WO2013190861A1 - 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及びリチウムイオン電池、並びに反応凝集粒子の製造装置 - Google Patents

反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及びリチウムイオン電池、並びに反応凝集粒子の製造装置 Download PDF

Info

Publication number
WO2013190861A1
WO2013190861A1 PCT/JP2013/053629 JP2013053629W WO2013190861A1 WO 2013190861 A1 WO2013190861 A1 WO 2013190861A1 JP 2013053629 W JP2013053629 W JP 2013053629W WO 2013190861 A1 WO2013190861 A1 WO 2013190861A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
liquid
processor
agglomerated particles
lithium ion
Prior art date
Application number
PCT/JP2013/053629
Other languages
English (en)
French (fr)
Inventor
陽 銅谷
秀徳 後藤
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to EP13807347.3A priority Critical patent/EP2866284B1/en
Priority to US14/409,347 priority patent/US10333143B2/en
Priority to CA2875732A priority patent/CA2875732C/en
Priority to KR1020147035159A priority patent/KR101629600B1/ko
Priority to CN201380032176.9A priority patent/CN104412420B/zh
Publication of WO2013190861A1 publication Critical patent/WO2013190861A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0009Crystallisation cooling by heat exchange by direct heat exchange with added cooling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/004Fractional crystallisation; Fractionating or rectifying columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/2465Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/14Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moving in free vortex flow apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/06Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00292Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids
    • B01J2208/003Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids involving reactant slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00114Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing reactive aggregated particles, a method for producing a positive electrode active material for a lithium ion battery, a method for producing a lithium ion battery, a lithium ion battery, and a device for producing reactive aggregated particles.
  • Composition formula Li x Ni 1- y My O 2 + ⁇ (1)
  • M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr.
  • M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.7, and ⁇ > 0).
  • nickel salt, cobalt salt and manganese salt are used as raw materials and reacted with sodium hydroxide and ammonium carbonate to obtain nickel hydroxide and manganese carbonate. ⁇ Nickel / manganese-based positive electrode active materials are obtained.
  • a nickel salt aqueous solution and a manganese salt aqueous solution are put into a stirring reaction tank to crystallize Ni—Mn composite hydroxide or carbonate.
  • the first problem is that the particle size of the particles tends to increase with time of the reaction time. Yes, and after a certain period of time, the variation in particle size increases. Therefore, stable small particle size particles cannot be obtained.
  • the second problem is that the shape of the obtained particles is not necessarily spherical, and high performance cannot be expected when used as a positive electrode active material for a lithium ion battery.
  • the third problem is that in order to obtain particles having a small particle size and a narrow particle size distribution in production, it is almost a batch type, and therefore a large throughput per hour cannot be expected. When it is desired to increase the processing amount, the investment cost for a large facility increases.
  • the present inventors obtain metal agglomerated particles having a stable particle diameter, obtain substantially spherical reaction agglomerated particles, and perform a large treatment per unit time with a small facility without increasing the size of the facility.
  • a so-called tube reactor having a small inner diameter and passing through a reaction path of a relatively long path at high speed.
  • the present inventors repeated experiments in the subsequent development process, and a fine shower (primary nucleus) adhered to the wall surface of the flow path of the tube reactor, and then a crystal grew using this as a nucleus. In some cases, the flow was hindered, the uniformity of the reaction was impaired, and the desired reaction aggregated particles could not be obtained.
  • the main problem of the present invention is to allow a single element or multiple elements to react uniformly to cause crystal precipitation, and to prevent the material from adhering to the inner surface of the flow path so that it can be operated for a long time. .
  • Another desired object of the present invention is to obtain reaction particles having a small particle size, a narrow particle size distribution, and substantially spherical shape. It is another object of the present invention to provide a form capable of performing a large amount of reaction processing per unit time with a small facility without increasing the size of the facility, and to provide an energy-saving facility.
  • the present invention that has solved this problem is as follows.
  • the liquid flow in the reaction processor is a swirl flow
  • An additional liquid containing an inorganic substance to be added is injected into the reaction field in the reaction processor at a position closer to the center than the inner surface of the reaction processor, and the reaction treatment is performed.
  • the present inventor tried to use a tube reactor, but a fine shower (primary nucleus) adhered to the wall surface of the flow path, and then a crystal grew using this as a nucleus, There were some cases where the flow was hindered and stable operation for a long time was difficult.
  • a countermeasure it is conceivable to arrange reaction paths in parallel and, if clogging occurs, switch to the other reaction path for circulation, and clean the reaction path in which clogging occurred.
  • the liquid flow in the reaction processor is a swirl flow
  • the additional liquid containing the inorganic substance to be added is added to the reaction field in the reaction processor at a position closer to the center than the inner surface of the reaction processor.
  • the flow in the central vortex part or the inner peripheral part near the central cavity part like a tornado is at least twice as fast as the average flow velocity,
  • the turbulence of the flow is large.
  • This part becomes a rapid diffusion field of the additional liquid containing the injected inorganic substance, and a homogeneous reaction is possible.
  • the outer peripheral portion of the swirling flow since the outer peripheral portion of the swirling flow is in contact with the wall surface of the flow path, the outer peripheral portion of the swirling flow functions as a barrier (barrier) against the reactant of the additional liquid containing the injected inorganic substance. It is considered that the reactant is prevented from adhering to the inner surface of the flow path, and that stable operation can be performed for a long time.
  • the required swirl flow can be easily generated by allowing the return liquid to flow into the reaction processor in a form along the inner peripheral surface thereof.
  • the inflow position of the circulating return liquid into the reaction processor is one end portion in the longitudinal direction of the reaction processor, and the effluent after the reaction treatment is performed flows out from the other end portion in the longitudinal direction.
  • reaction processor As a reaction processor, it is desirable to secure a certain long space along the longitudinal direction in order to lengthen the reaction field of the swirl flow. In view of this, it is a preferred embodiment that the liquid is introduced from one end portion in the longitudinal direction of the reaction processor and is discharged from the other end portion in the longitudinal direction.
  • the inflow position of the return liquid into the reaction processor is one end in the longitudinal direction of the reaction processor, and the outflow position of the effluent after the reaction treatment is performed is the other end in the longitudinal direction.
  • the inner surface of the reaction processor is tapered from one end in the longitudinal direction toward the other end, the inflow position of the return liquid of the circulating fluid is one end in the longitudinal direction of the reaction processor, and the reaction treatment
  • the method for producing reactive agglomerated particles according to claim 1 or 2, wherein the outflow position of the effluent after the step is performed is the other end in the longitudinal direction.
  • the reactor may have a cylindrical shape with a uniform radius inside, but a reactor whose inner surface is tapered from one end to the other in the longitudinal direction is suitable for generating a swirling flow. .
  • reaction processors When it is desired to increase the throughput, it is desirable to arrange the reaction processors in series. By arranging in series, it is possible to increase the amount of additional liquid by the number of stages without increasing the amount of circulating return liquid, increasing the production volume and reducing the internal capacity of the device relative to the production volume. As a result, it is possible to save space and reduce apparatus cost.
  • the capacity of the apparatus relative to the production volume is reduced means that the capacity of the circulation pump and the flow path part remains constant, and only the capacity of the reaction processor and the pipe connecting them is added. As a result, it means that the entire capacity of the apparatus can be reduced as compared with the production amount.
