WO2013187441A1 - 半導体ウェーハの製造方法 - Google Patents

半導体ウェーハの製造方法 Download PDF

Info

Publication number
WO2013187441A1
WO2013187441A1 PCT/JP2013/066230 JP2013066230W WO2013187441A1 WO 2013187441 A1 WO2013187441 A1 WO 2013187441A1 JP 2013066230 W JP2013066230 W JP 2013066230W WO 2013187441 A1 WO2013187441 A1 WO 2013187441A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
semiconductor wafer
mirror
oxide film
polishing step
Prior art date
Application number
PCT/JP2013/066230
Other languages
English (en)
French (fr)
Inventor
山下 健児
Original Assignee
Sumco Techxiv株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv株式会社 filed Critical Sumco Techxiv株式会社
Priority to CN201380030575.1A priority Critical patent/CN104350583B/zh
Priority to DE112013002901.4T priority patent/DE112013002901B4/de
Priority to KR1020147034907A priority patent/KR101947614B1/ko
Priority to US14/406,625 priority patent/US9293318B2/en
Publication of WO2013187441A1 publication Critical patent/WO2013187441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/02087Cleaning of wafer edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate

Definitions

  • the present invention relates to a method for manufacturing a semiconductor wafer.
  • mirror polishing performed on the front and back surfaces of a semiconductor wafer is performed in a plurality of stages. Specifically, it is roughly divided into rough polishing for the purpose of increasing the flatness of the semiconductor wafer and finish polishing for the purpose of reducing the surface roughness. Further, not only the front and back surfaces of the semiconductor wafer but also the chamfered portion is mirror polished for the purpose of preventing dust generation from the chamfered portion.
  • Rough polishing is performed by double-sided simultaneous polishing in which a semiconductor wafer is housed in a carrier and both the front and back surfaces of the semiconductor wafer are simultaneously polished. In this double-sided simultaneous polishing, scratches and indentations are generated in the chamfered portion due to contact between the semiconductor wafer and the carrier inner peripheral surface. Therefore, the mirror polishing of the chamfered portion is generally performed after rough polishing in order to remove the generated scratches and indentations.
  • a resin protective film is formed on both the front and back surfaces of the semiconductor wafer after the double-side polishing step, followed by a mirror chamfering step, and then the resin protection
  • a method of manufacturing a semiconductor wafer that removes a film is disclosed (for example, see Patent Document 1).
  • edge roll-off is prevented by suppressing over-polishing during a mirror chamfering process by a protective film made of resin formed on the front and back surfaces of a semiconductor wafer.
  • Patent Document 1 has a problem that leads to an increase in cost because cleaning for forming a protective film with resin and cleaning for removing the protective film made of resin are required. Further, when the resin for forming the protective film reaches not only the front and back surfaces but also the chamfered portion, polishing in the mirror polishing process of the chamfered portion is partially or entirely suppressed. Therefore, it is necessary to form a protective film accurately only on the front and back surfaces of the wafer so that the resin does not reach the chamfered portion, but this is technically difficult. Further, in the cleaning for removing the resin protective film, there is a problem that the resin once removed is reattached or the resin protective film is not completely removed.
  • An object of the present invention is to provide a semiconductor wafer manufacturing method capable of improving the flatness of the outer peripheral portion of the semiconductor wafer surface.
  • polishing liquids having different abrasive grain sizes and blending components are used for rough polishing and mirror finish polishing. For this reason, the semiconductor wafer after the rough polishing is subjected to a cleaning process so that abrasive grains and polishing liquid remaining on the surface of the semiconductor wafer after the rough polishing are not brought into the subsequent mirror finish polishing.
  • a cleaning solution (SC-1) containing aqueous ammonia and hydrogen peroxide is used.
  • the chamfered portion is subjected to mirror chamfering polishing, and then the surface or both front and back surfaces are mirror-finished, the outer peripheral portion of the semiconductor wafer surface is It has been found that there is a problem that the flatness deteriorates.
  • the oxide film present on the outer peripheral portion of the semiconductor wafer surface is removed by overpolishing by mirror chamfering and the silicon surface is exposed. A semiconductor wafer is formed.
  • FIG. 8B a difference in polishing rate is generated between the portion where the oxide film is present and the portion where the oxide film is not present on the surface of the semiconductor wafer. Then, it became clear that the edge roll-off deteriorates because the polishing progresses at the outer peripheral portion where no oxide film is present and the outer peripheral portion is polished first.
  • a rough polishing step for rough polishing both front and back surfaces of a semiconductor wafer a mirror chamfering polishing step for mirror polishing a chamfered portion of the rough polished semiconductor wafer, and the semiconductor whose mirror surface is chamfered
  • the mirror surface finish polishing step of mirror polishing the surface or both sides of the wafer after the mirror chamfer polishing step, after forming an oxide film on the entire surface of the semiconductor wafer, the mirror finish polishing A process is performed.
  • an oxide film is formed on the entire surface of the semiconductor wafer, so that the outer peripheral portion of the semiconductor wafer surface exposed by over polishing is covered with the oxide film. Therefore, no difference in polishing rate due to the presence or absence of an oxide film present on the surface of the semiconductor wafer occurs during mirror finish polishing performed after the oxide film is formed. As a result, the flatness of the outer peripheral portion of the semiconductor wafer surface is improved. Can do.
  • the oxide film is preferably formed by chemical cleaning using a mixed solution containing ammonia water and hydrogen peroxide water.
  • an oxide film having a thickness of angstrom order is uniformly formed in a short time on the surface of a semiconductor wafer by performing chemical cleaning using a mixed solution containing ammonia water and hydrogen peroxide water, respectively. be able to.
  • the oxide film is formed by repeating spin cleaning with ozone water and hydrogen fluoride water. According to the present invention, by repeating spin cleaning with ozone water and hydrogen fluoride water, an oxide film having a thickness of angstrom order can be uniformly formed on the surface of the semiconductor wafer in a short time.
  • the oxide film to be formed has a thickness of 0.5 nm or more and 2 nm or less. According to the present invention, when the thickness of the oxide film to be formed is 0.5 nm or more and 2 nm or less, there is little burden for removing the oxide film in the mirror finish polishing process.
  • the polishing allowance in the said mirror surface finishing polishing process is 0.1 to 3 micrometer. According to the present invention, a semiconductor wafer having high flatness and good surface roughness can be obtained if the polishing allowance in the mirror finish polishing step is 0.1 ⁇ m or more and 3 ⁇ m or less.
  • FIG. 1 shows a manufacturing process of a semiconductor wafer according to an embodiment of the present invention.
  • the single crystal ingot pulled up by the CZ method or the like is sliced by a multi-wire saw or the like (step S1).
  • chamfering is performed on the corners of the wafer (step S2).
  • lapping and surface grinding are performed to flatten the chamfered wafer surface (step S3).
  • chemical polishing by etching is performed (step S4).
  • the rough polishing step S5 is performed for the purpose of polishing the semiconductor wafer to a desired thickness. Specifically, polishing is performed using a polishing cloth made of a hard material hardened with a urethane resin and the like so that the variation in thickness of the semiconductor wafer after polishing is small and flattened under conditions where the polishing speed is relatively fast. .
  • the polishing process may be performed by changing the type of polishing cloth and the size of loose abrasive grains and dividing the polishing allowance into a plurality of stages (for example, 1 to 3 stages). Moreover, you may employ
  • the double-side polishing apparatus 10 includes an upper surface plate 11, a lower surface plate 12, an inner gear 13, an outer gear 14, and a plurality of carriers 15. Wafer W is stored. In FIG. 2, three semiconductor wafers W are accommodated in one carrier 15.
  • the upper surface plate 11 includes a surface plate body 111 and an elevating mechanism 112 that moves the surface plate body 111 closer to and away from the lower surface plate 12.
  • the surface plate main body 111 is formed in a substantially disc shape, and although not shown in FIG. 2, a polishing pad 113 that contacts the surface of the semiconductor wafer W when the semiconductor wafer W is polished is provided on the lower surface thereof.
