られ、目的とする樹脂が効率よく得られる傾向にある。
 処理時間は0.5~20時間が好ましく、1~15時間がより好ましく、2~10時間がさらに好ましい。処理時間を上記範囲とすることで、目的の性状を有する樹脂を、経済的に、かつ工業的に得ることができる傾向にある。
 処理温度は80~300℃が好ましく、85~270℃がより好ましく、90~240℃がさらに好ましい。処理温度を上記範囲とすることで、目的の性状を有する樹脂を、経済的に、かつ工業的に得ることができる傾向にある。
 処理終了後、必要に応じて前記溶媒を添加して希釈した後、水洗を行うことにより酸性触媒を完全に除去し、静置することにより二相分離させ、油相である樹脂相と水相を分離した後、添加した溶媒等を蒸留等の一般的な方法で除去することにより、脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂(酸性処理した樹脂)が得られる。
 脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂は、芳香族炭化水素ホルムアルデヒド樹脂と比較して酸素濃度が低くなり、軟化点が上昇する。例えば、酸性触媒の使用量が芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して0.05質量部、水の使用量が芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して2000質量部であり、処理時間5時間、処理温度150℃で処理した場合、酸素濃度は0.1~8.0質量%程度低くなり、軟化点は3~100℃程度上昇する。
[工程(c)]
 工程(c)は、工程(b)において得られた酸性処理した樹脂を、酸性触媒及び下記式(3)で示される化合物を用いて処理することにより変性樹脂を得る工程である。
[変性樹脂(変性脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂)]
 本実施形態において用いられる変性樹脂は、前記脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂(酸性処理した樹脂)と、式(3)で示される化合物とを、酸性触媒の存在下で加熱し変性させることにより得られる。本明細書においては、該変性樹脂を「変性脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂」とも言う。
Figure JPOXMLDOC01-appb-C000015
(式(3)中、Xは独立して水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、pは1~3の数を表し、sは0~3の数を表し、Bは0~3の数を表す。)
 変性に用いられる式(3)で示される化合物においては、製造上の観点から、Xが水素原子、炭素数1~4のアルキル基、炭素数6~10のアリール基、又はシクロヘキシル基であることが好ましく、Yが炭素数1~4のアルキル基、炭素数6~10のアリール基、又はシクロヘキシル基であることが好ましい。また、pについては、1~2であることが好ましく、sについては、0~2であることが好ましい。
 式(3)で示される化合物としては、例えば、フェノール、メトキシフェノール、ベンゾキシフェノール、カテコール、レゾルシノール、ヒドロキノン、クレゾール、フェニルフェノール、ナフトール、メトキシナフトール、ベンゾキシナフトール、ジヒドロキシナフタレン、ヒドロキシアントラセン、メトキシアントラセン、ベンゾキシアントラセン、ジヒドロキシアントラセン等を挙げることができる。
 上記の中でも、耐熱分解性に優れるため、少なくとも2個のベンゼン環の非共有電子対が関与する共役構造を含むフェノール誘導体が好ましく、フェニルフェノール、ナフトール、メトキシナフトール、ベンゾキシナフトール、ジヒドロキシナフタレン、ヒドロキシアントラセン、メトキシアントラセン、ベンゾキシアントラセン、ジヒドロキシアントラセンがより好ましい。
 また、上記の中でも、酸架橋剤との架橋性に優れるため、ヒドロキシ基を有する化合物が好ましく、フェニルフェノール、ナフトール、ジヒドロキシナフタレン、ヒドロキシアントラセン、ジヒドロキシアントラセンがより好ましい。
 式(3)で示される化合物の使用量は、脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂(酸性処理した樹脂)中の含有酸素モル数1モルに対して、好ましくは0.1~5モル、より好ましくは0.2~4モル、さらに好ましくは0.3~3モルである。式(3)で示される化合物の使用量を上記範囲とすることで、得られる変性脱アセタール結合芳香族炭化水素ホルムアルデヒドの収率を比較的高く維持でき、かつ未反応で残る式(3)で示される化合物の量を少なくすることができる傾向にある。