  • reducing the internal volume of the apparatus also has the effect of shortening the residence time of the reactants in the apparatus, and as a result, the residence time can be controlled to reduce the diameter.
  • reaction processors when it is desired to increase the throughput, reaction processors can be arranged in parallel. In particular, when the same reaction processors are arranged in parallel, the throughput can be increased after uniform reaction processing is performed. When installed in the series direction, a pressure gradient is generated in the flow direction. Therefore, when all reaction processors are desired to react uniformly, a parallel arrangement is preferable.
  • the injection direction of the additional liquid containing the inorganic substance to be added to the reaction field may be directed upstream of the swirl flow of the liquid, but is directed downstream of the swirl flow of the liquid. However, the material adheres less to the inner surface.
  • the invention according to claim 1 also includes a mode in which the crystal component is injected together with the additional liquid containing the inorganic substance to be added.
  • the liquid is circulated through the reaction processor, and two external tanks are provided in series in the middle of the circulation system, and the downstream external tank is an external sedimentation separation tank that does not inject additional liquid.
  • the particle size distribution in the reaction processor 10 can be adjusted by causing the crystals in the return liquid to function as seed crystals.
  • the upstream external tank can also be used as a buffer tank or a reaction tank.
  • the liquid is circulated to the reaction processor, and an external sedimentation / separation tank that does not inject additional liquid is provided in the middle of the circulation system.
  • the external sedimentation / separation tank is used for sedimentation separation, and only the upper fine particles in the external sedimentation / separation tank.
  • An arbitrary reaction field can be formed by controlling the inflow speed in the reaction processor by controlling the pump flow rate.
  • a lithium ion battery comprising a positive electrode active material for a lithium ion battery using the reaction aggregated particles obtained by the production method according to any one of claims 1 to 16.
  • the inflow part of the return liquid of the circulating return liquid is There is an outflow part of the effluent after the reaction treatment is performed at the other end in the longitudinal direction, A reaction field for generating a swirling flow between the inflow portion and the outflow portion in the reaction processor by flowing the circulating liquid return liquid into the reaction processor; An apparatus for producing reactive agglomerated particles, wherein an additional liquid containing an inorganic substance to be added is injected at a position closer to the center than the inner surface of the reaction processor, and the reaction process is performed.
  • FIG. 16 shows a conventional example, in which a stock solution A containing a reaction material, a stock solution B containing a reaction material, and a gas C are added to a stirring reaction tank 1 and stirred by a stirring blade 3 equipped with a stirring motor 2.
  • the crystallization / aggregation of the particles is promoted, and the product liquid is extracted from the discharge port 5 at an appropriate time, and then precursor particles are obtained by, for example, filtration, washing and drying.
  • the obtained metal agglomerated particles are mixed with lithium (for example, lithium hydroxide), and can be used as a positive electrode active material for a lithium ion battery through firing, pulverization, and classification steps.
  • lithium for example, lithium hydroxide
  • the present invention is directed to, for example, a reactant used for manufacturing a positive electrode active material for a lithium ion battery.
  • the specific example directly targets the production of agglomerated particles using transition metals of Ni, Co, and Mn.
  • an additional liquid containing an inorganic substance to be added is swirled in the reactor.
  • the method of injecting at the center side position from the inner surface of the reaction processor and performing the reaction treatment is generally applicable when obtaining aggregated particles with an inorganic substance.
  • Other metals and other inorganic substances may be targeted.
  • an explanation will be given mainly on the reactants used in the production of the positive electrode active material for lithium ion batteries.
  • the liquid flow in the reaction processor 10 is a swirl flow, and an additional liquid containing an inorganic substance to be added is added to the reaction in the reaction processor 10.
  • the injection is carried out at a position on the center side from the inner surface of the reaction processor 10 to perform the reaction process.
  • a liquid, B liquid, and C liquid are injected as an additional liquid containing an inorganic substance to be added.
  • gas D inert gas such as nitrogen gas or carbon dioxide gas
  • the first example of the present invention is an example in which the injection direction of the additional liquid containing the inorganic substance to be added to the reaction field is directed to the downstream direction of the swirling flow of the liquid.
  • the illustrated reaction processor 10 is in a vertical direction, it may be in a horizontal direction because it does not affect the flow in principle.
  • the illustrated reaction processor 10 circulates the liquid through the circulation paths 11 and 14 by the circulation pump 13 and generates a swirl flow by causing the return liquid of the circulating liquid to flow into the reaction processor 10. is there.
  • Reference numeral 15 denotes a temperature controller for heating or cooling the liquid.
  • the reaction processor 10 has a tapered inner surface from one end in the longitudinal direction to the other end, and the inflow position including the inflow port 10X for returning the circulating fluid is a reaction treatment.
  • One end of the container 10 in the longitudinal direction, as shown in FIG. 3, the return liquid is allowed to flow in substantially the tangential direction in a form along the inner peripheral surface thereof. Thereby, a swirl flow R is formed.
  • the outflow position including the outflow outlet 10Y of the effluent after the reaction treatment is performed is the other end in the longitudinal direction. Further, the final reaction treatment liquid is allowed to flow out from the overflow port 10Z at one end in the longitudinal direction.
  • the liquid flow in the reaction processor 10 becomes a swirl flow R, but there is a tendency that a hollow portion V is formed at the center of the upper part and the center of the vortex.
  • the flow in the inner peripheral portion in the vicinity of the vortex center of the swirling flow R is remarkably faster than the average flow velocity, and the flow disturbance is large.
  • the additional liquids A to C containing the metal to be added are injected at such a position, the additional liquid diffuses rapidly and a homogeneous reaction is possible. Therefore, it is desirable to prevent the additional liquids A to C from being brought into contact with each other until they are discharged from their tips using the injection tubes 16A, 16B. Furthermore, it is desirable to insert the guide tube 17 so as not to be affected by the swirling flow R.
  • the injection positions of the additional liquids A to C containing the inorganic substance to be added may be injected in the reaction field in the reaction processor 10 at a position closer to the center than the inner wall surface of the reaction processor 10. Within 2/3 of the radius r from the center, preferably within 1/2.
  • the final reaction treatment liquid flows out from the overflow port 10Z and is guided to the reservoir 20 through the extraction path 19, and at an appropriate time, the extraction valve 21 is opened from the bottom thereof to extract the aggregated particle liquid and produce the final product by the pump 22.
  • Lead to the process. 23 is a stirrer.
  • reaction processors 10, 10... For providing a reaction field can be arranged in series.
  • the overflow in the first-stage reaction processor 10 can be guided to the reservoir 20, and the effluent from the last-stage reaction processor 10 can be circulated to the first-stage reaction processor 10.
  • FIG. 6 it is possible to inject the additional liquids A to C containing the metal to be added from the lower side to the upper side to the reaction processor 10 that provides the reaction field.
  • the example of FIG. 6 is an example in which the injection direction of the additional liquid containing the inorganic substance to be added with respect to the reaction field is in the upstream direction of the swirling flow of the liquid.
  • the effluent from the upper part is circulated, and a part thereof is extracted and led to the reservoir 20 through the extraction path 19.
  • the liquid can be extracted from the lower part of the reaction processor 10 by the extraction pump 24 and led to the reservoir 20 through the extraction path 25.
  • reaction processors 10, 10... That provide the reaction field are connected in series even in the injection form of the additional liquids A to C containing the metal to be added from the bottom to the top. Can be arranged.
  • reaction processors 10, 10... That provide the reaction field can be arranged in parallel.
  • the reactor has a tapered inner surface from one end to the other end in the longitudinal direction, which is suitable for generating a swirling flow, but the inner space may be a cylindrical one having a uniform radius. Good.
