WO2013187406A1 - 4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5h-1-ベンゾアゼピン化合物の製造方法及びその合成中間体 - Google Patents

4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5h-1-ベンゾアゼピン化合物の製造方法及びその合成中間体 Download PDF

Info

Publication number
WO2013187406A1
WO2013187406A1 PCT/JP2013/066076 JP2013066076W WO2013187406A1 WO 2013187406 A1 WO2013187406 A1 WO 2013187406A1 JP 2013066076 W JP2013066076 W JP 2013066076W WO 2013187406 A1 WO2013187406 A1 WO 2013187406A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
producing
reaction
produced
Prior art date
Application number
PCT/JP2013/066076
Other languages
English (en)
French (fr)
Inventor
聡一郎 川添
賢宏 秋葉
喜一 佐藤
章生 宮藤
和義 小櫃
伊藤 淳二
俊 平澤
古塩 裕之
Original Assignee
アステラス製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014521349A priority Critical patent/JPWO2013187406A1/ja
Priority to NO13804693A priority patent/NO2860175T3/no
Priority to LTEP13804693.3T priority patent/LT2860175T/lt
Priority to SI201330925T priority patent/SI2860175T1/en
Application filed by アステラス製薬株式会社 filed Critical アステラス製薬株式会社
Priority to ES13804693.3T priority patent/ES2659180T3/es
Priority to EP13804693.3A priority patent/EP2860175B1/en
Priority to DK13804693.3T priority patent/DK2860175T3/da
Priority to PL13804693T priority patent/PL2860175T3/pl
Priority to RS20180081A priority patent/RS56804B1/sr
Priority to US14/406,568 priority patent/US9598373B2/en
Publication of WO2013187406A1 publication Critical patent/WO2013187406A1/ja
Priority to US15/434,678 priority patent/US9951022B2/en
Priority to HRP20180032TT priority patent/HRP20180032T8/hr
Priority to CY20181100092T priority patent/CY1119983T1/el
Priority to US15/933,804 priority patent/US10508084B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/16Benzazepines; Hydrogenated benzazepines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/15Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C311/21Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes

Definitions

  • the present invention relates to (2Z) -N- (2-hydroxyethyl) -2- ⁇ 4,4,7-trifluoro-1- [4- ⁇ [(2R) -2-fluoropropyl] oxy ⁇ -2- (Trifluoromethyl) benzoyl] -1,2,3,4-tetrahydro-5H-1-benzazepine-5-ylidene ⁇ acetamide (hereinafter sometimes referred to as “compound of formula (1)”) And synthetic intermediates thereof.
  • the compound of formula (1) has an excellent action on the arginine vasopressin V2 receptor, and prevents and / or prevents frequent urination, urinary incontinence, enuresis, central diabetes insipidus, nocturia, nocturnal urination It is reported to be useful as an active ingredient of a therapeutic pharmaceutical composition (Patent Document 1).
  • the method for producing the compound of formula (1) (Example 55) described in Patent Document 1 is shown in Reaction Formula (I) with reference to Reference Examples and Examples described in the same document. I understand.
  • the method for producing the compound of the formula (8-M) from the compound of the formula (16) through the 10th to 15th steps shown in the reaction formula (I) the production is described in Non-Patent Document 1. The method is specifically described.
  • Ts represents p-toluenesulfonyl
  • Bn benzyl
  • Ac represents acetyl
  • Me represents methyl
  • DAST represents (diethylamino) sulfur trifluoride
  • EDC represents 1-ethyl- 3- (3-dimethylaminopropyl) carbodiimide hydrochloride is shown.
  • the method for producing the compound of the formula (1) disclosed in Patent Document 1 requires a very large number of steps of 18 steps when all the steps are combined, and for example, as described later, A process with a low yield, for example, a process with a yield of about 30% or less is included, and the total yield from the compound of formula (16) to the compound of formula (1) which is the final target product is about 6% Stays on. For this reason, since it has a big problem in terms of yield and cost, it is not always satisfactory industrially.
  • DAST diethylamino) sulfur trifluoride
  • the present invention provides a method for producing a compound of formula (1), which has fewer steps, has a higher yield and is lower in cost than conventional methods, and is suitable for industrial production as a pharmaceutical product, and its production.
  • the object is to provide synthetic intermediates useful in the process.
  • the present inventors have found the following improved method.
  • (i) By using appropriate raw materials and synthetic intermediates, the compound of formula (7) can be used without using DAST, which has safety concerns, and without requiring a step requiring purification by column chromatography.
  • a method for efficiently producing a product in an extremely short process (ii) a method for producing the compound of formula (8) in high yield by carrying out the reaction using an appropriate reagent, and / or (iii) A method for producing the compound of formula (1) in a high yield by avoiding the use of EDC, which has a concern of toxicity.
  • a step of producing a compound of formula (6) from a compound of formula (8) and a compound of formula (7), a step of producing a compound of formula (5) from a compound of formula (6), and a compound of formula (5) It is shown in the following reaction formula, which includes a step of reacting with thionyl chloride (4) to produce a compound of formula (3) and a step of reacting the compound of formula (3) with 2-aminoethanol (2) to amidate.
  • a method for producing a compound of formula (1) includes a step of reacting with thionyl chloride (4) to produce a compound of formula (3) and a step of reacting the compound of formula (3) with 2-aminoethanol (2) to amidate.
  • R 1 represents lower alkyl, and Me represents methyl.
  • Ts represents p-toluenesulfonyl
  • Ph represents phenyl
  • R 1 represents lower alkyl
  • a process for producing a compound of formula (8) represented by the following reaction formula (X-2) comprising a step of producing a compound of formula (8) from a compound of formula (9-S)
  • a method for producing a compound of formula (1) comprising using the compound of formula (7) produced by any one of the production methods.
  • [7] The method for producing the compound of formula (8) represented by (X-1) described in [3], the method for producing the compound of formula (7) represented by (Z-1) of [6], and [2] A method for producing a compound of formula (1), comprising the production method according to [2].
  • [8] The method for producing the compound of formula (8) represented by (X-2) described in [3], the method for producing the compound of formula (7) represented by (Z-1) of [6], and [2] A method for producing a compound of formula (1), comprising the production method according to [2].
  • Formula (1) comprising the method for producing the compound of formula (11) represented by (Y-1) as described in [4] and the method for producing according to any one of [7] to [12].
  • Compound production method [14] Of the formula (1), comprising the production method of the compound of formula (11) represented by (Y-1) as described in [5] above and the production method according to any of [7] to [12] Compound production method.
  • examples of the “leaving group” represented by “Lv” generally include desorption such as fluoro, chloro, methanesulfonyloxy, p-toluenesulfonyloxy, trifluoromethanesulfonyloxy and the like. It is a group that is widely used as a leaving group. In one embodiment, fluoro, chloro, or methanesulfonyloxy is used. In another embodiment, fluoro or chloro is used. In another embodiment, fluoro is used.
  • the “lower alkyl” represented by R 1 and R 2 is a straight or branched alkyl having 1 to 6 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert -Butyl, pentyl and the like, and in one embodiment, methyl or ethyl, and in another embodiment, methyl.
  • the present invention includes compounds described in the following reaction formulas (II) (i) to (iii) and salts thereof, and production methods using them.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, Acid addition salts with organic acids such as succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, aspartic acid or glutamic acid, sodium, potassium Inorganic bases containing metals such as calcium and magnesium, salts with organic bases such as methylamine, ethylamine, ethanolamine, lysine, ornithine and dicyclohexylamine, and ammoni
  • the production method of the present invention has a smaller number of steps, higher yield and lower cost than conventional methods, and can be suitably used for industrial production of a compound of formula (1) as a pharmaceutical product.
  • the synthetic intermediate of the present invention is useful as a synthetic intermediate in the production method of the present invention.
  • FIG. 1 shows a powder X-ray diffraction pattern of an ⁇ -type crystal of the compound of formula (1) produced in Example 1.
  • FIG. 2 shows a DSC chart of the ⁇ -type crystal of the compound of formula (1) produced in Example 1.
  • FIG. 3 shows a powder X-ray diffraction pattern of a ⁇ -type crystal of the compound of formula (1) produced in Example 2 (Alternative Method 2 of Step 12 according to Example 1).
  • FIG. 4 shows a DSC chart of a ⁇ -type crystal of the compound of formula (1) produced in Example 2 (Alternative Method 2 of Step 12 according to Example 1).
  • reaction formula (II) The method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5H-1-benzazepine compound of the present invention (first step to twelfth step) is shown in reaction formula (II), Hereinafter, an aspect of each process will be specifically described in the order of the first process to the twelfth process.
  • the compound of Formula (16) can be manufactured by the method of a nonpatent literature 1, for example, and other raw material compounds can also be manufactured by a method obvious to those skilled in the art.
  • Lv represents a leaving group
  • X represents halogen
  • iPr represents isopropyl
  • Me represents methyl
  • R represents isopropyl or (2R) -2-fluoropropyl
  • Ts represents p-toluene.
  • a compound of formula (7d) which is an acid halide is produced by allowing a halogenating agent to act on the compound of formula (7e).
  • the compound of formula (7c), which is an isopropyl ester is produced by allowing 2-propanol to act in the presence of a suitable base without isolating the resulting acid halide.
  • the halogenating agent is not particularly limited, and examples thereof include phosphorus oxychloride, thionyl chloride, oxalyl dichloride and the like.
  • the reaction can be carried out in a solvent inert to the reaction such as halogenated hydrocarbons, aromatic hydrocarbons, ethers, etc., under cooling to heating, preferably at ⁇ 20 ° C. to 60 ° C.
  • the base used is not particularly limited, and examples thereof include organic bases such as triethylamine, diisopropylethylamine, and pyridine.
  • reaction formula (II) (i) is subjected to an aromatic nucleophilic substitution reaction by allowing (2R) -2-fluoropropanol (7b) to act on the compound of the formula (7c) having a leaving group Lv. And a step of producing a compound of formula (7a).
  • the compound of the formula (7c) and (2R) -2-fluoropropanol (7b) are used in an equal amount or in excess of one, and these mixtures are inert to the reaction in the presence of a suitable base.
  • the reaction mixture is stirred for 0.1 hour to 5 days, usually in a non-solvent or in the absence of a solvent, under cooling to heating under reflux, preferably at 0 ° C. to 80 ° C.
  • solvent used here examples include, but are not limited to, aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, dichloromethane and 1,2-dichloroethane.
  • Aroma hydrocarbons such as benzene, toluene and xylene
  • ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, dichloromethane and 1,2-dichloroethane.
  • Halogenated hydrocarbons such as chloroform, N, N-dimethylformamide, dimethyl sulfoxide, ethyl acetate, acetonitrile, and mixtures thereof.
  • examples of the base include organic bases such as triethylamine, N, N-diisopropylethylamine or N-methylmorpholine, or potassium carbonate, sodium carbonate, cesium carbonate, potassium tert-butoxide, sodium hydride, or potassium hydroxide.
  • organic bases such as triethylamine, N, N-diisopropylethylamine or N-methylmorpholine
  • potassium carbonate sodium carbonate
  • cesium carbonate potassium tert-butoxide
  • sodium hydride sodium hydroxide
  • potassium hydroxide potassium hydroxide
  • an inorganic base is used.
  • cesium carbonate, sodium hydride, or potassium tert-butoxide is used.
  • potassium tert-butoxide is used. It is.
  • the reaction time varies depending on the base used, and as described in “(Another method of the second step according to Example 1)” described in Example 2 described later.
  • cesium carbonate it takes about 27 hours at 25 to 50 ° C. until the completion of the reaction, but as described in Example 1 (first to third steps), potassium tert-butoxide is added.
  • the reaction is completed in 5 hours at 0 ° C., and the reaction time can be shortened.
  • the third step shown in the reaction formula (II) (i) is a step for producing the compound of the formula (7) by subjecting the compound of the formula (7a) to a hydrolysis reaction.
  • the hydrolysis reaction can be performed, for example, with reference to Greene and Wuts, “Protective Groups in Organic Synthesis”, 4th edition, John Wiley & Sons Inc, 2006.
  • the fourth step shown in the reaction formula (II) (ii) is a step for producing the compound of the formula (14) by the reaction of the compound of the formula (16) with methyl 4-chlorobutyrate (15).
  • the compound of the formula (16) and methyl 4-chlorobutyrate (15) are used in an equal amount or in excess, and the mixture is cooled in a solvent inert to the reaction in the presence of a base. From 0 to 80 ° C., usually for 0.1 hour to 5 days.
  • solvent used here examples include, but are not limited to, aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, dichloromethane and 1,2-dichloroethane.
  • Aroma hydrocarbons such as benzene, toluene and xylene
  • ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, dichloromethane and 1,2-dichloroethane.
  • Halogenated hydrocarbons such as chloroform, N, N-dimethylformamide, dimethyl sulfoxide, ethyl acetate, acetonitrile, and mixtures thereof.
  • bases include triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, organic bases such as n-butyllithium, sodium carbonate, potassium carbonate, sodium hydride, potassium tert-butoxide, etc. Of inorganic bases. In addition, it may be advantageous to carry out the reaction in the presence of an iodide such as potassium iodide.
  • the fifth step shown in the reaction formula (II) (ii) is a step for producing the compound of the formula (13) by reacting the compound of the formula (14) in the presence of a suitable base.
  • the compound of the formula (14) is stirred in the presence of a base in a solvent inert to the reaction under cooling to heating under reflux, preferably at ⁇ 20 ° C. to 80 ° C., usually for 0.1 hour to 5 days. .
  • solvent used here examples include, but are not limited to, aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, dichloromethane and 1,2-dichloroethane. , Halogenated hydrocarbons such as chloroform, N, N-dimethylformamide, and mixtures thereof.
  • bases include organic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, and inorganic bases such as sodium carbonate, potassium carbonate, sodium hydride, potassium tert-butoxide. It is.
  • the sixth step shown in the reaction formulas (II) and (ii) is a step for producing the compound of the formula (12) by Klapco decarboxylation reaction by heating the compound of the formula (13).
  • the compound of formula (13) is usually stirred for 0.1 hour to 5 days under heating in a solvent inert to the reaction.
  • the solvent used here include N, N-dimethylformamide, dimethyl sulfoxide, water and the like. It may also be advantageous to carry out the reaction in the presence of a chloride such as lithium chloride or a cyanide such as potassium cyanide.
  • the seventh step shown in the reaction formula (II) (ii) is a step for producing the compound of the formula (11) by reacting an electrophilic fluorinating agent from the compound of the formula (12).
  • the compound of the formula (12) is stirred in a solvent inert to the reaction under cooling to heating under reflux, preferably at room temperature to 100 ° C., usually for 0.1 hour to 5 days.
  • electrophilic fluorinating agents examples include N, N'-difluoro-2,2'-bipyridinium bis (tetrafluoroborate), 2,6-dichloro-1-fluoropyridinium tetrafluoroborate, 1 -Fluoro-2,4,6-trimethylpyridinium tetrafluoroborate and the like.
  • the solvent used include acetonitrile, acetic acid, formic acid and the like.
  • the eighth step shown in the reaction formula (II) (ii) is a step of producing the compound of the formula (9) by subjecting the compound of the formula (11) to the Horner-Wadsworth-Emmons reaction.
  • diphenylphosphonoacetic acid (10) as a reagent for Horner-Wadsworth-Emmons reaction, the reaction proceeds with high Z selectivity, and the compound of formula (9) can be efficiently produced. it can.
  • a mixture of the compound of formula (11) and diphenylphosphonoacetic acid (10) is cooled to room temperature, preferably -78 ° C to 0 ° C in a solvent inert to the reaction in the presence of a suitable base.
  • the mixture is stirred for 0.1 to 5 days.
  • examples of the base include 1,8-diazabicyclo [5.4.0] -7-undecene, sodium hydride, sodium hexamethyldisilazide, potassium hexamethyldisilazide, and benzyltrimethylammonium hydroxide.
  • solvent used here examples include aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, and mixtures thereof. Toluene, diethyl ether, tetrahydrofuran, and dimethoxyethane. In another embodiment, tetrahydrofuran is used.
  • the compound of the formula (8) is produced by removing the p-toluenesulfonyl group and performing an esterification reaction on the compound of the formula (9). It is a process.
  • the removal of the p-toluenesulfonyl group shown in the ninth step (1) and the esterification reaction shown in the ninth step (2) were carried out by the above-mentioned “Protective Groups in Organic Synthesis” by Greene and Wuts. ”, 3rd edition, John Wiley & Sons Inc, 1999.
  • the tenth step shown in the reaction formula (II) (iii) is by amidating the compound of the formula (8) which is an amine after converting the compound of the formula (7) which is a carboxylic acid into a reactive derivative, In this step, the compound of formula (6) is produced.
  • reactive derivatives of carboxylic acids include acid halides obtained by reacting with halogenating agents such as phosphorus oxychloride and thionyl chloride, mixed acid anhydrides obtained by reacting with isobutyl chloroformate, 1-hydroxy
  • Examples include active esters obtained by condensation with benzotriazole and the like.
  • reaction of these reactive derivatives with the compound of the formula (8) is carried out in a solvent inert to the reaction such as halogenated hydrocarbons, aromatic hydrocarbons, ethers, etc., under cooling to heating, preferably It can be performed at -20 ° C to 60 ° C.
  • the eleventh step shown in the reaction formulas (II) and (iii) is a step for producing the compound of the formula (5) by subjecting the compound of the formula (6) to a hydrolysis reaction.
  • the reaction conditions are the same as in the third step shown in the reaction formula (II) (i).
  • the twelfth step shown in the reaction formula (II) (iii) is obtained after converting the compound of the formula (5) into a compound of the formula (3) which is a carboxylic acid chloride using thionyl chloride (4).
  • the compound of formula (1) is reacted with 2-aminoethanol (2) in the presence of a suitable base.
  • a suitable base in this reaction, under cooling, cooling to room temperature in an organic solvent inert to the reaction such as halogenated hydrocarbons, aromatic hydrocarbons, ethers, esters, acetonitrile, N, N-dimethylformamide and dimethyl sulfoxide. Or under heating from room temperature.
  • 2-aminoethanol (2) is used in excess, or N-methylmorpholine, trimethylamine, triethylamine, diisopropylethylamine, N, N-dimethylaniline, pyridine, 4- (N, N-dimethylamino) pyridine
  • a base such as picoline or lutidine
  • a salt composed of a weak base and a strong acid such as pyridine hydrochloride, pyridine p-toluenesulfonate, N, N-dimethylaniline hydrochloride may be used.
  • Pyridine can also be used as a solvent.
  • reaction formula (III) (In the formula, Lv represents a leaving group, and Me represents methyl)
  • Step A is a step of producing a compound of formula (7) by reacting a compound of formula (7e) with (2R) -2-fluoropropanol (7b).
  • the reaction conditions are the same as those in the second step shown in the reaction formula (II).
  • Step B is a step for producing a compound of (7 g) by reacting the compound of formula (7i) with 3-nitrobenzenesulfonic acid (S) -glycidyl (7 h).
  • the compound of formula (7i) and 3-nitrobenzenesulfonic acid (S) -glycidyl (7h) are used in an equal amount or an excess amount, and these mixtures are inactive in the reaction in the presence of a base.
  • Stirring is usually performed for 0.1 hour to 5 days in a solvent under cooling to heating under reflux, preferably at 0 ° C. to 80 ° C.
  • solvent used here examples include, but are not limited to, aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, dichloromethane and 1,2-dichloroethane.
  • Aroma hydrocarbons such as benzene, toluene and xylene
  • ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, dichloromethane and 1,2-dichloroethane.
  • Halogenated hydrocarbons such as chloroform, N, N-dimethylformamide, dimethyl sulfoxide, ethyl acetate, acetonitrile, and mixtures thereof.
  • bases include triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, organic bases such as n-butyllithium, sodium carbonate, potassium carbonate, sodium hydride, potassium tert-butoxide, etc.
  • organic bases such as n-butyllithium, sodium carbonate, potassium carbonate, sodium hydride, potassium tert-butoxide, etc.
  • inorganic bases It may be advantageous to carry out the reaction in the presence of cesium fluoride.
  • Step C is a step of producing the compound of formula (7f) by subjecting the compound of formula (7g) to a hydrogenation reaction.
  • the compound of the formula (7 g) is usually stirred for 1 hour to 5 days in the presence of a metal catalyst in a solvent inert to the reaction in a hydrogen atmosphere.
  • This reaction is usually carried out under cooling to heating, preferably at room temperature.
  • Examples of the solvent used here are not particularly limited, but alcohols such as methanol, ethanol and 2-propanol, ethers such as diethyl ether, tetrahydrofuran, dioxane and dimethoxyethane, water, ethyl acetate, N, N- Examples include dimethylformamide, dimethyl sulfoxide, and mixtures thereof.
  • the metal catalyst palladium catalyst such as palladium carbon, palladium black and palladium hydroxide, platinum catalyst such as platinum plate and platinum oxide, nickel catalyst such as reduced nickel and Raney nickel, rhodium catalyst such as tristriphenylphosphine chlororhodium, reduction
  • An iron catalyst such as iron is preferably used.
  • an equivalent to excess amount of formic acid or ammonium formate relative to the compound of formula (7 g) can be used as the hydrogen source.
  • Step D is a step of converting the compound of formula (7f) into formula (7).
  • the reaction conditions are the same as those in the eighth step and the ninth step shown in the reaction formula (I) (i-2).
  • step E to F Another production method (steps E to F) of the compound of the formula (8) in the reaction formula (II), which is another embodiment of the production method of the present invention, will be specifically described in the following reaction formula (V).
  • Reaction formula (V) (In the formula, Ts represents p-toluenesulfonyl, and the compound of the formula (18) in which the double bonds cross each other indicates that it is a mixture of the E and Z forms of the double bonds, and R 1 is Lower alkyl is shown.)
  • Step E- (1) shown in the reaction formula (V) is subjected to the Horner-Wadsworth-Emmons reaction using diethylphosphonoacetic acid (18) for the compound of the formula (11). ).
  • This step can be performed under the same reaction conditions as those in the eighth step of the reaction formula (II) (ii) except that the compound of the formula (18) is used instead of the compound of the formula (10).
  • Step E- (2) shown in the reaction formula (V) is a compound of the formula (9-S) which is a dicyclohexylamine salt by reacting the compound of the formula (19) with dicyclohexylamine (17) in methanol.
  • the compound of the formula (19) and dicyclohexylamine are used in an equal amount or in an excess amount, and the mixture is used in methanol under cooling to heating under reflux, preferably at 0 ° C. to room temperature, usually for 0.1 hour.
  • the mixture is stirred for ⁇ 5 days, and the precipitated crystals of formula (9-S) are collected by filtration.
  • Step F shown in Reaction Formula (V) is a step of producing a compound of formula (8) from a compound of formula (9-S).
  • the reaction conditions can be carried out in the same manner as in the production method of the formula (8-M) described in Non-Patent Document 1 (indicated in the document as compound [8]).
  • the compound of formula (1) has the following two types of crystal polymorphs.
  • Example 1 and Example 2 alternative method 1 of the twelfth step according to Example 1
  • Example 2 Alternative Method 2 of Step 12 according to Example 1
  • the compound of formula (1) was obtained as a ⁇ -type crystal.
  • the powder X-ray diffraction pattern is important for the identification of the crystal due to the nature of the data, and the diffraction angle and the overall pattern are important.
  • the relative intensity depends on the crystal growth direction, particle size, and measurement conditions. Since it can vary somewhat, it should not be interpreted strictly.
  • the term “near” used for the value of the diffraction angle (2 ⁇ ) in the powder X-ray diffraction pattern means an approximate value, and as an aspect, a range of 0.2 (°) before and after that value, As another aspect, it means a range of 0.1 (°) before and after the value.
  • the word “near” used for the endothermic onset temperature value in DSC means that it is approximately the endothermic onset (extrapolation start) temperature value.
  • the range of 2 ° C. means another range of 1 ° C. before and after that value.
  • Acetonitrile (40 mL), pyridine (6.75 mL) and p-toluenesulfonyl chloride (5.32 g) were added to the obtained residue, and the mixture was stirred at room temperature for 18 hours.
  • a solution of sodium hydroxide (1.17 g) and water (20 mL) was added to the reaction mixture and stirred for 24 hours, and then acetonitrile was distilled off under reduced pressure.
  • the reaction mixture was extracted by adding water (30 mL) and ethyl acetate (50 mL), and further extracted by adding ethyl acetate (30 mL) to the aqueous layer.
  • acetonitrile 360 mL
  • 7-fluoro-1-[(4-methylphenyl) sulfonyl] -1,2,3,4-tetrahydro-5H-1-benzazepin-5-one 60 g
  • Dimethyl sulfate 25.6 mL
  • N, N'-difluoro-2,2'-bipyridinium bis (tetrafluoroborate) 86.1 g
  • concentrated sulfuric acid (9.6 mL
  • reaction formula (II) The first to twelfth steps shown in the reaction formula (II) were carried out as described below to synthesize the compound of the formula (1).
  • Example 1 (First to third steps) Synthesis of 4- ⁇ [(2R) -2-fluoropropyl] oxy ⁇ -2- (trifluoromethyl) benzoic acid (compound of formula (7)) 4-Fluoro-2- (trifluoromethyl) benzoic acid (Lv Is a compound of formula (7e), ie a compound of formula (7e-F) shown in reaction formula (I) (i-2)) (50 g), ethyl acetate (250 mL), N, N- Dimethylformamide (0.88 g) and thionyl chloride (42.9 g) were mixed and stirred at 60 ° C. for 7 hours.
  • the reaction mixture was concentrated under reduced pressure, acetonitrile (150 mL) and pyridine (85.5 g) were added to the residue, 2-propanol (65.0 g) was added dropwise, and the mixture was stirred at room temperature for 4 hr.
  • the reaction mixture was concentrated under reduced pressure, and toluene (200 mL) and water (200 mL) were added to the residue for liquid separation.
  • the obtained organic layers were combined, washed with a solution of concentrated hydrochloric acid (71.0 g) and water (200 ml), and then washed with a solution of sodium chloride (25 g) and water (200 ml). The bottom was concentrated.
  • the obtained organic layer was washed with a solution of sodium chloride (7.5 g) and water (150 mL), and then the organic layer was concentrated under reduced pressure until it became about 60 mL. Toluene (150 mL) was added to the residue, and the mixture was concentrated under reduced pressure. The obtained residue was used for the next reaction without purification.
  • the resulting mixture was heated to 120 ° C. and stirred for 7 hours. After confirming the disappearance of the raw materials, it was cooled to 70 ° C. Water (105 mL) was added at 70 ° C. and it was confirmed that the system became homogeneous, and then the mixture was gradually cooled to 50 ° C. to confirm the precipitation of crystals. Then, it heated up to 60 degreeC and stirred for 30 minutes. Water (165 mL) was added at 60 ° C., and the mixture was stirred for 30 minutes. Then, it cooled to 20 degreeC and stirred all night. The resulting crystals were collected by filtration and washed with water (150 mL).
  • the obtained organic layers were combined and washed twice with a solution of sodium hydrogen carbonate (1.5 g) and water (30 mL) and once with water (30 mL).
  • the obtained organic layer was concentrated under reduced pressure.
  • Toluene (15 mL) was added to the residue, the temperature was raised to 50-60 ° C., and after dissolution of the crystals was confirmed, n-heptane (10 mL) was added dropwise to confirm the precipitation of crystals. Further, n-heptane (20 mL) was added dropwise, and then the reaction solution was cooled to 15 ° C. and stirred overnight.
  • Example 2 “(according to Example 1) (2Z)- ⁇ 4,4,7-trifluoro-1- [4- ⁇ [(2R) -2-fluoropropyl] oxy ⁇ -2- (trifluoro Methyl) benzoyl] -1,2,3,4-tetrahydro-5H-1-benzazepine-5-ylidene ⁇ acetic acid crystals (228 mg) were added. And the mixture was stirred for 11 hours. Thereafter, water (1139 mL) was added to the mixture, and the mixture was stirred at 20 ° C. for 7 hours.
  • FIG. 1 shows the results of powder X-ray diffraction measurement and DSC analysis of ⁇ -type crystals of 2- (trifluoromethyl) benzoyl] -1,2,3,4-tetrahydro-5H-1-benzazepine-5-ylidene ⁇ acetamide 1 and FIG.
  • the measurement conditions for powder X-ray diffraction and DSC analysis are as follows. Measurement of powder X-ray diffraction using MXP18TAHF22 made by Mac Science, tube: Cu, tube current: 200 mA, tube voltage: 40 kV, sampling width: 0.020 °, scanning speed: 3 ° / min, wavelength: 1.54056405 Measurement diffraction angle range (2 ⁇ ): Measured under conditions of 3 to 40 °. DSC analysis was performed using TA Instruments TA 5000 under the conditions of a measurement temperature range: room temperature to 300 ° C., a heating rate: 10 ° C./min, a nitrogen flow rate: 50 mL / min, and an aluminum sample pan.
  • Example 2 Alternatives to some of the steps described in Example 1 are described below as another aspect of the present invention. These alternative methods can be appropriately carried out in order to produce the compound of the formula (1) in place of the method described in each step described in Example 1.
  • FIG. 1 shows the results of powder X-ray diffraction measurement and DSC analysis of ⁇ -type crystals of 2- (trifluoromethyl) benzoyl] -1,2,3,4-tetrahydro-5H-1-benzazepine-5-ylidene ⁇ acetamide 3 and FIG.
  • Example 3 Each step shown in the reaction formula (III) was carried out as described below to obtain a compound of the formula (7).
  • the reaction mixture was cooled, water (3000 mL) was added, ethyl acetate (834 mL) and concentrated hydrochloric acid (200 mL) were sequentially added, and the aqueous layer was confirmed to be acidic and extracted. Further, extraction with ethyl acetate (500 mL) added to the aqueous layer was performed twice. The organic layers obtained by three extraction operations were combined and the solvent was distilled off under reduced pressure. N-Heptane (500 mL) was added to the obtained residue, washed with a solution of sodium hydroxide (48.1 g) and water (833 mL), and the organic layer was further washed with water (167 mL).
  • the crude crystals were dissolved in methanol (620 mL), water (930 mL) was added at 17 to 28 ° C., and the mixture was stirred at 20 ° C. for 30 min.
  • the resulting crystals were collected by filtration, washed successively with a mixed solution of methanol (46.5 mL) and water (108.5 mL) and water (155 mL), and dried at 50 ° C. under reduced pressure to obtain crude crystals (134 g). It was.
  • n-propanol (423 mL) was added to the crude crystals, the mixture was dissolved by heating at 66 ° C., water (643 mL) was gradually added, and the mixture was stirred at 15 ° C. overnight.
  • the separate process step is excellent in efficiency because the desired compound of formula (7) can be produced in one step from the compound of formula (7e-F) as a raw material.
  • a saturated aqueous sodium hydrogen carbonate solution and chloroform were added to the reaction solution, and the organic layer was washed successively with 1M hydrochloric acid, water, and a saturated aqueous sodium chloride solution, dried over anhydrous sodium sulfate, and the solvent was distilled off.
  • To a solution of the obtained residue in methanol (10 mL) was added 5M aqueous sodium hydroxide solution (1 mL), and the mixture was stirred at 70 ° C. for 5 hr.
  • the reaction mixture was concentrated under reduced pressure, water and chloroform were added to the resulting residue, 1M aqueous sodium hydroxide solution was added, and the resulting aqueous layer was adjusted to pH 1 with 1M hydrochloric acid and extracted with chloroform.
  • the organic layer was washed successively with water and saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate.
  • the solvent was evaporated, a mixed solvent (5 mL) of ethanol: water (40:60) was added to the obtained residue, and the mixture was stirred at room temperature for 3 hr 30 min.
  • the resulting solid was filtered and dried to obtain 4- ⁇ [(2R) -2-fluoropropyl] oxy ⁇ -2-trifluoromethyl) benzoic acid (465 mg) in a yield of 75.4%.
  • the effects of the present invention are shown below.
  • the yield of the production method of the present invention in Example 1 is as shown in Table 1 below.
  • Table 1 the first to third steps (continuous steps), fourth to sixth steps (continuous steps), seventh step, eighth to ninth steps (continuous steps), tenth step, Each yield in the 11th and 12th steps and the total yield in the 4th to 12th steps are shown.
  • the production process of the compound of formula (7) shown in the first to ninth steps of the reference example requires 9 steps as a total step, which includes deprotection of benzyl group, protection with acetyl group and deprotection step This is not necessarily a satisfactory method in terms of efficiency.
  • the production steps of the compound of formula (7) shown in the first to third steps of Example 1 are produced in good yield in three steps from the compound of formula (7e) by using appropriate raw materials and reagents. And was able to avoid the use of DAST, which has further safety concerns.
  • steps BD of reaction formula (IV) in Example 4 although DAST is used, steps 1 to 2 and steps 7 to 8 of the reference example are used.
  • the compound of the formula (7i-M) is used. While six steps are required to obtain the compound of formula (7), in this production method, the compound of formula (7) can be produced from the compound of formula (7i) in three steps of Steps B to D. This is an advantageous method in terms of efficiency.
  • an isopropyl ester is used to convert other lower alkyl esters such as methyl ester and ethyl ester into the aromatic nucleophilic substitution reaction in the second step. In comparison, by-products could be suppressed.
  • the compound of formula (12) in the sixth step of the example, by using the compound of formula (13) as a synthetic intermediate, the compound of formula (12) can be produced without elimination of the p-toluenesulfonyl group. It was. Moreover, it is advantageous in terms of efficiency in that the compound of formula (12) can be produced without isolating the compounds of formula (14) and formula (13), which are intermediates.
  • the production method of the compound of the formula (9-S) shown in the steps E- (1) and E- (2) of the reaction formula (V) in Example 5 is compared with the 14th step of the reference example 1.
  • the compound of formula (9-S) is preferable in that it can be produced with high yield.
  • Step E of Example 5 70.1% 14th step of reference example: 27.0%
  • the compound of the formula (9-S) was produced by treating with dicyclohexylamine in ethyl acetate, and the yield was 27.0%.
  • the compound of formula (9-S) could be produced in a yield of 70.1% by treatment with dicyclohexylamine in methanol.
  • the production method of the present invention does not include a step with a yield of 50% or less in each step as compared with a known production method, and can maintain a high total yield in all steps. This is also advantageous in terms of cost. Furthermore, the production method of the present invention does not require purification by column chromatography, and does not require DAST or EDC, which is concerned with safety and toxicity. In particular, it is a production method suitable for industrial production as a pharmaceutical product.
  • the present invention provides a method for producing the compound of formula (1), which is suitable for industrial production as a pharmaceutical product, and a synthetic intermediate useful in the production method, with high yield and low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 アルギニンバソプレシンV2受容体に対して優れた作動作用を有し、頻尿、尿失禁、遺尿症、中枢性尿崩症、夜間頻尿、夜尿症等の予防及び/又は治療用医薬組成物の有効成分として有用な4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン化合物の製造方法、及びその製造方法において有用な合成中間体を提供する。本発明の製造方法は、従来の方法と比較して工程数が少なく、高収率かつ低コストであり、医薬品としての工業的生産に好適である。