 変性処理は、酸性触媒存在下、通常常圧で行われ、使用する原料が相溶する温度以上(通常80~300℃)で加熱還流、又は生成水を留去しながら行う。圧力は常圧でも加圧でもよい。必要に応じて、系内に窒素、ヘリウム、アルゴンなどの不活性ガスを通気してもよい。
 また必要に応じて、縮合反応に不活性な溶媒を使用することもできる。該溶媒としては、例えば、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素;ヘプタン、ヘキサン等の飽和脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ジオキサン、ジブチルエーテル等のエーテル;2-プロパノール等のアルコール;メチルイソブチルケトン等のケトン;エチルプロピオネート等のカルボン酸エステル;酢酸等のカルボン酸等が挙げられる。
 前記変性処理に使用し得る酸性触媒は、公知の無機酸、有機酸から、適宜選択して用いることができる。例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、ギ酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸、リンモリブデン酸等の固体酸が挙げられる。中でも、製造上の観点から、硫酸、シュウ酸、クエン酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、リンタングステン酸が好ましい。
 酸性触媒の使用量は、脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂(酸性処理した樹脂)100質量部に対して、好ましくは0.0001~100質量部、より好ましくは0.001~85質量部、さらに好ましくは0.001~70質量部である。酸性触媒の使用量を上記範囲とすることで、適当な反応速度が得られ、かつ反応速度が大きいことに基づく樹脂粘度の増加を防ぐことができる傾向にある。また、酸性触媒は一括で仕込んでも分割で仕込んでもよい。
 反応時間は0.5~20時間が好ましく、1~15時間がより好ましく、2~10時間がさらに好ましい。反応時間を上記範囲とすることで、目的の性状を有する樹脂を、経済的に、かつ工業的に得ることができる傾向にある。
 反応温度は80~300℃が好ましく、85~270℃がより好ましく、90~240℃がさらに好ましい。反応温度を上記範囲とすることで、目的の性状を有する樹脂を、経済的に、かつ工業的に得ることができる傾向にある。
 反応終了後、必要に応じて前記溶媒を添加して希釈した後、水洗を行うことにより酸性触媒を完全に除去し、静置することにより二相分離させ、油相である樹脂相と水相を分離した後、添加した溶媒及び/又は未反応の原料を蒸留等の一般的な方法で除去することにより、変性脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂が得られる。
 変性脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂は、前記芳香族炭化水素ホルムアルデヒド樹脂を酸性処理しないで直接変性して得られる変性芳香族炭化水素ホルムアルデヒド樹脂と比較して、耐熱分解性が向上する。
 変性脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂は、脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂と比較して、耐熱分解性及び水酸基価が上昇する。例えば、酸性触媒の使用量が脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して0.05質量部であり、反応時間5時間、反応温度200℃で変性すると、耐熱分解性は1~50%程度、水酸基価[mgKOH/g]は1~300程度上昇する。
[工程(d)]
 工程(d)は、工程(c)において得られた変性樹脂を、エピハロヒドリンと反応させることによりエポキシ樹脂を得る工程である。
[エポキシ樹脂]
 本実施形態におけるエポキシ樹脂は、上記変性脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂をエピハロヒドリンと反応させることによって得られるものであり、変性脱アセタール結合芳香族炭化水素ホルムアルデヒド樹脂のフェノール性水酸基と、エピハロヒドリンとを公知の方法で反応させ、エポキシ化させることにより得られる。具体的には、例えば、特開2009-108147号公報に記載された方法に従って反応させることができる。
[エポキシ樹脂組成物]