  • the rotary cylinder 40 is arranged in the reaction processor 10 so as to be rotated by the data 41, and the additional liquids A to C containing the metal to be added are injected into the injection tubes 42 and 43. It is also possible to inject in the tangential direction of the inner wall surface, and to discharge the effluent after the reaction treatment from the outflow pipe 44 at the other end. In this case, the rotating cylinder 40 can be rotated as necessary to promote the swirling flow.
  • the swirl flow can be generated by rotating a plurality of stirring blades 50, 50,.
  • FIG. 12 the form of FIG. 12 according to the invention of claim 13 can also be used. That is, the liquid is circulated to the reaction processor 10 via the circulation paths 11A and 11B, and is a completely mixed type having a stirring blade in a different form from the reaction processor 10 in the middle of the circulation system.
  • the external reaction tank 20A is provided, and a part of the final reaction treatment liquid flows out from the reaction processor 10 to the outside and is led to the external reaction tank 20A through the circulation path 11A.
  • C liquid is injected to generate a reaction, and the reaction liquid is circulated to the reaction processor 10.
  • the residence time can be increased and the minute particle size can be reduced.
  • FIG. 13 which concerns on invention of Claim 14 can be taken. That is, instead of the external reaction tank 20A, the external sedimentation tank 20B that does not inject the additional liquids A to C may be used.
  • the external sedimentation separation tank 20B it is possible to settle and separate in the external sedimentation separation tank 20B, and to return only the upper fine particle group to the reaction processor 10 by the return pump 13A via the return path 19R. By allowing the crystals in the return liquid to function as seed crystals, the particle size distribution in the reaction processor 10 can be adjusted.
  • FIG. 13 which concerns on invention of Claim 14 can be taken. That is, instead of the external reaction tank 20A, the external sedimentation tank 20B that does not inject the additional liquids A to C may be used.
  • the external sedimentation separation tank 20B it is possible to settle and separate in the external sedimentation separation tank 20B, and to return only the upper fine particle group to the reaction processor 10 by the return pump 13A via the return path 19R. By allowing the crystals in the return liquid to function as seed crystals
  • the tank 20B is a sedimentation separation tank, but the tank 20B is a buffer that adjusts the circulation amount in relation to the out-of-system discharge amount discharged out of the system via the extraction pump 22. It can also be used as a tank. Further, as in the embodiment of FIG. 12, the additional liquids A to C or one or two of the necessary additional liquids are injected into the tank 20B to generate a reaction, and the reaction liquid is returned via the return path 19R. It is also possible to inject into the reaction processor 10.
  • FIGS. 12 and 13 can be developed to the form shown in FIG. 14 according to the invention described in claim 15. That is, two external tanks 20B1 and 20B2 are provided, the external tank 20B1 is used as a buffer tank, the liquid is transferred to the external tank 20B2 that functions as a sedimentation separation tank by the transfer pump 22A, and settled and separated in the external tank 20B2. Only the upper fine particle group can be returned to the reaction processor 10 by the return pump 13A via the return path 19R, and the particle size in the reaction processor 10 can be obtained by causing the crystals in the return liquid to function as seed crystals. The distribution can be adjusted. In this embodiment, additional liquids A to C are injected into one or both of the external tanks 20B1 and 20B2 to generate a reaction, and then returned to the reaction processor 10 via the return path 19R by the return pump 13A. It is also possible.
  • the additional liquid is injected relatively below the reaction processor 10.
  • the guide pipe 17 is shortened and the additional liquid A to C liquid injection pipe 16A is used. 16B... May be provided on the upstream side.
  • the guide tube may be eliminated and an injection tube may be provided at the end.
  • the form which is set as the piping part before inflow as an overflow position is also illustrated.
  • the metal agglomerated particles obtained by the production method of the present invention can be used as a positive electrode active material for a lithium ion battery to produce a positive electrode active material for a lithium ion battery, and thus a lithium ion battery can be obtained.
  • the aggregated particles of metal having a small particle size, uniform particle size, and excellent spherical shape obtained by the present invention are used as a positive electrode active material for a lithium ion battery, the characteristics as a positive electrode are improved.
  • Example 1 Example of nickel manganese cobalt hydroxide A solution in which nickel sulfate, manganese sulfate, and cobalt sulfate are made 1.6M in a ratio of 1: 1: 1 as the reactant A. 25% strength sodium hydroxide was used as the reactant B, and 25% ammonia water was used as the reactant C.
  • solvent adjustment is performed by adding ammonium sulfate, hydrogen peroxide solution, ethanol, glycerin, and the like.
  • an example in which 0.1 M ammonium sulfate is added is shown.
  • the reactant A, the reactant B, and the reactant C were injected into the reaction processor 10.
  • the starting mother liquor a solution obtained by adding 40 g of ammonia water to 2 kg of ion-exchanged water was used.
  • the circulation pump was operated at 20 L / min.
  • A was injected at about 120 g / min
  • B was about 40 g / min
  • C was injected at about 3 g / min.
  • N2 gas was injected at 50 ml / min.
  • the change result of the particle size after the lapse of time is shown as a graph in FIG.
  • grains at the time of implementing for 20 hours was shown to Fig.18 (a) (b) (c).
  • Example of nickel manganese cobalt hydroxide As shown in FIG. 16, nickel manganese cobalt hydroxide particles were obtained in a general mixing tank with a draft tube. A solution in which nickel sulfate, manganese sulfate, and cobalt sulfate are made 1.6M in a ratio of 1: 1: 1 as the reactant A. 25% strength sodium hydroxide was used as the reactant B, and 25% ammonia water was used as the reactant C. The stirring machine is operated at a rotational speed of 2000 rpm, A is about 10 g / min, B is about 4 g / min, C is about 0.6 g / min, and is injected around the stirring tank rotor blade.
  • FIG. 20 shows the change in the particle diameter after 30 hours of this operation
  • FIGS. 21 (a), (b) and (c) show SEM photographs of the particles after 15 hours.
  • FIG. 21 (a), (b) and (c) show SEM photographs of the particles after 15 hours.
  • Elemental mapping was performed under the following conditions.
  • Analysis device Manufacturer JEOL Model: JSM6335F
  • Analysis method SEM-EDS method measurement conditions Acceleration voltage: 20 kV Magnification: 20000 times in Example 1 and 3000 times in Comparative Example 1 Number of scans: 150 cycles Measurement time: 30 minutes
  • Example 2 Example of nickel manganese carbonate A solution in which nickel sulfate and manganese sulfate were made 1.6M in a ratio of 1: 2 as reactant A.
  • As reactant B 15% ammonium bicarbonate was used, and as reactant C, 25% ammonia water was used.
  • solvent adjustment is performed by adding ammonium sulfate, hydrogen peroxide solution, ethanol, glycerin, and the like.
  • 0.1 M ammonium sulfate is added is shown. 1 to 4, the reactant A, the reactant B, and the reactant C were injected into the reaction processor 10.
  • the starting mother liquor a solution obtained by adding 300 g of ammonia water to 6 kg of ion-exchanged water was used.
  • the circulation pump was operated at 20 L / min.
  • A was injected at about 260 g / min
  • B was about 260 g / min
  • C was injected at about 8 g / min.
  • CO2 gas was injected at 10 ml / min (N2 gas may be used).
  • the graph of FIG. 23 shows the change in particle size after the passage of time, and SEM photographs of the particles after 2 hours are shown in FIGS. ⁇ Discussion> The particle size is small and stable over time.
  • Example of nickel manganese carbonate As shown in FIG. 16, nickel manganese carbonate particles were obtained in a general stirring and mixing tank with a draft tube. A solution in which nickel sulfate and manganese sulfate were made 1.6M in a ratio of 1: 2 as reactant A. As reactant B, 15% ammonium bicarbonate was used, and as reactant C, 25% ammonia water was used. The stirring machine is operated at a rotational speed of 2000 rpm, A is about 25 g / min, B is about 18 g / min, C is about 2 g / min, and the mixture is injected around the stirring blade rotor blade. Min was injected. The system was operated at a capacity of about 2.5 L.
  • FIG. 25 shows the change in the particle size after 6 hours of this operation
  • FIGS. 26 (a), (b), and (c) show SEM photographs of the particles after 6 hours of operation. It was shown to. According to these results, even in the case of Comparative Example 2, the particle size is large and is unstable over time.
  • 10 reaction processor, 10X ... inlet, 10Y ... outlet, 10Z ... overflow port, DESCRIPTION OF SYMBOLS 11, 14 ... Circulation path, 16A, 16B ... Injection pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】 反応処理器10内の液流れを旋回流とし、 追加すべき無機物質を含む追加液A,Bを、前記反応処理器10内の反応場において、反応処理器10の内表面より中心側位置において注入し、反応処理を行なわせる。