  • a plurality of supply holes for supplying polishing slurry and rinsing with pure water at the time of polishing are formed on the upper surface of the surface plate body 111, and the polishing slurry and pure water are placed between the upper surface plate 11 and the lower surface plate 12. It can be supplied.
  • the elevating mechanism 112 has a shaft portion provided substantially at the center of the surface plate main body 111 and is not shown in the figure, but the surface plate main body 111 is moved up and down by a motor provided in a gate-type frame arranged at the top. .
  • the lower surface plate 12 is a disk-like body that is rotatably provided on the pedestal of the double-side polishing apparatus 10, and a polishing pad 121 is provided on the surface facing the upper surface plate 11 of the lower surface plate 12. When polishing, the polishing pad 121 contacts the surface of the semiconductor wafer W.
  • the inner gear 13 is provided substantially at the center of the disk of the lower surface plate 12 so as to rotate independently of the lower surface plate 12, and teeth 131 that mesh with the carrier 15 are formed on the outer peripheral side surface thereof.
  • the outer gear 14 is composed of a ring-shaped body surrounding the lower surface plate 12, and teeth 141 that mesh with the carrier 15 are formed on the inner surface of the ring.
  • the rotation centers of the upper surface plate 11, the lower surface plate 12, the inner gear 13, and the outer gear 14 are coupled to the rotation shafts of the drive motors, respectively, and are rotated independently by the respective drive motors.
  • the carrier 15 is formed of a disk-like body, and teeth 151 that mesh with the inner gear 13 and the outer gear 14 are formed on the outer peripheral side surface thereof.
  • a plurality of wafer holding holes 152 are formed in the disk-shaped body, and the semiconductor wafer W is stored in the wafer holding holes 152.
  • polishing cloth As the polishing cloth affixed to the polishing pad 113 and the polishing pad 121, it is preferable to use polyurethane. It is particularly preferable to use a polyurethane having a Shore A hardness of 80 or more and 90 or less.
  • an alkaline aqueous solution containing abrasive grains is preferably used. Among these, it is particularly preferable to use colloidal silica having an average particle diameter of 50 nm as abrasive grains and a KOH aqueous solution having a pH of 10 to 11 as an alkaline aqueous solution.
  • polishing of the semiconductor wafer W is performed as a whole.
  • the semiconductor wafer W is disposed such that the lower side is surface polished and the upper side is rear surface polished, and the polishing pad 121 attached to the lower surface plate 12 is used for polishing the surface of the semiconductor wafer W and is attached to the upper surface plate 11.
  • 113 is for polishing the back surface of the semiconductor wafer W.
  • the polishing allowance in the rough polishing step S5 is preferably about 10 ⁇ m on one side and about 20 ⁇ m in total on both the front and back surfaces. Further, it is preferable to adjust the ESFQR of the semiconductor wafer W after the rough polishing step S5 to be 30 to 50 nm.
  • ESFQR Edge flatness metric, Sector based, Front surface referenced, least Quares fit reference plane, Range of the data within sector
  • ESFQR is a fan-shaped region formed in the outer peripheral area of the entire circumference of the wafer as shown in FIG. This is a value obtained by measuring SFQR in (sector).
  • step S6 Next, the semiconductor wafer W that has finished the rough polishing step S5 is cleaned.
  • the abrasive grains and polishing liquid used in the rough polishing step S5 remain on the surface of the semiconductor wafer W after the rough polishing step S5.
  • polishing liquid from which an abrasive grain size and a compounding component differ in rough polishing process S5 and the mirror surface finishing polishing process S9 mentioned later is used. Therefore, in this step S6, the semiconductor wafer W is cleaned so that the remaining abrasive grains and polishing liquid are not brought into the subsequent mirror finish polishing step S9.
  • a cleaning solution (SC-1) containing aqueous ammonia and hydrogen peroxide.
  • SC-1 solution prepared by mixing ammonia water and hydrogen peroxide solution 1: 1 and diluting 5 to 30 times with pure water and heating to 50 to 80 ° C. It is particularly preferred to do this.
  • the semiconductor wafer W is rinsed with pure water.
  • a natural oxide film having a thickness of about 1 nm to about 1.1 nm (about 10 to about 11 mm) is formed on the entire surface of the semiconductor wafer W after the cleaning.
  • step S7 the chamfered portion of the semiconductor wafer W that has undergone the cleaning step S6 is mirror-polished.
  • step S7 the chamfered portion of the semiconductor wafer W is mirror-polished in order to prevent dust generation from the chamfered portion, and in the rough polishing step S5, the chamfered portion is brought into contact with the inner peripheral surface of the carrier. This is in order to remove scratches and indentations generated in the part.
  • FIG. 3A is a partially enlarged schematic view of the chamfering polishing apparatus
  • FIG. 3B is a plan view of the chamfering polishing apparatus.
  • the chamfering polishing apparatus 20 includes a wafer suction unit 21 that sucks the lower surface of the semiconductor wafer W, a polishing unit 22 that mirror-polishes the semiconductor wafer W sucked by the wafer suction unit 21, and a polishing unit.
  • a pipe 23 for supplying a polishing liquid is provided on the upper portion of 22.
  • the wafer suction unit 21 includes a suction stage 211 as a holding unit that holds the lower surface of the semiconductor wafer W by suction, and a rotation unit 212 that rotates the suction stage 211.
  • the polishing unit 22 includes a polishing wheel 221 that mirror-polishes the chamfered portion of the semiconductor wafer W, and driving means (not shown) that rotates the polishing wheel 221, moves it up and down, and presses it against the semiconductor wafer W.
  • the polishing wheel 221 includes an upper inclined surface polishing pad 222, a vertical surface polishing pad 223, and a lower inclined surface polishing pad 224. In FIG.
  • the respective polishing pads are shown side by side on the right side of the drawing, but actually, as shown in FIG. It is formed in an arc shape having the same length, and is arranged around the semiconductor wafer W with a predetermined interval.
  • a polishing cloth is affixed to each polishing pad.
  • a nonwoven fabric As the polishing cloth stuck to each polishing pad of the chamfering polishing apparatus 20, it is preferable to use a nonwoven fabric. It is particularly preferable to use a nonwoven fabric having an Asker C hardness in the range of 55 to 56.
  • an alkaline aqueous solution containing abrasive grains is preferably used. Among these, it is particularly preferable to use colloidal silica having an average particle diameter of 50 nm as abrasive grains and a KOH aqueous solution having a pH of 10 to 11 as an alkaline aqueous solution.
  • the rotating means 212 is rotated to rotate the semiconductor wafer W, and the polishing wheel 221 is rotated by the driving means to perform each polishing.
  • the pads 222, 223, and 224 are rotated. Thereby, the upper portion of the chamfered portion of the semiconductor wafer W is polished by the upper inclined surface polishing pad 222, the central portion of the chamfered portion is polished by the vertical surface polishing pad 223, and the lower portion of the chamfered portion is polished by the lower inclined surface polishing pad 224.
  • the oxide film present in the chamfered portion is removed and the chamfered portion is processed into a mirror surface. Scratches and indentations generated in the rough polishing step S5 are also removed. Further, not only the chamfered portion but also the overly polished oxide films existing on the outer peripheral portions of both the front and back surfaces are removed, and the silicon surface of the outer peripheral portion is exposed.
  • Oxide film forming step S8 Next, as shown in FIG. 4B, an oxide film is formed on the entire surface of the semiconductor wafer W after the mirror chamfer polishing step S7.
  • the reason why the oxide film is formed on the entire surface of the semiconductor wafer W in this step S8 is to prevent a difference in polishing rate depending on the presence or absence of the oxide film in the mirror finish polishing step S9 described later.
  • the oxide film is preferably formed by chemical cleaning using a mixed liquid (SC-1) containing ammonia water and hydrogen peroxide water, respectively.
  • SC-1 mixed liquid
  • the chemical cleaning of the semiconductor wafer W was performed by mixing ammonia water and hydrogen peroxide water at a ratio of 1: 1 in the same manner as in the above cleaning step, and was prepared by diluting the pure water 5 to 30 times, 50 to 80 ° C. It is particularly preferable to carry out by wet bench cleaning with a heated SC-1 solution. After cleaning with the SC-1 solution, the semiconductor wafer W is rinsed with pure water.
  • a natural oxide film having a film thickness of about 1 nm to about 1.1 nm (about 10 to about 11 mm) is formed on the entire surface of the semiconductor wafer W after the chemical cleaning.
  • the oxide film is preferably formed by repeating spin cleaning with ozone water and hydrogen fluoride water.
  • the spin cleaning is performed using, for example, a single wafer type spin apparatus.
  • the spin cleaning in this embodiment repeats spin cleaning with ozone water and spin cleaning with hydrogen fluoride water. That is, spin cleaning with different types of cleaning liquid is performed alternately. Thereby, the surface and the chamfered portion of the semiconductor wafer W are cleaned, and an oxide film is formed on the surface and the chamfered portion of the semiconductor wafer W.
  • the semiconductor wafer W is rinsed with pure water, and then the semiconductor wafer W is turned over, and the back surface side is similarly subjected to spin cleaning.
  • a natural oxide film having a thickness of 0.8 nm to 1.2 nm is formed on the entire surface of the semiconductor wafer W after the spin cleaning.
  • the front surface or both front and back surfaces of the semiconductor wafer W are mirror-polished.
  • the mirror finish polishing step S9 is performed for the purpose of improving the roughness of the surface of the semiconductor wafer W. Specifically, polishing is performed using a soft polishing cloth such as suede and fine sized loose abrasive grains so as to reduce the variation of the minute surface roughness on the surface of the semiconductor wafer W such as microroughness and haze. Is called.
  • the polishing allowance may be divided into a plurality of stages while changing the type of abrasive cloth and the size of the free abrasive grains.
  • the single-side polishing apparatus 30 is a large disk, and is a rotary platen 32 rotated by a shaft 31 connected to the center of the bottom surface thereof, a pressure head 33, and a pressure head connected to the pressure head 33. And a wafer holder 35 formed of a shaft 34 for rotating 33.
  • a polishing cloth 321 is affixed to the upper surface of the rotating surface plate 32, and a polishing plate 331 to which the semiconductor wafer W is fixed is attached to the lower surface of the pressure head 33.
  • a pipe 36 for supplying water and a pipe 37 for supplying pure water are provided.
  • polishing cloth 321 attached to the single-side polishing apparatus 30 it is preferable to use a suede.
  • an alkaline aqueous solution containing abrasive grains is preferably used.
  • colloidal silica having an average particle diameter of 35 nm as abrasive grains and an aqueous ammonia solution having a pH of 10.2 to 10.8 as an alkaline aqueous solution.
  • the polishing liquid used may contain abrasive grains such as colloidal silica or may contain no abrasive grains.
  • the polishing allowance in the mirror finish polishing step S9 is preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and particularly preferably 0.3 ⁇ m or more and 0.7 ⁇ m or less.
  • pure water is supplied from the pipe 37 to remove the previously supplied polishing liquid.
  • the semiconductor wafer W is turned over after rinsing with pure water, and the back surface side is also polished on one side. In this case, it is preferable to perform polishing by changing the polishing condition on the front surface side and the polishing condition on the back surface side so that the front and back surfaces can be distinguished by the difference in glossiness of the obtained mirror surface.
  • the following operational effects can be achieved.
  • the mirror surface finishing polishing step S9 is performed after the mirror chamfering polishing step S7.
  • the outer peripheral portion of the surface of the semiconductor wafer W exposed by over polishing in the mirror chamfer polishing step S7 is covered with the oxide film. Therefore, since there is no difference in polishing rate due to the presence or absence of an oxide film present on the surface of the semiconductor wafer W during the mirror finish polishing step S9, as a result, the flatness of the outer peripheral portion of the surface of the semiconductor wafer W can be improved. it can.
  • Formation of the oxide film in step S8 is performed by chemical cleaning using a mixed solution containing ammonia water and hydrogen peroxide water. By performing chemical cleaning using a mixed solution containing ammonia water and hydrogen peroxide water, an oxide film having a film thickness of angstrom order can be formed uniformly and in a short time on the surface of the semiconductor wafer W.
  • Formation of the oxide film in step S8 is performed by repeating spin cleaning with ozone water and hydrogen fluoride water. By repeating spin cleaning with ozone water and hydrogen fluoride water, an oxide film having a thickness of angstrom order can be uniformly formed on the surface of the semiconductor wafer W in a short time.
  • the film thickness of the oxide film formed in step S8 is not less than 0.5 nm and not more than 2 nm. If the film thickness of the oxide film to be formed is 0.5 nm or more and 2 nm or less, there is little burden for removing the oxide film in the mirror finish polishing process.
  • the polishing allowance in the mirror finish polishing step S9 is not less than 0.1 ⁇ m and not more than 3 ⁇ m. If the polishing allowance in the mirror finish polishing step S9 is 0.1 ⁇ m or more and 3 ⁇ m or less, a semiconductor wafer W with high flatness and good surface roughness can be obtained.
  • the present invention is not limited to the above embodiment, and various improvements and design changes can be made without departing from the scope of the present invention. That is, the semiconductor wafer W after the mirror chamfer polishing step S7 is immersed in an aqueous hydrofluoric acid solution to remove all oxide films existing on the surface layer of the semiconductor wafer W, and then an oxide film is formed on the entire surface of the semiconductor wafer W. May be. Thus, after all the oxide film remaining after the mirror chamfer polishing step S7 is removed, an oxide film is formed on the entire surface of the semiconductor wafer W in step S8. Therefore, the difference in polishing rate during the mirror finish polishing step S9 hardly occurs, and the flatness of the outer peripheral portion of the surface of the semiconductor wafer W can be further improved.
  • the number of wafer holding holes formed in the carrier 15 of the double-side polishing apparatus 10 shown in FIG. 2 may be one (single wafer type) or plural.
  • the size of the wafer holding hole is arbitrarily changed according to the size of the semiconductor wafer W to be polished.
  • a single-side polishing apparatus 30 as shown in FIG. Good.
  • Example 1 As the semiconductor wafer W, a silicon wafer having a diameter of 300 mm, a crystal orientation (100), and boron was prepared. First, using the double-side polishing apparatus 10 shown in FIG. 2, both the front and back surfaces of the silicon wafer were roughly polished, and the ESFQR of the silicon wafer after the rough polishing was adjusted within the range of 30 to 50 nm.
  • As the polishing cloth polyurethane having a Shore A hardness of 80 or more and 90 or less was used, and as the polishing liquid, an aqueous KOH solution having a pH of 10 to 11 and containing colloidal silica having an average particle diameter of 50 nm was used.
  • the polishing allowance in the rough polishing was about 10 ⁇ m on one side and about 20 ⁇ m in total on the front and back surfaces.
  • SC-1 solution a solution prepared by mixing ammonia water and hydrogen peroxide solution 1: 1 and diluting 5 to 30 times with pure water and heated to 50 to 80 ° C. was used. .
  • the chamfering polishing apparatus 20 shown in FIGS. 3A and 3B the chamfered portion of the cleaned silicon wafer was mirror-polished.
  • a non-woven fabric having an Asker C hardness of 55 to 56 was used as the polishing cloth, and a KOH aqueous solution having a pH of 10 to 11 containing colloidal silica abrasive grains having an average particle diameter of 50 nm was used as the polishing liquid.
  • Example 2 A semiconductor wafer W was manufactured in the same manner as in Example 1 except that the oxide film was formed on the entire surface of the silicon wafer by repeating spin cleaning with ozone water and hydrogen fluoride water.
  • Example 1 A semiconductor wafer W was manufactured in the same manner as in Example 1 except that after the mirror chamfering polishing process, the mirror surface finishing polishing process was performed without forming an oxide film on the silicon wafer.
  • ESFQR was calculated for these silicon wafers using a flatness measuring device (KLA-Tencor: WaferSight).
  • the sector (site size) is an edge exclusion area (Edge Extension) of 1 mm, and the whole circumference of the wafer is divided into 72 at intervals of 5 ° to form a sector on one side in the radial direction constituting the sector.
  • the length is 30 mm.
  • ESFQRmax indicates the maximum value among ESFQRs of all sectors on the wafer
  • ESFQRmean indicates the average value of ESFQRs of all sectors. The result is shown in FIG.
  • the ESFQRmean is about 0.051 ⁇ m in Example 1, whereas it is about 0.062 ⁇ m in Comparative Example 1, and the ESFQR quality in Example 1 is 0.01 ⁇ m compared to Comparative Example 1.
  • An improved result was obtained.
  • the result that the ESFQR quality was improved by about 0.01 ⁇ m as compared with Comparative Example 1 was obtained. From this result, it was confirmed that the edge roll-off was improved by the manufacturing method of the present invention, and the flatness of the outer peripheral portion of the wafer surface was improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 半導体ウェーハの表裏両面を粗研磨する粗研磨工程(S5)と、前記粗研磨された半導体ウェーハの面取り部を鏡面研磨する鏡面面取り研磨工程(S7)と、前記鏡面面取りされた半導体ウェーハの表面または表裏両面を鏡面研磨する鏡面仕上研磨工程(S9)と、を行う半導体ウェーハの製造方法において、前記鏡面面取り研磨工程の後に、前記半導体ウェーハの全面に酸化膜を形成する工程(S8)を行った後、前記鏡面仕上研磨工程を行うことを特徴とする。

Description

半導体ウェーハの製造方法
 本発明は、半導体ウェーハの製造方法に関する。
 通常、半導体ウェーハの表裏面に行われる鏡面研磨は、複数段に分けて実施される。具体的には、半導体ウェーハの高平坦度化を目的とした粗研磨と、表面粗さ低減を目的とした仕上研磨とに大別される。
 また、半導体ウェーハの表裏面のみならず、面取り部からの発塵を防止する目的で、面取り部にも鏡面研磨が実施される。
 粗研磨は、キャリア内に半導体ウェーハを収納して半導体ウェーハの表裏両面を同時に研磨する両面同時研磨により行われる。この両面同時研磨では、半導体ウェーハとキャリア内周面との接触により、面取り部に傷や圧痕が発生する。したがって、面取り部の鏡面研磨は、発生する傷や圧痕の除去を兼ねて、粗研磨後に実施されるのが一般的である。
 しかし、面取り部の鏡面研磨に用いられる研磨パッドには軟質の研磨布を使用するため、この軟質の研磨布が面取り部だけでなく、ウェーハ表面側にまで回り込んだ状態で研磨が進行してしまう問題があった(以後、オーバーポリッシュともいう。)。このオーバーポリッシュが生じると、ウェーハ外周部の厚みが薄くなってしまう不具合を生じる(以後、エッジロールオフともいう。)。
 上記オーバーポリッシュを起因とするエッジロールオフの悪化を防止する方法として、両面研磨工程の後に、半導体ウェーハ表裏両面に樹脂製の保護膜を形成し、鏡面面取り工程を行い、その後に樹脂製の保護膜を除去する半導体ウェーハの製造方法が開示されている(例えば、特許文献1参照。)。特許文献1では、半導体ウェーハの表裏面に形成する樹脂製の保護膜によって鏡面面取り工程時のオーバーポリッシュを抑制することで、エッジロールオフを防止する。
特開2006-237055号公報
 しかしながら、上記特許文献1に示される方法では、樹脂による保護膜形成及び樹脂製保護膜を除去するための洗浄がそれぞれ必要になるため、コストアップに繋がる問題があった。
 また、保護膜を形成するための樹脂が、表裏両面だけでなく、面取り部にまで及んでしまうと、面取り部の鏡面研磨工程での研磨が部分的あるいは全体的に抑制されてしまう。そのため、面取り部には樹脂が及ばないように、ウェーハ表裏両面のみに保護膜を正確に形成する必要があるが、技術的に困難であった。
 更に、樹脂製保護膜の除去のための洗浄では、一旦除去した樹脂が再付着する、樹脂製保護膜が完全に除去されないなどの問題があった。
 本発明の目的は、半導体ウェーハ表面の外周部の平坦度を向上させることができる、半導体ウェーハの製造方法を提供することにある。
 通常、粗研磨と鏡面仕上研磨とでは、砥粒サイズや配合成分が異なる研磨液を使用する。そのため、粗研磨後の半導体ウェーハ表面に残存する砥粒や研磨液を、後に続く鏡面仕上研磨に持ち込まないように、粗研磨後の半導体ウェーハに対して、洗浄処理が行われる。洗浄処理では、アンモニア水及び過酸化水素を含む洗浄液(SC-1)などが使用される。
 本発明者らの実験によれば、粗研磨された半導体ウェーハを洗浄処理した後、面取り部に鏡面面取り研磨を行い、その後に表面または表裏両面を鏡面仕上研磨すると、半導体ウェーハ表面の外周部の平坦度が悪化する問題があることが判明した。
 この原因について、鋭意研究した結果、以下の知見を得た。
 半導体ウェーハに対して、SC-1洗浄などの洗浄処理が行われると、洗浄処理された半導体ウェーハの全面には不可避的に厚さオングストローム程度の酸化膜が形成される。
 一方、近年、ウェーハ面取り部の鏡面研磨の技術開発も進み、使用する研磨布やスラリーの種類などの改良により、オーバーポリッシュによるエッジロールオフ発生の問題は殆ど生じない状況にまで改善されてきている。
 しかし、図8Aに示すように、洗浄処理によって形成された極薄の酸化膜では、鏡面面取り研磨によるオーバーポリッシュによって、半導体ウェーハ表面の外周部に存在する酸化膜が除去され、シリコン面が露出した半導体ウェーハが形成される。
 この状態で次の鏡面仕上研磨を行うと、図8Bに示すように、半導体ウェーハ表面において酸化膜が存在する部分と存在しない部分とで研磨レートの差を生じる。そして、酸化膜が存在しない外周部での研磨進行が速くなって、外周部から先に研磨されてしまうため、エッジロールオフが悪化してしまうことが明らかとなった。
 本発明の半導体ウェーハの製造方法では、半導体ウェーハの表裏両面を粗研磨する粗研磨工程と、前記粗研磨された半導体ウェーハの面取り部を鏡面研磨する鏡面面取り研磨工程と、前記鏡面面取りされた半導体ウェーハの表面または表裏両面を鏡面研磨する鏡面仕上研磨工程と、を行う半導体ウェーハの製造方法において、前記鏡面面取り研磨工程の後に、前記半導体ウェーハの全面に酸化膜を形成した後、前記鏡面仕上研磨工程を行うことを特徴とする。
 本発明によれば、鏡面面取り研磨工程の後に、半導体ウェーハの全面に酸化膜を形成することで、オーバーポリッシュによって露出した半導体ウェーハ表面の外周部が酸化膜によって覆われる。したがって、酸化膜形成後に行う鏡面仕上研磨時に、半導体ウェーハ表面に存在する酸化膜の有無による研磨レートの差を生じることがないため、結果として、半導体ウェーハ表面の外周部の平坦度を向上させることができる。
 本発明の半導体ウェーハの製造方法では、前記酸化膜の形成がアンモニア水及び過酸化水素水をそれぞれ含む混合液を用いた化学洗浄により行われることが好ましい。
 この発明によれば、アンモニア水及び過酸化水素水をそれぞれ含む混合液を用いた化学洗浄をすることで、半導体ウェーハ表面に膜厚がオングストロームオーダーの酸化膜を均一に、かつ短時間で形成することができる。
 本発明の半導体ウェーハの製造方法では、前記酸化膜の形成がオゾン水及びフッ化水素水によるスピン洗浄の繰り返しにより行われることが好ましい。
 この発明によれば、オゾン水及びフッ化水素水によるスピン洗浄を繰り返すことで、半導体ウェーハ表面に膜厚がオングストロームオーダーの酸化膜を均一に、かつ短時間で形成することができる。
 本発明の半導体ウェーハの製造方法では、前記形成される酸化膜の膜厚が0.5nm以上2nm以下であることが好ましい。
 この発明によれば、形成する酸化膜の膜厚が0.5nm以上2nm以下であれば、鏡面仕上研磨工程において、酸化膜除去のための取り代負担が少ない。
 本発明の半導体ウェーハの製造方法では、前記鏡面仕上研磨工程での研磨取り代が0.1μm以上3μm以下であることが好ましい。
 この発明によれば、鏡面仕上研磨工程での研磨取り代が0.1μm以上3μm以下であれば、高い平坦度で、かつ良好な表面粗さの半導体ウェーハが得られる。
本発明の実施形態に係る半導体ウェーハの製造工程を表すフローチャートである。 本実施形態における両面研磨装置の構成を表す概略図である。 本実施形態における面取り研磨装置を示す部分拡大概略図である。 本実施形態における面取り研磨装置を示す平面図である。 本実施形態の製造工程における半導体ウェーハの部分拡大断面図であり、鏡面面取り研磨後である。 本実施形態の製造工程における半導体ウェーハの部分拡大断面図であり、酸化膜形成後である。 本実施形態の製造工程における半導体ウェーハの部分拡大断面図であり、鏡面仕上研磨後である。 本実施形態における片面研磨装置を示す概略図である。 本実施形態における半導体ウェーハのSFQRの全体図である。 実施例1及び比較例1のESFQR分析結果を示す図である。 従来の製造工程における半導体ウェーハの部分拡大断面図であり、鏡面面取り研磨後である。 従来の製造工程における半導体ウェーハの部分拡大断面図であり、鏡面仕上研磨後である。
 以下、本発明の実施形態を図面を参照して説明する。
 図1には、本発明の実施形態に係る半導体ウェーハの製造工程が示されている。
 先ず、CZ法等により引き上げられた単結晶インゴットを、マルチワイヤソー等によってスライス切断する(工程S1)。次いで、スライスしたウェーハの欠けや割れを防止するために、ウェーハの角隅部等に面取りを行う(工程S2)。
 次に、面取りしたウェーハの表面を平坦化するために、ラッピングや平面研削を行う(工程S3)。そして、ウェーハに残留する面取り時及びラッピング時に発生した加工変質層を除去するために、エッチングによる化学研磨を行う(工程S4)。
〔粗研磨工程S5〕
 次に、エッチングされた半導体ウェーハの表裏両面を粗研磨する。
 粗研磨工程S5は、所望とする厚みまで半導体ウェーハを研磨することを目的に行われる。具体的には、ウレタン樹脂などを固めた硬質素材の研磨布を用い、研磨速度が比較的速い条件で、研磨後の半導体ウェーハの厚さのバラツキを小さく、平坦化するように研磨が行われる。
 この粗研磨工程S5では、研磨布の種類や遊離砥粒サイズを変更して、研磨取り代を複数段階(例えば1~3段階)に分けて研磨処理を行ってもよい。また、遊離砥粒を用いないアルカリ溶液による無砥粒研磨を採用してもよい。
 <両面研磨装置の構成>
 本実施形態の粗研磨工程S5に用いる両面研磨装置について説明する。
 図2に示すように、両面研磨装置10は、上定盤11、下定盤12、インナーギア13、アウターギア14、及び複数のキャリア15を備えて構成され、キャリア15内には、複数の半導体ウェーハWが収納される。図2では、1枚のキャリア15内に3枚の半導体ウェーハWが収納されるように構成される。
 上定盤11は、定盤本体111と、この定盤本体111を下定盤12に対して接近離間させる昇降機構112とを備えて構成される。
 定盤本体111は、略円板状に形成され、図2では図示を略したが、その下面には半導体ウェーハWを研磨する際に半導体ウェーハWの面と当接する研磨パッド113が設けられる。また、定盤本体111の上面には、研磨時に研磨スラリーの供給や純水でリンスするための供給孔が複数穿設され、研磨スラリーや純水を上定盤11及び下定盤12の間に供給できるようになっている。
 昇降機構112は、定盤本体111の略中央に設けられる軸部を有し、図示を略したが、上部に配置される門型フレームに設けられるモータによって、定盤本体111を上下に昇降させる。
 下定盤12は、両面研磨装置10の台座上に回転自在に設けられる円板状体であり、この下定盤12の上定盤11と対向する面には研磨パッド121が設けられる。そして、研磨する際にはこの研磨パッド121が半導体ウェーハWの面と当接する。
 インナーギア13は、下定盤12の円板の略中心に、下定盤12と独立して回転するように設けられ、その外周側面には、キャリア15と噛合する歯131が形成されている。
 アウターギア14は、下定盤12を囲むリング状体から構成され、リングの内側面には、キャリア15と噛合する歯141が形成されている。
 上定盤11、下定盤12、インナーギア13、及びアウターギア14の回転中心には、それぞれ駆動モータの回転軸が結合され、各駆動モータによってそれぞれが独立して回転するようになっている。
 キャリア15は、円板状体から構成され、その外周側面には前記のインナーギア13及びアウターギア14と噛合する歯151が形成される。また円板状体内部には、複数のウェーハ保持孔152が形成され、このウェーハ保持孔152内部に半導体ウェーハWが収納される。
 研磨パッド113及び研磨パッド121に貼設される研磨布としては、ポリウレタンを使用することが好ましい。ポリウレタンは、ショアA硬度が80以上90以下の範囲内のものを使用することが特に好ましい。研磨液としては、砥粒が含有されたアルカリ水溶液を使用することが好ましい。このうち、砥粒としては平均粒径50nmのコロイダルシリカ、アルカリ水溶液としてはpH10~11のKOH水溶液を使用することが特に好ましい。
 <両面研磨装置による粗研磨工程S5の作用>
 次に、前述した両面研磨装置10による粗研磨の作用について説明する。
 まず、下定盤12上にキャリア15をセットし、ウェーハ保持孔152内に半導体ウェーハWを収納する。次に、昇降機構112により上定盤11を下降させ、上定盤11を下方向に所定の圧力で加圧した状態で、上定盤11の定盤本体111に形成された供給孔から研磨スラリーを供給し、それぞれの駆動モータを駆動させることにより、両面研磨が行われる。
 研磨中、キャリア15は、外周の歯151がインナーギア13及びアウターギア14と噛合しているため、自転をしつつインナーギア13の回りを公転するように動作し、研磨パッド113及び研磨パッド121全体で半導体ウェーハWの研磨が実施される。
 なお、半導体ウェーハWは、下側が表面研磨、上側が裏面研磨となるように配置され、下定盤12に取り付けられる研磨パッド121が半導体ウェーハWの表面研磨用、上定盤11に取り付けられる研磨パッド113が半導体ウェーハWの裏面研磨用となる。
 粗研磨工程S5における研磨取り代は、片面が10μm、表裏両面合計で20μm程度が好ましい。また、粗研磨工程S5後の半導体ウェーハWのESFQRが30~50nmとなるように調整することが好適である。ESFQR(Edge flatness metric, Sector based, Front surface referenced, least sQuares fit reference plane, Range of the data within sector)とは、図6に示すような、ウェーハ全周の外周部域に形成した扇型の領域(セクター)内のSFQRを測定した値である。
〔洗浄工程S6〕
 次に、粗研磨工程S5を終えた半導体ウェーハWを洗浄する。
 粗研磨工程S5後の半導体ウェーハW表面には、粗研磨工程S5で使用した砥粒や研磨液などが残存している。そして、粗研磨工程S5と後述する鏡面仕上研磨工程S9とでは、砥粒サイズや配合成分が異なる研磨液を使用する。そのため、この工程S6では、残存する砥粒や研磨液を後に続く鏡面仕上研磨工程S9に持ち込まないように、半導体ウェーハWが洗浄される。
 ここでの洗浄では、アンモニア水及び過酸化水素水を含む洗浄液(SC-1)などを使用することが好適である。例えば、アンモニア水と過酸化水素水を1:1で混合し、これを5~30倍に純水希釈して調製された、50~80℃に加温したSC-1液によるウェットベンチ洗浄により行うことが特に好ましい。
 上記SC-1液による洗浄後は、半導体ウェーハWを純水でリンスする。洗浄を終えた半導体ウェーハWの全面には、不可避的に、膜厚が約1nm以上約1.1nm以下(約10Å以上約11Å以下)の自然酸化膜が形成される。
〔鏡面面取り研磨工程S7〕
 次に、洗浄工程S6を終えた半導体ウェーハWの面取り部を鏡面研磨する。
 工程S7において、半導体ウェーハWの面取り部を鏡面研磨するのは、面取り部からの発塵を防止するため、そして、粗研磨工程S5において、半導体ウェーハWとキャリア内周面との接触により、面取り部に生じた傷や圧痕を除去するためである。
 <面取り研磨装置の構成>
 本実施形態の鏡面面取り研磨工程S7に用いる面取り研磨装置について説明する。図3Aは面取り研磨装置の部分拡大概略図であり、図3Bは面取り研磨装置の平面図である。
 図3Aに示すように、面取り研磨装置20は、半導体ウェーハWの下面を吸着するウェーハ吸着部21と、このウェーハ吸着部21で吸着された半導体ウェーハWを鏡面研磨する研磨部22と、研磨部22の上部には研磨液を供給するための配管23を備える。
 ウェーハ吸着部21は、半導体ウェーハWの下面を吸着により保持する、保持手段としての吸着ステージ211と、この吸着ステージ211を回転させる回転手段212とを備える。
 研磨部22は、半導体ウェーハWの面取り部を鏡面研磨する研磨ホイール221と、研磨ホイール221を回転させたり、上下方向に昇降させたり、半導体ウェーハWに押し付ける駆動手段(図示省略)とを備える。研磨ホイール221は、上方傾斜面研磨パッド222、垂直面研磨パッド223及び下方傾斜面研磨パッド224から構成される。
 なお、図3Aでは、半導体ウェーハWの面取り部に対する位置関係を説明するために、各研磨パッドを図の右側に並べて示したが、実際には、図3Bに示すように、各研磨パッドがそれぞれ同じ長さの円弧状に形成され、所定の間隔をあけて半導体ウェーハWの周りに配置する構成となっている。
 また、各研磨パッドには研磨布がそれぞれ貼付けられる。面取り研磨装置20の各研磨パッドに貼設される研磨布としては、不織布を使用することが好ましい。不織布は、アスカーC硬度が55~56の範囲内のものを使用することが特に好ましい。研磨液としては、砥粒が含有されたアルカリ水溶液を使用することが好ましい。このうち、砥粒としては平均粒径50nmのコロイダルシリカ、アルカリ水溶液としてはpH10~11のKOH水溶液を使用することが特に好ましい。
 <面取り研磨装置による鏡面面取り研磨工程S7の作用>
 次に、前述した面取り研磨装置20による鏡面面取り研磨工程の作用について説明する。
 先ず、半導体ウェーハWの下面をウェーハ吸着部21に吸着して半導体ウェーハWを保持させる。そして、研磨ホイール221の各研磨パッド222,223,224を所定の圧力で面取り部の対応する箇所にそれぞれ押し付けて、押し付けた状態を維持する。
 次に、配管23から研磨液を研磨布に供給しながら、図3Bに示すように、回転手段212を回転させて半導体ウェーハWを回転させるとともに、駆動手段により研磨ホイール221を回転させて各研磨パッド222,223,224を回転させる。
 これにより、半導体ウェーハWの面取り部の上方が上方傾斜面研磨パッド222によって、面取り部の中央部が垂直面研磨パッド223によって、及び面取り部の下方が下方傾斜面研磨パッド224によってそれぞれ研磨される。
 図4Aに示すように、この鏡面面取り研磨によって、面取り部に存在する酸化膜が除去されるとともに、面取り部が鏡面に加工される。粗研磨工程S5で生じた傷や圧痕も除去される。
 また、面取り部だけでなく、オーバーポリッシュによって、表裏両面の外周部に存在する酸化膜も除去され、外周部のシリコン面が露出する。
〔酸化膜形成工程S8〕
 次に、図4Bに示すように、鏡面面取り研磨工程S7の後に、半導体ウェーハWの全面に酸化膜を形成する。
 この工程S8において、半導体ウェーハWの全面に酸化膜を形成するのは、後述する鏡面仕上研磨工程S9において酸化膜の有無による研磨レートの差を生じなくさせるためである。
 酸化膜の形成は、アンモニア水及び過酸化水素水をそれぞれ含む混合液(SC-1)を用いた化学洗浄により行われることが好ましい。半導体ウェーハWの化学洗浄は、上記洗浄工程と同様に、アンモニア水と過酸化水素水を1:1で混合し、これを5~30倍に純水希釈して調製された、50~80℃に加温したSC-1液によるウェットベンチ洗浄により行うことが特に好ましい。
 上記SC-1液による洗浄後は、半導体ウェーハWを純水でリンスする。化学洗浄を終えた半導体ウェーハWの全面には、不可避的に、膜厚が約1nm以上約1.1nm以下(約10Å以上約11Å以下)の自然酸化膜が形成される。
 また、酸化膜の形成は、オゾン水及びフッ化水素水によるスピン洗浄の繰り返しにより行われることが好ましい。スピン洗浄は、例えば枚葉式スピン装置を用いて行われる。
 本実施形態におけるスピン洗浄は、オゾン水によるスピン洗浄及びフッ化水素水によるスピン洗浄をそれぞれ繰り返す。即ち、洗浄液の種類を変更したスピン洗浄を交互に行う。これにより、半導体ウェーハWの表面及び面取り部が洗浄処理され、半導体ウェーハWの表面及び面取り部に酸化膜が形成される。また、各洗浄液によるスピン洗浄の間には、半導体ウェーハWを純水でリンスすることが好ましい。
 そして、表面側のスピン洗浄を終えたら、半導体ウェーハWを純水でリンスした後に、半導体ウェーハWを裏返し、裏面側についても同様にスピン洗浄が行われる。このスピン洗浄を終えた半導体ウェーハWの全面には、膜厚が0.8nm以上1.2nm以下の自然酸化膜が形成される。
〔鏡面仕上研磨工程S9〕
 最後に、工程S8で全面に酸化膜を形成した後、半導体ウェーハWの表面または表裏両面を鏡面研磨する。
 鏡面仕上研磨工程S9は、半導体ウェーハWの表面の粗さを改善することを目的に行われる。具体的には、スエードのような軟質の研磨布と微小サイズの遊離砥粒を用い、マイクロラフネスやヘイズといった半導体ウェーハWの表面上の微小な面粗さのバラツキを低減するように研磨が行われる。
 この鏡面仕上研磨工程S9も粗研磨工程S5と同様に、研磨布の種類や遊離砥粒サイズを変更しながら、研磨取り代を複数段階に分けて研磨処理を行ってもよい。
 <片面研磨装置の構成>
 本実施形態の鏡面仕上研磨工程S9に用いる片面研磨装置について説明する。
 図5に示すように、片面研磨装置30は、大きな円板であり、その底面中心に接続されたシャフト31によって回転する回転定盤32と、加圧ヘッド33及びこれに接続して加圧ヘッド33を回転させるシャフト34からなるウェーハ保持具35とを備える。
 回転定盤32の上面には、研磨布321が貼付けられ、加圧ヘッド33の下面には、半導体ウェーハWが固着される研磨プレート331が取付けられ、回転定盤32の上部には、研磨液を供給するための配管36や純水を供給するための配管37が設けられている。
 片面研磨装置30に貼設される研磨布321としては、スエードを使用することが好ましい。研磨液としては、砥粒が含有されたアルカリ水溶液を使用することが好ましい。このうち、砥粒としては平均粒径35nmのコロイダルシリカ、アルカリ水溶液としてはpH10.2~10.8のアンモニア水溶液を使用することが特に好ましい。
 なお、使用する研磨液は、コロイダルシリカなどの砥粒が含有されるものであっても、砥粒を含まないものであっても構わない。
 <片面研磨装置による鏡面仕上研磨工程S9の作用>
 次に、前述した片面研磨装置30による鏡面仕上研磨工程の作用について説明する。
 先ず、半導体ウェーハWの裏面を加圧ヘッド33の研磨プレート331に固着して半導体ウェーハWを保持させる。そして、加圧ヘッド33を下降させて、所定の圧力で下方に押し付けることにより、半導体ウェーハWの表面を研磨布321に押さえつけた状態とする。
 次に、半導体ウェーハWを研磨布321に押さえつけた状態を維持し、配管36から研磨液を研磨布321に供給しながら、加圧ヘッド33を回転させて半導体ウェーハWを回転させるとともに、回転定盤32を回転させて研磨布321を回転させる。
 これにより、半導体ウェーハWの表面が研磨布321によって研磨される。
 図4Cに示すように、この鏡面仕上研磨により、半導体ウェーハWの表面に存在する酸化膜が除去されるとともに、表面が鏡面に加工される。
 鏡面仕上研磨工程S9における研磨取り代は、0.1μm以上3μm以下が好ましく、0.3μm以上0.7μm以下が特に好ましい。所定の研磨取り代まで研磨されたら、配管37から純水を供給することにより、先に供給した研磨液を除去する。
 なお、半導体ウェーハWの表裏両面を鏡面仕上研磨する場合には、表面側の片面研磨を終えたら、純水でリンスした後に半導体ウェーハWを裏返し、裏面側も片面研磨する。この場合、表面側の研磨条件と裏面側の研磨条件を変更して研磨し、得られる鏡面の光沢度の差によって表裏面の区別がつくようにすることが好ましい。
〔実施形態の作用効果〕
 上述したように、上記実施形態では、以下のような作用効果を奏することができる。
(1)本発明によれば、鏡面面取り研磨工程S7の後に、半導体ウェーハWの全面に酸化膜を形成する工程S8を行った後、鏡面仕上研磨工程S9を行う。
 これにより、鏡面面取り研磨工程S7でのオーバーポリッシュによって露出した半導体ウェーハW表面の外周部が酸化膜によって覆われる。したがって、鏡面仕上研磨工程S9時に、半導体ウェーハW表面に存在する酸化膜の有無による研磨レートの差を生じることがないため、結果として、半導体ウェーハW表面の外周部の平坦度を向上させることができる。
(2)工程S8における酸化膜の形成は、アンモニア水及び過酸化水素水をそれぞれ含む混合液を用いた化学洗浄により行われる。
 アンモニア水及び過酸化水素水をそれぞれ含む混合液を用いた化学洗浄をすることで、半導体ウェーハW表面に膜厚がオングストロームオーダーの酸化膜を均一に、かつ短時間で形成することができる。
(3)工程S8における酸化膜の形成は、オゾン水及びフッ化水素水によるスピン洗浄の繰り返しにより行われる。
 オゾン水及びフッ化水素水によるスピン洗浄を繰り返すことで、半導体ウェーハW表面に膜厚がオングストロームオーダーの酸化膜を均一に、かつ短時間で形成することができる。
(4)工程S8において形成される酸化膜の膜厚は0.5nm以上2nm以下である。
 形成する酸化膜の膜厚が0.5nm以上2nm以下であれば、鏡面仕上研磨工程において、酸化膜除去のための取り代負担が少ない。
(5)鏡面仕上研磨工程S9での研磨取り代は0.1μm以上3μm以下である。
 鏡面仕上研磨工程S9での研磨取り代が0.1μm以上3μm以下であれば、高い平坦度で、かつ良好な表面粗さの半導体ウェーハWが得られる。
〔他の実施形態〕
 なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
 すなわち、鏡面面取り研磨工程S7後の半導体ウェーハWをフッ化水素酸水溶液に浸漬して、半導体ウェーハWの表層に存在する酸化膜を全て除去した後に、半導体ウェーハWの全面に酸化膜を形成してもよい。これにより、鏡面面取り研磨工程S7後に残留する酸化膜を全て除去した後に、工程S8において半導体ウェーハWの全面に酸化膜を形成することになる。したがって、鏡面仕上研磨工程S9時の研磨レート差を殆ど生じさせることがないため、半導体ウェーハW表面の外周部の平坦度をより一層向上させることができる。
 また、粗研磨工程S5に用いる装置として、図2に示す両面研磨装置10のキャリア15に形成されるウェーハ保持孔の個数は、1個(枚葉式)でもよいし、複数個でもよい。ウェーハ保持孔の大きさは、研磨される半導体ウェーハWの大きさにより、任意に変更される。
 また、粗研磨工程S5は、図2に示す両面研磨装置10に代えて、前述した図5に示すような片面研磨装置30を用い、ウェーハ表裏面のそれぞれを片面ずつ粗研磨するようにしてもよい。
 また、鏡面面取り研磨で使用する面取り研磨装置に酸化膜成膜機構を設けた構成としてもよい。また、鏡面面取り研磨後の酸化膜形成を専用設備で実施する構成としてもよい。鏡面仕上研磨で使用する片面研磨装置の研磨前に酸化膜成膜機構を設ける構成としてもよい。
 その他、本発明の実施の際の具体的な手順、及び構造等は本発明の目的を達成できる範囲で他の構造等としてもよい。
 次に、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
〔実施例1〕
 半導体ウェーハWとして、直径300mm、結晶方位(100)、ボロンドープされたシリコンウェーハを用意した。
 先ず、図2に示す両面研磨装置10を用い、シリコンウェーハの表裏両面を粗研磨し、粗研磨後のシリコンウェーハのESFQRを30~50nmの範囲内に調整した。研磨布としては、ショアA硬度が80以上90以下の範囲内のポリウレタンを使用し、研磨液としては、平均粒径50nmのコロイダルシリカが含有したpH10~11のKOH水溶液を使用した。また粗研磨における研磨取り代は、片面側が10μm、表裏両面合計で20μm程度とした。
 次いで、粗研磨後のシリコンウェーハに対して、SC-1液によるウェットベンチ洗浄を行った。SC-1液としては、アンモニア水と過酸化水素水を1:1で混合し、これを5~30倍に純水希釈して調製された、50~80℃に加温したものを用いた。
 次に、図3A及び図3Bに示す面取り研磨装置20を用い、洗浄後のシリコンウェーハの面取り部を鏡面研磨した。研磨布としては、アスカーC硬度が55~56の範囲内の不織布を使用し、研磨液としては、平均粒径50nmのコロイダルシリカ砥粒が含有されたpH10~11のKOH水溶液を使用した。
 次に、鏡面面取り研磨後のシリコンウェーハに対して、SC-1液によるウェットベンチ洗浄を行い、シリコンウェーハの全面に酸化膜を形成した。SC-1液としては、アンモニア水と過酸化水素水を1:1で混合し、これを5~30倍に純水希釈して調製された、50~80℃に加温したものを用いた。形成された酸化膜の膜厚は約1.1nm(約11Å)であった。
 最後に、図5に示す片面研磨装置30を用い、酸化膜形成後のシリコンウェーハ表面を研磨取り代が0.5μmとなるように鏡面仕上研磨した。研磨布としては、スエードを使用し、研磨液としては、平均粒径35nmのコロイダルシリカ砥粒が含有されたpH10.2~10.8のアンモニア水溶液を使用した。
〔実施例2〕
 シリコンウェーハ全面への酸化膜形成をオゾン水及びフッ化水素水によるスピン洗浄の繰り返しにより行った以外は、実施例1と同様にして半導体ウェーハWを製造した。
〔比較例1〕
 鏡面面取り研磨工程後に、シリコンウェーハに対して酸化膜を形成せずに、鏡面仕上研磨工程を行った以外は、実施例1と同様にして半導体ウェーハWを製造した。
〔評価〕
 実施例1,2及び比較例1で得られたシリコンウェーハを複数枚用意し、これらのシリコンウェーハについて、平坦度測定器(KLA-Tencor社製:WaferSight)を用いてESFQRを算出した。ここで、セクター(サイトサイズ)は、図6に示すように、エッジ除外領域(Edge Extension)が1mmで、ウェーハ全周を5°間隔で72分割し、セクターを構成する径方向の一辺のセクター長さが30mmとしている。なお、ESFQRmaxとは、ウェーハ上の全セクターのESFQRの中の最大値を示し、ESFQRmeanは、全セクターのESFQRの平均値を示すものである。その結果を図7に示す。
 図7から明らかなように、実施例1ではESFQRmeanが約0.051μmであるのに対し、比較例1では約0.062μmと、実施例1は比較例1に比べてESFQR品質が0.01μm程度改善した結果が得られた。
 また、図示しないが、実施例2についても同様に、比較例1に比べてESFQR品質が0.01μm程度改善した結果が得られた。
 この結果から、本発明の製造方法によりエッジロールオフが改善し、ウェーハ表面の外周部の平坦度が向上することが確認された。
 W…半導体ウェーハ

Claims (5)

  1.  半導体ウェーハの表裏両面を粗研磨する粗研磨工程と、
     前記粗研磨された半導体ウェーハの面取り部を鏡面研磨する鏡面面取り研磨工程と、
     前記鏡面面取りされた半導体ウェーハの表面または表裏両面を鏡面研磨する鏡面仕上研磨工程と、
     を行う半導体ウェーハの製造方法において、
     前記鏡面面取り研磨工程の後に、前記半導体ウェーハの全面に酸化膜を形成した後、前記鏡面仕上研磨工程を行う
     ことを特徴とする半導体ウェーハの製造方法。
  2.  請求項1に記載の半導体ウェーハの製造方法において、
     前記酸化膜の形成がアンモニア水及び過酸化水素水をそれぞれ含む混合液を用いた化学洗浄により行われる
     ことを特徴とする半導体ウェーハの製造方法。
  3.  請求項1に記載の半導体ウェーハの製造方法において、
     前記酸化膜の形成がオゾン水及びフッ化水素水によるスピン洗浄の繰り返しにより行われる
     ことを特徴とする半導体ウェーハの製造方法。
  4.  請求項1ないし請求項3のいずれか1項に記載の半導体ウェーハの製造方法において、
     前記形成される酸化膜の膜厚が0.5nm以上2nm以下である
     ことを特徴とする半導体ウェーハの製造方法。
  5.  請求項1ないし請求項4のいずれか1項に記載の半導体ウェーハの製造方法において、
     前記鏡面仕上研磨工程での研磨取り代が0.1μm以上3μm以下である
     ことを特徴とする半導体ウェーハの製造方法。
PCT/JP2013/066230 2012-06-12 2013-06-12 半導体ウェーハの製造方法 WO2013187441A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380030575.1A CN104350583B (zh) 2012-06-12 2013-06-12 半导体晶片的制造方法
DE112013002901.4T DE112013002901B4 (de) 2012-06-12 2013-06-12 Herstellungsverfahren für Halbleiterwafer
KR1020147034907A KR101947614B1 (ko) 2012-06-12 2013-06-12 반도체 웨이퍼의 제조 방법
US14/406,625 US9293318B2 (en) 2012-06-12 2013-06-12 Semiconductor wafer manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012132637A JP6312976B2 (ja) 2012-06-12 2012-06-12 半導体ウェーハの製造方法
JP2012-132637 2012-06-12

Publications (1)

Publication Number Publication Date
WO2013187441A1 true WO2013187441A1 (ja) 2013-12-19

Family

ID=49758261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066230 WO2013187441A1 (ja) 2012-06-12 2013-06-12 半導体ウェーハの製造方法

Country Status (7)

Country Link
US (1) US9293318B2 (ja)
JP (1) JP6312976B2 (ja)
KR (1) KR101947614B1 (ja)
CN (1) CN104350583B (ja)
DE (1) DE112013002901B4 (ja)
TW (1) TWI509679B (ja)
WO (1) WO2013187441A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244962B2 (ja) * 2014-02-17 2017-12-13 株式会社Sumco 半導体ウェーハの製造方法
JP6045542B2 (ja) * 2014-09-11 2016-12-14 信越半導体株式会社 半導体ウェーハの加工方法、貼り合わせウェーハの製造方法、及びエピタキシャルウェーハの製造方法
CN105023839A (zh) * 2015-07-15 2015-11-04 中国电子科技集团公司第四十六研究所 一种制作双层结构硅片的方法
DE102015220924B4 (de) 2015-10-27 2018-09-27 Siltronic Ag Suszeptor zum Halten einer Halbleiterscheibe mit Orientierungskerbe, Verfahren zum Abscheiden einer Schicht auf einer Halbleiterscheibe und Halbleiterscheibe
DE102015224933A1 (de) * 2015-12-11 2017-06-14 Siltronic Ag Monokristalline Halbleiterscheibe und Verfahren zur Herstellung einer Halbleiterscheibe
CN107958835A (zh) * 2016-10-14 2018-04-24 上海新昇半导体科技有限公司 一种半导体晶圆的抛光方法
CN107953225A (zh) * 2016-10-14 2018-04-24 上海新昇半导体科技有限公司 半导体晶圆的抛光方法
CN106601590A (zh) * 2016-12-20 2017-04-26 上海电机学院 一种低损伤晶片减薄工艺
CN108807138A (zh) * 2017-04-28 2018-11-13 胜高股份有限公司 硅晶圆及其制造方法
CN108032451B (zh) * 2017-12-07 2020-07-10 苏州阿特斯阳光电力科技有限公司 一种硅棒切割方法
DE102018200415A1 (de) * 2018-01-11 2019-07-11 Siltronic Ag Halbleiterscheibe mit epitaktischer Schicht
DE112019004610T5 (de) * 2018-09-14 2021-09-02 Sumco Corporation Waferhochglanzabschrägverfahren, verfahren zur herstellung von wafern und wafer
CN109285762B (zh) * 2018-09-29 2021-05-04 中国电子科技集团公司第四十六研究所 一种氮化镓外延用硅片边缘加工工艺
US10964549B2 (en) * 2018-11-30 2021-03-30 Taiwan Semiconductor Manufacturing Company Limited Wafer polishing with separated chemical reaction and mechanical polishing
JP7021632B2 (ja) * 2018-12-27 2022-02-17 株式会社Sumco ウェーハの製造方法およびウェーハ
CN110473774A (zh) * 2019-08-23 2019-11-19 大同新成新材料股份有限公司 一种芯片硅生产用无尘加工工艺
JP7348021B2 (ja) * 2019-10-15 2023-09-20 株式会社荏原製作所 基板洗浄装置及び基板洗浄方法
CN112992654A (zh) * 2021-02-07 2021-06-18 西安奕斯伟硅片技术有限公司 减少硅片体金属含量的抛光方法及清洗设备
CN114792622A (zh) * 2022-06-27 2022-07-26 西安奕斯伟材料科技有限公司 硅片加工方法及硅片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345291A (ja) * 2000-05-31 2001-12-14 Mitsubishi Materials Silicon Corp 片面鏡面ウェーハの製造方法
JP2002043390A (ja) * 2000-07-25 2002-02-08 Shin Etsu Handotai Co Ltd シリコンウエーハの保管用水及び保管方法
JP2003142434A (ja) * 2001-10-30 2003-05-16 Shin Etsu Handotai Co Ltd 鏡面ウエーハの製造方法
JP2004193534A (ja) * 2002-09-05 2004-07-08 Toshiba Ceramics Co Ltd シリコンウエハの洗浄方法および洗浄されたシリコンウエハ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580600B2 (ja) * 1995-06-09 2004-10-27 株式会社ルネサステクノロジ 半導体装置の製造方法およびそれに使用される半導体ウエハ並びにその製造方法
WO2002035593A1 (fr) * 2000-10-26 2002-05-02 Shin-Etsu Handotai Co.,Ltd. Procede de production de plaquettes, appareil de polissage et plaquette
KR20030053085A (ko) 2001-12-22 2003-06-28 주식회사 실트론 실리콘 웨이퍼의 제조방법
KR100486144B1 (ko) * 2002-12-11 2005-04-29 주식회사 실트론 실리콘웨이퍼의 연마 방법
EP1801859A4 (en) * 2004-09-30 2009-02-11 Shinetsu Handotai Kk SOI WAFER CLEANING METHOD
JP2006237055A (ja) 2005-02-22 2006-09-07 Shin Etsu Handotai Co Ltd 半導体ウェーハの製造方法および半導体ウェーハの鏡面面取り方法
JP2007150167A (ja) * 2005-11-30 2007-06-14 Shin Etsu Handotai Co Ltd 半導体ウエーハの平面研削方法および製造方法
TWI370184B (en) 2006-09-06 2012-08-11 Sumco Corp Epitaxial wafer and method of producing same
US8664092B2 (en) * 2009-06-26 2014-03-04 Sumco Corporation Method for cleaning silicon wafer, and method for producing epitaxial wafer using the cleaning method
KR101104635B1 (ko) * 2009-09-25 2012-01-12 가부시키가이샤 사무코 에피택셜 실리콘 웨이퍼의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345291A (ja) * 2000-05-31 2001-12-14 Mitsubishi Materials Silicon Corp 片面鏡面ウェーハの製造方法
JP2002043390A (ja) * 2000-07-25 2002-02-08 Shin Etsu Handotai Co Ltd シリコンウエーハの保管用水及び保管方法
JP2003142434A (ja) * 2001-10-30 2003-05-16 Shin Etsu Handotai Co Ltd 鏡面ウエーハの製造方法
JP2004193534A (ja) * 2002-09-05 2004-07-08 Toshiba Ceramics Co Ltd シリコンウエハの洗浄方法および洗浄されたシリコンウエハ

Also Published As

Publication number Publication date
US20150162181A1 (en) 2015-06-11
TWI509679B (zh) 2015-11-21
DE112013002901B4 (de) 2024-05-02
KR20150008488A (ko) 2015-01-22
KR101947614B1 (ko) 2019-02-13
CN104350583A (zh) 2015-02-11
JP6312976B2 (ja) 2018-04-18
CN104350583B (zh) 2017-07-28
JP2013258226A (ja) 2013-12-26
DE112013002901T5 (de) 2015-02-19
US9293318B2 (en) 2016-03-22
TW201351497A (zh) 2013-12-16

Similar Documents

Publication Publication Date Title
JP6312976B2 (ja) 半導体ウェーハの製造方法
JP6244962B2 (ja) 半導体ウェーハの製造方法
JP4835069B2 (ja) シリコンウェーハの製造方法
JP6027346B2 (ja) 半導体ウェーハの製造方法
JP2006100799A (ja) シリコンウェーハの製造方法
JP3775176B2 (ja) 半導体ウェーハの製造方法及び製造装置
JP4103808B2 (ja) ウエーハの研削方法及びウエーハ
JP4366928B2 (ja) 片面鏡面ウェーハの製造方法
JP2003142434A (ja) 鏡面ウエーハの製造方法
JP2004356336A (ja) 半導体ウェーハの両面研磨方法
JP5287982B2 (ja) シリコンエピタキシャルウェーハの製造方法
JP2017098350A (ja) ウェーハの製造方法
JP4110801B2 (ja) 半導体ウェーハの研磨方法
JP2002025950A (ja) 半導体ウェーハの製造方法
JP2011091143A (ja) シリコンエピタキシャルウェーハの製造方法
JP2004319717A (ja) 半導体ウェーハの製造方法
JP2003062740A (ja) 鏡面ウェーハの製造方法
KR101581469B1 (ko) 웨이퍼 연마방법
JP2003133264A (ja) 鏡面ウエーハの製造方法
JP2009135180A (ja) 半導体ウェーハの製造方法
JPH10308368A (ja) 半導体ウェーハの製造方法
JP2003229385A (ja) 半導体ウェーハの製造方法
JP2003039310A (ja) ウェーハの研磨方法及びウェーハ
JP2018032735A (ja) ウェハの表面処理方法
JP2004281917A (ja) Soiウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14406625

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147034907

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130029014

Country of ref document: DE

Ref document number: 112013002901

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803883

Country of ref document: EP

Kind code of ref document: A1