 本実施形態におけるエポキシ樹脂組成物は、上述した本実施形態におけるエポキシ樹脂を含有するものである。エポキシ樹脂組成物には、本実施形態におけるエポキシ樹脂以外のエポキシ樹脂を含有していてもよく、そのようなエポキシ樹脂としては、積層板や、封止用樹脂、接着剤、塗料等に用いられる公知のものを用いることができ、本発明の効果を損なわない範囲で、従来一般に使用されているものを特に限定することなく用いることができる。
 本実施形態におけるエポキシ樹脂と混合して使用することのできるエポキシ樹脂としては、特に限定されず、例えば、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等の固形又は液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらのエポキシ樹脂は、単独で用いても、2種以上を併用してもよい。
 全エポキシ樹脂中に占める本実施形態のエポキシ樹脂の割合は30質量%以上であることが好ましく、40質量%以上であることがより好ましい。ただし、本実施形態のエポキシ樹脂をエポキシ樹脂組成物の改質剤として使用する場合は、1~30質量%となる割合で添加することが好ましい。
 本実施形態におけるエポキシ樹脂組成物には、硬化促進剤、触媒、硬化剤等を配合することができる。
 硬化促進剤及び触媒としては、イミダゾール類又はイミダゾリン類、アミン類等の、一般にエポキシ樹脂に用いられるものを使用してもよい。代表的なものとしては、2-エチル-4-メチルイミダゾール、2,4,6-トリス(ジアミノメチル)フェノール(略称 DMP-30)などが挙げられる。
 硬化促進剤及び触媒の配合量については、本発明の効果を損なわない範囲で用いることができるが、通常、エポキシ樹脂100質量部に対して0.1~5.0質量部の範囲で、必要に応じて用いられる。
 硬化剤は、エポキシ樹脂組成物の用途に応じて、公知の各種硬化剤を用いることができる。封止用の硬化剤としては、例えば、ノボラック型フェノール樹脂が挙げられる。積層板用の硬化剤としては、例えば、ジシアンジアミド等が挙げられ、上記触媒と併用してもよい。注型やフィラメントワインディング用の硬化剤としては、例えば、無水フタル酸等の酸無水物が挙げられる。接着剤や防食塗料用の硬化剤としては、メタキシレンジアミン等の芳香族アミン、脂肪族アミン、ポリアミン等の低温硬化用の硬化剤が挙げられる。
 硬化剤の配合量については、本発明の効果を損なわない範囲で用いることができるが、通常、エポキシ樹脂のエポキシ基1当量に対して0.7~1.2当量の範囲で用いることが好ましい。エポキシ基1当量に対して、0.7当量未満である場合、又は1.2当量を超える場合、いずれも硬化が不完全となり、良好な硬化物性が得られないおそれがある。
 本実施形態におけるエポキシ樹脂組成物を用いて積層板類を製造する場合、エポキシ樹脂組成物を所定の基材に塗布或いは含浸後、乾燥してB-ステージのプリプレグを製造し、このプリプレグを適宜複数枚重ね合わせ、さらに適宜銅箔を重ね合わせて、加圧加熱して製造する。この場合、補強基材としてはガラス繊維クロスが一般的であるが、他に、芳香族ポリアミド繊維、芳香族ポリエステル繊維、芳香族ポリエステルイミド繊維などを用いることもでき、また、マット状のガラス、ポリエステル、芳香族ポリアミド、芳香族ポリエステル繊維、芳香族ポリエステルイミド繊維などを用いることもできる。
 補強基材の配合量については、本発明の効果を損なわない範囲で用いることができるが、通常、エポキシ樹脂組成物100質量部に対して通常0.05~50質部の範囲で用いられ、硬化物の難燃性、耐熱性の観点から、0.05~20質量部の範囲で用いることが好ましい。
 補強基材への塗布及び含浸は、通常の条件、例えば、室温~60℃程度で行い、100℃~180℃で3分~20分間乾燥して、B-ステージのプリプレグとする。加熱加圧は、通常、温度120℃~230℃、圧力5kg/cm~150kg/cm、30分~240分間の範囲内から適宜選択して行われる。
 本実施形態におけるエポキシ樹脂組成物を封止用樹脂として用いる場合、通常、シリカ等の無機フィラー、カルナバワックス等の離型剤、エポキシシラン等のカップリング剤、三酸化アンチモン、ハロゲン化合物等の難燃剤等の添加剤を使用目的に応じて選択してエポキシ樹脂組成物に添加し、二軸混練機、熱ロール、ヘンシルミキサー等を用いて加熱混練する。更に、適宜、得られた成型粉末をタブレット化し、金型を用いて、圧縮やトランスファー成形することにより、20kg/cm~100kg/cm、150℃~200℃にて一次硬化した後、180℃~230℃で2時間~12時間程度の後硬化を行う。
 上記添加剤は単独で用いてもよく、2種以上を併用してもよい。また、添加剤は、本発明の効果を損なわない範囲で用いることができるが、通常、エポキシ樹脂組成物中において0~95質量%の範囲で用いられ、難燃性、機械性強度の観点から、好ましくは50質量%以上、より好ましくは70質量%以上の範囲で用いられる。