Description

反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及びリチウムイオン電池、並びに反応凝集粒子の製造装置
 本発明は、反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及びリチウムイオン電池、並びに反応凝集粒子の製造装置に関する。
 リチウムイオン電池用正極活物質としては、
組成式:LixNi1-yy2+α  …(1)
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、α>0.1である。)で表されるもののほか、
 組成式:Li(LixNi1-x-yy)O2+α …(2)
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0≦x≦0.1であり、0<y≦0.7であり、α>0である。)で表されるものが一般的である。
 たとえば、ニッケル塩、コバルト塩、マンガン塩を原料として、水酸化ナトリウムや炭酸アンモニウムなどと反応させ、ニッケル水酸化物、マンガン炭酸化物得て、これをリチウム(水酸化リチウム)と混合焼成し、リチウム・ニッケル・マンガン系の正極活物質を得ている。
 この種の場合、攪拌反応槽内にニッケル塩水溶液及びマンガン塩水溶液を投入し、Ni-Mn複合水酸化物又は炭酸化物を晶析させる方式を取っている。
特開2006-228604 特開平8-315822
 しかし、従来例のように、攪拌反応槽内で晶析を図ることにより、金属凝集粒子を得ようとする場合、第1の問題として、粒子の粒径は反応時間の経時と共に大きくなる傾向があり、かつ、ある時間経過後において、粒径のばらつきが大きくなる。したがって、安定した小粒径の粒子を得ることができない。
 第2の問題は、得られる粒子の形状が必ずしも球形でなく、リチウムイオン電池用正極活物質として場合、高い性能を期待できない。
 第3の問題は、製造にあたり小粒径で粒径分布が狭い粒子を得るには、ほぼバッチ式となるために、時間当たり大きな処理量を望めない。処理量を多くしたい場合、大きい設備への投資コストが嵩むものとなる。
 そこで、本発明者らは、粒径が安定した金属の凝集粒子を得ること、実質的に球形の反応凝集粒子を得ること、設備を大型化しなくとも、小型の設備で単位時間当たり大きな処理を得ることができる形態として、小さい内径を有し、比較的長い径路の反応経路を高速で通す形態、いわゆるチューブリアクターを使用することが望ましいことを知見した。
 しかし、本発明者らは、その後の開発過程で、実験を繰り返していたところ、チューブリアクターの流路の壁面に微細なシャワー(一次核)が付着し、その後にこれを核として結晶が成長し、流れを阻害したり、反応の均一性が損なわれ、目的の反応凝集粒子が得られない場合が散見された。
 したがって、本発明の主たる課題は、単元素もしくは多元素を均一に反応させて結晶析出させると共に、流路内面への材料の付着を防止し、長時間の運転が可能なものとすることにある。
 本発明の他の望まれる課題は、小粒径で粒径分布が狭く、実質的に球形の反応凝集粒子を得ることにある。
 また、設備を大型化しなくとも、小型の設備で単位時間当たり大量な反応処理が可能な形態を提供すること、省エネルギーな設備を提供することにある。
 この課題を解決した本発明は、次の通りである。
 〔請求項1記載の発明〕
 反応処理器内の液流れを旋回流とし、
 追加すべき無機物質を含む追加液を、前記反応処理器内の反応場において、反応処理器の内表面より中心側位置において注入し、反応処理を行なわせることを特徴とする反応凝集粒子の製造方法。
 (作用効果)
 従来例として挙げることができるものは、図16に示したもので、攪拌反応槽1内に反応物質を含む原液A及び反応物質を含む原液B、並びにガスCを添加し、攪拌モータ2付き攪拌羽根3により攪拌し、粒子の凝集・沈殿を促進させ、適宜の時点で、排出口5から成品液を抜き出し、その後、たとえば濾過、洗浄及び乾燥によりプレカーサ-粒子を得る。
 この得られた金属の凝集粒子は、リチウム(たとえば水酸化リチウム)と混合し、焼成、解砕及び分級工程を経て、リチウムイオン電池用正極活物質などに利用できるものである。
 この種の従来例では、前述の第1の問題、第2の問題及び第3の問題を生じる。
 そこで、本発明者は、前述のように、チューブリアクターを使用する試みを行なったが、流路の壁面に微細なシャワー(一次核)が付着し、その後にこれを核として結晶が成長し、流れを阻害し、長時間の安定した運転ができ難いケースが散見された。
 その対策として、反応径路を並設し、詰まりが発生したならば、他方の反応経路に切換えて流通させ、その間に詰まりが生じた反応経路は清浄する方策が考えられる。
 しかし、切換えの僅かな時間においても、反応場の不連続運転に起因した粒径の変動を避けるべきであり、長時間にわたり安定した運転に耐えられるプロセスが必要とされる。
 しかるに、本発明に従って、反応処理器内の液流れを旋回流とし、追加すべき無機物質を含む追加液を、前記反応処理器内の反応場において、反応処理器の内表面より中心側位置において注入し、反応処理を行なわせることにより前記課題を解決できることが知見された。
 液流れとして旋回流を示す反応場においては、竜巻のように中心の渦部分あるいは中心の空洞部分近傍の内周部分の流れは、平均流速に比較して少なくとも2倍以上と著しく高速であり、かつ、流れの乱れも大きい。この部分は、注入した無機物質を含む追加液の急激な拡散場となり、均質な反応が可能となる。
 さらに、流路の壁面には旋回流の外周部分が接しているので、旋回流の外周部分が、注入した無機物質を含む追加液の反応物質に対してバリヤー(障壁)として機能するために、反応物質の流路内面への付着が防止され、長時間にわたり安定した運転が可能となるものと考えられる。
 〔請求項2記載の発明〕
 反応処理器に対し液を循環させるとともに、その反応処理器内に、循環液の返送液を流入させることにより旋回流を生成させる請求項1記載の反応凝集粒子の製造方法。
 (作用効果)
 反応場の生成にあたり、追加すべき無機物質を含む追加液を含めた各種の液を、たとえば容器内壁面の接線方向から注入することにより、反応処理器内の液流れを旋回流とし、その旋回流を反応場とすることができる。
 しかり、対象の物質の反応性が高い場合には、母体液に追加すべき無機物質を含む追加液を接触させた後のごく短時間後に速やかに反応が進行するので、本発明のように、流路の壁面に旋回流の外周部分が接しているので、旋回流の外周部分が、注入した無機物質を含む追加液の反応物質に対してバリヤー(障壁)として機能する現象は期待できない。
 したがって、反応物質の流路内面への付着を防止することができ難い。
 さらに連続的な反応処理のためには、液を循環させながら、追加すべき無機物質を含む追加液を注入し、反応処理液は循環路から流出させるようにするのが好適である。
 そこで、反応処理器に対し液を循環させるとともに、その反応処理器内に、循環液の返送液を流入させることにより旋回流を生成させることが、反応物質の流路内面への付着を防止するうえで好適な形態となる。
〔請求項3記載の発明〕
 反応処理器内に、その内周面に沿う形態で、前記返送液を流入させることにより旋回流を生成させる請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 返送液を反応処理器内にその内周面に沿う形態で流入させることにより、容易に必要な旋回流を生成させることができる。
 〔請求項4記載の発明〕
 反応処理器内への返送液の流入速度が0.5m/秒以上である請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 反応処理器内への返送液の流入速度(流入平均速度)が0.5m/秒以上であると旋回流の生成が確実である。反応場における物質拡散が大きくなり、流れの剪断エネルギーを高めることで、一次粒子と一次粒子が結合して生成される二次粒子の肥大化を抑えることができる。
 〔請求項5記載の発明〕
 反応場を通った液を、反応処理器から0.5m/秒以上の流出速度で流出させる請求項1または請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 反応処理器からの液の流出速度(流出平均速度)が0.5m/秒以上であると、旋回流を液の流出部位まで確実に生成できる。また、これより遅いと下流部において壁面への材料付着が顕著となる。
 〔請求項6記載の発明〕
 反応処理器内への循環返送液の流入位置が、前記反応処理器の長手方向一方端部であり、前記反応処理がなされた後の流出液が長手方向他方端部から流出し、前記循環返送液として反応処理器内へ返送するようにしてある請求項1記載の反応凝集粒子の製造方法。
 (作用効果)
 反応処理器としては、旋回流の反応場を長くするために長手方向に沿ったある程度長い空間を確保することが望ましい。そこで、反応処理器の長手方向一方端部から液を流入させ、長手方向の他方端部から流出させるのが好適な態様である。
 〔請求項7記載の発明〕
 反応処理器内への返送液の流入位置が、前記反応処理器の長手方向一方端部であり、前記反応処理がなされ後の流出液の流出位置が長手方向他方端部であり、さらに、最終反応処理液は追加液流入部より上流側から流出させる請求項1記載の反応凝集粒子の製造方法。
 (作用効果)
 最終反応処理液を、反応処理器の追加液流入部より上流側から流出させるようにすると、旋回流の生成場に影響されることなく流出させることができる。
 〔請求項8記載の発明〕
 反応処理器は、その長手方向一方端部から他方端部に向かって内面が先窄まりとなり、循環液の返送液の流入位置が前記反応処理器の長手方向一方端部であり、前記反応処理がなされた後の流出液の流出位置が前記長手方向他方端部である請求項1または請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 反応処理器は内空間が均一な半径をもつ筒状のものでもよいが、長手方向一方端部から他方端部に向かって内面が先窄まりとなるものが、旋回流の生成に好適である。
 〔請求項9記載の発明〕
 前記反応場を与える反応処理器が、直列的に配置されている請求項1記載の反応凝集粒子の製造方法。
  (作用効果)
 処理量を多くしたい場合、反応処理器を直列的に配置することが望ましい。
 直列配置させることで、循環返送液量を増やすことなく、追加液量を段数分増やすことが可能となり、生産量を増大させると共に、生産量に比した装置内容量を低減することができるため、結果的に省スペース化と装置コストの低減が可能となる。ここで、「生産量に比した装置内容量が低減する」とは、循環ポンプや流路部分の容量は一定のまま、反応処理器とこれらを連結する管の容量だけが追加となるため、結果として装置全体容量が生産量に比して低減できるという意味である。また、「装置内容量を低減」ということは、装置内における反応物質の滞留時間を短くすることができるという効果も現れ、結果的に小径化に向けた滞留時間制御が可能なものになる。