Description

4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン化合物の製造方法及びその合成中間体
 本発明は、(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド(以下、「式(1)の化合物」ということがある。)の製造方法及びその合成中間体に関する。
 式(1)の化合物は、アルギニンバソプレシンV2受容体に対して優れた作動作用を有し、頻尿、尿失禁、遺尿症、中枢性尿崩症、夜間頻尿、夜尿症等の予防及び/又は治療用医薬組成物の有効成分として有用であることが報告されている(特許文献1)。
Figure JPOXMLDOC01-appb-C000009
 特許文献1に記載された式(1)の化合物(実施例55)の製造方法は、同文献に記載された参考例及び実施例を参照すると、反応式(I)に示されるものであることが分かる。
 なお、反応式(I)に示した第10工程~第15工程を経て、式(16)の化合物から式(8-M)の化合物を製造する方法については、非特許文献1において、該製造方法が具体的に記載されている。
反応式(I)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式中、Tsはp-トルエンスルホニルを示し、Bnはベンジルを示し、Acはアセチルを示し、Meはメチルを示し、DASTは(ジエチルアミノ)サルファトリフルオリドを示し、及び、EDCは1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩を示す。)
 しかし、特許文献1に開示された式(1)の化合物の製造方法は、全ての工程をあわせると18工程という非常に多い工程数を必要とするうえ、例えば、後述するように、生成物の収率が低い工程、例えば、収率が約30%以下となる工程が含まれ、式(16)の化合物から最終目的物である式(1)の化合物までの通算収率は、6%程度にとどまっている。このため収率面及びコスト面で大きな問題を有していることから、工業的には必ずしも満足できるものではなかった。また、毒性、腐食性、反応時における爆発危険性等のために取扱が難しい、求核的フッ素化剤である(ジエチルアミノ)サルファトリフルオリド(DAST)を使用する工程(反応式(I)の第8工程)、変異原性を示す1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を使用する工程(反応式(I)の第18工程)、更にはカラムクロマトグラフィーによる精製が必要となる工程(反応式(I)の第1、2、7及び8工程)を含んでいる点からも、該製造方法は、医薬品としての工業的生産上、更に改良が望まれるものであった。
国際公開第WO2004/096775号パンフレット 発明協会公開技報公技番号2004-504305号
 本発明は、従来の方法と比較して、工程数が少なく、高収率かつ低コストであり、医薬品としての工業的生産に好適である、式(1)の化合物の製造方法、及びその製造方法において有用な合成中間体を提供することを目的とする。
 本発明者等は、式(1)の化合物の工業的な製造方法に関して鋭意検討した結果、以下に示す改良方法を見出した。
(i)適切な原料及び合成中間体を用いることにより、安全性に懸念のあるDASTを使用することなく、又、カラムクロマトグラフィーによる精製が必要な工程を必要とせず、式(7)の化合物を極めて短工程で効率的に製造する方法、
(ii)適切な試薬を用いて反応を行うことにより、式(8)の化合物を高い収率で製造する方法、及び/又は
(iii)毒性の懸念があるEDCの使用を回避して、式(1)の化合物を収率よく製造する方法。
 これらの(i)~(iii)の方法の1つ以上を用いることによって、ある態様としては(i)~(iii)を全て組み合わせることによって、高収率かつ低コストな工業的生産に好適な方法として、式(1)の化合物を製造することができることを見出して、本発明を完成させた。
 すなわち、本発明は、以下の式(1)の化合物の製造方法及びその合成中間体を提供する。
[1]
式(5)の化合物を塩化チオニル(4)と反応させて式(3)の化合物を製造する工程、及び、式(3)の化合物を2-アミノエタノール(2)と反応させアミド化する工程を含む、下記反応式に示される式(1)の化合物の製造方法。
Figure JPOXMLDOC01-appb-C000013
(式中、Meはメチルを示す。)
[2]
式(8)の化合物と式(7)の化合物から式(6)の化合物を製造する工程、式(6)の化合物から式(5)の化合物を製造する工程、式(5)の化合物を塩化チオニル(4)と反応させ式(3)の化合物を製造する工程、及び、式(3)の化合物を2-アミノエタノール(2)と反応させアミド化する工程を含む、下記反応式に示される式(1)の化合物の製造方法。
Figure JPOXMLDOC01-appb-C000014
(式中、R1は低級アルキルを示し、Meはメチルを示す。)
[3]
前記[2]記載の製造方法において、
式(11)の化合物とジフェニルホスホノ酢酸(10)から式(9)の化合物を製造する工程、及び、式(9)の化合物から式(8)の化合物を製造する工程からなる、下記反応式に示される式(8)の化合物の製造方法(X-1)
Figure JPOXMLDOC01-appb-C000015
(式中、Tsは、p-トルエンスルホニルを示し、Phはフェニルを示し、R1は低級アルキルを示す。)、
又は、
式(11)の化合物とジエチルホスホノ酢酸(18)とを反応させ、得られた粗生成物をメタノール中ジシクロヘキシルアミン(17)と処理して式(9-S)の化合物を製造する工程、及び、式(9-S)の化合物から式(8)の化合物を製造する工程からなる、下記反応式に示される式(8)の化合物の製造方法(X-2)
Figure JPOXMLDOC01-appb-C000016
(式中、Tsはp-トルエンスルホニルを示し、Etはエチルを示し、R1は低級アルキルを示す。)、
によって製造された化合物(8)を用いることを特徴とする、式(1)の化合物の製造方法。
[4]
前記[3]に記載の製造方法において、
式(16)の化合物と4-クロロ酪酸メチル(15)から式(14)の化合物を製造する工程、式(14)の化合物から式(13)の化合物を製造する工程、式(13)の化合物から式(12)の化合物を製造する工程、及び、式(12)の化合物から式(11)の化合物を製造する工程からなる、下記反応式に示される式(11)の化合物の製造方法(Y-1)
Figure JPOXMLDOC01-appb-C000017
(式中、Tsはp-トルエンスルホニルを示し、Meはメチルを示す。)、
によって製造された化合物(11)を用いることを特徴とする、式(1)の化合物の製造方法。
[5]
前記[4]に記載の製造方法において、(Y-1)の製造方法が、式(14)の化合物を単離することなく式(13)の化合物を製造し、かつ、式(13)の化合物を単離することなく式(12)の化合物を製造するものである、式(1)の化合物の製造方法。
[6]
前記[2]~[5]に記載の製造方法において、
式(7c)の化合物と(2R)-2-フルオロプロパノール(7b)から式(7a)の化合物を製造する工程、及び、式(7a)の化合物から式(7)の化合物を製造する工程からなる、下記反応式に示される式(7)の化合物の製造方法(Z-1)
Figure JPOXMLDOC01-appb-C000018
(式中、Lvは脱離基を示し、Meはメチルを示し、iPrはイソプロピルを示し、Rはイソプロピル又は(2R)-2-フルオロプロピルを示す。)、
式(7e)の化合物と(2R)-2-フルオロプロパノール(7b)から式(7)の化合物を製造する工程である、下記反応式に示される式(7)の化合物の製造方法(Z-2)
Figure JPOXMLDOC01-appb-C000019
(式中、Lvは脱離基を示し、Meはメチルを示す。)、又は、
式(7i)の化合物と3-ニトロベンゼンスルホン酸(S)-グリシジル(7h)から式(7g)の化合物を製造する工程、式(7g)の化合物を水素添加反応に付して式(7f)の化合物を製造する工程、及び、式(7f)の化合物から式(7)の化合物を製造する工程からなる、下記反応式に示される式(7)の化合物の製造方法(Z-3)
Figure JPOXMLDOC01-appb-C000020
(式中、R2は低級アルキルを示し、Meはメチルを示す。)、
のいずれか1つの製造方法によって製造された式(7)の化合物を用いることを特徴とする、式(1)の化合物の製造方法。
[7]
前記[3]記載の(X-1)に示される式(8)の化合物の製造方法、前記[6]の(Z-1)に示される式(7)の化合物の製造方法、及び、前記[2]記載の製造方法からなる、式(1)の化合物の製造方法。
[8]
前記[3]記載の(X-2)に示される式(8)の化合物の製造方法、前記[6]の(Z-1)に示される式(7)の化合物の製造方法、及び、前記[2]記載の製造方法からなる、式(1)の化合物の製造方法。
[9]
前記[3]記載の(X-1)に示される式(8)の化合物の製造方法、前記[6]の(Z-2)に示される式(7)の化合物の製造方法、及び、前記[2]記載の製造方法からなる、式(1)の化合物の製造方法。
[10]
前記[3]記載の(X-2)に示される式(8)の化合物の製造方法、前記[6]の(Z-2)に示される式(7)の化合物の製造方法、及び、前記[2]記載の製造方法からなる、式(1)の化合物の製造方法。
[11]
前記[3]記載の(X-1)に示される式(8)の化合物の製造方法、前記[6]の(Z-3)に示される式(7)の化合物の製造方法、及び、前記[2]記載の製造方法からなる、式(1)の化合物の製造方法。
[12]
前記[3]記載の(X-2)に示される式(8)の化合物の製造方法、前記[6]の(Z-3)に示される式(7)の化合物の製造方法、及び、前記[2]記載の製造方法からなる、式(1)の化合物の製造方法。
[13]
前記[4]記載の(Y-1)に示される式(11)の化合物の製造方法、及び、前記[7]から[12]のいずれかに記載の製造方法からなる、式(1)の化合物の製造方法。
[14]
前記[5]記載の(Y-1)に示される式(11)の化合物の製造方法、及び、前記[7]から[12]のいずれかに記載の製造方法からなる、式(1)の化合物の製造方法。
[15]
 (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチルクロリド(式(3)の化合物)。
[16]
メチル 5-フルオロ-2-{(4-メトキシ-4-オキソブチル)[(4-メチルフェニル)スルホニル]アミノ}ベンゾアート(式(14)の化合物)。
 なお、式(3)の化合物、及び、式(14)の化合物はいずれも新規化合物であり、本発明において有用な合成中間体である。
 また、本願明細書に記載の反応式において、「Lv」に示される「脱離基」としては、例えば、フルオロ、クロロ、メタンスルホニルオキシ、p-トルエンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等の一般に脱離基として汎用される基であり、ある態様としては、フルオロ、クロロ又はメタンスルホニルオキシであり、別の態様としてはフルオロ又はクロロであり、さらに別の態様としてはフルオロである。また、R1及びR2に示される「低級アルキル」としては、炭素数1~6の直鎖または分岐のアルキルであり、具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、ペンチル等であり、ある態様としては、メチル又はエチルであり、別の態様としてはメチルである。
 本発明には、後記反応式(II)(i)~(iii)に記載される化合物及びその塩、及びそれらを用いた製造方法も包含される。かかる塩のある態様としては、具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、p-トルエンスルホン酸、アスパラギン酸又はグルタミン酸などの有機酸との酸付加塩、ナトリウム、カリウム、カルシウム、マグネシウム等の金属を含む無機塩基、メチルアミン、エチルアミン、エタノールアミン、リジン、オルニチン、ジシクロヘキシルアミン等の有機塩基との塩やアンモニウム塩等が挙げられる。
 また、本発明には、後記反応式(II)(i)~(iii)に記載される化合物及びその塩の各種の水和物や溶媒和物、結晶多形の物質、並びにそれらを用いた製造方法も包含される。さらに、本発明は、種々の放射性又は非放射性同位体でラベルされた化合物、及びそれらを用いた製造方法も包含する。
 本発明の製造方法は、従来の方法と比較して、工程数が少なく、高収率かつ低コストであり、式(1)の化合物の医薬品としての工業的生産に好適に使用できる。又、本発明の合成中間体は本発明の製造方法における合成中間体として有用である。
図1は、実施例1で製造された式(1)の化合物のα型結晶の粉末X線回折パターンを示す。 図2は、実施例1で製造された式(1)の化合物のα型結晶のDSCチャートを示す。 図3は、実施例2(実施例1に係る第12工程の別法2)で製造された式(1)の化合物のβ型結晶の粉末X線回折パターンを示す。 図4は、実施例2(実施例1に係る第12工程の別法2)で製造された式(1)の化合物のβ型結晶のDSCチャートを示す。
 本発明の4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン化合物の製造方法(第1工程~第12工程)を反応式(II)に示し、以下、各工程のある態様を、第1工程~第12工程の順に具体的に説明する。なお、式(16)の化合物は、例えば、非特許文献1に記載の方法で製造することができ、その他の原料化合物も当業者に自明な方法により製造することができる。
反応式(II)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(式中、Lvは脱離基を示し、Xはハロゲンを示し、iPrはイソプロピルを示し、Meはメチルを示し、Rはイソプロピル又は(2R)-2-フルオロプロピルを示し、Tsはp-トルエンスルホニルを示し、Phはフェニルを示し、R1は低級アルキルを示す。)
(第1工程)
 反応式(II)(i)に示す第1工程は、式(7e)の化合物に対して、ハロゲン化剤を作用させることで、酸ハロゲン化物である式(7d)の化合物を製造し、次いで得られた酸ハロゲン化物を単離することなく、適当な塩基存在下、2-プロパノールを作用させることでイソプロピルエステルである式(7c)の化合物を製造する工程である。ここで、第1工程(1)において、ハロゲン化剤としては、特に限定はされないが、オキシ塩化リン、塩化チオニル、二塩化オキサリル等が挙げられる。反応は、ハロゲン化炭化水素類、芳香族炭化水素類、エーテル類等の反応に不活性な溶媒中、冷却下~加熱下、好ましくは-20℃~60℃で行うことができる。次に、第1工程(2)において、用いられる塩基としては、特に限定はされないが、例えば、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン等の有機塩基が挙げられる。
(第2工程)
 反応式(II)(i)に示す第2工程は、脱離基Lvを有する式(7c)の化合物に(2R)-2-フルオロプロパノール(7b)を作用させ芳香族求核置換反応に付し、式(7a)の化合物を製造する工程である。
 本工程の反応は、式(7c)の化合物と(2R)-2-フルオロプロパノール(7b)とを等量若しくは一方を過剰量用い、これらの混合物を、適当な塩基存在下、反応に不活性な溶媒中、又は無溶媒下、冷却下から加熱還流下、好ましくは0℃から80℃において、通常0.1時間~5日間撹拌する。ここで用いられる溶媒の例としては、特に限定はされないが、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸エチル、アセトニトリル及びこれらの混合物が挙げられる。ここで、塩基の例としては、トリエチルアミン、N,N-ジイソプロピルエチルアミン若しくはN-メチルモルホリン等の有機塩基、又は炭酸カリウム、炭酸ナトリウム、炭酸セシウム、カリウム tert-ブトキシド、水素化ナトリウム、若しくは水酸化カリウム等の無機塩基が挙げられるが、ある態様としては、無機塩基であり、別の態様としては、炭酸セシウム、水素化ナトリウム又はカリウム tert-ブトキシドであり、さらに別の態様としては、カリウム tert-ブトキシドである。
 また、第2工程の芳香族求核置換反応においては、用いる塩基により反応時間が異なり、後述の実施例2に記載の、「(実施例1に係る第2工程の別法)」にあるように、炭酸セシウムを用いると、反応終了までに25~50℃にて27時間程度を要するが、実施例1に記載の、(第1~第3工程)にあるように、カリウム tert-ブトキシドを用いると0℃にて5時間で反応が終了し、反応時間を短縮することができる。
(第3工程)
 反応式(II)(i)に示す第3工程は、式(7a)の化合物を加水分解反応に付すことにより、式(7)の化合物を製造する工程である。
 加水分解反応は、例えば、グリーン(Greene)及びウッツ(Wuts)著、「Protective Groups in Organic Synthesis」、第4版、John Wiley & Sons Inc、2006年を参照して実施することができる。
(第4工程)
 反応式(II)(ii)に示す第4工程は、式(16)の化合物と4-クロロ酪酸メチル(15)との反応により式(14)の化合物を製造する工程である。
 この反応では、式(16)の化合物と4-クロロ酪酸メチル(15)とを等量若しくは一方を過剰量用い、これらの混合物を、塩基の存在下、反応に不活性な溶媒中、冷却下から加熱還流下、好ましくは0℃から80℃において、通常0.1時間~5日間撹拌する。ここで用いられる溶媒の例としては、特に限定はされないが、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸エチル、アセトニトリル及びこれらの混合物が挙げられる。塩基の例には、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、n-ブチルリチウム等の有機塩基、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、カリウム tert-ブトキシド等の無機塩基が含まれる。また、ヨウ化カリウム等のヨウ化物の存在下で反応を行うことが有利な場合がある。
(第5工程)
 反応式(II)(ii)に示す第5工程は、式(14)の化合物を適当な塩基存在下で反応させることで、式(13)の化合物を製造する工程である。
 この反応では、式(14)の化合物を、塩基の存在下、反応に不活性な溶媒中、冷却下から加熱還流下、好ましくは-20℃から80℃において、通常0.1時間~5日間撹拌する。ここで用いられる溶媒の例としては、特に限定はされないが、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド及びこれらの混合物が挙げられる。塩基の例には、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、カリウム tert-ブトキシド等の無機塩基が含まれる。
(第6工程)
 反応式(II)(ii)に示す第6工程は、式(13)の化合物を加熱することで、クラプコ脱炭酸反応により、式(12)の化合物を製造する工程である。
 この反応では、式(13)の化合物を、反応に不活性な溶媒中、加熱下、通常0.1時間~5日撹拌する。ここで用いられる溶媒の例としては、N,N-ジメチルホルムアミド、ジメチルスルホキシド、水等が挙げられる。また、塩化リチウム等の塩化物又はシアン化カリウム等のシアン化物の存在下で反応を行うことが有利な場合がある。
(第7工程)
 反応式(II)(ii)に示す第7工程は、式(12)の化合物から求電子的フッ素化剤を反応させることで、式(11)の化合物を製造する工程である。
 この反応では、式(12)の化合物を反応に不活性な溶媒中、冷却下~加熱還流下、好ましくは室温~100℃において、通常0.1時間から5日間撹拌する。ここで求電子的フッ素化剤の例としては、N,N'-ジフルオロ-2,2'-ビピリジニウム ビス(テトラフルオロボラート)、2,6-ジクロロ-1-フルオロピリジニウム テトラフルオロボラート、1-フルオロ-2,4,6-トリメチルピリジニウム テトラフルオロボラート等が挙げられる。また、用いられる溶媒の例としては、アセトニトリル、酢酸、ギ酸等が挙げられる。また、式(12)の化合物に対して、酸の存在下で反応を行うことが有利な場合がある。さらに、式(12)の化合物に対して、触媒量のトリフルオロメタンスルホン酸ナトリウムの存在下で反応を行うことが有利な場合もある。
(第8工程)
 反応式(II)(ii)に示す第8工程は、式(11)の化合物に対して、ホーナー・ワズワース・エモンズ反応に付すことで、式(9)の化合物を製造する工程である。
 ここで、ホーナー・ワズワース・エモンズ反応の試薬として、ジフェニルホスホノ酢酸(10)を用いることで、高いZ選択性にて反応が進行し、効率的に式(9)の化合物を製造することができる。
 この反応では、式(11)の化合物とジフェニルホスホノ酢酸(10)の混合物を、適当な塩基存在下、反応に不活性な溶媒中、冷却下~室温下、好ましくは-78℃~0℃において、通常0.1時間から5日間撹拌する。ここで、塩基としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、水素化ナトリウム、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジド、ベンジルトリメチルアンモニウムヒドロキシド等が挙げられるが、ある態様としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、水素化ナトリウム、ナトリウムヘキサメチルジシラジドであり、別の態様としては、ナトリウムヘキサメチルジシラジドである。ここで用いられる溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類及びこれらの混合物が挙げられるが、ある態様としては、トルエン、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタンであり、別の態様としては、テトラヒドロフランである。
(第9工程)
 反応式(II)(ii)に示す第9工程は、式(9)の化合物に対して、p-トルエンスルホニル基の除去、及びエステル化反応を行うことで式(8)の化合物を製造する工程である。第9工程(1)に示すp-トルエンスルホニル基の除去、及び、第9工程(2)に示すエステル化反応は、前述のグリーン(Greene)及びウッツ(Wuts)著、「Protective Groups in Organic Synthesis」、第3版、John Wiley & Sons Inc、1999年を参照して実施することができる。
(第10工程)
 反応式(II)(iii)に示す第10工程は、カルボン酸である式(7)の化合物を反応性誘導体へ変換した後にアミンである式(8)の化合物とをアミド化することで、式(6)の化合物を製造する工程である。カルボン酸の反応性誘導体の例としては、オキシ塩化リン、塩化チオニル等のハロゲン化剤と反応して得られる酸ハロゲン化物、クロロギ酸イソブチル等と反応して得られる混合酸無水物、1-ヒドロキシベンゾトリアゾール等と縮合して得られる活性エステル等が挙げられる。これらの反応性誘導体と式(8)の化合物との反応は、ハロゲン化炭化水素類、芳香族炭化水素類、エーテル類等の反応に不活性な溶媒中、冷却下~加熱下、好ましくは、-20℃~60℃で行うことができる。
(第11工程)
 反応式(II)(iii)に示す第11工程は、式(6)の化合物を加水分解反応に付すことで式(5)の化合物を製造する工程である。
 反応条件は、反応式(II)(i)に示す第3工程と同様である。
(第12工程)
 反応式(II)(iii)に示す第12工程は、式(5)の化合物を塩化チオニル(4)を用いてカルボン酸塩化物である式(3)の化合物へと変換した後、得られた式(3)の化合物を、適当な塩基存在下、2-アミノエタノール(2)と反応させることで、式(1)の化合物を製造する工程である。
 この反応では、ハロゲン化炭化水素類、芳香族炭化水素類、エーテル類、エステル類、アセトニトリル、N,N-ジメチルホルムアミドやジメチルスルホキシドなどの反応に不活性な有機溶媒中、冷却下、冷却から室温下あるいは室温から加熱下に行われる。
 なお、反応に際して、2-アミノエタノール(2)を過剰に用いたり、N-メチルモルホリン、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン、ピコリン、ルチジンなどの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。また、ピリジン塩酸塩、ピリジン p-トルエンスルホン酸塩、N,N-ジメチルアニリン塩酸塩などの弱塩基と強酸からなる塩を用いてもよい。ピリジンは溶媒とすることもできる。
 本発明の製法の別の態様として、前記反応式(II)中の式(7)の化合物の別の製造方法を、下記反応式(III)において具体的に示す。
反応式(III)
Figure JPOXMLDOC01-appb-C000024
(式中、Lvは脱離基を示し、Meはメチルを示す)
 工程Aは式(7e)の化合物と(2R)-2-フルオロプロパノール(7b)とを反応させ、式(7)の化合物を製造する工程である。反応条件は、反応式(II)に示す第2工程と同様である。
 更に別の態様として、下記反応式(IV)において、式(7)の化合物のさらに別の製造方法を具体的に説明する。
反応式(IV)
Figure JPOXMLDOC01-appb-C000025
(式中、R2は低級アルキルを示し、Meはメチルを示す。)
(工程B)
 工程Bは式(7i)の化合物と3-ニトロベンゼンスルホン酸 (S)-グリシジル(7h)を反応させ、(7g)の化合物を製造する工程である。
 この反応では、式(7i)の化合物と3-ニトロベンゼンスルホン酸 (S)-グリシジル(7h)とを等量若しくは一方を過剰量用い、これらの混合物を、塩基の存在下、反応に不活性な溶媒中、冷却下から加熱還流下、好ましくは0℃から80℃において、通常0.1時間~5日間撹拌する。ここで用いられる溶媒の例としては、特に限定はされないが、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸エチル、アセトニトリル及びこれらの混合物が挙げられる。塩基の例には、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、n-ブチルリチウム等の有機塩基、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、カリウム tert-ブトキシド等の無機塩基が含まれる。また、フッ化セシウムの存在下で反応を行うことが有利な場合がある。
(工程C)
 工程Cは式(7g)の化合物を、水素添加反応に付すことにより、式(7f)の化合物を製造する工程である。
 この反応では、水素雰囲気下、反応に不活性な溶媒中、式(7g)の化合物を金属触媒存在下で、通常1時間~5日間撹拌する。この反応は、通常、冷却下から加熱下、好ましくは室温で行われる。ここで用いられる溶媒の例としては、特に限定されないが、メタノール、エタノール、2-プロパノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、水、酢酸エチル、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの混合物が挙げられる。金属触媒としては、パラジウム炭素、パラジウム黒、水酸化パラジウム等のパラジウム触媒、白金板、酸化白金等の白金触媒、還元ニッケル、ラネーニッケル等のニッケル触媒、トリストリフェニルホスフィンクロロロジウム等のロジウム触媒、還元鉄等の鉄触媒等が好適に用いられる。水素ガスの代わりに、式(7g)の化合物に対し等量~過剰量のギ酸またはギ酸アンモニウムを水素源として用いることもできる。
(工程D)
工程Dは、式(7f)の化合物を式(7)に変換する工程である。反応条件は、反応式(I)(i‐2)に示す第8工程及び第9工程と同様である。
 本発明製法の別の態様である、前記反応式(II)中の式(8)の化合物の別の製造方法(工程E~F)を、下記反応式(V)において具体的に説明する。
反応式(V)
Figure JPOXMLDOC01-appb-C000026
(式中、Tsはp-トルエンスルホニルを示し、二重結合が交差している式(18)の化合物は、その二重結合のE体及びZ体の混合物であることを示し、R1は低級アルキルを示す。)
(工程E-(1))
 反応式(V)に示す工程E-(1)は、式(11)の化合物に対して、ジエチルホスホノ酢酸(18)を用いた、ホーナー・ワズワース・エモンズ反応に付すことで、式(19)の化合物を製造する工程である。本工程は、式(10)の化合物に代えて式(18)の化合物を用いる点以外は、反応式(II)(ii)第8工程と同様の反応条件で行うことができる。
(工程E-(2))
 反応式(V)に示す工程E-(2)は式(19)の化合物とジシクロヘキシルアミン(17)とをメタノール中で作用させることで、ジシクロヘキシルアミン塩である、式(9-S)の化合物を製造する工程である。
 この反応では、式(19)の化合物とジシクロヘキシルアミンとを等量若しくは一方を過剰量用い、これらの混合物を、メタノール中、冷却下~加熱還流下、好ましくは0℃~室温において、通常0.1時間~5日間撹拌し、析出した式(9-S)の結晶を濾取する。
(工程F)
 反応式(V)に示す工程Fは式(9-S)の化合物から、式(8)の化合物を製造する工程である。反応条件は非特許文献1記載の式(8-M)(当該文献中では化合物[8]と表記される)の製造方法と同様に行うことができる。
 式(1)の化合物には以下の2種類の結晶多形が存在し、後記参考例、実施例1及び実施例2(実施例1に係る第12工程の別法1)ではα型結晶として、また、実施例2(実施例1に係る第12工程の別法2)ではβ型結晶として、式(1)の化合物を取得した。
(α型結晶)
線源としてCuを用いた粉末X線回折において、2θ(°)が、7.14付近、8.86付近、9.62付近、12.98付近、14.36付近、14.84付近、15.90付近、17.20付近、17.94付近、18.44付近.18.64付近、20.64付近、21.62付近、22.62付近、23.14付近、23.57付近、25.32付近及び25.84付近にピークを示すことを特徴とする結晶、別の態様としては、更にDSCにおける吸熱オンセット温度が154.18℃付近である結晶である。なお、実施例1で得たα型結晶の粉末X線解析及びDSC分析の結果を図1及び図2にそれぞれ示した。本結晶は40℃・75%RHの保存条件下で3カ月間安定であった。
(β型結晶)
線源としてCuを用いた粉末X線回折において、2θ(°)が、6.44付近、8.26付近、10.44付近、12.88付近、13.72付近、14.82付近、16.50付近、20.92付近、23.16付近、25.74付近及び27.20付近にピークを示すことを特徴とする結晶、別の態様としては、更にDSCにおける吸熱オンセット温度が101.32℃付近である結晶である。なお、実施例2(実施例1に係る第12工程の別法2)で得たβ型結晶の粉末X線解析及びDSC分析の結果を図3及び図4にそれぞれ示した。
 なお、粉末X線回折パターンは、データの性質上、結晶の同一性認定においては、回折角や全体的なパターンが重要であり、相対強度は結晶成長の方向、粒子の大きさ、測定条件によって多少変動し得るものであるから、厳密に解されるべきではない。前記、粉末X線回折パターンにおける回折角(2θ)の値に用いられる「付近」の語は、おおよその値であることを意味し、ある態様としてはその値の前後0.2(°)の範囲、別の態様としては、その値の前後0.1(°)の範囲を意味する。また、DSCにおける吸熱オンセット温度の値に用いられる「付近」の語は、おおよそその吸熱オンセット(補外開始)の温度の値であることを意味し、ある態様としては、その値の前後2℃の範囲を、別の態様としてはその値の前後1℃の範囲を意味する。
 次に、反応式(I)で示された式(1)の化合物の公知の製造方法を収率と共に参考例に示す。なお、本明細書中、「1H-NMR(CDCl3)」とは重クロロホルム中の1H-NMRにおけるピークのδ(ppm)を示し、「1H-NMR(DMSO-d6)」とはジメチルスルホキシド-d6中の1H-NMRにおけるピークのδ(ppm)を示し、「EI」とはEI-MS[M]+を示し、「FAB+」とはFAB-MS[M+H]+を示し、「ESI+」とはESI-MS[M+H]+を示し、「ESI-」とはESI-MS[M-H]-を示す。
(参考例)
(第1工程)
 (2S)-2-ヒドロキシプロピル 4-メチルベンゼンスルホナート(式(27)の化合物)の合成
 特許文献1の参考例30記載の方法により、(2S)-2-ヒドロキシプロピル 4-メチルベンゼンスルホナートを収率48.4%で得た。なお、本工程では、目的物の精製に、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3:1~1:1)を用いた。
1H-NMR(CDCl3):1.16(3H,d,J=6.8Hz),2.46(3H,s),3.83-4.00(2H,m),4.02-4.10(1H,m),7.36(2H,d,J=8.0Hz),7.80(2H,d,J=8.0Hz)
FAB+:231
(第2工程)
 (2S)-1-{[(4-メチルフェニル)スルホニル]オキシ}プロパン-2-イル アセタート(式(24)の化合物)の合成
 特許文献1の参考例30A記載の方法により、(2S)-1-{[(4-メチルフェニル)スルホニル]オキシ}プロパン-2-イル アセタートを収率94.6%で得た。なお、本工程では、目的物の精製に、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3:1)を用いた。
1H-NMR(CDCl3):1.22(3H,d,J=6.8Hz),1.97(3H,s),2.46(3H,s),4.00-4.08(2H,m),4.99-5.07(1H,m),7.36(2H,d,J=8.3Hz),7.79(2H,d,J=8.3Hz)
FAB+:273
(第3工程)
 4-(ベンジルオキシ)-2-(トリフルオロメチル)安息香酸(式(26)の化合物)の合成
 特許文献1の参考例1記載の方法により、4-(ベンジルオキシ)-2-(トリフルオロメチル)安息香酸を収率93.8%で得た。
1H-NMR(CDCl3):5.15(2H,s),7.14(1H,dd,J=2.4,8.8Hz),7.36-7.45(6H,m),8.05(1H,d,J=8.8Hz)
FAB+:297
(第4及び第5工程(連続工程))
 メチル 4-ヒドロキシ-2-(トリフルオロメチル)ベンゾアート(式(7i-M)の化合物)の合成
 特許文献1の参考例26記載の方法により、メチル 4-ヒドロキシ-2-(トリフルオロメチル)ベンゾアートを得た。
1H-NMR(CDCl3):3.91(3H,s),5.45(1H,s),7.01(1H,dd,J=2.8,8.8Hz),7.21(1H,d,J=2.8Hz),7.81(1H,d,J=8.8Hz)
FAB+:221
(第6工程)
 メチル 4-{[(2S)-2-アセトキシプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアート(式(23)の化合物)の合成
 特許文献1の参考例30B記載の方法により、メチル 4-{[(2S)-2-アセトキシプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアートを第4~6工程の3工程の通算収率として65.6%で得た。
1H-NMR(CDCl3):1.38(3H,d,J=6.9Hz),2.07(3H,s),3.91(3H,s),4.03-4.14(2H,m),4.94-5.05(1H,m),7.07(1H,dd,J=2.5,8.8Hz),7.25-7.29(1H,m),7.85(1H,d,J=8.8Hz)
FAB+:321
(第7工程)
 メチル 4-{[(2S)-2-ヒドロキシプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアート(式(7f-M)の化合物)の合成
 特許文献1の参考例31記載の方法により、メチル 4-{[(2S)-2-ヒドロキシプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアートを収率82.6%で得た。なお、本工程では、目的物の精製に、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3:1)を用いた。
1H-NMR(CDCl3):1.38(3H,d,J=7.0Hz)3.91(3H,s),3.99-4.04(2H,m),4.19-4.26(1H,m),7.08(1H,dd,J=2.6,8.8Hz),7.29(1H,d,J=2.6Hz),7.86(1H,d,J=8.8Hz)
FAB+:279
(第8工程)
 メチル 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアート(式(7a-M)の化合物)の合成
 特許文献1の参考例32記載の方法により、メチル 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアートを収率86.6%で得た。なお、本工程では、目的物の精製に、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3:1)を用いた。
1H-NMR(CDCl3):1.48(3H,dd,J=6.3,23.4Hz),3.91(3H,s),4.07-4.16(2H,m),4.93-5.14(1H,m),7.08(1H,dd,J=2.4,8.8Hz),7.29(1H,d,J=2.4Hz),7.86(1H,d,J=8.8Hz)
FAB+:281
(第9工程)
 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(式(7)の化合物)の合成
 特許文献1の参考例33記載の方法により、4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸を収率97.1%で得た。
1H-NMR(CDCl3):1.39(3H,dd,J=6.3,23.4Hz),4.28-4.37(2H,m),4.95-5.15(1H,m),7.56-7.68(2H,m),7.87(1H,d,J=8.3Hz),13.25(1H,s)
FAB+:267
(第10工程)
 メチル 2-{(3-シアノプロピル)[(4-メチルフェニル)スルホニル]アミノ}-5-フルオロベンゾアート(式(21)の化合物)の合成
 非特許文献1に記載される化合物[3]の製造方法と同様にして反応を行った。具体的には、メチル 5-フルオロ-2-{[(4-メチルフェニル)スルホニル]アミノ}ベンゾアート(167 g)、2-ブタノン(500 mL)、4-クロロブチロニトリル(62.4 mL)、炭酸カリウム(142 g)、ヨウ化カリウム(25.7 g)を混合し、80℃で29時間攪拌した。この反応混合物に水(500 mL)を加えて分液操作を行った。この有機層を減圧下で濃縮した後、残渣にエタノール(1000 mL)を加え50℃に加熱した。さらに水(500mL)を加え、4℃に冷却し3時間撹拌した。析出した結晶を濾取し、水で洗浄後、減圧下50℃で乾燥して、メチル 2-{(3-シアノプロピル)[(4-メチルフェニル)スルホニル]アミノ}-5-フルオロベンゾアート(187 g)を収率93.0%で得た。
1H-NMR(CDCl3):1.94(2H,quintet,J=6.8Hz),2.43(3H,s),2.50-2.80(2H,m),3.52(1H,br),3.80-3.95(4H,m),6.82(1H,dd,J=8.8Hz,4.8Hz),7.10-7.15(1H,m),7.26(2H,d,J=7.6Hz),7.44(2H,d,J=7.6Hz),7.56(1H,dd,J=8.8Hz,3.2Hz)
EI:390
(第11工程)
 7-フルオロ-1-[(4-メチルフェニル)スルホニル]-5-オキソ-2,3,4,5-テトラヒドロ-1H-1-ベンゾアゼピン-4-カルボニトリル(式(20)の化合物)の合成
 非特許文献1に記載される化合物[4]の製造方法と同様にして反応を行った。具体的には、メチル 2-{(3-シアノプロピル)[(4-メチルフェニル)スルホニル]アミノ}-5-フルオロベンゾアート(153 g)及びN,N-ジメチルホルムアミド(613 mL)を混合し、この溶液に氷冷下、カリウム tert-ブトキシド(52.8 g)を分割して加えた後、冷却して10℃~20℃で5時間攪拌した。この反応混合物に水(306 mL)を加えた後、濃塩酸(49.0 mL)で中和した。この反応混合物に水(612 mL)を分割して加え、10℃で撹拌した。析出した結晶を濾取し、水で洗浄後、減圧下50℃で乾燥して、7-フルオロ-1-[(4-メチルフェニル)スルホニル]-5-オキソ-2,3,4,5-テトラヒドロ-1H-1-ベンゾアゼピン-4-カルボニトリル(132.5 g)を収率84.2%で得た。
1H-NMR(DMSO-d6):2.11(2H,t,J=6.0Hz),2.40(3H,s),3.96(2H,br),7.30(1H,dd,J=9.2Hz,2.8Hz),7.35-7.45(4H,m),7.51(2H,d,J=8.4Hz),11.10(1H,s)
EI:358
(第12工程)
7-フルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(式(12)の化合物)の合成
 非特許文献1に記載される化合物[5]の製造方法と同様にして反応を行った。具体的には、酢酸(20 mL)、濃塩酸(20 mL)及び7-フルオロ-1-[(4-メチルフェニル)スルホニル]-5-オキソ-2,3,4,5-テトラヒドロ-1H-1-ベンゾアゼピン-4-カルボニトリル(10.0 g)を混合し、65℃で3時間攪拌し、その後85~90℃で18時間攪拌した。この反応混合物に水(20 mL)を加えた後、氷冷下、水酸化ナトリウム(25.9 g)と水(100 mL)の溶液を加えて中和し、酢酸エチル(60 mL)を加えて抽出した後、さらに水層に酢酸エチル(40 mL)を加えて抽出した。2回の抽出で得られた有機層をあわせて、10%水酸化ナトリウム水溶液(100 g)で洗浄後、減圧下で溶媒を留去した。得られた残渣にアセトニトリル(40 mL)、ピリジン(6.75 mL)及びp-トルエンスルホニルクロリド(5.32 g)を加えて、室温で18時間攪拌した。この反応混合物に水酸化ナトリウム(1.17 g)と水(20 mL)の溶液を加えて、24時間攪拌し、その後、減圧下でアセトニトリルを留去した。この反応混合物に水(30 mL)、酢酸エチル(50 mL)を加えて抽出した後、さらに水層に酢酸エチル(30 mL)を加えて抽出した。2回の抽出操作で得られた有機層をあわせて、濃塩酸(6.98 mL)と水(50 mL)の溶液、及び塩化ナトリウム(2.5 g)と水(50 mL)の溶液で洗浄後、減圧下で溶媒を留去した。得られた残渣にエタノール(30 mL)及びイソプロパノール(10 mL)を加えて、10℃で撹拌した。析出した結晶を濾取し、減圧下50℃で乾燥して、7-フルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(8.42g)を収率90.5%で得た。
1H-NMR(DMSO-d6):1.85(2H,quintet,J=6.0Hz),2.34-2.38(2H,m),2.41(3H,s),3.78(2H,t,J=6.4Hz),7.29-7.33(2H,m),7.41(2H,d,J=8.0Hz),7.49(1H,dt,J=8.8Hz,2.8Hz),7.61(2H,d,J=8.0Hz)
(第13工程)
 4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(式(11)の化合物)の合成
 非特許文献1に記載される化合物[6]の製造方法と同様にして反応を行った。具体的には、アセトニトリル(360 mL)、7-フルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(60 g)、ジメチル硫酸(25.6 mL)、N,N'-ジフルオロ-2,2'-ビピリジウム ビス(テトラフルオロボラート)(86.1 g)及び濃硫酸(9.6 mL)を混合し、80℃で45時間攪拌した後、減圧下で溶媒を留去した。得られた残渣に酢酸エチル(480 mL)、水(480 mL)及び濃塩酸(30 mL)を加え、室温で攪拌した後、分液操作を行い、得られた水層に酢酸エチル(240 mL)を加えて抽出した。得られた有機層をあわせて、水(300 mL)で洗浄した後、水(300 mL)及び塩化ナトリウム(15 g)を加えて攪拌し、不溶物を濾過して分液操作を行った。この有機層の溶媒を減圧下で留去し、得られた残渣に酢酸エチル(60 mL)、トルエン(360 mL)及び活性炭(12 g)を加えて60℃で攪拌した。混合液から活性炭を濾別し、トルエン(120 mL)で洗浄を行った。濾液と洗浄液をあわせて、減圧下で溶媒を留去した。得られた残渣にトルエン(90 mL)を加え、さらにn-ヘプタン(240mL)を加えて20℃で撹拌した。析出した結晶を濾取し、減圧下50℃で乾燥して、4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(53.6 g)を収率80.6%で得た。
1H-NMR(CDCl3):2.32-2.42(2H,m),2.43(3H,s),4.06-4.10(2H,m),7.19-7.26(4H,m),7.44(2H,d,J=8.4Hz),7.50(1H,dd,J=8.8Hz,4.8Hz)
EI:370
(第14工程)
 (2Z)-{4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸 ジシクロヘキシルアミン塩(式(9-S)の化合物)の合成
 非特許文献1に記載される化合物[7]の製造方法と同様にして、(2Z)-{4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸 ジシクロヘキシルアミン塩を収率27.0%で得た。
1H-NMR(CDCl3):1.17-1.36(8H,m),1.50-1.70(6H,m),1.78-1.90(4H,m),2.06-2.17(4H,m),2.36(3H,s),2.40-2.55(1H,m),2.99-3.11(2H,m),3.90-4.03(1H,m),5.56(1H,s),6.93-7.01(2H,m),7.17(2H,d,J=11Hz),7.37-7.42(1H,m),7.56(2H,d,J=11Hz)
FAB+:412
(第15工程)
 メチル (2Z)-(4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタート(式(8-M)の化合物)の合成
 非特許文献1に記載される化合物[8]の製造方法と同様にして、メチル (2Z)-(4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタートを得た。
1H-NMR(CDCl3):2.47-2.63(2H,m),3.37(2H,t,J=7.84Hz),3.80(3H,s),6.14(1H,s),6.56-6.63(1H,m),6.83-6.91(1H,m),6.93-6.98(1H,m)
FAB+:272
(第16工程)
 メチル (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタート(式(6-M)の化合物)の合成
 特許文献1の参考例7記載の方法と同様にして、メチル (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタートを第15、16工程の通算収率として86.5%で得た。
1H-NMR(CDCl3):1.43(3H,dd,J=8.6,31.2Hz),2.12-2.57(2H,m),3.01-3.30(1H,m),3.86(3H,s),3.98-4.19(2H,m),4.82-5.29(2H,m),6.16(1H,s),6.76-6.85(2H,m),7.03-7.12(2H,m),7.27-7.37(2H,m)
FAB+:520
(第17工程)
 (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸(式(5)の化合物)の合成
 特許文献1の参考例20記載の方法と同様にして、(2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸を収率86.3%で得た。
1H-NMR(DMSO-d6):1.33(3H,dd,J=8.8,31.5Hz),2.34-2.40(1H,m),2.58-2.96(1H,m),3.01-3.29(1H,m),4.01-4.22(2H,m),4.75-5.06(2H,m),6.51(1H,s),6.70-6.76(1H,m),6.82-6.91(1H,m),7.01-7.08(2H,m),7.17-7.26(2H,m)
FAB+:506
(第18工程)
 (2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド(式(1)の化合物)の合成
 特許文献1の実施例1記載の方法と同様にして、(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドのα型結晶を収率54.7%で得た。
1H-NMR(DMSO-d6):1.32(3H,dd,J=5.9,29.8Hz),2.32-2.46(1H,br),2.61-2.84(1H,br),3.03-3.27(2H,m),3.44-3.51(2H,m),4.02-4.22(2H,m),4.74(1H,t,J=5.3Hz),4.76-4.85(1H,br),4.87-5.06(1H,m),6.52(1H,s),6.70-6.78(1H,m),6.87(1H,d,J=8.8Hz),7.00-7.08(1H,m),7.19(2H,dd,J=2.9Hz,8.8Hz),7.24(1H,d,J=2.9Hz),7.67(1H,d,J=8.8Hz),8.47(1H,t,J=5.4Hz)
FAB+:549
 次に、本発明の前記反応式(II)で示された式(1)の化合物の製造方法、及び、前記反応式(III)、(IV)並びに(V)で示された、本発明の別の態様にかかる製造方法について、以下に実施例を挙げて具体的に説明する。なお、本発明はこれらの実施例に限定されることはなく、また、当業者であれば、本発明の趣旨に反しない範囲内での、当業者に自明である方法によって、適宜、修飾及び変更が出来るものであり、これらも本発明に含まれる。また、出発原料である各化合物は、当業者に自明である方法によって製造できる。
 前記反応式(II)に示す第1~12工程を、後記の通り実施して、式(1)の化合物を合成した。
実施例1
 (第1~第3工程) 
 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(式(7)の化合物)の合成
 4-フルオロ-2-(トリフルオロメチル)安息香酸(Lvがフルオロである式(7e)の化合物、即ち反応式(I)(i-2)に示される式(7e-F)の化合物)(50 g)、酢酸エチル(250 mL)、N,N-ジメチルホルムアミド(0.88 g)、塩化チオニル(42.9 g)を混合し、60℃にて7時間攪拌した。反応液を減圧下濃縮し、残渣にアセトニトリル(150 mL)及びピリジン(85.5 g)を加え、2-プロパノール(65.0 g)を滴下し、室温で4時間攪拌した。反応液を減圧下濃縮し、残渣にトルエン(200 mL)及び水(200 mL)を加え分液操作を行った。得られた有機層をあわせて、濃塩酸(71.0 g)と水(200 ml)の溶液で洗浄し、次いで塩化ナトリウム(25 g)と水(200 ml)の溶液で洗浄後、有機層を減圧下濃縮した。残渣にトルエン(125 mL)を加え、溶液を減圧下濃縮し、油状残渣を得た。残渣にテトラヒドロフラン(350 mL)、(2R)-2-フルオロプロパノール (30.9 g)及びカリウム tert-ブトキシド(35.9 g)を加え、0℃にて5時間撹拌した。反応液に、塩化アンモニウム(12.85 g)と水(200 mL)を加え分液操作を行った。得られた有機層をあわせ、塩化ナトリウム(50 g)と水(200 mL)の溶液にて洗浄した。有機層を減圧下濃縮し、得られた残渣に水酸化ナトリウム(19.2 g)と水(120 mL)の溶液、及びメタノール(360 mL)を加え、60℃にて19時間攪拌した。反応液に水(420 mL)及びトルエン(60 mL)を加え得られた水層に濃塩酸(49.7 g)を加え晶析させた。生じたスラリーを20℃にて撹拌した。生じた結晶を濾過し、30%メタノール水溶液(12 mL)で洗浄することで、粗結晶(76.8 g)を得た。この結晶に、1-プロパノール (192 mL)及び水(144 mL)を加え、55℃にて加熱することで結晶を溶解させた後、冷却した。結晶の析出を確認後、水(144 mL)を加え、0℃に冷却した。生じた結晶を濾取し、1-プロパノール水溶液(1-プロパノール 36mL、水 84mL)にて洗浄した後、50℃にて減圧下乾燥することで、4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(50.28g)を白色結晶として収率78.6%で得た。
1H-NMR(CDCl3):1.48(3H,dd,J=23.6Hz,6.4Hz),4.08-4.17(2H,m),4.95-5.11(1H,m),7.10(1H,dd,J=8.8Hz,2.4Hz),7.34(1H,d,J=2.4Hz),8.06(1H,d,J=8.8Hz) 
(第4工程)
 メチル 5-フルオロ-2-{(4-メトキシ-4-オキソブチル)[(4-メチルフェニルスルホニル]アミノ}ベンゾアートの合成(式(14)の化合物)
 窒素雰囲気下、メチル 5-フルオロ-2-{[(4-メチルフェニル)スルホニル]アミノ}ベンゾアート (30.0 g)、N,N-ジメチルホルムアミド (105 mL)を加え20 ℃で撹拌した。4-クロロ酪酸メチル (15.2 g)と N,N-ジメチルホルムアミド (15 mL)の溶液、炭酸カリウム (25.7 g)と N,N-ジメチルホルムアミド (15 mL)の溶液、ヨウ化カリウム (4.62 g)と N,N-ジメチルホルムアミド (15 mL)の溶液を順次加え、80 ℃に昇温し、8時間撹拌した。原料の消失を確認後、トルエン (210 mL)及び水 (240 mL)を加え、分液操作を行った。得られた有機層を、塩化ナトリウム(7.5 g)と水(150 mL)の溶液で洗浄後、有機層を約60mLとなるまで減圧下濃縮した。残渣にトルエン (150 mL) を加え、混合液を減圧下濃縮した。得られた残渣を精製することなく、次の反応に用いた。
(第5及び第6工程(連続工程))
 7-フルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(式(12)の化合物)の合成
 上記第4工程にて得られた残渣とN,N-ジメチルホルムアミド (300 mL) の混合物を0 ℃まで冷却し、カリウム tert-ブトキシド(13.0 g) を5回にわけ添加し、同温度で3時間撹拌した。原料の消失を確認し、pHが4になるよう6M 塩酸(18.7 mL)及び、水 (11.3 mL) を添加し、反応を停止させた。
得られた混合物を120 ℃まで昇温し、 7時間撹拌した。原料の消失を確認後、70 ℃まで冷却した。70 ℃で水 (105 mL) を添加し系が均一になることを確認後徐々に50 ℃まで冷却し、結晶の析出を確認した。その後、60 ℃まで昇温し30分間撹拌した。60 ℃にて水 (165 mL) を添加し30分間撹拌した。その後、20 ℃まで冷却し、終夜撹拌した。生じた結晶を濾取し、水 (150 mL)を用いて結晶を洗浄した。得られた結晶を外温50℃にて減圧下乾燥させ、7-フルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン (28.81g) を第4~6工程の通算収率として93.1%で得た。
1H-NMR(CDCl3):1.88-1.94(2H,m), 2.34-2.37(2H,m), 2.41(3H,s), 3.81-3.84(2H,m), 7.18-7.28 (3H,m), 7.34-7.37(1H,m), 7.42-7.45(1H,m), 7.53-7.56(2H,m)
ESI+:333
(第7工程)
 4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(式(11)の化合物)の合成
 参考例1の第13工程と同様の方法により、4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オンを収率80.6%で得た。
(第8及び9工程)
 メチル (2Z)-(4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタート(R1がメチルである式(8)の化合物、即ち反応式(I)(ii)に示される式(8-M)の化合物)の合成
 テトラヒドロフラン(44 mL) にジフェニルホスホノ酢酸(5.93 g) を懸濁させ、-66℃~-59℃に冷却後、ナトリウムビス(トリメチルシリル)アミド(1.9 M テトラヒドロフラン溶液)(21.0mL) を15分かけて滴下した。この混合物にドライアイス/メタノール浴にて冷却した4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(5.00 g) のテトラヒドロフラン溶液 (20 mL) を、-68℃~-60℃にてカニュラーを使用して滴下し、テトラヒドロフラン (15 mL) にて洗い込みを行った。-60℃以下で2.5時間撹拌後、-20℃~-15℃へと昇温し18.5時間撹拌した。水 (30 mL) を加え、反応液が約50 mLとなるまで減圧下濃縮した。得られた残渣に濃塩酸 (5 mL) を加え、2-ブタノン (30 mL)で抽出し、得られた有機層を水 (30 mL)及び20%塩化ナトリウム水溶液 (塩化ナトリウム 4g、水 (20 mL)) にて洗浄後、約10mLとなるまで減圧下濃縮した。得られた残渣にトルエン (25 mL) を加え、約10mLとなるまで減圧下濃縮する操作を2回行った。得られた残渣にトルエン (25 mL)、硫酸 (7.5 mL) を加え、80℃~81℃にて14.5時間撹拌した。反応液を室温まで冷却し、メタノール (15 mL) を加え、60℃~62℃にて4時間撹拌した。反応液を室温まで冷却し、水 (25mL)、5M水酸化ナトリウム水溶液 (35mL) を加え2-ブタノン(15mL)で抽出し、得られた水層を2-ブタノン (15 mL)及びトルエン (15 mL) にて抽出した。得られた有機層を合わせ、炭酸水素ナトリウム (1.5 g)と水 (30 mL)の溶液で2回、水 (30 mL)で1回洗浄した。得られた有機層を減圧下濃縮した。残渣にトルエン (15 mL) を加え50~60℃へ昇温し、結晶の溶解を確認した後、n-ヘプタン (10 mL) を滴下し、結晶の析出を確認した。さらにn-ヘプタン (20mL) を滴下後、反応液を15℃へ冷却し、終夜撹拌した。生じた結晶を濾取し、トルエン (5 mL)、n-ヘプタン (10 mL) の混合溶媒にて洗浄した。得られた結晶を外温50℃にて減圧下乾燥し、メチル (2Z)-(4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタート(2.90 g) を収率79.2%で得た。
1H-NMR(CDCl3, 400MHz); 2.46-2.59(2H, m), 3.31-3.38(2H, m), 3.79(3H, s), 3.92(1H, br), 6.12(1H, s), 6.55(1H, dd, J=8.4Hz, 4.4Hz), 6.85(1H, m), 6.93(1H, dd, J=9.2Hz, 3.2Hz)
(第10工程)
 メチル (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタート(R1がメチルである式(6)の化合物、即ち反応式(I)(iii)に示される式(6-M)の化合物)の合成
 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(12.5 g)、トルエン(100 mL)、N,N-ジメチルホルムアミド(171.6 mg)の混合溶液に、塩化チオニル(6.70 g)を室温で加え、55~65℃で1時間20分間攪拌した。この反応液を減圧下濃縮し、4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイルクロリドを含む残渣Aを得た。別にメチル (2Z)-(4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタート(12.1 g)をアセトニトリル(75 mL)に溶解した後、ピリジン(18.6 g)を室温で加えた。この溶液に、残渣Aとアセトニトリル(37.5 mL)の混合溶液を滴下し、50~57℃で14時間攪拌した。この反応液を減圧下で濃縮した後、酢酸エチル(125 mL)を加え、氷浴下、水酸化ナトリウム(2.83 g)と水(125 mL)の溶液を加えて、抽出した。得られた有機層を濃塩酸(22.5 g)と水(125 mL)の溶液、塩化ナトリウム(6.25 g)と水(125 mL)の溶液で順次洗浄して、減圧下で溶媒を留去した。得られた残渣にエタノール(112.5 mL)を加えて61℃で加熱下溶解させた後、水(75 mL)を滴下し、約20℃で63.5時間攪拌した。得られた結晶を濾取し、エタノール(15 mL)と水(10 mL)の混合液で洗浄した後、減圧下50℃で乾燥して、メチル (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタート(20.5 g)を収率88.5%で得た。
1H-NMR(DMSO-d6):1.33(3H,dd,J=6.4,23.6Hz),2.20-2.60(2H,m),3.10-3.55(1H,m),3.79(3H,s),4.02-4.25(2H,m),4.70-5.14(2H,m),6.61-7.55(7H, m)
ESI+:519
(第11工程)
 (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸(式(5)の化合物)の合成
 メチル (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタート(227.7 g)、水酸化ナトリウム(26.3 g)、水(910.8 mL)、及びエタノール(1366 mL)を混合し、25℃で12時間攪拌した後、濃塩酸(58.5 mL)、及び、後記実施例2の「(実施例1に係る第11工程の別法)」において製造された(2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸の結晶(228 mg)を加えて11時間攪拌した。その後、この混合物に水(1139 mL)を加え、20℃で7時間攪拌した。得られた結晶を濾取し、水(455 mL)で洗浄した後、減圧下50℃で乾燥して、(2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸(216.6 g)を収率97.8%で得た。
1H-NMR(DMSO-d6):1.33(3H,dd,J=24.0Hz,6.4Hz), 2.20-2.60(2H,m), 3.00-3.60(1H,m), 4.03-4.34(2H,m), 4.60-5.20(2H,m), 6.52-7.55(7H,m), 13.26(1H,br)
ESI+:506
(第12工程)
 (2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド
(式(1)の化合物)の合成
 (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸(10.0 g)、酢酸エチル(100 mL)、及びN,N-ジメチルホルムアミド(100 mg)を混合し、この混合物に塩化チオニル(2.17 mL)を室温で加え、65℃で2時間半攪拌した。この反応液を減圧下で濃縮して、(2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチルクロリドを含む残渣を得た。得られた残渣をアセトニトリル(50 mL)に溶解し、2-アミノエタノール(24.2 g)とアセトニトリル(50 mL)の溶液に5℃で滴下して、1時間攪拌した。この反応混合物に水(100 mL)を加え、アセトニトリルを減圧下で留去した後、酢酸エチル(100 mL)を加えて抽出した。この有機層を濃塩酸(5 mL)と水(100 mL)の溶液、及び塩化ナトリウム(5 g)と水(100 mL)の溶液で順次洗浄した後、溶媒を減圧下で留去した。得られた残渣にエタノール(30 mL)を加えた後、再度溶媒を減圧下で留去した。得られた残渣をエタノール(80 mL)に溶解して、濾過した。得られた濾液に水(120 mL)を加えた後、加熱し、(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドのα型結晶(12 mg)を加えて室温で攪拌し、その後冷却して、15℃で撹拌した。生じた結晶を濾取し、40%エタノール水溶液(20 mL)で洗浄した後、減圧下50℃で乾燥して、(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドのα型結晶(9.26 g)を収率85.3%で得た。
1H-NMR(DMSO-d6):1.33(3H,dd,J=24.0Hz,6.8Hz),2.42(1H,br),2.67(1H,br),3.14(1H,br),3.25(2H,dd,J=12.0Hz,6.0Hz),3.49(2H,dd,J=12.0Hz,6.4Hz),4.01-4.21(2H,m),4.70(1H,t,J=5.6Hz),4.78(1H,br),4.86-5.06(1H,m),6.51(1H,s),6.74(1H,dd,J=8.8Hz,4.8Hz),6.88(1H,d,J=8.8Hz),7.00-7.06(2H,m),7.20(1H,dd,J=8.8Hz,3.2Hz),7.24(1H,d,J=2.8Hz,),8.39(1H,t,J=5.6Hz)
ESI+:549
 本工程で得られた(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドのα型結晶の粉末X線回折測定、及びDSC分析の結果を図1及び図2に示す。
 なお、粉末X線回折及びDSC分析の測定条件は、以下のとおりである。
 粉末X線回折の測定は、Mac Science製 MXP18TAHF22を用い、管球:Cu、管電流:200 mA、管電圧:40 kV、サンプリング幅:0.020°、走査速度:3°/min、波長:1.54056Å、測定回折角範囲(2θ):3~40°の条件で測定した。
 DSC分析は、TA Instruments TA 5000を用い、測定温度範囲:室温~300℃、昇温速度:10℃/min、窒素流量:50 mL/min、アルミニウム製サンプルパンの条件で測定した。
実施例2
 実施例1に記載するいくつかの工程の別法を本発明の別の態様として以下に記載する。これらの別法は実施例1記載の各工程に記載の方法に代えて、式(1)の化合物を製造するために、適宜実施することができる。
(実施例1に係る第1工程の別法)
 イソプロピル 4-フルオロ-2-(トリフルオロメチル)ベンゾアート(Lvがフルオロである式(7c)の化合物)の合成
 4-フルオロ-2-(トリフルオロメチル)安息香酸(150 g)、酢酸エチル(1200 mL)、N,N-ジメチルホルムアミド(2.78 mL)、及び塩化チオニル(78.9 mL)を混合し、70℃で3時間攪拌した。この反応混合物の溶媒を減圧下で留去して、4-フルオロ-2-(トリフルオロメチル)ベンゾイルクロリドを含む残渣を得た。得られた残渣にアセトニトリル(450 mL)及びピリジン(291 mL)を加え、2-プロパノール(450 mL)を滴下し、室温で30分間攪拌した。この混合物にトルエン(600 mL)及び水(600 mL)を加え分液操作を行った後、水層にトルエン(600 mL)を加えて抽出した。得られた有機層をあわせて、3M塩酸(1200 mL)で洗浄後、さらに塩化ナトリウム(150 g)と水(900 mL)の溶液で洗浄し、減圧下で溶媒を留去して、イソプロピル 4-フルオロ-2-(トリフルオロメチル)ベンゾアート(165 g)を収率91.5%で得た。
1H-NMR(CDCL3):1.37(6H,d,J=6.0Hz),5.20-5.30(1H,m),7.28-7.31(1H,m),7.44(1H,dd,J=2.4,9.2Hz),7.82(1H,dd,J=5.6,8.8Hz)
(実施例1に係る第2工程の別法)
 式(7a)の化合物の合成
 イソプロピル 4-フルオロ-2-(トリフルオロメチル)ベンゾアート(3.00 g)、1,3-ジメチル-2-イミダゾリジノン(12 mL)、トルエン(3 mL)、(2R)-2-フルオロプロパノール (1.40 g)及び炭酸セシウム(7.81 g)を混合し、25~50℃で27時間攪拌した。この反応混合物にトルエン(15 mL)及び水(36 mL)を加えて抽出した。この有機層を水(30 mL)で洗浄し、減圧下で溶媒を留去して、油状の残渣を得た。得られた残渣をシリカゲルクロマトグラフィー(溶出液:n-ヘプタン/酢酸エチル=20/1→15/1→5/1)で精製して、イソプロピル (2R)-4-(2-フルオロプロポキシ)-2-(トリフルオロメチル)ベンゾアート(2.77 g、収率77.8%、Rf値=0.4(n-ヘプタン/酢酸エチル=5/1))、及び、(2R)-2-フルオロプロピル 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアート(0.59 g、収率15.1%、Rf値=0.26(n-ヘプタン/酢酸エチル=5/1))を得た。
イソプロピル (2R)-4-(2-フルオロプロポキシ)-2-(トリフルオロメチル)ベンゾアート(Rがイソプロピルである式(7a)の化合物)
1H-NMR(DMSO-d6):1.30(6H,d,J=6.0Hz),1.39(3H,dd,J=5.6,23.6Hz),4.18-4.37(2H,m),4.94-5.17(2H,m),7.33-7.37(2H,m),7.82(1H,d,J=8.4Hz)
ESI+:309
(2R)-2-フルオロプロピル 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアート(Rが(2R)-2-フルオロプロピルである式(7a)の化合物)
1H-NMR(DMSO-d6):1.32-1.43(6H,m),4.20-4.48(4H,m),4.91-5.13(2H,m),7.37-7.40(2H,m),7.91(1H,d,J=8.4Hz)
ESI+:327
(実施例1に係る第2及び第3工程の別法)
 式(7)の化合物の合成
 イソプロピル 4-フルオロ-2-(トリフルオロメチル)ベンゾアート(6.00 g)、1,3-ジメチル-2-イミダゾリジノン(24 mL)、トルエン(6 mL)、(2R)-2-フルオロプロパノール(3.37 g)、及び炭酸セシウム(19.5 g)の混合し、55℃で5時間攪拌した後、炭酸セシウム(3.91 g)及び水(0.3 mL)を加えて、55℃で75時間攪拌した。この反応混合物にトルエン(30 mL)及び水(72 mL)を加えて抽出した。この有機層を水(60 mL)で洗浄後、減圧下で溶媒を留去した。得られた残渣に水酸化ナトリウム(1.92 g)と水(12 mL)の溶液、メタノール(36 mL)を順次加え、60℃で22時間攪拌した。この混合物に水(42 mL)及びトルエン(12 mL)を加えて、水層を洗浄した。この水層に濃塩酸(4.16 mL)を加え、20℃で撹拌した。得られた結晶を濾取し、30%メタノール水溶液(12 mL)で洗浄した後、減圧下50℃で乾燥して、4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(5.37 g)を収率84.2%で得た。
1H-NMR(CDCl3):1.49(3H,dd,J=6.4Hz,23.2Hz),4.08-4.22(2H,m),4.96-5.14(1H,m),7.11(1H,dd,J=2.8Hz,8.8Hz),7.35(1H,d,J=2.8Hz),8.08(1H,d, J=8.8Hz)
ESI-:264
(実施例1に係る第11工程の別法)
 式(5)の化合物の合成
 メチル (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタート(16.0 g)、水酸化ナトリウム(1.85 g)、水(64 mL)、及びエタノール(96 mL)を混合し、20℃で19時間攪拌した後、濃塩酸(4.1 mL)を加えて2時間攪拌した。その後、この混合物に水(32 mL)を加え、25℃で16時間攪拌した。さらに水(48 mL)を加え、20℃で23時間攪拌した。生じた結晶を濾取し、水(32 mL)で洗浄した後、減圧下50℃で乾燥して、(2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸(15.2 g)を収率97.4%で得た。
1H-NMR(DMSO-d6):1.33(3H,dd,J=24.0Hz,6.4Hz),2.20-2.70(2H,m),3.10-3.60(1H,m),4.03-4.21(2H,m),4.76(1H,br),4.86-5.06(1H,m),6.54-7.55(7H,m),13.31(1H,br)
ESI+:506
(実施例1に係る第12工程の別法1)
 式(1)の化合物の合成
 (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸(5.0 g)、酢酸エチル(50 mL)、及びN,N-ジメチルホルムアミド(50 mg)を混合し、この混合物に塩化チオニル(1.77g)を室温で加え、64℃で4時間半攪拌した。この反応混合物の溶媒を減圧下で留去し、(2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチルクロリドを含む残渣を得た。残渣をアセトニトリル(25mL)に溶解し、2-アミノエタノール(12.1 g)とアセトニトリル(25 mL)の混合溶液に5℃で滴下して、1時間攪拌した。この反応混合物に水(50 mL)を加え、アセトニトリルを減圧下で留去した後、酢酸エチル(50 mL)を加えて抽出した。この有機層を濃塩酸(2.5g)と水(50 mL)の溶液、及び塩化ナトリウム(2.5 g)と水(50 mL)の溶液で順次洗浄した後、溶媒をを減圧下留去した。得られた残渣の半分を取り出し、酢酸イソプロピル(15 mL)を加えた後、78℃にて加熱溶解し、同温にてn-ヘプタン(15mL)を滴下した。10℃に冷却し生じた結晶を10℃で終夜撹拌した。生じた結晶を濾取し、減圧下50℃で乾燥して、(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドのα型結晶(2.31 g、全量を用いた場合に換算した収率として85.1%)を得た。
(実施例1に係る第12工程の別法2)
 式(1)の化合物の合成
 (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸(1.0 g)、酢酸エチル(10 mL)、及びN,N-ジメチルホルムアミド(触媒量)を混合し、この混合溶液に塩化チオニル(217 μL)を加えて、65℃で1時間攪拌した。その後、この反応混合物の溶媒を減圧下で留去し、(2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチルクロリドを含む残渣を得た。残渣をアセトニトリル(10 mL)に溶解し、2-アミノエタノール(2.42 g)とアセトニトリル(10 mL)の混合溶液に氷冷下で滴下し、30分間攪拌した。この反応混合物に水(20 mL)を加え、アセトニトリルを減圧下で留去した後、酢酸エチル(20 mL)を加えて抽出した。この有機層を0.6M塩酸(20 mL)、及び水(20 mL)で順次洗浄した後、溶媒を減圧下で留去した。得られた残渣に2-プロパノールを加えた後、溶媒を減圧下で留去した。得られた残渣に2-プロパノール(2 mL)を加えて攪拌した後、n-ヘプタン(8 mL)を加えて4時間撹拌した。生じた結晶を濾取し、n-ヘプタン(2 mL)で洗浄した後、減圧下50 ℃で乾燥して、(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドのβ型結晶(896 mg)を収率83.0%で得た。
1H-NMR(DMSO-d6):1.33(3H,dd,J=6.0,23.6Hz),2.41(1H,br),2.67(1H,br),3.13(1H,br),3.23(2H,dd,J=6.0,12.0Hz),3.48(2H,dd,J=6.0,11.6Hz),4.01-4.21(2H,m),4.69(1H,t,J=5.2Hz),4.78(1H,br),4.86-5.05(1H,m),6.50(1H,s),6.74(1H,dd,J=5.2,8.8Hz),6.87(1H,d,J=8.8Hz),7.00-7.06(2H,m),7.19(1H,dd,J=2.8,8.8Hz),7.23(1H,d,J=2.4Hz,),8.38(1H,t,J=6.0Hz)
FAB+:549
 本工程で得られた(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドのβ型結晶の粉末X線回折測定、及びDSC分析の結果を図3及び図4に示す。
 なお、各分析の測定条件は、実施例1の第12工程に記載の条件と同様である。
実施例3
前記反応式(III)に示される各工程を後記の通り実施して、式(7)の化合物を得た。
(工程A)
 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(式(7)の化合物)の合成
 窒素雰囲気下、(2R)-2-フルオロプロパノール(112.6 g)及び4-フルオロ-2-(トリフルオロメチル)安息香酸(式(7e-F)の化合物)(166.7 g)を1,3-ジメチル-2-イミダゾリジノン(1000 mL)に溶解した後、20~30℃で60%水素化ナトリウム(89.7 g)を加えて、30℃で2日間攪拌した。この反応混合物を冷却し、水(3000 mL)を加えた後、酢酸エチル(834 mL)、濃塩酸(200 mL)を順次加えて、水層が酸性であることを確認後、抽出した。さらに水層に酢酸エチル(500 mL)を加えて抽出する操作を2回行った。3回の抽出操作で得られた有機層をあわせて、減圧下で溶媒を留去した。得られた残渣にn-ヘプタン(500 mL)を加え、水酸化ナトリウム(48.1 g)と水(833 mL)の溶液で洗浄し、さらに有機層を水(167 mL)で洗浄した。2回の洗浄操作で得られた水層をあわせて、酢酸エチル(833 mL)、濃塩酸(107 mL)を順次加えて攪拌した後、抽出した。この有機層の溶媒を減圧下で留去した。得られた残渣にメタノール(583 mL)を加えた後、水(1084 mL)を25~30℃で加えて、20℃で30分間攪拌した。生じた結晶を濾取し、メタノール(50 mL)と水(116.7 mL)の混合溶液、水(166.7 mL)で順次洗浄し、減圧下50℃で乾燥して、粗結晶(155 g)を得た。この粗結晶をメタノール(620 mL)に溶解した後、水(930 mL)を17~28℃で加えて、20℃で30分間撹拌した。生じた結晶を濾取し、メタノール(46.5 mL)と水(108.5 mL)の混合溶液、水(155 mL)で順次洗浄し、減圧下50℃で乾燥して、粗結晶(134 g)を得た。この粗結晶にn-プロパノール(423 mL)を加えた後、66℃で加熱溶解し、水(643 mL)を徐々に加えて、15℃で終夜攪拌した。生じた結晶を濾取し、n-プロパノール(80 mL)と水(188 mL)の混合溶液で洗浄し、減圧下50℃で乾燥して、4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(116 g)を収率54.4%で得た。
1H-NMR(CDCl3):1.49(3H,dd,J=23.2Hz,6.0Hz),4.08-4.22(2H,m),4.94-5.15(1H,m),7.11(1H,dd,J=8.8Hz,2.4Hz),7.35(1H,d,J=2.4Hz),8.06(1H,d,J=8.8Hz)
ESI-:265
当該別法工程は、原料である式(7e-F)の化合物から1工程で、所望の式(7)の化合物を製造できることから、効率面で優れる。
実施例4
前記反応式(IV)に示される各工程を後記の通り実施して、式(7)の化合物を得た。
(工程B)
 メチル 4-[(2S)-オキシラン-2-イルメトキシ]-2-(2-トリフルオロメチル)ベンゾアート(R2がメチルである式(7g)の化合物)の合成
 メチル 4-ヒドロキシ-2-(トリフルオロメチル)ベンゾアート(1.4 g)、N,N-ジメチルホルムアミド(10 mL)、炭酸カリウム(1.14 g)、フッ化セシウム(195 mg)を混合し、室温にて40分時間攪拌した。この反応液に3-ニトロベンゼンスルホン酸 (S)-グリシジル(1.65 g)を加え、室温にて15時間20分撹拌した。反応液に酢酸エチル(15mL)を加え、不溶物を濾過し、更に不溶物を酢酸エチル(10mL)で洗浄した。合わせた酢酸エチル溶液に水を加え、有機層を水、飽和塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒を減圧下留去することにより、メチル 4-[(2S)-オキシラン-2-イルメトキシ]-2-(2-トリフルオロメチル)ベンゾアート(1.825 g)を得た。
1H-NMR(CDCl3):2.77(1H,dd,J=4.4Hz,2.8Hz),2.94(1H,t,J=2.8Hz),3.36-3.38(1H,m),3.91(3H,s),4.00(1H,dd,J=10.8Hz,6.0Hz),4.36(1H,dd,J=10.8Hz,2.4Hz),7.09(1H,dd,8.8Hz,2.8Hz),7.29(1H,d,J=2.8Hz),7.84(1H,d,J=8.8Hz) 
(工程C)
 メチル 4-{[(2S)-2-ヒドロキシプロピル]オキシ}-2-(2-トリフルオロメチル)ベンゾアート(R2がメチルである式(7f)の化合物、即ち反応式(I)(i-2)に示される式(7f-M)の化合物)の合成
 10%パラジウム炭素(55mg)のエタノール(20mL)懸濁液に、メチル 4-[(2S)-オキシラン-2-イルメトキシ]-2-(2-トリフルオロメチル)ベンゾアート(750 mg)及び蟻酸アンモニウム(516 mg)を加え、室温にて2時間15分撹拌した。反応液を濾過し、ろ液を減圧下濃縮した。得られた残渣に酢酸エチル及び水を加え、有機層を飽和塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒を減圧下留去することにより、メチル 4-{[(2S)-2-ヒドロキシプロピル]オキシ}-2-(2-トリフルオロメチル)ベンゾアート(727 mg)を収率96.0%で得た。
1H-NMR(CDCl3):1.32(3H,d,J=6.4Hz),3.88-3.93(4H,m),3.98(1H,dd,J=9.6Hz,2.4Hz),4.19-4.27(1H,m),7.07(1H,dd,J=8.8Hz,2.4Hz),7.28(1H,d,J=2.4Hz),7.85(1H,d,J=8.8Hz)
FAB+:279
(工程D)
 4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)安息香酸(式(7)の化合物)の合成
 メチル 4-{[(2S)-2-ヒドロキシプロピル]オキシ}-2-(2-トリフルオロメチル)ベンゾアート(645 mg)のジクロロメタン(15 mL)溶液に-78℃にて(ジエチルアミノ)サルファ トリフルオリド (0.62 mL)を加え、室温にて21時間15分攪拌した。反応液に冷却した飽和炭酸水素ナトリウム水溶液、及びクロロホルムを加え、有機層を1M塩酸、水、飽和塩化ナトリウム水溶液にて順次洗浄後、無水硫酸ナトリウムにて乾燥し溶媒を留去した。得られた残渣のメタノール(10 mL)溶液に5M水酸化ナトリウム水溶液(1 mL)を加え、70℃で5時間攪拌した。反応液を減圧下濃縮し、得られた残渣に水、クロロホルムを加え、1M水酸化ナトリウム水溶液を加え、得られた水層を1M塩酸を用いてpH1に調整した後、クロロホルムにて抽出した。有機層を水、飽和塩化ナトリウム水溶液にて順次洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒を留去し、得られた残渣にエタノール:水(40:60)の混合溶媒(5 mL)を加え、室温にて3時間30分撹拌した。生じた固体を濾過、乾燥し、4-{[(2R)-2-フルオロプロピル]オキシ}-2-トリフルオロメチル)安息香酸(465 mg)を収率75.4%で得た。
1H-NMR(CDCl3):1.49(3H,dd,J=23.6Hz,6.4Hz),4.11-4.19(2H,m),4.95-5.14(1H,m),7.11(1H,dd,J=8.4Hz,2.4Hz),7.35(1H,d,J=2.4Hz),8.07(1H,d,J=8.4Hz)
実施例5
 前記反応式(V)に示される各工程を後記の通り実施して、R1がメチルである式(8)の化合物、即ち反応式(I)(ii)に示される式(8-M)の化合物を得た。
(工程E)
 (2Z)-{4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸 ジシクロヘキシルアミン塩(式(9-S)の化合物)の合成
 60%水素化ナトリウム(1.08 g)のテトラヒドロフラン懸濁液(400 mL)に4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-オン(50.0 g)を加え、水冷下で40分撹拌後、-70℃まで冷却した。反応液にジエチルホスホノ酢酸(29.2 g)のテトラヒドロフラン溶液(100 mL)を滴下し、その温度で10分撹拌し、ナトリウム tert-ブトキシド(28.6 g)を4回に分けて加え、-20℃まで昇温しながら21時間撹拌した。反応液に水、濃塩酸を加え、酢酸エチルで抽出した。有機層を水で洗浄後、減圧下濃縮した。得られた残渣にメタノール、ジシクロヘキシルアミンを加え、室温にて22時間撹拌した。析出した固体をろ取し、固体をメタノール/酢酸エチルで洗浄後、減圧下乾燥させることで、淡褐色固体として、(2Z)-{4,4,7-トリフルオロ-1-[(4-メチルフェニル)スルホニル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸 ジシクロヘキシルアミン塩(56.2 g)を収率70.1%で得た。
(工程F)
 メチル (2Z)-(4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタート(式(8-M)の化合物)の合成
 非特許文献1記載の化合物[8]の製造方法と同様にして、式(9-S)の化合物から、メチル (2Z)-(4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタートを得た。
 以下に本発明の効果を示す。
 実施例1における本発明の製造方法の収率は、以下の表1に示すとおりである。なお、表1では、実施例で記載した第1から3工程(連続工程)、第4~6工程(連続工程)、第7工程、第8~9工程(連続工程)、第10工程、第11及び第12工程での各収率と、第4~12工程の通算の収率を示した。
Figure JPOXMLDOC01-appb-T000027
 一方、参考例における、式(1)の化合物の公知の製造方法の収率は、以下の表2に示すとおりである。
Figure JPOXMLDOC01-appb-T000028
 表1と表2から、実施例と参考例において、それぞれ対応する工程の特徴を比較して、その収率と共に、以下に示す。
(式(7e-F)/(7e)の化合物から式(7)の化合物を製造する工程)
実施例1の第1~3工程の通算収率:78.6%
参考例の第3~9工程の通算収率:42.7%
 参考例の第1~9工程に示す、式(7)の化合物の製造工程においては総工程として9工程を要するが、これは、ベンジル基の脱保護、及びアセチル基での保護並びに脱保護工程を含んでおり、効率面で必ずしも満足できる方法ではない。
 一方、実施例1の第1~3工程に示す、式(7)の化合物の製造工程は、適切な原料、及び試薬を用いることで、式(7e)の化合物から3工程で収率よく製造することができ、さらに安全性に懸念のあるDASTの使用を回避することができた。
また、実施例4における、反応式(IV)の工程B~Dに示す式(7)の化合物の製造方法においては、DASTは用いるものの、参考例の第1~2工程及び第7~8工程で用いているシリカゲルカラムクロマトグラフィーによる精製工程が不要である点、また、反応式(I)(i)及び(ii)に示すように、参考例1においては式(7i-M)の化合物から式(7)の化合物を得るまでに6工程を要するのに対し、本製造方法では、式(7i)の化合物から工程B~Dの3工程で式(7)の化合物を製造することができる点で、効率面で有利な方法である。
 また、実施例1の第1工程に示すエステル化反応にて、イソプロピルエステルにすることで、第2工程の芳香族求核置換反応の際、メチルエステル、エチルエステル等の他の低級アルキルエステルに比べて、副生成物を抑制することができた。
(式(16)の化合物から式(12)の化合物を製造する工程)
実施例1の第4~6工程:93.1%
参考例の第10~12工程:70.9%(計3工程の収率を乗じることにより計算される)
 参考例の第12工程において、反応中、保護基であるp-トルエンスルホニル基の一部脱落が認められるため、粗生成物である式(12)の化合物に対して、再度p-トルエンスルホニル基で保護をし直す必要があり、コストの面、効率の面において必ずしも十分に満足すべきものではない。
 一方、実施例の第6工程においては、合成中間体に式(13)の化合物を用いることで、p-トルエンスルホニル基の脱離を伴うことなく式(12)の化合物を製造することができた。また中間体である式(14)及び式(13)の化合物をそれぞれ単離せずに式(12)の化合物を製造することができる点で、効率面で有利である。
(式(11)の化合物から式(6-M)/(6)の化合物を製造する工程)
実施例1の第8~10工程:70.1%
(第8~9工程の通算収率と第10工程の収率を乗じることにより計算される)
参考例の第14~16工程:24.8%
(第14工程の収率と第15~16工程の通算収率を乗じることにより計算される)
 参考例1の第14及び15工程では、ジエチルホスホノ酢酸を用いて反応を行っているが、その際、二重結合がZ体である化合物を選択的に製造するために、酢酸エチル中でジシクロヘキシルアミン塩である式(9-S)の化合物に一旦変換してから、式(8-M)の化合物を製造する必要がある。
 一方、実施例1の第8工程においては、試薬としてジフェニルホスホノ酢酸を用いることで、二重結合のE/Zの比が1/24とZ体の選択性が高く、ジシクロヘキシルアミン塩として単離する必要がなく、高い収率で式(8)の化合物を製造することができた。
また、実施例5における、反応式(V)の工程E-(1)及びE-(2)に示す、式(9-S)の化合物の製造方法は、参考例1の第14工程に比べて、式(9-S)の化合物を収率よく製造できる点において、好適である。
(式(11)の化合物から式(9-S)の化合物を製造する工程)
実施例5の工程E:70.1%
参考例の第14工程:27.0%
 参考例の第14工程においては、酢酸エチル中、ジシクロヘキシルアミンと処理して式(9-S)の化合物を製造しているが、その収率は27.0%であった。
 一方、実施例5の工程Eにおいては、メタノール中、ジシクロヘキシルアミンと処理して、収率70.1%で式(9-S)の化合物を製造することができた。
(式(5)の化合物から式(1)の化合物を製造する工程)
実施例1の第12工程:85.3%
参考例の第18工程:54.7%
 参考例の第18工程においてはアミド化反応の際、変異原性を示す1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を使用する必要がある。
 一方、実施例1の第12工程においては、塩化チオニルを用いて酸塩化物とした後に、2-アミノエタノールと反応させることで、収率が向上するとともに、EDCの使用を回避することができた。
 上記のとおり、本発明の製造方法は、公知の製造方法に比較して、各工程において50%以下の収率の工程を含まず、全工程での通算収率を高く維持することができており、コスト面でも有利である。更に、本発明の製造方法は、カラムクロマトグラフィーによる精製を必要せず、かつ、安全性や毒性に懸念のあるDASTやEDCを必要としないという点で、式(1)の化合物の優れた、特に医薬品としての工業的生産に好適な製造方法である。
 本発明によって、高収率かつ低コストであり、医薬品としての工業的生産に好適な、式(1)の化合物の製造方法、及びその製造方法において有用な合成中間体が提供される。

Claims (16)

  1. 式(5)の化合物を塩化チオニル(4)と反応させて式(3)の化合物を製造する工程、及び、式(3)の化合物を2-アミノエタノール(2)と反応させアミド化する工程を含む、下記反応式に示される式(1)の化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Meはメチルを示す。)
  2. 式(8)の化合物と式(7)の化合物から式(6)の化合物を製造する工程、式(6)の化合物から、式(5)の化合物を製造する工程、式(5)の化合物を塩化チオニル(4)と反応させて、式(3)の化合物を製造する工程、及び、式(3)の化合物を2-アミノエタノール(2)と反応させアミド化する工程を含む、下記反応式に示される式(1)の化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Meはメチルを、R1は低級アルキルを示す。)
  3. 請求項2記載の製造方法において、
    式(11)の化合物とジフェニルホスホノ酢酸(10)から式(9)の化合物を製造する工程、及び、式(9)の化合物から式(8)の化合物を製造する工程からなる、下記反応式に示される式(8)の化合物の製造方法(X-1)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Tsは、p-トルエンスルホニルを示し、Phはフェニルを示し、R1は低級アルキルを示す。)、
    又は、
    式(11)の化合物とジエチルホスホノ酢酸(18)とを反応させ、得られた粗生成物をメタノール中ジシクロヘキシルアミン(17)と処理して式(9-S)の化合物を製造する工程、及び、式(9-S)の化合物から式(8)の化合物を製造する工程からなる、下記反応式に示される式(8)の化合物を製造方法(X-2)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Tsはp-トルエンスルホニルを示し、Etはエチルを示し、R1は低級アルキルを示す。)、
    によって製造された式(8)の化合物を用いることを特徴とする、式(1)の化合物の製造方法。
  4. 請求項3に記載の製造方法において、
    式(16)の化合物と4-クロロ酪酸メチル(15)から式(14)の化合物を製造する工程、式(14)の化合物から式(13)の化合物を製造する工程、式(13)の化合物から式(12)の化合物を製造する工程、及び、式(12)の化合物から式(11)の化合物を製造する工程からなる、下記反応式に示される式(11)の化合物の製造方法(Y-1)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Tsはp-トルエンスルホニルを示し、Meはメチルを示す。)、
    によって製造された式(11)の化合物を用いることを特徴とする、式(1)の化合物の製造方法。
  5. 請求項4に記載の製造方法において、(Y-1)の製造方法が、式(14)の化合物を単離することなく式(13)の化合物を製造し、かつ、式(13)の化合物を単離することなく式(12)の化合物を製造するものである、式(1)の化合物の製造方法。
  6. 請求項2~5に記載の製造方法において、
    式(7c)の化合物と(2R)-2-フルオロプロパノール(7b)から式(7a)の化合物を製造する工程、及び、式(7a)の化合物から式(7)の化合物を製造する工程からなる、下記反応式に示される式(7)の化合物の製造方法(Z-1)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Lvは脱離基を示し、Meはメチルを示し、iPrはイソプロピルを示し、Rはイソプロピル又は(2R)-2-フルオロプロピルを示す。)、
    式(7e)の化合物と(2R)-2-フルオロプロパノール(7b)から式(7)の化合物を製造する工程である、下記反応式に示される式(7)の化合物の製造方法(Z-2)
    (式中、Lvは脱離基を示し、Meはメチルを示す。)、又は、
    式(7i)の化合物と3-ニトロベンゼンスルホン酸(S)-グリシジル(7h)から式(7g)の化合物を製造する工程、式(7g)の化合物を水素添加反応に付して式(7f)の化合物を製造する工程、及び、式(7f)の化合物から式(7)の化合物を製造する工程からなる、下記反応式に示される式(7)の化合物の製造方法(Z-3)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R2は低級アルキルを示し、Meはメチルを示す。)、
    のいずれか1つの製造方法によって製造された式(7)の化合物を用いることを特徴とする、式(1)の化合物の製造方法。
  7. 請求項3記載の(X-1)に示される方法で製造される式(8)の化合物、及び、請求項6記載の(Z-1)に示される方法で製造される式(7)の化合物を用いることを特徴とする、請求項2記載の式(1)の化合物の製造方法。
  8. 請求項3記載の(X-2)に示される方法で製造される式(8)の化合物、及び、請求項6記載の(Z-1)に示される方法で製造される式(7)の化合物を用いることを特徴とする、請求項2記載の式(1)の化合物の製造方法。
  9. 請求項3記載の(X-1)に示される方法で製造される式(8)の化合物、及び、請求項6記載の(Z-2)に示される方法で製造される式(7)の化合物を用いることを特徴とする、請求項2記載の式(1)の化合物の製造方法。
  10. 請求項3記載の(X-2)に示される方法で製造される式(8)の化合物、及び、請求項6記載の(Z-2)に示される方法で製造される式(7)の化合物を用いることを特徴とする、請求項2記載の式(1)の化合物の製造方法。
  11. 請求項3記載の(X-1)に示される方法で製造される式(8)の化合物、及び、請求項6記載の(Z-3)に示される方法で製造される式(7)の化合物を用いることを特徴とする、請求項2記載の式(1)の化合物の製造方法。
  12. 請求項3記載の(X-2)に示される方法で製造される式(8)の化合物、及び、請求項6記載の(Z-3)に示される方法で製造される式(7)の化合物を用いることを特徴とする、請求項2記載の式(1)の化合物の製造方法。
  13. 請求項4記載の(Y-1)に示される方法で製造される式(11)の化合物を用いることを特徴とする、請求項7~12のいずれか1項に記載の製造方法からなる、式(1)の化合物の製造方法。
  14. 請求項13に記載の製造方法において、(Y-1)の製造方法が、式(14)の化合物を単離することなく式(13)の化合物を製造し、かつ、式(13)の化合物を単離することなく式(12)の化合物を製造するものである、式(1)の化合物の製造方法。
  15.  (2Z)-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチルクロリド。
  16. メチル 5-フルオロ-2-{(4-メトキシ-4-オキソブチル)[(4-メチルフェニル)スルホニル]アミノ}ベンゾアート。
PCT/JP2013/066076 2012-06-11 2013-06-11 4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5h-1-ベンゾアゼピン化合物の製造方法及びその合成中間体 WO2013187406A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP13804693.3A EP2860175B1 (en) 2012-06-11 2013-06-11 Method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5h-1-benzazepine compound and intermediate for synthesis thereof
LTEP13804693.3T LT2860175T (lt) 2012-06-11 2013-06-11 4,4,7-trifluor-1,2,3,4-tetrahidro-5h-1-benzazepino junginio ir jo sintezei skirto tarpinio junginio gamybos būdas
SI201330925T SI2860175T1 (en) 2012-06-11 2013-06-11 METHOD FOR MANUFACTURE OF 4,4,7-TRIFLUORO-1,2,3,4-TETRAHYDRO-5H-1-BENZAZEPIN COMPOSITION AND INTERMEDIATE FOR ITS SYNTHESIS
PL13804693T PL2860175T3 (pl) 2012-06-11 2013-06-11 Sposób wytwarzania związku 4,4,7-trifluoro-1,2,3,4-tetrahydro-5h-1-benzazepinowego i związku pośredniego do jego syntezy
ES13804693.3T ES2659180T3 (es) 2012-06-11 2013-06-11 Procedimiento para producir el compuesto de 4,4,7-trifluoro-1,2,3,4-tetrahidro-5H-1-benzazepina y producto intermedio para la síntesis del mismo
NO13804693A NO2860175T3 (ja) 2012-06-11 2013-06-11
DK13804693.3T DK2860175T3 (da) 2012-06-11 2013-06-11 Fremgangsmåde til fremstilling af 4,4,7-trifluor-1,2,3,4-tetrahydro-5h-1-benzazepin-forbindelse og intermediat til syntese deraf
JP2014521349A JPWO2013187406A1 (ja) 2012-06-11 2013-06-11 4,4,7−トリフルオロ−1,2,3,4−テトラヒドロ−5h−1−ベンゾアゼピン化合物の製造方法及びその合成中間体
RS20180081A RS56804B1 (sr) 2012-06-11 2013-06-11 Postupak za proizvodnju jedinjenja 4,4,7-trifluoro-1,2,3,4-tetrahidro-5h-1-benzazepina i intermedijer za njegovu sintezu
US14/406,568 US9598373B2 (en) 2012-06-11 2013-06-11 Method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5H-1-benzazepine compound and intermediate used in the method
US15/434,678 US9951022B2 (en) 2012-06-11 2017-02-16 Method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5H-1-benzazepine compound and intermediate used in the method
HRP20180032TT HRP20180032T8 (hr) 2012-06-11 2018-01-09 Postupak dobivanja spoja 4,4,7-trifluor-1,2,3,4-tetrahidro-5h-1-benzazepina i međuprodukta u njegovoj sintezi
CY20181100092T CY1119983T1 (el) 2012-06-11 2018-01-24 Μεθοδος για παραγωγη ενωσης 4,4,7-τριφθορο-1,2,3,4-τετραϋδρο-5η-1-βενζαζεπινης και ενδιαμεσου προϊοντος για συνθεση εξ' αυτης
US15/933,804 US10508084B2 (en) 2012-06-11 2018-03-23 Method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5H-1-benzazepine compound and intermediate used in the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012131504 2012-06-11
JP2012-131504 2012-06-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/406,568 A-371-Of-International US9598373B2 (en) 2012-06-11 2013-06-11 Method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5H-1-benzazepine compound and intermediate used in the method
US15/434,678 Continuation US9951022B2 (en) 2012-06-11 2017-02-16 Method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5H-1-benzazepine compound and intermediate used in the method

Publications (1)

Publication Number Publication Date
WO2013187406A1 true WO2013187406A1 (ja) 2013-12-19

Family

ID=49758228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066076 WO2013187406A1 (ja) 2012-06-11 2013-06-11 4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5h-1-ベンゾアゼピン化合物の製造方法及びその合成中間体

Country Status (15)

Country Link
US (3) US9598373B2 (ja)
EP (1) EP2860175B1 (ja)
JP (2) JPWO2013187406A1 (ja)
CY (1) CY1119983T1 (ja)
DK (1) DK2860175T3 (ja)
ES (1) ES2659180T3 (ja)
HR (1) HRP20180032T8 (ja)
HU (1) HUE035391T2 (ja)
LT (1) LT2860175T (ja)
NO (1) NO2860175T3 (ja)
PL (1) PL2860175T3 (ja)
PT (1) PT2860175T (ja)
RS (1) RS56804B1 (ja)
SI (1) SI2860175T1 (ja)
WO (1) WO2013187406A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968466B2 (ja) * 2012-12-26 2016-08-10 株式会社三和化学研究所 新規ベンゾアゼピン誘導体及びその医薬用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042181A1 (fr) * 2001-11-16 2003-05-22 Yamanouchi Pharmaceutical Co., Ltd. Derives de 4,4-difluoro-1,2,3,4-tetrahydro-5h-1-benzazepine, ou sels desdits derives
WO2004096775A1 (ja) 2003-04-28 2004-11-11 Astellas Pharma Inc. 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5h-1-ベンゾアゼピン誘導体又はその塩
JP2006151957A (ja) * 2004-10-27 2006-06-15 Astellas Pharma Inc ベンゾアゼピン誘導体又はその塩の製造法
JP2006151956A (ja) * 2004-10-27 2006-06-15 Astellas Pharma Inc ベンゾアゼピン誘導体を有効成分とする医薬組成物
JP2008504277A (ja) * 2004-06-24 2008-02-14 イーライ リリー アンド カンパニー 異常脂質血症を治療するための化合物および方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857760B2 (ja) * 1989-02-17 1999-02-17 第一製薬株式会社 プロポキシニトロベンゼン類の製法
DE69717653T2 (de) * 1996-09-18 2003-09-25 Daiso Co Ltd Verfahren zur herstellung von glycidylethern
EP2405692A1 (en) * 2008-02-01 2012-01-11 InterDigital Patent Holdings, Inc. Method and apparatus for enabling cell reselection for WTRU operating in discontinous reception

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042181A1 (fr) * 2001-11-16 2003-05-22 Yamanouchi Pharmaceutical Co., Ltd. Derives de 4,4-difluoro-1,2,3,4-tetrahydro-5h-1-benzazepine, ou sels desdits derives
WO2004096775A1 (ja) 2003-04-28 2004-11-11 Astellas Pharma Inc. 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5h-1-ベンゾアゼピン誘導体又はその塩
JP2008504277A (ja) * 2004-06-24 2008-02-14 イーライ リリー アンド カンパニー 異常脂質血症を治療するための化合物および方法
JP2006151957A (ja) * 2004-10-27 2006-06-15 Astellas Pharma Inc ベンゾアゼピン誘導体又はその塩の製造法
JP2006151956A (ja) * 2004-10-27 2006-06-15 Astellas Pharma Inc ベンゾアゼピン誘導体を有効成分とする医薬組成物

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DAI 22 KAI ABSTRACTS SYMPOSIUM ON PROGRESS IN ORGANIC REACTIONS AND SYNTHESIS, 1996, pages 1 - 5, XP008175614 *
GREENE; WUTS: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS INC.
GREENE; WUTS: "Protective Groups in Organic Synthesis", 2006, JOHN WILEY & SONS INC.
JIPII JOURNAL OF TECHNICAL DISCLOSURE NO. 2004-504305, 30 June 2004 (2004-06-30), YAMANOUCHI PHARMACEUTICAL CO., LTD., XP008175549 *
JIPII JOURNAL OF TECHNICAL DISCLOSURE NO. 97-9952, 15 December 1997 (1997-12-15), YAMANOUCHI PHARMACEUTICAL CO., LTD., pages 1 - 2, XP008175547 *
JIPII JOURNAL OF TECHNICAL DISCLOSURE NO. 98-6263, 16 September 1998 (1998-09-16), YAMANOUCHI PHARMACEUTICAL CO.,LTD, XP008175548 *
KONDO, K. ET AL.: "7-chloro-5-hydroxy-1-[2- methyl-4-(2-methylbenzoyl-amino)benzoyl]-2,3,4, 5-tetrahydro-1H-1-benzazepine (OPC-41061): A potent, orally active nonpeptide arginine vasopressin V2 receptor antagonist", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 7, no. 8, 1999, pages 1743 - 1754, XP002419809 *
NISHIGUCHI, A. ET AL.: "Preparation of a 1-unsubstituted-2,3-dihydro-1-benzazepine derivative", HETEROCYCLES, vol. 71, no. 5, 2007, pages 1183 - 1192, XP008175552 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968466B2 (ja) * 2012-12-26 2016-08-10 株式会社三和化学研究所 新規ベンゾアゼピン誘導体及びその医薬用途

Also Published As

Publication number Publication date
HRP20180032T1 (hr) 2018-03-23
EP2860175A1 (en) 2015-04-15
HUE035391T2 (en) 2018-05-02
EP2860175A4 (en) 2015-12-09
US9598373B2 (en) 2017-03-21
PT2860175T (pt) 2018-02-02
DK2860175T3 (da) 2018-01-29
RS56804B1 (sr) 2018-04-30
EP2860175B1 (en) 2017-11-29
CY1119983T1 (el) 2018-12-12
ES2659180T3 (es) 2018-03-14
US20170158639A1 (en) 2017-06-08
LT2860175T (lt) 2018-03-26
US10508084B2 (en) 2019-12-17
JP2019014716A (ja) 2019-01-31
US20190062280A1 (en) 2019-02-28
SI2860175T1 (en) 2018-04-30
US9951022B2 (en) 2018-04-24
JPWO2013187406A1 (ja) 2016-02-04
HRP20180032T8 (hr) 2018-12-14
NO2860175T3 (ja) 2018-04-28
PL2860175T3 (pl) 2018-07-31
US20150141641A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
KR102660070B1 (ko) 세포독성 벤조다이아제핀 유도체의 제조 방법
JP6699979B2 (ja) シロドシンおよびその中間体の合成方法ならびに結晶フォーム
WO2017108960A1 (en) Method for producing monomethyl fumarate compounds
WO2020096042A1 (ja) ジメトキシベンゼン化合物の製造方法
JP2818763B2 (ja) N−(ヒドロキシ)アラルキルフェニルエタノールアミン類のo−アルキル化された化合物
KR20190036549A (ko) 피라졸-아미드 화합물의 제조 방법
WO2020095452A1 (ja) ジメトキシベンゼン化合物の製造方法
JP2019014716A (ja) 4,4,7−トリフルオロ−1,2,3,4−テトラヒドロ−5h−1−ベンゾアゼピン化合物の製造方法及びその合成中間体
RU2512591C2 (ru) Способ получения плевромутилинов
JP2024503855A (ja) アミノピリミジン系fak阻害剤化合物を合成する方法
KR100743617B1 (ko) 고광학순도를 갖는 키랄 3-히드록시 피롤리딘 및 그유도체를 제조하는 방법
JP4522263B2 (ja) ベンジルアミン誘導体の製造方法
JP5858917B2 (ja) イソキノリン誘導体又はその塩の新規製造方法
KR20150041280A (ko) 미티글리니드 칼슘 이수화물의 제조방법
JP5704763B2 (ja) トランス−4−アミノシクロペンタ−2−エン−1−カルボン酸誘導体の製造
JP2700943B2 (ja) 光学活性な4―モルホリノ―2―(1―ナフチルメチル)―4―オキソ酪酸2’―ヒドロキシ―1,1’―ビナフタレン―2―イル及びその製造方法
JP4181233B2 (ja) ピロリジン−2,4−ジオン誘導体の製法
JPWO2011013632A1 (ja) チアベンゾアズレンプロピオン酸誘導体の製造法
WO2003062186A1 (fr) Sels metalliques d'acide (3s)-3-methoxycarbonyl-4-phenylbutyrique et utilisation de ceux-ci
CN109928901B (zh) 一种氟苯尼考中间体的合成方法
JPH06340623A (ja) ベンジルコハク酸誘導体の製造方法およびその製造中間体
WO2006038872A1 (en) New process for the preparation of phosphinic acid
EP1698611A1 (en) Process for producing phenylacetic acid derivative
JPH05221947A (ja) シクロプロパン誘導体の製法
KR20010049559A (ko) 신규한 방법 및 중간체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14406568

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013804693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013804693

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014521349

Country of ref document: JP

Kind code of ref document: A