 本実施形態におけるエポキシ樹脂組成物は、耐熱性、高接着性、耐湿性に優れ、加熱時の可塑性、応力緩和性などを有し、さらに、電気性能、特に高周波特性などに優れたものであることから、上記の他に、接着用、耐熱コート用の樹脂組成物として好適に使用できる。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
<分子量>
 ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の質量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:LF-804×3
 溶離液:THF 1ml/min
 温度:40℃
<樹脂中の炭素及び酸素濃度>
 有機元素分析により樹脂中の炭素及び酸素濃度(質量%)を測定した。また、樹脂1g当たりの含有酸素モル数を下記計算式に従って算出した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
 計算式:樹脂1g当たりの含有酸素モル数(mol/g)=酸素濃度(質量%)/16
<軟化点>
 JIS-K5601に従って樹脂の軟化点を測定した。
<水酸基価>
 JIS-K1557に従って樹脂の水酸基価を測定した。
<融点>
 JIS-K0064に従って樹脂の融点を測定した。
[実施例1]
(ナフタレンホルムアルデヒド樹脂の調製)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコに、窒素気流中、ナフタレン64.1g(0.5mol、関東化学(株)製)、40質量%ホルマリン水溶液150g(ホルムアルデヒドとして2mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)79.7gを仕込み、常圧下、100℃で撹拌、還流しながら6時間反応させた。希釈溶媒としてエチルベンゼン(関東化学(株)製)150gを加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応のナフタレンを減圧下に留去し、淡黄色固体のナフタレンホルムアルデヒド樹脂69.7gを得た。
 GPC測定の結果、Mn:459、Mw:882、Mw/Mn:1.92であった。有機元素分析の結果、炭素濃度は86.4質量%、酸素濃度は8.0質量%(樹脂1g当たりの含有酸素モル数は0.0050mol/g)であった。軟化点は84℃で、水酸基価は25mgKOH/gであった。
(酸性処理した樹脂の調製)
 ジムロート冷却管を設置したディーンスターク管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコに、上記ナフタレンホルムアルデヒド樹脂50.0g、エチルベンゼン(関東化学(株)製)50g及びメチルイソブチルケトン(関東化学(株)製)50gを仕込んで120℃で溶解後、撹拌しながら水蒸気流通下でパラトルエンスルホン酸(和光純薬工業(株)製)2.5mgを加えて反応を開始した。2時間後、さらにパラトルエンスルホン酸(和光純薬工業(株)製)1.3mgを加えてさらに3時間(計5時間)反応させた。エチルベンゼン(関東化学(株)製)150gで希釈後、中和及び水洗を行い、溶剤を減圧下に除去して、淡赤色固体の酸性処理した樹脂(脱アセタール結合ナフタレンホルムアルデヒド樹脂)40.9gを得た。
 GPC測定の結果、Mn:290、Mw:764、Mw/Mn:2.63であった。有機元素分析の結果、炭素濃度は87.9質量%、酸素濃度は5.9質量%(樹脂1g当たりの含有酸素モル数は0.0037mol/g)であった。軟化点は107℃で、水酸基価は32mgKOH/gであった。
(変性樹脂の調製)
 リービッヒ冷却管、温度計及び攪拌翼を備えた内容積0.3Lの四つ口フラスコに、窒素気流下で、上記酸性処理した樹脂40.5g(含有酸素モル数0.15mol)、1-ナフトール43.3g(0.30mol、東京化成工業(株)製)を仕込み、120℃で加熱溶融させた後、撹拌しながらパラトルエンスルホン酸(和光純薬工業(株)製)2.3mgを加え、反応を開始した。直ちに190℃まで昇温して3時間攪拌保持した後、パラトルエンスルホン酸(和光純薬工業(株)製)1.5mgを加え、さらに220℃まで昇温させて2時間反応させた(計5時間)。混合溶剤(メタキシレン(三菱ガス化学(株)製)/メチルイソブチルケトン(関東化学(株)製)=1/1(質量比))180gで希釈後、中和及び水洗を行い、溶剤を減圧下に除去して、黒褐色固体の変性樹脂(変性脱アセタール結合ナフタレンホルムアルデヒド樹脂)48.1gを得た。
 GPC分析の結果、Mn:493、Mw:750、Mw/Mn:1.52であった。有機元素分析の結果、炭素濃度は89.9質量%、酸素濃度は4.9質量%であった。水酸基価は192mgKOH/gであった。