 〔請求項10記載の発明〕
 前記反応場を与える反応処理器が、並列的に配置されている請求項1記載の反応凝集粒子の製造方法。
  (作用効果)
 処理量を多くしたい場合など、反応処理器を並列的に配置することができる。
 特に同一の反応処理器を並列配置させた場合、均一な反応処理を施した上で処理量を増やすことができる。直列方向に設置させる場合、流れ方向に渡り圧力勾配が発生するため、全ての反応処理器を均一反応したい場合は並列配置が好ましい。
 〔請求項11記載の発明〕
 追加すべき無機物質を含む追加液の反応場に対する注入方向が、前記液の旋回流の下流方向に向いている請求項2記載の反応凝集粒子の製造方法。
  (作用効果)
 後に説明するように、追加すべき無機物質を含む追加液の反応場に対する注入方向が、前記液の旋回流の上流方向に向いていてもよいが、液の旋回流の下流方向に向いている方が、材料の内面付着が少なくなる。
 〔請求項12記載の発明〕
 追加すべき無機物質を含む追加液の反応場に対する注入方向が、前記液の旋回流の上流方向に向いている請求項2記載の反応凝集粒子の製造方法。
  (作用効果)
 追加すべき無機物質を含む追加液の反応場に対する注入方向が、前記液の旋回流の上流方向に向いていても、材料の壁内面への付着量は実用上許容範囲内である場合がある。
 〔請求項13記載の発明〕
 反応処理器に対し液を循環させるとともに、その循環系の途中に、前記反応処理器とは別の形式であり、かつ、撹拌羽根を有する外部反応槽を設け、前記反応処理器から最終反応処理液の一部を外部へ流出させ前記外部反応槽に導き、この外部反応槽で反応生成させた反応液を前記反応処理器に返送する請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 これにより、反応処理器から出てきた反応処理液を外部反応槽にて再度反応させるため、滞留時間を長くとれ、微少粒子径分を削減することができる。この例においては、反応処理器に対し、追加すべき無機物質を含む追加液と共に、外部反応槽から結晶成分を含む液も注入されることに注目すべきものである。したがって、請求項1記載の発明においても、追加すべき無機物質を含む追加液と共に結晶成分を注入する形態を包含するものである。
 〔請求項14記載の発明〕
 反応処理器に対し液を循環させるとともに、その循環系の途中に、2つの外部槽を直列に設け、下流側外部槽を追加液を注入しない外部沈降分離槽とし、この外部沈降分離槽において沈降分離し、外部沈降分離槽の上部微少粒子群のみを反応処理器へ返送する請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 請求項14の場合と同様に返送液中の結晶を種結晶として機能させることで反応処理器10内の粒度分布を調整することが可能となる。また、上流側外部槽はバッファ槽又は反応槽として利用することもできる。
〔請求項15記載の発明〕
 反応処理器に対し液を循環させるとともに、その循環系の途中に、追加液を注入しない外部沈降分離槽を設け、この外部沈降分離槽において沈降分離し、外部沈降分離槽の上部微少粒子群のみを反応処理器へ返送する請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 返送液中の結晶を種結晶として機能させることで反応処理器内の粒度分布を調整することが可能となる。
 〔請求項16記載の発明〕
 循環液を反応処理器へ供給する手段としてポンプを使用する請求項2記載の反応凝集粒子の製造方法。
 (作用効果)
 反応処理器における流入速度をポンプ流量制御により行うことで、任意の反応場を形成することができる。
 〔請求項17記載の発明〕
 請求項1~16のいずれか1項に記載の製造方法によって得られた反応凝集粒子を、リチウムイオン電池用正極活物質に利用するリチウムイオン電池用正極活物質の製造方法。
 〔請求項18記載の発明〕
 請求項1~16のいずれか1項にの製造方法によって得られた反応凝集粒子を利用する、リチウムイオン電池用正極活物質を含むリチウムイオン電池の製造方法。
 〔請求項19記載の発明〕
 請求項1~16のいずれか1項にの製造方法によって得られた反応凝集粒子を利用したリチウムイオン電池用正極活物質を含むリチウムイオン電池。
 〔請求項20記載の発明〕 
 反応処理器の長手方向一方端部に、循環返送液の返送液の流入部が、
 長手方向他方端部に、反応処理がなされた後の流出液の流出部があり、
 前記循環液返送液を前記反応処理器内に流入させることにより、前記反応処理器内の流入部と流出部との間に、旋回流を生成させる反応場を有し、
 追加すべき無機物質を含む追加液が、前記反応処理器の内表面より中心側位置において注入され、反応処理が行なわれるようにしたことを特徴とする反応凝集粒子の製造装置。
  (作用効果)
 請求項1及び請求項2による前述の作用効果と同様の作用効果を奏するものとなる。
 本発明によれば、流路内面への材料の付着を防止し、長時間の運転が可能なものとすることができる。
 また、小粒径で粒径分布が狭く、実質的に球形の反応凝集粒子を得ることができる。さらに、設備を大型化しなくとも、小型の設備で単位時間当たり大量な反応処理が可能な形態をとなる。
本発明の第1例の概要図である。 第1例の反応処理器の概要図である。 反応処理器の上端部の横断概要図である。 旋回流の生成形態の説明概要図である。 反応処理器の直列配置例の概要図である。 上向き注入例の概要図である。 他の上向き注入例の概要図である。 旋回流の生成形態の説明概要図である。 反応処理器の直列配置例の概要図である 他の反応処理器例の概要図である。 別の反応処理器例の概要図である。 別の形態例の概要図である。 別の形態例の概要図である。 別の形態例の概要図である。 別の形態例の概要図である。 従来例の概要図である。 実施例1の粒径の変化のグラフである。 実施例1での粒子のSEM写真である。 比較例1の元素マッピング写真である。 比較例1の粒径の変化のグラフである。 比較例1での粒子のSEM写真である。 実施例1の元素マッピング写真である 実施例2の粒径の変化のグラフである。 実施例2での粒子のSEM写真である。 比較例2の粒径の変化のグラフである。 比較例2での粒子のSEM写真である。
 次に、本発明を実施するための形態を説明する。
 図16は、従来例を示したもので、攪拌反応槽1内に反応物質を含む原液A及び反応物質を含む原液B、並びにガスCを添加し、攪拌モータ2付き攪拌羽根3により攪拌し、粒子の晶析・凝集を促進させ、適宜の時点で、排出口5から成品液を抜き出し、その後、たとえば濾過、洗浄及び乾燥によりプレカーサ-粒子を得る。
 この得られた金属の凝集粒子は、リチウム(たとえば水酸化リチウム)と混合し、焼成、解砕及び分級工程を経て、リチウムイオン電池用正極活物質などに利用できるものである。
 本発明は、たとえばリチウムイオン電池用正極活物質の製造に使用する反応物質を対象としている。具体例はNi,Co,Mnの遷移金属を用いた凝集粒子を製造することを直接的な対象とするが、本発明に従って、追加すべき無機物質を含む追加液を、反応処理器内の旋回流の反応場において、反応処理器の内表面より中心側位置において注入し、反応処理を行なわせる方法は、広く一般に無機物質により凝集粒子を得る場合に適用できるものであるから、前記遷移金属以外の金属や他の無機物質を対象にしてもよい。
 以下において、主にリチウムイオン電池用正極活物質の製造に使用する反応物質を対象とする説明を行なう。
  図1~図4は、本発明の第1例を示したもので、反応処理器10内の液流れを旋回流とし、追加すべき無機物質を含む追加液を、反応処理器内10の反応場(図4に概念的に符号Qとして示した)において、反応処理器10の内表面より中心側位置において注入し、反応処理を行なわせるものである。
 図示例では、追加すべき無機物質を含む追加液として、A液、B液及びC液を注入している。図示しないが、併せて並行的にガスD(窒素ガスや二酸化炭素ガスなどの不活性ガス)を注入することもできる。
 また、本発明の第1例は、追加すべき無機物質を含む追加液の反応場に対する注入方向が、液の旋回流の下流方向に向いている例である。
 図示の反応処理器10は竪向きであるが、原理的に流れに影響はないため横向きでもよい。
 図示の反応処理器10は、循環ポンプ13により液を循環路11、14を介して循環させるとともに、反応処理器10内に、循環液の返送液を流入させることにより旋回流を生成させるものである。15は液の加温又は冷却の温度調節器である。
 図面に示されているように、反応処理器10はその長手方向一方端部から他方端部に向かって内面が先窄まりとなり、循環液の返送液の流入口10Xを含む流入位置が反応処理器10の長手方向一方端部であり、図3に示されているように、その内周面に沿う形態で、ほぼ接線方向に沿って、返送液を流入させるようにしてある。これによって、旋回流Rが形成されている。
 反応処理がなされた後の流出液の流出口10Yを含む流出位置は、長手方向他方端部となっている。
 さらに、最終反応処理液は前記長手方向一方端部のオーバーフロー口10Zから流出させるようにしてある。
 反応処理器10内の液流れは旋回流Rとなるが、その上部中央、渦中心部には空洞部分Vができる傾向にある。そして、特に、旋回流Rの渦中心近傍の内周部分の流れは、平均流速に比較して著しく高速であり、かつ、流れの乱れも大きい。
 かかる位置において、追加すべき金属を含む追加液A液~C液を注入すると、追加液が急激に拡散し、均質な反応が可能となる。
 そこで、各追加液A液~C液は注入管16A、16B…を使用してその先端から吐出されるまで、相互の接触を防止することが望ましい。
 さらに、旋回流Rの影響が及ばないように、ガイド管17を挿入するのが望ましい。
 ここで、追加すべき無機物質を含む追加液A液~C液の注入位置は、反応処理器10内の反応場において、反応処理器10の内壁表面より中心側位置において注入すれば足りるが、中心から半径rの2/3以内、好ましくは1/2以内が好適である。
 最終反応処理液はオーバーフロー口10Zから流出させ、抜き出し路19を介して貯留器20に導き、適宜の時点で、その底部から抜出し用バルブ21を開いて凝集粒子液を抜出しポンプ22により最終製品化工程に導くようにする。23は撹拌機である。
 図5に例を示したように、反応場を与える反応処理器10、10…を、直列的に配置することができる。