(エポキシ樹脂の調製)
 リービッヒ冷却管、温度計及び攪拌翼を備えた内容積0.3Lの四つ口フラスコに、窒素気流下で、上記変性樹脂40.0g、水酸化ナトリウム6.4gを水60.0gに溶解し、強く撹拌しながら50℃に加熱させた後、エピクロルヒドリン15.0gを撹拌混合し、温度を80℃に保ち6時間反応させた。反応終了後、未反応のエピクロルヒドリンを減圧除去した後、キシレンを添加して撹拌、静置し、水を除去した。再び純水を添加して洗浄し、水を除去する操作を繰り返して精製した。ついで減圧蒸留にてキシレンを除去し、黒褐色固体のエポキシ樹脂40.1gを得た。
 GPC分析の結果、Mn:720、Mw:1100、Mw/Mn:1.53であった。また、樹脂の融点は124℃であった。
[比較例1]
 酸性処理を行わなかったこと以外は実施例1と同様にして黒褐色固体のエポキシ樹脂40.1gを得た。
 GPC分析の結果、Mn:700、Mw:980、Mw/Mn:1.96であった。また、樹脂の融点は114℃であった。
[比較例2]
 実施例1と同様にして酸性処理した樹脂を調製した。得られた酸性処理した樹脂を用いて、変性処理を行わずにエピクロルヒドリンと撹拌混合したが、反応は進行しなかった。
[実施例2]
(銅張積層板の製造)
 ブロム化エポキシ化合物(東都化成社製、品番;FX132,エポキシ当量485WPE)70部に、実施例1で得たエポキシ樹脂30部を配合し、更に硬化剤としてジシアンジアミド(略号 DICY)3.1部、触媒として2-エチル-4-メチルイミダゾール(略号 2E4MZ)0.08部、溶媒としてメチルエチルケトン32部、ジメチルホルムアミド8部を加えてエポキシ樹脂組成物を調製した。
 該樹脂組成物をガラス布(#7628-SV657,0.2mm厚)に含浸させ、150℃の乾燥機中で15分間乾燥させてプリプレグを得た。このプリプレグを4枚重ね、その両面に18μm及び35μmの両面粗面化銅箔を重ね、圧力80kg/cm、温度170℃で90分間の積層成形を行ない、0.8mm厚の両面銅張積層板を得た。得られた両面銅張積層板の試験をJIS S C-6481,K-6911に従って実施した結果、高耐熱性、低吸水性、耐半田クラック性、高接着性を有することが確認された。
[実施例3]
(半導体封止用樹脂組成物の製造)
 ブロム化フェノールノボラック型エポキシ樹脂(日本化薬(株)製、品名;BREN,エポキシ当量285)20部に、実施例1で得たエポキシ樹脂60部を配合し、更に硬化剤としてビスフェノールAノボラック(大日本インキ社製、品名;LF7911)41部、硬化促進剤として2,4,6-トリス(ジアミノメチル)フェノール(略称DMP-30)1部、離型剤としてカルナバワックス2部を配合し、バインダーの粉砕及び混合を行った。また、カップリング剤として、γ-グリシドキシプロピルトリメトキシシラン(日本ユニカー社製、品名;A-187)1部、着色材としてカーボンブラック1部、難燃助材として三酸化アンチモン粉末5部、充填材として合成シリカ粉末350部からなるフィラーをヘンシル・ミキサーにて混合した。上記で製造したバインダーとフィラーとを用いて、70~80℃で10分間ロール混練し、粗粉砕した後、タブレット化して、半導体封止用樹脂組成物を得た。
 得られた樹脂組成物を、上型にアルミニウム箔を装着した金型に180℃、2分、70kg/cmの条件でトランスファー成形することにより硬化樹脂試験片を得た。得られた試験片について、成形時の作業性、耐熱性、耐湿性、耐冷熱サイクルによるクラック発生の有無の試験を実施した結果、成形時の作業性が良好であり、高耐熱性、高耐湿性を有し、さらに、耐冷熱サイクルによるクラック発生がないことが確認された。
 本出願は、2012年6月21日に日本国特許庁へ出願された日本特許出願(特願2012-140023)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  以下の工程(a)~(d)を経て得られるエポキシ樹脂。
    (a):下記式(1)及び/又は(2)で示される化合物とホルムアルデヒドとを触媒の存在下で反応させることにより芳香族炭化水素ホルムアルデヒド樹脂を得る工程、
    (b):工程(a)において得られた芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を用いて処理することにより酸性処理した樹脂を得る工程、
    (c):工程(b)において得られた酸性処理した樹脂を、酸性触媒及び下記式(3)で示される化合物を用いて処理することにより変性樹脂を得る工程、
    (d):工程(c)において得られた変性樹脂を、エピハロヒドリンと反応させることによりエポキシ樹脂を得る工程。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、qは0~3の数を表し、Aは0~2の数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、rは0~3の数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Xは独立して水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、pは1~3の数を表し、sは0~3の数を表し、Bは0~3の数を表す。)
  2.  前記式(1)で示される化合物が、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、デシルベンゼン、シクロヘキシルベンゼン、ビフェニル、メチルビフェニル、ナフタレン、メチルナフタレン、ジメチルナフタレン、エチルナフタレン、アントラセン、メチルアントラセン、ジメチルアントラセン、エチルアントラセン及びビナフチルからなる群より選ばれる少なくとも1種である、請求項1記載のエポキシ樹脂。
  3.  前記式(2)で示される化合物が、フェナントレン、メチルフェナントレン、ジメチルフェナントレン、エチルフェナントレン、デシルフェナントレン、シクロヘキシルフェナントレン、フェニルフェナントレン及びナフチルフェナントレンからなる群より選ばれる少なくとも1種である、請求項1又は2記載のエポキシ樹脂。
  4.  前記式(3)で示される化合物が、フェノール、メトキシフェノール、ベンゾキシフェノール、カテコール、レゾルシノール、ヒドロキノン、クレゾール、フェニルフェノール、ナフトール、メトキシナフトール、ベンゾキシナフトール、ジヒドロキシナフタレン、ヒドロキシアントラセン、メトキシアントラセン、ベンゾキシアントラセン及びジヒドロキシアントラセンからなる群より選ばれる少なくとも1種である、請求項1~3のいずれか1項記載のエポキシ樹脂。
  5.  前記工程(b)において、前記酸性触媒の使用量が前記芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して0.0001~100質量部であり、前記水の使用量が前記芳香族炭化水素ホルムアルデヒド樹脂100質量部に対して0.1~10000質量部である、請求項1~4のいずれか1項記載のエポキシ樹脂。
  6.  前記工程(c)において、前記式(3)で示される化合物の使用量が前記酸性処理した樹脂中の含有酸素モル数1モルに対して0.1~5モルである、請求項1~5のいずれか1項記載のエポキシ樹脂。
  7.  請求項1~6のいずれか1項記載のエポキシ樹脂を含有するエポキシ樹脂組成物。
  8.  請求項7記載のエポキシ樹脂組成物を硬化してなる硬化物。
  9.  請求項1~6のいずれか1項記載のエポキシ樹脂を含有する銅張積層板。
  10.  請求項1~6のいずれか1項記載のエポキシ樹脂を含有する半導体封止用樹脂組成物。
  11.  以下の工程(a)~(d)を含むエポキシ樹脂の製造方法。
    (a):下記式(1)及び/又は(2)で示される化合物とホルムアルデヒドとを触媒の存在下で反応させることにより芳香族炭化水素ホルムアルデヒド樹脂を得る工程、
    (b):工程(a)において得られた芳香族炭化水素ホルムアルデヒド樹脂を、酸性触媒及び水を用いて処理することにより酸性処理した樹脂を得る工程、
    (c):工程(b)において得られた酸性処理した樹脂を、酸性触媒及び下記式(3)で示される化合物を用いて処理することにより変性樹脂を得る工程、
    (d):工程(c)において得られた変性樹脂を、エピハロヒドリンと反応させることによりエポキシ樹脂を得る工程。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、qは0~3の数を表し、Aは0~2の数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、rは0~3の数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、Xは独立して水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、Yは独立して炭素数1~10のアルキル基、炭素数6~10のアリール基又はシクロヘキシル基を表し、pは1~3の数を表し、sは0~3の数を表し、Bは0~3の数を表す。)
PCT/JP2013/065806 2012-06-21 2013-06-07 エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物 WO2013191012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13806776.4A EP2865695A1 (en) 2012-06-21 2013-06-07 Epoxy resin, method for producing same, epoxy resin composition, and cured product