 この場合、第1段の反応処理器10でのオーバーフローを貯留器20に導き、最終段の反応処理器10での流出液を第1段の反応処理器10に循環させることができる。
 他方、図6に例を示したように、反応場を与える反応処理器10に対して、下方から上方に向かって、追加すべき金属を含む追加液A液~C液を注入することもできる。すなわち、図6の例は、追加すべき無機物質を含む追加液の反応場に対する注入方向が、液の旋回流の上流方向に向いている例である。また、この場合、上部からの流出液は循環させ、一部を抜き出し路19を介して貯留器20に導く。
 他方、図7に示すように、反応処理器10の下部から抜き出しポンプ24により液を抜き出し、抜き出し路25を介して貯留器20に導くこともできる。
 この下方から上方への、追加すべき金属を含む追加液A液~C液の注入は、下方旋回流に対し追加液A液~C液の注入が向流的に接触するために、拡散反応が良好ではないかと当初予想したが、流路の内壁面への材料の付着が見られる場合があり、最適な形態とは言いがたい。
 図9に例を示したように、下方から上方への、追加すべき金属を含む追加液A液~C液の注入形態においても、反応場を与える反応処理器10、10…を、直列的に配置することができる。
 図示は省略してあるが、反応場を与える反応処理器10、10…を並列的に配置することもできる。
 反応処理器は、長手方向一方端部から他方端部に向かって内面が先窄まりとなるものが、旋回流の生成に好適であるが、内空間が均一な半径をもつ筒状のものでもよい。
 さらに、図10のように、反応処理器10内に回転筒40をータ41により回転するように配置し、追加すべき金属を含む追加液A液~C液を、注入管42、43を介して内壁面の接線方向に注入し、他方の端部の流出管44から、反応処理がなされた後の流出液を流出するようにすることもができる。
 この場合、必要により回転筒40を回転させ、旋回流の促進を図ることができる。
 旋回流の生成には、図11に示すように、間隔を置いた複数の撹拌羽根50、50…を回転させることにより生成させることもできる。
 他方、請求項13記載の発明に係る図12の形態も使用できる。すなわち、反応処理器10に対し液を循環路11A,11Bを介して循環させるとともに、その循環系の途中に、反応処理器10とは別の形式であり、かつ、撹拌羽根を有する完全混合型の外部反応槽20Aを設け、反応処理器10から最終反応処理液の一部を外部へ流出させ循環路11Aを介して外部反応槽20Aに導き、この外部反応槽20Aにおいても追加液A液~C液を注入して反応生成させ、反応液を反応処理器10に対し循環させるものである。
 これにより、反応処理器10から出てきた反応処理液を外部反応槽20Aにて再度反応させるため、滞留時間を長くとれ、微少粒子径分を削減することができる。
 さらに、請求項14記載の発明に係る図13の形態を採ることができる。すなわち、外部反応槽20Aに代えて、追加液A液~C液を注入しない、単に外部沈降分離槽20Bであってもよい。 
 また外部沈降分離槽20Bを設けた場合、外部沈降分離槽20Bにおいて沈降分離し、その上部微少粒子群のみを反応処理器10へ返送ポンプ13Aにより返送路19Rを介して返送することが可能であり、返送液中の結晶を種結晶として機能させることで反応処理器10内の粒度分布を調整することが可能となる。
 この図13の形態は、符号20Bの槽が沈降分離槽である例であるが、槽20Bは抜出しポンプ22を介して系外へ排出する系外排出量との関係で循環量を調整するバッファ槽として利用することも可能である。さらに、図12の形態と同様に、追加液A液~C液あるいはそのうちの1又は2の必要追加液を、槽20Bに注入して反応生成させ、反応液を返送路19Rを介して返送する反応処理器10に注入することも可能である。
 他方、前述の図12及び図13に示した形態を発展させて、請求項15記載の発明に係る図14の形態とすることもできる。すなわち、2つの外部槽20B1、20B2を設け、外部槽20B1をバッファ槽として利用し、移行ポンプ22Aにより、沈降分離槽として機能させる外部槽20B2に液を移行させ、外部槽20B2において沈降分離し、その上部微少粒子群のみを反応処理器10へ返送ポンプ13Aにより返送路19Rを介して返送することが可能であり、返送液中の結晶を種結晶として機能させることで反応処理器10内の粒度分布を調整することが可能となる。
 この形態において、外部槽20B1、20B2の一方又は両方に対し、追加液A液~C液を注入して反応生成させた後、反応処理器10へ返送ポンプ13Aにより返送路19Rを介して返送することも可能である。
 先に示した図2の形態では、反応処理器10の比較的下方において追加液を注入したが、図15のように、ガイド管17を短くし、追加液A液~C液の注入管16A、16B…を上流側に設けてもよい。もしくはガイド管を無くして端に注入管を設けても良い。また、図2に示すように注入管16A、16B…先端位置を異ならせるほか、注入管16A、16B…先端位置を一致させるようにしてもよい。
 図15に示す形態によれば、旋回流場での反応長が稼げるため、下流側での流路内の材料の付着が激減する。
 また、オーバーフロー位置として流入前の配管部とする形態も図示してある。
 本発明の製造方法によって得られた金属の凝集粒子を、リチウムイオン電池用正極活物質に利用してリチウムイオン電池用正極活物質を製造できるほか、しいてはリチウムイオン電池を得ることができる。
 本発明によって得られた粒子径が小さく粒子径が揃い、かつ優れた球形状である金属の凝集粒子を、リチウムイオン電池用正極活物質に利用すれば、正極としての特性が向上する。
 次に実施例及び比較例を示し、本発明の効果を明らかにする。
 (実施例1)ニッケルマンガンコバルト水酸化物の例 
 反応物質Aとして硫酸ニッケル、硫酸マンガン、硫酸コバルトを1:1:1の割合にて1.6Mとした液。反応物質Bとして25%濃度の水酸化ナトリウム、反応物質Cとして25%濃度のアンモニア水を使用した。反応物質Aには所定の反応を進めるために硫酸アンモニウム、過酸化水素水、エタノール、グリセリン等の添加による溶媒調整を行うが、ここでは硫酸アンモニウムを0.1M加えた例を示す。
 図1~図4の態様で、反応物質A、反応物質B及び反応物質Cを反応処理器10内に注入した。
 スタート母液としてはイオン交換水2kgにアンモニア水40g加えたものを使用した。
 循環ポンプは20L/minにて運転し、Aは約120g/min、Bは約40g/min,Cは約3g/minにて注入した。さらに、N2ガスを50ml/min注入した。
  経時後の粒径の変化結果を図17のグラフとして示した。20時間実施した時点での粒子のSEM写真を図18(a)(b)(c)に示した。
 <考察>
 粒子径が小さく、経時的に安定している。
 他方、元素マッピングを行った結果、各元素が均等に拡散配置されていることが分かった。この結果を図19に示した。
また、この運転を20時間実施しても、循環路の内壁面に材料の付着がなかった(循環路は透明のプラスチック管を使用し、外部から材料の付着の有無を目視判別した)。
(比較例1)ニッケルマンガンコバルト水酸化物の例 
 図16に示すよう一般的なドラフトチューブ付き攪拌混合槽において、ニッケルマンガンコバルト水酸化物粒子を得た。 
 反応物質Aとして硫酸ニッケル、硫酸マンガン、硫酸コバルトを1:1:1の割合にて1.6Mとした液。 
反応物質Bとして25%濃度の水酸化ナトリウム、反応物質Cとして25%濃度のアンモニア水を使用した。
 攪拌機回転数は2000rpmにて運転し、Aは約10g/min、Bは約4g/min,Cは約0.6g/minにて撹拌槽回転翼周りに注入し、撹拌槽下部にN2ガスを100ml/min注入した。この装置系内の容量は約4Lとして運転した。 
 この運転を30時間実施した粒径の変化結果が図20のグラフであり、15時間実施した時点での粒子のSEM写真を図21(a)(b)(c)に示した。
 元素マッピングを行った結果、各元素が均等に拡散配置されていることが分かった。この結果を図22に示した。)
 これらの結果によれば、比較例1の場合には、粒子径が大きく、経時的にも不安定である。
 なお、元素マッピングは、次記の条件により行なった。
分析装置
 製造元:JEOL 
 型式:JSM6335F型
 分析方法:SEM-EDS法
測定条件
 加速電圧:20kV
 倍率:実施例1は20000倍、比較例1は3000倍
 スキャン回数:150サイクル
 測定時間:30分
 (実施例2)ニッケルマンガン炭酸化物の例 
 反応物質Aとして硫酸ニッケル、硫酸マンガンを1:2の割合にて1.6Mとした液。反応物質Bとして15%濃度の重炭酸アンモニウム、反応物質Cとして25%濃度のアンモニア水を使用した。反応物質Aには所定の反応を進めるために硫酸アンモニウム、過酸化水素水、エタノール、グリセリン等の添加による溶媒調整を行うが、ここでは硫酸アンモニウムを0.1M加えた例を示す。
 図1~図4の態様で、反応物質A、反応物質B及び反応物質Cを反応処理器10内に注入した。
 スタート母液としてはイオン交換水6kgにアンモニア水300g加えたものを使用した。
 循環ポンプは20L/minにて運転し、Aは約260g/min、Bは約260g/min,Cは約8g/minにて注入した。さらに、CO2ガスを10ml/min注入した(N2ガスでも構わない)。
 経時後の粒径の変化結果が図23のグラフであり、2時間実施した時点での粒子のSEM写真を図24(a)(b)(c)に示した。
 <考察>
 粒子径が小さく、経時的に安定している。
 (比較例2)ニッケルマンガン炭酸化物の例 
 図16に示すよう一般的なドラフトチューブ付き攪拌混合槽において、ニッケルマンガン炭酸化物粒子を得た。 
 反応物質Aとして硫酸ニッケル、硫酸マンガンを1:2の割合にて1.6Mとした液。 
反応物質Bとして15%濃度の重炭酸アンモニウム、反応物質Cとして25%濃度のアンモニア水を使用した。
 攪拌機回転数は2000rpmにて運転し、Aは約25g/min、Bは約18g/min,Cは約2g/minにて撹拌槽回転翼周りに注入し、撹拌槽下部にCO2ガスを100ml/min注入した。この装置系内の容量は約2.5Lとして運転した。 
 この運転を6時間実施した粒径の変化結果が図25のグラフであり、6時間実施した時点での粒子のSEM写真を図26(a)(b)(c)に示した。
に示した。
 これらの結果によれば、比較例2の場合においても、粒子径が大きく、経時的にも不安定である。
 リチウムイオン電池用正極活物質用のほか各種の用途のものに適用できる。
10…反応処理器、10X…流入口、10Y…流出口、10Z…オーバーフロー口、
11、14…循環路、16A、16B…注入管、17…ガイド管、20…貯留器、40…回転筒、A,B,C…追加液。

Claims (20)

  1.  反応処理器内の液流れを旋回流とし、
     追加すべき無機物質を含む追加液を、前記反応処理器内の反応場において、反応処理器の内表面より中心側位置において注入し、反応処理を行なわせることを特徴とする反応凝集粒子の製造方法。
  2.  反応処理器に対し液を循環させるとともに、その反応処理器内に、循環液の返送液を流入させることにより旋回流を生成させる請求項1記載の反応凝集粒子の製造方法。
  3.  反応処理器内に、その内周面に沿う形態で、前記返送液を流入させることにより旋回流を生成させる請求項2記載の反応凝集粒子の製造方法。
  4.  反応処理器内への返送液の流入速度が0.5m/秒以上である請求項2記載の反応凝集粒子の製造方法。
  5.  反応場を通った液を、反応処理器から0.5m/秒以上の流出速度で流出させる請求項1または請求項2記載の反応凝集粒子の製造方法。
  6.  反応処理器内への循環返送液の流入位置が、前記反応処理器の長手方向一方端部であり、前記反応処理がなされた後の流出液が長手方向他方端部から流出し、前記循環返送液として反応処理器内へ返送するようにしてある請求項1記載の反応凝集粒子の製造方法。
  7.  反応処理器内への返送液の流入位置が、前記反応処理器の長手方向一方端部であり、前記反応処理がなされ後の流出液の流出位置が長手方向他方端部であり、さらに、最終反応処理液は追加液流入部より上流側から流出させる請求項1記載の反応凝集粒子の製造方法。
  8.  反応処理器は、その長手方向一方端部から他方端部に向かって内面が先窄まりとなり、循環液の返送液の流入位置が前記反応処理器の長手方向一方端部であり、前記反応処理がなされた後の流出液の流出位置が前記長手方向他方端部である請求項1または請求項2記載の反応凝集粒子の製造方法。
  9.  前記反応場を与える反応処理器が、直列的に配置されている請求項1記載の反応凝集粒子の製造方法。
  10.  前記反応場を与える反応処理器が、並列的に配置されている請求項1記載の反応凝集粒子の製造方法。
  11.  追加すべき無機物質を含む追加液の反応場に対する注入方向が、前記液の旋回流の下流方向に向いている請求項2記載の反応凝集粒子の製造方法。
  12.  追加すべき無機物質を含む追加液の反応場に対する注入方向が、前記液の旋回流の上流方向に向いている請求項2記載の反応凝集粒子の製造方法。
  13.  反応処理器に対し液を循環させるとともに、その循環系の途中に、前記反応処理器とは別の形式であり、かつ、撹拌羽根を有する外部反応槽を設け、前記反応処理器から最終反応処理液の一部を外部へ流出させ前記反応槽に導き、この外部反応槽で反応生成させた反応液を前記反応処理器に返送する請求項2記載の反応凝集粒子の製造方法。
  14.  反応処理器に対し液を循環させるとともに、その循環系の途中に、2つの外部槽を直列に設け、下流側外部槽を追加液を注入しない外部沈降分離槽とし、この外部沈降分離槽において沈降分離し、外部沈降分離槽の上部微少粒子群のみを反応処理器へ返送する請求項2記載の反応凝集粒子の製造方法。
  15.   反応処理器に対し液を循環させるとともに、その循環系の途中に、追加液を注入しない外部沈降分離槽を設け、この外部沈降分離槽において沈降分離し、外部沈降分離槽の上部微少粒子群のみを反応処理器へ返送する請求項2記載の反応凝集粒子の製造方法。
  16.  循環液を反応処理器へ供給する手段としてポンプを使用する請求項2記載の反応凝集粒子の製造方法。
  17.  請求項1~16のいずれか1項に記載の製造方法によって得られた反応凝集粒子を、リチウムイオン電池用正極活物質に利用するリチウムイオン電池用正極活物質の製造方法。
  18.  請求項1~16のいずれか1項に記載の製造方法によって得られた反応凝集粒子を利用する、リチウムイオン電池用正極活物質を含むリチウムイオン電池の製造方法。
  19.  請求項1~16のいずれか1項に記載の製造方法によって得られた反応凝集粒子を利用したリチウムイオン電池用正極活物質を含むリチウムイオン電池。
  20.  反応処理器の長手方向一方端部に、循環返送液の返送液の流入部が、
     長手方向他方端部に、反応処理がなされた後の流出液の流出部があり、
     前記循環液返送液を前記反応処理器内に流入させることにより、前記反応処理器内の流入部と流出部との間に、旋回流を生成させる反応場を有し、
     追加すべき無機物質を含む追加液が、前記反応処理器の内表面より中心側位置において注入され、反応処理が行なわれるようにしたことを特徴とする反応凝集粒子の製造装置。
PCT/JP2013/053629 2012-06-21 2013-02-15 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及びリチウムイオン電池、並びに反応凝集粒子の製造装置 WO2013190861A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13807347.3A EP2866284B1 (en) 2012-06-21 2013-02-15 Production method for reaction-agglomerated particles, production method for positive electrode active material for lithium ion cell, production method for lithium ion cell, lithium ion cell, and apparatus for production of reaction-agglomerated particles
US14/409,347 US10333143B2 (en) 2012-06-21 2013-02-15 Method of manufacturing reaction agglomerated particles, method of manufacturing cathode active material for lithium ion battery, method of manufacturing lithium ion battery, lithium ion battery, and device of manufacturing reaction agglomerated particles
CA2875732A CA2875732C (en) 2012-06-21 2013-02-15 Method of manufacturing reaction agglomerated particles, method of manufacturing cathode active material for lithium ion battery, and method of manufacturing lithium ion battery containing cathode active material for lithium ion battery
KR1020147035159A KR101629600B1 (ko) 2012-06-21 2013-02-15 반응응집입자의 제조 방법, 리튬이온전지용 정극활물질의 제조 방법, 리튬이온전지의 제조 방법 및 리튬이온전지, 및 반응응집입자의 제조 방법
CN201380032176.9A CN104412420B (zh) 2012-06-21 2013-02-15 反应凝集颗粒的制造方法、锂离子电池用正极活性物质的制造方法、锂离子电池的制造方法和锂离子电池、以及反应凝集颗粒的制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012139618A JP5466732B2 (ja) 2012-06-21 2012-06-21 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及び反応凝集粒子の製造装置
JP2012-139618 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013190861A1 true WO2013190861A1 (ja) 2013-12-27

Family

ID=49768471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053629 WO2013190861A1 (ja) 2012-06-21 2013-02-15 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及びリチウムイオン電池、並びに反応凝集粒子の製造装置

Country Status (7)