CN201380032495.XA CN104395370A (zh) 2012-06-21 2013-06-07 环氧树脂和其制造方法、环氧树脂组合物以及固化物
US14/410,516 US20150322308A1 (en) 2012-06-21 2013-06-07 Epoxy resin, production method thereof, epoxy resin composition, and cured product
JP2014521302A JPWO2013191012A1 (ja) 2012-06-21 2013-06-07 エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物
KR1020147035059A KR20150033608A (ko) 2012-06-21 2013-06-07 에폭시수지 및 그 제조방법, 에폭시수지 조성물 및 경화물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-140023 2012-06-21
JP2012140023 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013191012A1 true WO2013191012A1 (ja) 2013-12-27

Family

ID=49768613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065806 WO2013191012A1 (ja) 2012-06-21 2013-06-07 エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物

Country Status (7)

Country Link
US (1) US20150322308A1 (ja)
EP (1) EP2865695A1 (ja)
JP (1) JPWO2013191012A1 (ja)
KR (1) KR20150033608A (ja)
CN (1) CN104395370A (ja)
TW (1) TW201420669A (ja)
WO (1) WO2013191012A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771098A (zh) 2018-12-19 2021-05-07 综研化学株式会社 导电性高分子组合物
CN114250051B (zh) * 2021-12-24 2023-05-30 韦尔通科技股份有限公司 一种环氧树脂底部填充胶黏剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224825A (ja) * 1990-12-26 1992-08-14 Mitsubishi Gas Chem Co Inc 芳香族炭化水素ホルムアルデヒド樹脂の処理法
JPH10168147A (ja) * 1996-12-06 1998-06-23 Mitsubishi Gas Chem Co Inc 低粘度芳香族炭化水素ホルムアルデヒド樹脂
JP2009108147A (ja) 2007-10-29 2009-05-21 Nippon Kayaku Co Ltd フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050261B (zh) * 2006-04-07 2012-11-28 三菱瓦斯化学株式会社 低粘度酚类改性芳香烃甲醛树脂的制备方法
KR101506756B1 (ko) * 2007-12-07 2015-03-27 미츠비시 가스 가가쿠 가부시키가이샤 변성 나프탈렌 포름알데히드 수지 및 트리시클로데칸 골격 함유 나프톨 화합물 및 에스테르 화합물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224825A (ja) * 1990-12-26 1992-08-14 Mitsubishi Gas Chem Co Inc 芳香族炭化水素ホルムアルデヒド樹脂の処理法
JPH10168147A (ja) * 1996-12-06 1998-06-23 Mitsubishi Gas Chem Co Inc 低粘度芳香族炭化水素ホルムアルデヒド樹脂
JP2009108147A (ja) 2007-10-29 2009-05-21 Nippon Kayaku Co Ltd フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物

Also Published As

Publication number Publication date
US20150322308A1 (en) 2015-11-12
EP2865695A1 (en) 2015-04-29
KR20150033608A (ko) 2015-04-01
TW201420669A (zh) 2014-06-01
JPWO2013191012A1 (ja) 2016-05-26
CN104395370A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2006068063A1 (ja) 変性フェノール樹脂、それを含むエポキシ樹脂組成物およびこれを用いたプリプレグ
JP2017101152A (ja) 変性ポリイミド樹脂組成物およびその製造方法、並びにそれを用いたプリプレグおよび積層板
JP2020111735A (ja) 変性エポキシ樹脂、エポキシ樹脂組成物、硬化物、及び電気・電子回路用積層板
JP5462559B2 (ja) 多価ヒドロキシ化合物、それらの製造方法及びエポキシ樹脂組成物並びにその硬化物
TW201609947A (zh) 環氧樹脂組成物、樹脂片、預浸體及覆金屬積層板、印刷配線基板、半導體裝置
JP3371916B2 (ja) エポキシ樹脂組成物
JP5192198B2 (ja) 多官能エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
JPWO2018123806A1 (ja) アルケニル基含有樹脂、硬化性樹脂組成物およびその硬化物
JP7268256B1 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
WO2013191012A1 (ja) エポキシ樹脂及びその製造方法、エポキシ樹脂組成物並びに硬化物
JP2003342350A (ja) 高分子量エポキシ樹脂、電気積層板用樹脂組成物及び電気積層板
JP2017082213A (ja) エポキシ樹脂組成物、硬化物、半導体素子、樹脂シート、プリプレグ及び炭素繊維強化複合材料
WO2022209642A1 (ja) エポキシ樹脂及びその製造方法、硬化性樹脂組成物、およびその硬化物
JP2009073889A (ja) エポキシ樹脂組成物、その硬化物、及びビルドアップフィルム用樹脂組成物
JPWO2019078298A1 (ja) ベンゾオキサジン樹脂、ベンゾオキサジン樹脂組成物、その硬化物、ワニス、プリプレグ及び積層板または銅張積層板
JP2010235826A (ja) 多価ヒドロキシ樹脂、それらの製造方法並びにエポキシ樹脂組成物及びその硬化物
JP7240989B2 (ja) 硬化性樹脂組成物およびその硬化物
JP4622036B2 (ja) 熱硬化性樹脂組成物、硬化物、積層板用プリプレグ、及びプリント配線基板
JP2010235823A (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP4748625B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2019052258A (ja) 多価ヒドロキシ樹脂、その製造方法、エポキシ樹脂用硬化剤、エポキシ樹脂、エポキシ樹脂組成物、その硬化物、半導体封止材および積層板
WO2024071129A1 (ja) 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、積層板、及びビルドアップフィルム
JP2022147099A (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP5504553B2 (ja) エポキシ樹脂組成物、その硬化物、ビルドアップフィルム絶縁層用樹脂組成物、及び新規エポキシ樹脂
WO2015060307A1 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、プリプレグ、およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521302

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035059

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013806776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14410516

Country of ref document: US