Country Link
US (1) US10333143B2 (ja)
EP (1) EP2866284B1 (ja)
JP (1) JP5466732B2 (ja)
KR (1) KR101629600B1 (ja)
CN (1) CN104412420B (ja)
CA (1) CA2875732C (ja)
WO (1) WO2013190861A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736471B1 (ja) * 2014-01-10 2015-06-17 月島機械株式会社 金属微粉スラリーの固液分離・乾燥設備及びその方法
EP2891518A4 (en) * 2012-08-28 2016-04-20 Tsukishima Kikai Co CONTINUOUS PROCESSOR
WO2017130687A1 (ja) * 2016-01-27 2017-08-03 月島機械株式会社 粒子の製造装置及び粒子の製造方法
JP2019202283A (ja) * 2018-05-24 2019-11-28 水ing株式会社 被処理液の処理方法及び被処理液の処理装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500685A (ja) * 2013-10-24 2017-01-05 ダウ グローバル テクノロジーズ エルエルシー 改善されたリチウム金属酸化物カソード材料及びそれらを作製するための方法
JP6255648B2 (ja) * 2013-12-25 2018-01-10 月島機械株式会社 無機粒子の連続反応装置及び無機粒子の連続反応晶析方法
JP6255649B2 (ja) * 2013-12-25 2018-01-10 月島機械株式会社 連続反応晶析装置及び無機粒子の連続反応晶析方法
JP6509581B2 (ja) * 2015-02-20 2019-05-08 住友化学株式会社 遷移金属含有炭酸塩化合物、その製造方法、正極活物質の製造方法、ならびにリチウムイオン二次電池用正極およびリチウムイオン二次電池
CN106677730A (zh) * 2015-11-05 2017-05-17 中石化石油工程技术服务有限公司 一种双密度钻井水下空心球注入装置
JP7025324B2 (ja) * 2016-06-07 2022-02-24 株式会社田中化学研究所 無機粒子を得るための反応装置及び無機粒子の製造方法
JP6142295B1 (ja) * 2016-06-07 2017-06-07 株式会社田中化学研究所 二次電池用正極活物質
JP6852316B2 (ja) * 2016-09-06 2021-03-31 住友金属鉱山株式会社 化学反応装置、および、化学反応装置を用いた粒子の製造方法
CN107790073A (zh) * 2017-09-28 2018-03-13 北京中科诚毅科技发展有限公司 一种反应器新型内部结构及其设计方法和用途
CN109200945A (zh) * 2018-09-30 2019-01-15 上海成源精密机械制造有限公司 一种水旋流器及硫磺造粒的方法
CZ308276B6 (cs) * 2019-02-01 2020-04-08 Kvs Ekodivize A.S. Krystalizační odparka
JP7184342B2 (ja) * 2019-02-28 2022-12-06 国立研究開発法人理化学研究所 ビーム標的およびビーム標的システム
CN111203370B (zh) * 2020-02-25 2024-02-06 深圳吉阳智能科技有限公司 锂离子电池浆料螺旋循环搅拌加工集成系统
CN115634618B (zh) * 2022-11-07 2023-09-08 承德石油高等专科学校 一种锂电池正极材料制备用智能镀膜装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594630A (en) * 1978-11-20 1980-07-18 Degussa Device for tightly contacting liquid
JPH0543920A (ja) * 1991-06-05 1993-02-23 Kubota Corp 金属粉末製造方法および装置
JPH08315822A (ja) 1995-05-18 1996-11-29 Japan Energy Corp リチウム2次電池正極活物質原料用Ni−Mn複合水酸化物粉末及びその製造方法
JP2000348724A (ja) * 1999-06-07 2000-12-15 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2004047182A (ja) * 2002-07-09 2004-02-12 Sony Corp 負極材料およびその製造方法並びにそれを用いた電池
JP2006228604A (ja) 2005-02-18 2006-08-31 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2006265086A (ja) * 2005-02-24 2006-10-05 Toyota Motor Corp 水酸化ニッケル粒子の製造方法及び製造装置
JP2007210092A (ja) * 2005-12-30 2007-08-23 General Electric Co <Ge> ナノ粒子を製造する方法及びシステム
JP2010090411A (ja) * 2008-10-03 2010-04-22 Seiko Epson Corp 金属粉末製造装置
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
WO2012014530A1 (ja) * 2010-07-28 2012-02-02 エム・テクニック株式会社 粒子径を制御された微粒子の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794299A (en) * 1971-09-23 1974-02-26 Chem Trol Pollution Services Centrifugal reactor
JPS4869158A (ja) * 1971-12-22 1973-09-20
FR2257326B1 (ja) * 1973-06-19 1976-05-28 Rhone Progil
CA1018452A (en) * 1973-12-14 1977-10-04 Chem-Trol Pollution Services Centrifugal reactor
FR2421159A1 (fr) * 1978-03-28 1979-10-26 Inst Francais Du Petrole Procede de production d'oligomeres du propene et/ou du butene
JPS5771628A (en) * 1980-10-20 1982-05-04 Osaka Gas Co Ltd Mixer
JPS6010761B2 (ja) * 1981-11-11 1985-03-20 株式会社西村渡辺抽出研究所 晶析装置
FR2546077B1 (fr) * 1983-05-20 1988-05-06 Rhone Poulenc Chim Base Dispositif de reaction a haute temperature
JPH0735245B2 (ja) * 1986-05-15 1995-04-19 日東機械株式会社 高濃度次亜塩素酸ソ−ダ水溶液の連続製造装置
US5482532A (en) * 1991-06-05 1996-01-09 Kubota Corporation Method of and apparatus for producing metal powder
LU88387A1 (de) * 1993-07-27 1995-02-01 Communaute Europ Del En Atomiq Maschine zur Abscheiding von Aerosolteilchen
JPH1025117A (ja) * 1996-07-09 1998-01-27 Japan Metals & Chem Co Ltd 水酸化ニッケルの製造方法
JP3644186B2 (ja) * 1997-03-24 2005-04-27 松下電器産業株式会社 電池構成用金属水酸化物製造装置
JP3255078B2 (ja) * 1997-04-15 2002-02-12 大平洋金属株式会社 水酸化ニッケルの製造方法
EP1296391A4 (en) * 2001-03-22 2006-06-28 Matsushita Electric Ind Co Ltd POSITIVE ELECTRODE ACTIVE MATERIAL AND NON-AQUEOUS ELECTROLYTE BATTERY CONTAINING THE MATERIAL
DE10132895A1 (de) * 2001-07-06 2003-01-16 Starck H C Gmbh Nickelhydroxid und Verfahren zu dessen Herstellung
US6610798B1 (en) * 2002-10-08 2003-08-26 Nova Chemical Inc. Controlled suspension polymerization process without mechanical agitation
US6943223B1 (en) * 2004-04-27 2005-09-13 Nova Chemicals Inc. Controlled shear and turbulence flow pattern within a liquid in a vessel
KR101036734B1 (ko) * 2005-10-31 2011-05-24 어플라이드 머티어리얼스, 인코포레이티드 공정 저감 반응로
KR100759751B1 (ko) * 2006-05-08 2007-10-04 주식회사 에코프로 하이드로 싸이클론을 이용한 리튬 이차전지 양극 활물질의제조방법 및 그 제조장치
KR101482057B1 (ko) * 2007-07-06 2015-01-13 엠. 테크닉 가부시키가이샤 유체 처리 장치 및 처리 방법
JP5619837B2 (ja) * 2012-08-28 2014-11-05 月島機械株式会社 無機粒子の連続反応装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594630A (en) * 1978-11-20 1980-07-18 Degussa Device for tightly contacting liquid
JPH0543920A (ja) * 1991-06-05 1993-02-23 Kubota Corp 金属粉末製造方法および装置
JPH08315822A (ja) 1995-05-18 1996-11-29 Japan Energy Corp リチウム2次電池正極活物質原料用Ni−Mn複合水酸化物粉末及びその製造方法
JP2000348724A (ja) * 1999-06-07 2000-12-15 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2004047182A (ja) * 2002-07-09 2004-02-12 Sony Corp 負極材料およびその製造方法並びにそれを用いた電池
JP2006228604A (ja) 2005-02-18 2006-08-31 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2006265086A (ja) * 2005-02-24 2006-10-05 Toyota Motor Corp 水酸化ニッケル粒子の製造方法及び製造装置
JP2007210092A (ja) * 2005-12-30 2007-08-23 General Electric Co <Ge> ナノ粒子を製造する方法及びシステム
JP2010090411A (ja) * 2008-10-03 2010-04-22 Seiko Epson Corp 金属粉末製造装置
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
WO2012014530A1 (ja) * 2010-07-28 2012-02-02 エム・テクニック株式会社 粒子径を制御された微粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2866284A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891518A4 (en) * 2012-08-28 2016-04-20 Tsukishima Kikai Co CONTINUOUS PROCESSOR
US9527058B2 (en) 2012-08-28 2016-12-27 Tsukishima Kikai Co., Ltd. Continuous processing device
JP5736471B1 (ja) * 2014-01-10 2015-06-17 月島機械株式会社 金属微粉スラリーの固液分離・乾燥設備及びその方法
WO2017130687A1 (ja) * 2016-01-27 2017-08-03 月島機械株式会社 粒子の製造装置及び粒子の製造方法
JP2017131833A (ja) * 2016-01-27 2017-08-03 月島機械株式会社 粒子の製造装置及び粒子の製造方法
KR20180108641A (ko) * 2016-01-27 2018-10-04 츠키시마기카이가부시키가이샤 입자의 제조 장치 및 입자의 제조 방법
US10434486B2 (en) 2016-01-27 2019-10-08 Tsukishima Kikai Co., Ltd. Device for producing particles and method for producing particles
KR102635145B1 (ko) 2016-01-27 2024-02-07 츠키시마 기카이 가부시키가이샤 입자의 제조 장치 및 입자의 제조 방법
JP2019202283A (ja) * 2018-05-24 2019-11-28 水ing株式会社 被処理液の処理方法及び被処理液の処理装置
JP7206061B2 (ja) 2018-05-24 2023-01-17 水ing株式会社 被処理液の処理方法

Also Published As

Publication number Publication date
EP2866284A1 (en) 2015-04-29
EP2866284A4 (en) 2016-03-16
US20150188133A1 (en) 2015-07-02
JP5466732B2 (ja) 2014-04-09
CA2875732C (en) 2017-07-11
JP2014004496A (ja) 2014-01-16
CA2875732A1 (en) 2013-12-27
EP2866284B1 (en) 2024-05-29
US10333143B2 (en) 2019-06-25
KR101629600B1 (ko) 2016-06-10
KR20150013794A (ko) 2015-02-05
CN104412420A (zh) 2015-03-11
CN104412420B (zh) 2017-10-13
EP2866284C0 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
JP5466732B2 (ja) 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及び反応凝集粒子の製造装置
KR101762042B1 (ko) 무기입자의 연속반응장치
CN101415474A (zh) 通过沉淀制备化合物的设备和方法
CN104437286B (zh) 一种生产超细碳酸铈的沉淀反应器
WO2013111487A1 (ja) 金属の凝集粒子の製造方法、リチウムイオン電池用正極活物質製造方法、リチウムイオン電池の製造方法並びにリチウムイオン電池
KR101719134B1 (ko) 요소수 연속 생산 장치 및 방법
CN220003968U (zh) 正极材料前驱体的制备系统
US9446967B2 (en) Method for producing size selected particles
CN113562783B (zh) 一种硫酸镍溶液的制备方法
EP3470136B1 (en) Chemical reaction device and particle production method using chemical reaction device
CN203816613U (zh) 一种合成三元材料前驱体的反应釜
CN116161711A (zh) 一种钠离子电池三元前驱体及其制备方法
CN211070055U (zh) 具有高搅拌剪切力的大容积三元正极材料前驱体反应釜
CN218854274U (zh) 一种前驱体合成装置
JP6255649B2 (ja) 連続反応晶析装置及び無機粒子の連続反応晶析方法
JP2020049405A (ja) 流体供給ノズル、反応装置及び粒子の製造方法
JP6255648B2 (ja) 無機粒子の連続反応装置及び無機粒子の連続反応晶析方法
CN220405591U (zh) 三元前驱体反应装置
CN113578235B (zh) 一种硫酸镍溶液的生产装置
CN218250196U (zh) 一种自带提浓功能的三元前驱体制备装置
CN118162070A (zh) 一种应用于液相混合、沉淀反应的强化混合阀式微通道反应器
JP2019063694A (ja) 液供給管、および化学反応装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2875732

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147035159

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201407871

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14409347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE