WO2013187147A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2013187147A1
WO2013187147A1 PCT/JP2013/062621 JP2013062621W WO2013187147A1 WO 2013187147 A1 WO2013187147 A1 WO 2013187147A1 JP 2013062621 W JP2013062621 W JP 2013062621W WO 2013187147 A1 WO2013187147 A1 WO 2013187147A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
protection control
time
determination
Prior art date
Application number
PCT/JP2013/062621
Other languages
English (en)
French (fr)
Inventor
中井 明紀
大介 豊田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to BR112014030628A priority Critical patent/BR112014030628A2/pt
Priority to AU2013275605A priority patent/AU2013275605B2/en
Priority to CN201380030096.XA priority patent/CN104334981B/zh
Priority to KR1020157000595A priority patent/KR101570644B1/ko
Priority to ES13803544.9T priority patent/ES2642371T3/es
Priority to US14/407,428 priority patent/US9677798B2/en
Priority to EP13803544.9A priority patent/EP2863150B1/en
Publication of WO2013187147A1 publication Critical patent/WO2013187147A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Definitions

  • the present invention relates to a refrigeration apparatus.
  • the temperature of the discharge pipe of the compressor is monitored, and the compressor is compressed when the temperature exceeds the judgment temperature.
  • a configuration for performing protection control of a machine is known.
  • the temperature inside the compressor that is higher than the temperature of the discharge pipe is monitored. It is desirable to monitor the refrigerant temperature (discharge port temperature) or the motor temperature immediately after being discharged from the chamber.
  • it is difficult to install a temperature detector inside the compressor because it leads to an increase in manufacturing cost, so it is assumed that there is a certain temperature difference between the temperature inside the compressor and the temperature of the discharge pipe. Under this condition, an appropriate determination temperature is determined, and protection control is performed using the temperature of the discharge pipe of the compressor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-107016 discloses a configuration in which the determination temperature is changed according to the operating frequency of the inverter compressor (circulation amount of refrigerant).
  • the inventor of the present application shows that even if the circulation amount of the refrigerant is constant, the temperature difference between the temperature of the discharge pipe and the temperature inside the compressor can change between when the compressor is started and during steady operation. I found out.
  • the problem of the present invention is that when the temperature of the refrigerant is measured outside the compressor and protection control is performed based on the temperature, appropriate protection control is reliably executed even when the compressor is started. It is to provide a highly reliable refrigeration apparatus.
  • a refrigeration apparatus includes a compressor, a temperature detection unit, and a protection control unit.
  • the compressor compresses the refrigerant.
  • the temperature detection unit detects the temperature of the refrigerant discharged from the compressor outside the compressor.
  • the protection control unit determines a transition time after starting the compressor and a steady time after the end of the transient time and the state of the refrigerant is stable. In the transient state, the detected temperature detected by the temperature detection unit is the first.
  • the compressor protection control is performed when the temperature exceeds the 1 determination temperature, and the compressor protection control is performed when the detected temperature exceeds the second determination temperature in a steady state.
  • a transition time after the start of the compressor and a steady time when the state of the refrigerant is stable are determined, and the protection control of the compressor is executed based on different determination temperatures in the transient time and the steady time. Therefore, even if the temperature difference between the detected temperature in the transient state and the internal temperature of the compressor is different from the temperature difference between the detected temperature in the steady state and the internal temperature of the compressor, before the internal temperature of the compressor is overheated. In addition, appropriate protection control can be executed. As a result, a highly reliable refrigeration apparatus is realized.
  • the refrigeration apparatus is the refrigeration apparatus according to the first aspect, and includes a timing at which the suction pressure of the compressor is minimized during transition.
  • the transition time can be determined using the change in the suction pressure of the compressor. Therefore, it is possible to determine the transition time easily and appropriately without actually measuring the temperature difference between the internal temperature of the compressor and the detected temperature during test operation, etc., and execute appropriate protection control before the compressor overheats. it can. As a result, a highly reliable refrigeration apparatus is realized.
  • the timing at which the suction pressure of the compressor becomes minimum means the timing at which the suction pressure of the compressor decreases after starting up the compressor to show a minimum value and then starts to increase.
  • the refrigeration apparatus is the refrigeration apparatus according to the first or second aspect, wherein the protection control unit determines that it is in a transient state until a predetermined time has elapsed after the start of the compressor, After a predetermined time has elapsed, it is determined that the station is stationary.
  • the protection control unit determines that it is in a transient state until a predetermined time has elapsed after the start of the compressor, After a predetermined time has elapsed, it is determined that the station is stationary.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to third aspects, wherein the first determination temperature is lower than the second determination temperature.
  • appropriate protection control can be executed.
  • the transition time after the start of the compressor and the steady state where the state of the refrigerant is stable are determined, and the transition time and the steady state are compressed based on different determination temperatures.
  • Machine protection control is executed. Therefore, even if the temperature difference between the detected temperature in the transient state and the internal temperature of the compressor is different from the temperature difference between the detected temperature in the steady state and the internal temperature of the compressor, before the internal temperature of the compressor is overheated.
  • appropriate protection control can be executed. As a result, a highly reliable refrigeration apparatus is realized.
  • the transition time can be determined easily and appropriately, and appropriate protection control can be performed before the compressor is overheated.
  • the determination temperature can be changed by easily determining the end of the transition. Therefore, appropriate protection control can be executed before the compressor is overheated. As a result, a highly reliable refrigeration apparatus is realized.
  • appropriate protection control can be executed when the temperature difference between the detected temperature and the temperature inside the compressor becomes larger than the steady state during the transition after the compressor is started. .
  • FIG. 1 It is a schematic block diagram of the air conditioning apparatus which concerns on one Embodiment of this invention. It is a block diagram of the air conditioning apparatus of FIG. It is a flowchart of the process of the determination at the time of a transition / steady time, and a determination temperature change of the air conditioning apparatus of FIG. It is a flowchart of the process regarding the protection control of a compressor of the air conditioning apparatus of FIG. It is a figure for demonstrating the time change of the discharge pipe temperature in the compressor used for the air conditioning apparatus of FIG. 1, discharge port temperature, the temperature difference of discharge pipe temperature and discharge port temperature, discharge pressure, and suction pressure. .
  • An air conditioner 1 as an embodiment of a refrigeration apparatus according to the present invention is an air conditioner 1 that can be operated by switching between a cooling operation and a heating operation.
  • the air conditioner 1 mainly includes an indoor unit 20, an outdoor unit 30, and a control unit 40.
  • the air conditioner 1 has a refrigerant circuit 10 filled with R32 as a refrigerant.
  • the refrigerant circuit 10 includes an indoor circuit 10 a accommodated in the indoor unit 20 and an outdoor circuit 10 b accommodated in the outdoor unit 30.
  • the indoor side circuit 10a and the outdoor side circuit 10b are connected by a liquid refrigerant communication pipe 71 and a gas refrigerant communication pipe 72.
  • the indoor unit 20 is installed in a room that is subject to air conditioning.
  • the indoor unit 20 includes an indoor heat exchanger 21, an indoor fan 22, and an indoor expansion valve 23.
  • the indoor heat exchanger 21 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins. During cooling operation, it functions as a refrigerant evaporator to cool indoor air, and during heating operation, it functions as a refrigerant condenser to heat indoor air.
  • the liquid side of the indoor heat exchanger 21 is connected to the liquid refrigerant communication pipe 71, and the gas side of the indoor heat exchanger 21 is connected to the gas refrigerant communication pipe 72.
  • the indoor fan 22 is rotated by a fan motor (not shown), takes in indoor air, blows it to the indoor heat exchanger 21, and promotes heat exchange between the indoor heat exchanger 21 and the indoor air.
  • the indoor expansion valve 23 is a variable opening electric expansion valve provided to adjust the pressure and flow rate of the refrigerant flowing in the indoor circuit 10 a of the refrigerant circuit 10.
  • Outdoor Unit The outdoor unit 30 mainly includes a compressor 31, a four-way switching valve 33, an outdoor heat exchanger 34, an outdoor expansion valve 36, an outdoor fan 35, and a discharge pipe temperature sensor 51.
  • the compressor 31, the four-way switching valve 33, the outdoor heat exchanger 34, and the outdoor expansion valve 36 are connected by refrigerant piping.
  • (2-2-1) Connection of Components by Refrigerant Piping Connection of components by the refrigerant piping of the outdoor unit 30 will be described.
  • the suction port of the compressor 31 and the four-way switching valve 33 are connected by a suction pipe 81.
  • the discharge port of the compressor 31 and the four-way switching valve 33 are connected by a discharge pipe 82.
  • the four-way switching valve 33 and the gas side of the outdoor heat exchanger 34 are connected by a first gas refrigerant pipe 83.
  • the outdoor heat exchanger 34 and the liquid refrigerant communication pipe 71 are connected by a liquid refrigerant pipe 84.
  • the liquid refrigerant pipe 84 is provided with an outdoor expansion valve 36.
  • the four-way switching valve 33 and the gas refrigerant communication pipe 72 are connected by a second gas refrigerant pipe 85.
  • the discharge pipe 82 is provided with a discharge pipe temperature sensor 51 in order to grasp the temperature of the refrigerant discharged from the compressor 31.
  • the compressor 31 is a compressor that drives a compression mechanism by a motor and compresses the gas refrigerant.
  • the compressor 31 is an inverter type compressor capable of changing the operating frequency f.
  • the compressor 31 sucks the gas refrigerant from the suction pipe 81 and discharges the high-temperature and high-pressure gas refrigerant compressed by the compression mechanism to the discharge pipe 82.
  • the compressor 31 is a rotary compressor, it is not limited to this, For example, a scroll compressor may be sufficient.
  • the four-way switching valve 33 switches the flow direction of the refrigerant when the air-conditioning apparatus 1 is switched between the cooling operation and the heating operation.
  • the discharge pipe 82 and the first gas refrigerant pipe 83 are connected, and the suction pipe 81 and the second gas refrigerant pipe 85 are connected.
  • the discharge pipe 82 and the second gas refrigerant pipe 85 are connected, and the suction pipe 81 and the first gas refrigerant pipe 83 are connected.
  • Outdoor Heat Exchanger 34 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins.
  • the outdoor heat exchanger 34 functions as a refrigerant condenser during the cooling operation and functions as a refrigerant evaporator during the heating operation by exchanging heat with outdoor air.
  • Outdoor Fan The outdoor fan 35 is rotated by a fan motor (not shown) and takes outdoor air into the outdoor unit 30. The taken outdoor air passes through the outdoor heat exchanger 34 and is finally discharged out of the outdoor unit 30.
  • the outdoor fan 35 promotes heat exchange between the outdoor heat exchanger 34 and outdoor air.
  • the outdoor expansion valve 36 is an expansion mechanism and is a variable opening degree provided for adjusting the pressure and flow rate of the refrigerant flowing in the outdoor circuit 10b of the refrigerant circuit 10. It is an electric expansion valve.
  • (2-2-7) Discharge Pipe Temperature Sensor The discharge pipe temperature sensor 51 is a thermistor for detecting the temperature of the refrigerant discharged from the compressor 31, and is an example of a temperature detection unit. The discharge pipe temperature sensor 51 is provided outside the compressor 31, more specifically, near the discharge port of the compressor 31 in the discharge pipe 82. A signal corresponding to the temperature detected by the discharge pipe temperature sensor 51 is transmitted to a detection signal receiving unit 41a of the control unit 40 described later.
  • (2-3) Control Unit The control unit 40 controls the indoor unit 20 and the outdoor unit 30. In FIG. 2, the block diagram of the air conditioning apparatus 1 containing the control unit 40 is shown.
  • the control unit 40 includes a control unit 41 composed of a microcomputer or the like, a storage unit 42 composed of a memory such as a RAM or ROM, and an input unit 43.
  • the control unit 41 exchanges control signals with a remote controller (not shown) for operating the indoor unit 20, and mainly controls the air conditioning load of the indoor unit 20 (for example, the temperature difference between the set temperature and the room temperature). Accordingly, various devices such as the indoor unit 20 and the outdoor unit 30 are controlled.
  • the control part 41 functions as the detection signal reception part 41a, the compressor control part 41b, the protection control part 41c, and the time management part 41d by reading and executing the program memorize
  • the storage unit 42 stores a program to be executed by the control unit 41 and various information.
  • the storage unit 42 includes a determination temperature storage region 42a and an end time storage region 42b that store numerical values used by the protection control unit 41c.
  • the detection signal receiving unit 41a receives the signal output from the discharge pipe temperature sensor 51.
  • the detection signal receiving unit 41a replaces the signal received from the discharge pipe temperature sensor 51 with the discharge pipe temperature Tt.
  • the discharge pipe temperature Tt is used by a protection control unit 41c, which will be described later, to determine whether or not to perform protection control and to determine the content of protection control.
  • the compressor control unit 41b determines the start and stop of the compressor 31 and the operating frequency f in accordance with the air conditioning load of the indoor unit 20, various control signals, and the like. Decide and control.
  • the compressor control part 41b transmits the signal regarding starting and a stop of the compressor 31 with respect to the protection control part 41c and the time management part 41d which are mentioned later.
  • the compressor control unit 41b lowers the operating frequency f of the compressor 31 to a predetermined operating frequency fp in response to a command from the protection control unit 41c described later during execution of first protection control described later.
  • the compressor control unit 41b stops the operation of the compressor 31 in response to a command from the protection control unit 41c described later.
  • (2-3-1-3) Protection Control Unit The protection control unit 41c performs protection control of the compressor 31 during operation. More specifically, the protection control unit 41c instructs execution and cancellation of two types of protection control according to the numerical value of the discharge pipe temperature Tt.
  • the content (type) of protection control and its execution and release are determined by comparing the discharge pipe temperature Tt with the low temperature side determination temperature TL and the high temperature side determination temperature TH that are called from the determination temperature storage area 42a described later. Is done.
  • the protection control unit 41c determines not to execute the protection control.
  • the first protection control for decreasing the operating frequency f of the compressor 31 is executed. Specifically, the protection control unit 41c instructs the compressor control unit 41b to lower the operating frequency f to a predetermined operating frequency fp.
  • the operating frequency fp may be a fixed value such as a minimum value, or may be a variable value that changes according to the operating frequency determined to be optimal from the air conditioning load of the indoor unit 20 or the like. .
  • the protection control unit 41c may instruct simultaneously or individually with the control of the operating frequency f so as to increase (increase) the opening of the outdoor expansion valve 36 from a predetermined opening.
  • C When the discharge pipe temperature Tt> the high temperature side determination temperature TH
  • the second protection control for stopping the operation of the compressor 31 is executed. Specifically, the protection control unit 41c instructs the compressor control unit 41b to stop the compressor 31.
  • the protection control unit 41c determines the transition time after the start of the compressor 31 and the steady state after the end of the transient time, and sets different values for the low temperature side determination temperature TL and the high temperature side at the transient time and the steady time. Called from the determination temperature storage area 42a as the determination temperature TH.
  • the transition time is a period in which the state of the refrigerant is not stable.
  • the protection control unit 41c determines that the predetermined time after the start of the compressor 31 is a transition time. More specifically, the protection control unit 41c determines that the time before the transition end determination time t1, which will be described later, elapses after the compressor 31 is started is the transition time.
  • the regular time is a period in which the state of the refrigerant is stable.
  • the protection control unit 41c determines that the time after the compressor 31 is in operation and the transition end determination time t1 has elapsed after the compressor 31 is started is normal.
  • the temperature difference between the discharge pipe temperature Tt at the transient time and the temperature inside the compressor 31 is the temperature between the discharge pipe temperature Tt at the steady time and the temperature inside the compressor 31. May be greater than the difference.
  • the difference between the transient time and the steady time will be described in detail later.
  • the time management unit 41d performs time management of various controls executed by the control unit 41.
  • the time management includes grasping the time t after the compressor 31 is started.
  • the time t after the start of the compressor 31 is grasped by using a signal relating to the start and stop of the compressor 31 transmitted from the compressor control unit 41b.
  • (2-3-2) Storage Unit (2-3-2-1) Determination Temperature Storage Area
  • the protection control unit 41c determines whether or not to execute protection control, and further protects The determination temperature used for determining the content of control is stored.
  • the first low temperature side temperature TL1 is used as the low temperature side determination temperature TL during transition
  • the first high temperature side temperature TH1 is used as the high temperature side determination temperature TH during transition
  • the first low temperature side determination temperature TL is used as the steady state low temperature side determination temperature TL.
  • the second low temperature side temperature TL2 is stored as the high temperature side determination temperature TH during normal operation, and the second high temperature side temperature TH2 is stored.
  • first high temperature side temperature TH1 second high temperature side temperature TH2. That is, the low temperature side temperature (first low temperature side temperature TL1, second low temperature side temperature TL2) is smaller than the corresponding high temperature side temperature (first high temperature side temperature TH1, second high temperature side temperature TH2).
  • the first temperature (first low temperature side temperature TL1, first high temperature side temperature TH1) is a value smaller than the corresponding second temperature (second low temperature side temperature TL2, second high temperature side temperature TH2).
  • the first low temperature side temperature TL1, the first high temperature side temperature TH1, the second low temperature side temperature TL2, and the second high temperature side temperature TH2 are values stored in advance in the determination temperature storage area 42a.
  • the present invention is not limited to this. For example, it may be rewritten by an input from the input unit 43 described later.
  • the end time storage area 42b stores a transition end determination time t1 used by the protection control unit 41c to determine a transition time and a steady time.
  • the protection control unit 41c determines that it is in a transient state if the transition end determination time t1 has not elapsed since the start of the compressor 31, and after the compressor 31 has started, after the transition end determination time t1 has elapsed, it is in a steady state.
  • the transition end determination time t1 is information stored in advance in the end time storage area 42b.
  • the present invention is not limited to this, and the transition end determination time t1 may be rewritten by, for example, an input from the input unit 43 described later. (2-4-3) Input unit
  • the input unit 43 is configured to input various information and various operating conditions.
  • the transient / steady-state determination and determination temperature change processing by the protection control unit 41c will be described with reference to the flowchart of FIG.
  • the transition / steady state determination means determination by the protection control unit 41c between the transition time after the compressor 31 is started and the steady state after the end of the transient time.
  • the determination temperature change means that the protection control unit 41c changes values to be called from the determination temperature storage area 42a as the low temperature side determination temperature TL and the high temperature side determination temperature TH according to the transition time and the steady time.
  • step S101 the protection control unit 41c determines whether a signal related to the activation of the compressor 31 is received from the compressor control unit 41b. Step S ⁇ b> 101 is repeated until the protection control unit 41 c determines that a signal related to activation of the compressor 31 has been received. If the protection control unit 41c determines that a signal indicating that the compressor 31 has been activated has been received, the process proceeds to step S102. In step S102, the protection control unit 41c determines whether or not the time t from when the compressor 31 is started is equal to or longer than the transition end determination time t1.
  • the protection control unit 41c inquires the time management unit 41d about the time t after the compressor 31 is started, and the time t is equal to or longer than the transition end determination time t1 called from the end time storage area 42b. Determine whether it is a value. Step S102 is repeated until the protection control unit 41c determines that the time t has become a value equal to or greater than the transition end determination time t1. When the protection control unit 41c determines that the time t is equal to or greater than the transition end determination time t1, the process proceeds to step S103.
  • the protection control unit 41c determines that it is a transition time while the determination in step S102 is being performed. In other words, the protection control unit 41c uses the first low temperature side temperature TL1 as the low temperature side determination temperature TL and the first high temperature side temperature TH1 as the high temperature side determination temperature TH as the determination temperature of the process related to protection control. In step S103, the protection control unit 41c determines that the transition time has ended. And the protection control part 41c changes the value called from the determination temperature storage area 42a as the low temperature side determination temperature TL and the high temperature side determination temperature TH. Specifically, the protection controller 41c calls the second low temperature side temperature TL2 as the low temperature side determination temperature TL and the second high temperature side temperature TH2 as the high temperature side determination temperature TH. The called low-temperature side determination temperature TL and high-temperature side determination temperature TH are used as determination temperatures for processing related to protection control.
  • step S104 the protection control unit 41c determines whether a signal related to the stop of the compressor 31 is received from the compressor control unit 41b. Step S ⁇ b> 104 is repeated until the protection control unit 41 c determines that a signal related to the stop of the compressor 31 has been received. If the protection control unit 41c determines that a signal related to the stop of the compressor 31 has been received, the process proceeds to step S105. Note that the protection control unit 41c determines that it is a steady time while the determination in step S104 is being performed.
  • the protection control unit 41c protects the second low temperature side temperature TL2 as the low temperature side determination temperature TL and the second high temperature side temperature TH2 as the high temperature side determination temperature TH. Used as a judgment temperature for processing related to control.
  • the protection control unit 41c determines that the operation of the compressor 31 has ended. And the protection control part 41c changes the value called from the determination temperature storage area 42a as the low temperature side determination temperature TL and the high temperature side determination temperature TH. Specifically, the protection control unit 41c calls the first low temperature side temperature TL1 as the low temperature side determination temperature TL and the first high temperature side temperature TH1 as the high temperature side determination temperature TH. Then, it returns to step S101. Note that the called low temperature side determination temperature TL and high temperature side determination temperature TH are held without being changed until the next step S103.
  • the protection control is control for protecting the compressor 31 during operation from failure due to overheating.
  • values called from the determination temperature storage area 42a as the low temperature side determination temperature TL and the high temperature side determination temperature TH by the protection control unit 41c are used as the determination temperature. Used. Processing related to protection control will be described based on the flowchart of FIG.
  • the protection control unit 41c determines whether or not the discharge pipe temperature Tt is equal to or lower than the low temperature side determination temperature TL. If it is determined that the discharge pipe temperature Tt is equal to or lower than the low temperature side determination temperature TL, the process proceeds to step S202. If it is determined that the discharge pipe temperature Tt is higher than the low temperature side determination temperature TL, the process proceeds to step S204.
  • step S202 it is determined whether or not the first protection control is being executed by the protection control unit 41c.
  • the process proceeds to step S203, and when it is determined that the first protection control is not being executed, the process returns to step S201.
  • step S203 the protection control unit 41c cancels the execution of the first protection control. More specifically, the protection control unit 41c instructs the compressor control unit 41b to cancel the execution of the first protection control. Thereafter, the process returns to step S201.
  • step S204 the protection control unit 41c determines whether or not the discharge pipe temperature Tt is equal to or lower than the high temperature side determination temperature TH.
  • step S205 If it is determined that the discharge pipe temperature Tt is equal to or lower than the high temperature side determination temperature TH, the process proceeds to step S205. If it is determined that the discharge pipe temperature Tt is higher than the high temperature side determination temperature TH, the process proceeds to step S206.
  • step S205 the protection control unit 41c performs the first protection control.
  • the first protection control is control that lowers the operating frequency f of the compressor 31.
  • the protection control unit 41c instructs the compressor control unit 41b to lower the operating frequency f to a predetermined operating frequency fp. Thereafter, the process returns to step S201. If the first protection control is already being executed, the first protection control is continued as it is. In this case, the protection control unit 41c does not instruct the compressor control unit 41b to lower the operating frequency f again.
  • step S206 the protection control unit 41c executes the second protection control. In the second protection control, the operation of the compressor 31 is stopped. More specifically, the protection control unit 41c instructs the compressor control unit 41b to stop the compressor 31. As a result, no refrigerant flows into the refrigerant circuit 10. Thereafter, the process proceeds to step S207.
  • step S207 the protection control unit 41c determines whether or not the discharge pipe temperature Tt is equal to or lower than the low temperature side determination temperature TL stored in the determination temperature storage area 42a. Step S207 is repeated until it is determined that the discharge pipe temperature Tt is equal to or lower than the low temperature side determination temperature TL. If it is determined that the discharge pipe temperature Tt is equal to or lower than the low temperature side determination temperature TL, the process proceeds to step S208. In step S208, the protection control unit 41c releases the protection control. More specifically, the protection control unit 41c instructs the compressor control unit 41b to release the stop of the compressor 31.
  • the protection control unit 41c releases the control to the compressor control unit 41b. Instruct to do. Thereafter, the process returns to step S201. (4) Difference between transient and steady state The difference between transient and steady state will be described below.
  • the discharge pipe temperature Tt the temperature inside the compressor 31, the temperature difference between the discharge pipe temperature Tt and the temperature inside the compressor 31, and the discharge pressure that is the pressure of the refrigerant discharged from the compressor 31 under constant operating conditions
  • the temporal change of Po and the suction pressure Pi that is the pressure of the refrigerant sucked by the compressor 31 will be described with reference to FIG.
  • the discharge port temperature Tp will be described as the temperature inside the compressor 31.
  • the discharge port temperature Tp means the temperature of the refrigerant immediately after being discharged from the compression chamber of the compression mechanism of the compressor 31.
  • the time variation of the discharge pipe temperature Tt, the discharge port temperature Tp, and the temperature difference (Tp ⁇ Tt) between the discharge port temperature Tp and the discharge pipe temperature Tt will be described.
  • the compressor 31 when the air conditioner 1 starts operation, the compressor 31 is activated. Then, after the compressor 31 is started, the discharge pipe temperature Tt and the discharge port temperature Tp start to rise.
  • the graph showing the change of the discharge pipe temperature Tt shows a curve that rises after the start of the compressor 31 and gradually approaches a constant value as shown in FIG.
  • the graph showing the change in the discharge port temperature Tp shows a curve that once increases greatly and shows the maximum value, then decreases and gradually approaches a constant value.
  • a graph representing a change in temperature difference between the discharge port temperature Tp and the discharge pipe temperature Tt is also provided. It shows a curve that rises once and shows a maximum value, then decreases and asymptotically approaches a constant value.
  • the temperature difference between the discharge port temperature Tp and the discharge pipe temperature Tt fluctuates with time during the transition, and the constant difference becomes constant.
  • the temperature difference between the discharge port temperature Tp and the discharge pipe temperature Tt is maximized during the transition.
  • the discharge port temperature Tp may be higher in the transition time.
  • the difference in the tendency of the temperature change between the discharge port temperature Tp after the start of the compressor 31 and the discharge pipe temperature Tt is one reason that it takes time until the temperature of the refrigerant is transmitted to the discharge pipe.
  • the temporal change of the discharge pressure Po and the suction pressure Pi will be described.
  • the graph showing the change in the discharge pressure Po shows a curve that rises after the start of the compressor 31 and gradually approaches a constant value as shown in FIG.
  • the graph showing the change in the suction pressure Pi shows a curve that once decreases and shows a minimum value, then increases, and asymptotically approaches a constant value.
  • the timing at which the pressure becomes minimum is included during the transition.
  • the suction pressure Pi of the compressor 31 is measured under constant operating conditions, and if the transition time is set so as to include the timing at which the suction pipe pressure Pi is minimized, the discharge port temperature Tp is set as the test operation. Even if it is not actually measured at any time, an appropriate transition end determination time t1 can be derived by a simple method.
  • the air conditioning apparatus 1 of the present embodiment includes a compressor 31, a discharge pipe temperature sensor 51, and a protection control unit 41c.
  • the compressor 31 compresses the refrigerant.
  • the discharge pipe temperature sensor 51 detects the temperature of the refrigerant discharged from the compressor 31 as the discharge pipe temperature Tt in the discharge pipe outside the compressor 31.
  • the protection control unit 41c determines a transition time after the start of the compressor 31 and a steady time after the end of the transient time and the state of the refrigerant is stable, and is detected by the discharge pipe temperature sensor 51 during the transition time.
  • the first protection control and the second protection control of the compressor 31 are performed respectively.
  • the tube temperature Tt exceeds the second low temperature side temperature TL2 and the second high temperature side temperature TH2 (second determination temperature)
  • the first protection control and the second protection control of the compressor 31 are performed, respectively.
  • a transition time after the start of the compressor 31 and a steady time when the state of the refrigerant is stable are determined, and the protection control of the compressor 31 is executed based on different determination temperatures in the transient time and the steady time.
  • Appropriate protection control can be performed before the interior of the compressor 31 is overheated. As a result, a highly reliable air conditioner 1 is realized.
  • the air conditioning apparatus 1 of the present embodiment at the time of transition, a timing at which the suction pressure Pi of the compressor 31 is minimized is included.
  • the transition time can be determined using the change in the suction pressure Pi of the compressor 31. Even during a trial operation or the like, the transient time can be determined easily and appropriately without determining the temperature difference between the internal temperature of the compressor 31 (for example, the discharge port temperature Tp) and the discharge pipe temperature Tt by actual measurement. Appropriate protection control can be performed before the interior is overheated. As a result, a highly reliable air conditioner 1 is realized.
  • the protection control unit 41c determines that the state is transitional until the transition end determination time t1 elapses after the compressor 31 is started, and after the transition end determination time t1 elapses. Judged as always.
  • the determination temperature can be changed by easily determining the end of the transition time. Therefore, appropriate protection control can be performed before the inside of the compressor 31 is overheated. As a result, a highly reliable air conditioner 1 is realized.
  • the first low temperature side temperature TL1 and the first high temperature side temperature TH1 are lower than the second low temperature side temperature TL2 and the second high temperature side temperature TH2, respectively.
  • R32 When R32 is used as a refrigerant as in the present embodiment, the temperature difference between the discharge pipe temperature Tt and the internal temperature of the compressor 31 may be larger during the transition after the start of the compressor 31 than in the steady state. Yes, but can implement appropriate protection control.
  • (6) Modification Examples of the present embodiment are shown below. A plurality of modified examples may be appropriately combined. (6-1) Modification A In the above embodiment, R32 is used as the refrigerant, but the present invention is not limited to this, and other refrigerants such as R410A and R407C may be used.
  • the discharge pipe temperature Tt at the time of transition and the temperature inside the compressor 31 are particularly larger than the discharge pipe temperature Tt at the time of steady operation and the temperature inside the compressor 31.
  • the present invention is particularly useful because it tends to be.
  • the air conditioning apparatus 1 may be usable by switching a plurality of refrigerants.
  • the air conditioner 1 can use three types of refrigerant R410A, R407C, and R32 as refrigerants, and can be operated by the control unit 40 by specifying the type of refrigerant to be used from the input unit 43 of the control unit 40. Conditions may be changed and an appropriate operation according to the refrigerant to be used may be executed.
  • the first determination temperature first low temperature side temperature TL1 and first high temperature side temperature TH1
  • second determination temperature second low temperature side temperature TL2 and second high temperature side temperature TH2
  • the first and second protection controls are executed as the protection control.
  • the present invention is not limited to this, and more types of protection control may be performed.
  • the protection control may be only one type, for example, the second protection control.
  • (6-3) Modification C In the above embodiment, different values stored in the determination temperature storage area 42a are called (changed the values to be called) during transition and during steady state, and used as the low temperature side determination temperature TL and the high temperature side determination temperature TH.
  • the present invention is not limited to this.
  • the low temperature side determination temperature TL and the high temperature side determination temperature TH may be calculated by calculation formulas so that the low temperature side determination temperature TL and the high temperature side determination temperature TH are changed between the transient state and the steady state.
  • (6-4) Modification D In the above-described embodiment, the protection control unit 41c can determine only two types of transition and steady state. However, the protection control unit 41c is not limited to this. It is possible to divide (at the time of transition) and prepare different judgment temperatures for each transition time.
  • the determination temperature is changed only at the time of transient or steady state.
  • the determination temperature may be changed according to the operating frequency f of the compressor.
  • the protection control is not released until the discharge pipe temperature Tt becomes equal to or lower than the low temperature side determination temperature TL.
  • the present invention is not limited to this, and for example, the discharge pipe temperature If Tt becomes lower than the high temperature side determination temperature TH, the second protection control may be canceled and the operation of the compressor 31 may be resumed.
  • the compressor 31 is an inverter compressor which can change the operating frequency f, it is not limited to this, It is the compressor 31 which is not an inverter type (the operating frequency f cannot be changed), Also good. In this case, the first protection control for changing the operation frequency f is not executed.
  • the compressor protection control is appropriately executed regardless of whether it is activated or steady, and a highly reliable refrigeration apparatus is realized.
  • Air conditioning equipment (refrigeration equipment) 31 Compressor 41c Protection Control Unit 51 Discharge Pipe Temperature Sensor (Temperature Detection Unit) Pi suction pressure t1 Transition end judgment time (predetermined time) Tt Discharge pipe temperature (detected temperature) TL1 First low temperature side determination temperature (first determination temperature) TH1 First high temperature side determination temperature (first determination temperature) TL2 Second low temperature determination temperature (second determination temperature) TH2 Second high temperature side determination temperature (second determination temperature)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

圧縮機の外部で冷媒の温度が測定され、その温度に基づいて保護制御が行われる場合に、圧縮機の起動時であっても適切な保護制御が確実に実行される、信頼性の高い冷凍装置を提供することにある。空気調和装置(1)は、冷媒を圧縮する圧縮機(31)と、吐出管温度センサ(51)と、保護制御部(41c)と、を備える。吐出管温度センサは、圧縮機の外部において、圧縮機から吐出される冷媒の温度を検出する。保護制御部は、圧縮機の起動後の過渡時と、過渡時の終了後であって冷媒の状態が安定した定常時とを判断し、過渡時には、吐出管温度センサで検出された吐出管温度が第1判定温度を超える場合に圧縮機の保護制御を行い、定常時には、吐出管温度が第2判定温度を超える場合に圧縮機の保護制御を行う。

Description

冷凍装置
 本発明は、冷凍装置に関する。
 従来、冷凍装置において、冷媒回路を構成する圧縮機が過熱し、故障や性能低下することを防ぐために、圧縮機の吐出管の温度を監視し、その温度が判定温度より大きくなった場合に圧縮機の保護制御を行う構成が知られている。
 なお、圧縮機の保護を図る上では、圧縮機の吐出管の温度を監視するよりも、吐出管の温度よりも温度の高い圧縮機内部の温度を監視すること、より具体的には、圧縮室から吐出された直後の冷媒の温度(吐出ポート温度)又はモータ温度を監視することが望ましい。しかし、圧縮機内部に温度検出器を設置することは製造コストの上昇に繋がることから困難であるため、圧縮機内部の温度と吐出管の温度との間に一定の温度差があるとの前提のもとで適当な判定温度を決定し、圧縮機の吐出管の温度を用いて保護制御が行われている。
 ところが、インバータ圧縮機が用いられる場合には、冷媒の循環量が変化するため、圧縮機内部の温度と吐出管の温度との間の温度差が変化しうる。これに対し、特許文献1(特開2002-107016号公報)では、インバータ圧縮機の運転周波数(冷媒の循環量)に応じて判定温度が変更される構成が開示されている。
 しかし、本願発明者は、冷媒の循環量が一定であったとしても、吐出管の温度と圧縮機内部の温度との温度差が、圧縮機の起動時と定常運転時とでは変化しうることを見い出した。
 本発明の課題は、圧縮機の外部で冷媒の温度が測定され、その温度に基づいて保護制御が行われる場合に、圧縮機の起動時であっても適切な保護制御が確実に実行される、信頼性の高い冷凍装置を提供することにある。
 本発明の第1観点に係る冷凍装置は、圧縮機と、温度検出部と、保護制御部と、を備える。圧縮機は、冷媒を圧縮する。温度検出部は、圧縮機の外部において、圧縮機から吐出される冷媒の温度を検出する。保護制御部は、圧縮機の起動後の過渡時と、過渡時の終了後であって冷媒の状態が安定した定常時とを判断し、過渡時には、温度検出部で検出された検出温度が第1判定温度を超える場合に圧縮機の保護制御を行い、定常時には、検出温度が第2判定温度を超える場合に圧縮機の保護制御を行う。
 ここでは、圧縮機の起動後の過渡時と、冷媒の状態が安定した定常時とが判断され、過渡時と定常時とでは、異なる判定温度に基づいて圧縮機の保護制御が実行される。そのため、過渡時の検出温度と圧縮機内部の温度との温度差が、定常時の検出温度と圧縮機内部の温度との温度差とは異なる場合であっても、圧縮機内部が過熱する前に、適切な保護制御を実行できる。その結果、信頼性の高い冷凍装置を実現される。
 本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、過渡時には、圧縮機の吸入圧力が極小となるタイミングを含む。
 ここでは、圧縮機の吸入圧力の変化を用いて、過渡時を判断できる。そのため、試運転時等に、圧縮機内部の温度と検出温度との温度差を実測しなくても、簡便かつ適切に過渡時を決定でき、圧縮機内部が過熱する前に適切な保護制御を実行できる。その結果、信頼性の高い冷凍装置が実現される。
 なお、圧縮機の吸入圧力が極小となるタイミングとは、圧縮機の吸入圧力が、圧縮機の起動後減少して最小値を示し、その後上昇に転じるタイミングをいう。
 本発明の第3観点に係る冷凍装置は、第1又は第2観点に係る冷凍装置であって、保護制御部は、圧縮機の起動後、所定時間が経過するまでは過渡時と判断し、所定時間経過後は定常時と判断する。
 ここでは、圧縮機の起動後の時間を用いて、過渡時と定常時とが判断されるので、過渡時の終了を容易に判断して判定温度を変更できる。そのため、圧縮機内部が過熱する前に適切な保護制御を実行できる。その結果、信頼性の高い冷凍装置が実現される。
 本発明の第4観点に係る冷凍装置は、第1観点から第3観点のいずれかに係る冷凍装置であって、第1判定温度は、第2判定温度よりも小さい。
 ここでは、圧縮機の起動後の過渡時に、定常時よりも検出温度と圧縮機内部の温度との温度差が大きくなりうる場合に、適切な保護制御を実行できる。
 本発明の第1観点に係る冷凍装置では、圧縮機の起動後の過渡時と、冷媒の状態が安定した定常時とが判断され、過渡時と定常時とでは、異なる判定温度に基づいて圧縮機の保護制御が実行される。そのため、過渡時の検出温度と圧縮機内部の温度との温度差が、定常時の検出温度と圧縮機内部の温度との温度差とは異なる場合であっても、圧縮機内部が過熱する前に、適切な保護制御を実行できる。その結果、信頼性の高い冷凍装置を実現される。
 本発明の第2観点に係る冷凍装置では、簡便かつ適切に過渡時を決定でき、圧縮機内部が過熱する前に適切な保護制御を実行できる。その結果、信頼性の高い冷凍装置が実現される。
 本発明の第3観点に係る冷凍装置では、過渡時の終了を容易に判断し、判定温度を変更できる。そのため、圧縮機内部が過熱する前に適切な保護制御を実行できる。その結果、信頼性の高い冷凍装置が実現される。
 本発明の第4観点に係る冷凍装置では、圧縮機の起動後の過渡時に、定常時よりも検出温度と圧縮機内部の温度との温度差が大きくなる場合に、適切な保護制御を実行できる。
本発明の一実施形態に係る空気調和装置の概略構成図である。 図1の空気調和装置のブロック図である。 図1の空気調和装置の、過渡時/定常時の判断及び判定温度変更の処理のフローチャートである。 図1の空気調和装置の、圧縮機の保護制御に関する処理のフローチャートである。 図1の空気調和装置に用いられる圧縮機における、吐出管温度、吐出ポート温度、吐出管温度と吐出ポート温度との温度差、吐出圧、及び吸入圧の時間変化について説明するための図である。
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、下記の本発明の実施形態は、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
 (1)全体構成
 本発明にかかる冷凍装置の一実施形態としての空気調和装置1は、冷房運転と暖房運転とを切り替えて運転可能な空気調和装置1である。
 空気調和装置1は、図1に示すように、主に、室内ユニット20と、室外ユニット30と、制御ユニット40と、を有する。なお、図1では、室内ユニット20は2台であるが、3台以上であっても、1台であっても構わない。
 空気調和装置1は、R32が冷媒として充填された冷媒回路10を有する。冷媒回路10は、室内ユニット20に収容される室内側回路10aと、室外ユニット30に収容される室外側回路10bとを有する。室内側回路10aと室外側回路10bとは、液冷媒連絡配管71とガス冷媒連絡配管72とによって接続される。
 (2)詳細構成
 (2-1)室内ユニット
 室内ユニット20は、空気調和の対象である室内に設置される。室内ユニット20は、室内熱交換器21と、室内ファン22と、室内膨張弁23と、を有する。
 室内熱交換器21は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内空気を加熱する。室内熱交換器21の液側は液冷媒連絡配管71に接続され、室内熱交換器21のガス側はガス冷媒連絡配管72に接続される。
 室内ファン22は、図示しないファンモータにより回転され、室内空気を取り込んで室内熱交換器21に送風し、室内熱交換器21と室内空気との熱交換を促進する。
 室内膨張弁23は、冷媒回路10の室内側回路10a内を流れる冷媒の圧力や流量の調節を行うために設けられた開度可変の電動膨張弁である。
 (2-2)室外ユニット
 室外ユニット30は、主に、圧縮機31,四路切換弁33、室外熱交換器34、室外膨張弁36、室外ファン35、及び、吐出管温度センサ51を有する。圧縮機31、四路切換弁33、室外熱交換器34、及び、室外膨張弁36は、冷媒配管により接続される。
 (2-2-1)冷媒配管による構成機器の接続
 室外ユニット30の構成機器の冷媒配管による接続について説明する。
 圧縮機31の吸入口と四路切換弁33とは、吸入管81によって接続される。圧縮機31の吐出口と四路切換弁33とは、吐出管82によって接続される。四路切換弁33と室外熱交換器34のガス側とは、第1ガス冷媒管83によって接続される。室外熱交換器34と液冷媒連絡配管71とは、液冷媒管84によって接続される。液冷媒管84には、室外膨張弁36が設けられる。四路切換弁33とガス冷媒連絡配管72とは、第2ガス冷媒管85によって接続される。
 なお、吐出管82には、圧縮機31から吐出される冷媒の温度を把握するため、吐出管温度センサ51が設けられる。
 (2-2-2)圧縮機
 圧縮機31は、モータにより圧縮機構を駆動し、ガス冷媒を圧縮する圧縮機である。圧縮機31は、運転周波数fを変更可能なインバータ式の圧縮機である。圧縮機31は、吸入管81からガス冷媒を吸入し、圧縮機構により圧縮された高温、高圧のガス冷媒を吐出管82に吐出する。圧縮機31は、ロータリ圧縮機であるが、これに限定されるものではなく、例えばスクロール圧縮機であってもよい。
 (2-2-3)四路切換弁
 四路切換弁33は、空気調和装置1の冷房運転と暖房運転との切換時に、冷媒の流れ方向を切り換える。冷房運転時には吐出管82と第1ガス冷媒管83とを接続するとともに吸入管81と第2ガス冷媒管85とを接続する。一方、暖房運転時には吐出管82と第2ガス冷媒管85とを接続するとともに吸入管81と第1ガス冷媒管83とを接続する。
 (2-2-4)室外熱交換器
 室外熱交換器34は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室外熱交換器34は、室外空気との熱交換によって、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。
 (2-2-5)室外ファン
 室外ファン35は、図示しないファンモータにより回転され室外ユニット30内に室外空気を取り込む。取り込まれた室外空気は、室外熱交換器34を通過し、最終的に室外ユニット30外へ排出される。室外ファン35は、室外熱交換器34と室外空気との熱交換を促進する。
 (2-2-6)室外膨張弁
 室外膨張弁36は、膨張機構であり、冷媒回路10の室外側回路10b内を流れる冷媒の圧力や流量の調節を行うために設けられた開度可変の電動膨張弁である。
 (2-2-7)吐出管温度センサ
 吐出管温度センサ51は、圧縮機31から吐出される冷媒の温度を検出するためのサーミスタであり、温度検出部の一例である。吐出管温度センサ51は、圧縮機31の外部、より具体的には、吐出管82の、圧縮機31の吐出口付近に設けられる。吐出管温度センサ51で検出された温度に対応する信号は、後述する制御ユニット40の検出信号受付部41aに送信される。
 (2-3)制御ユニット
 制御ユニット40は、室内ユニット20及び室外ユニット30を制御する。図2に、制御ユニット40を含む空気調和装置1のブロック図を示す。
 制御ユニット40は、マイクロコンピュータ等からなる制御部41と、RAMやROM等のメモリから成る記憶部42と、入力部43と、を有する。
 制御部41は、室内ユニット20の操作を行うための図示しないリモコンとの間で制御信号のやり取りを行い、主として、室内ユニット20の空調負荷(例えば、設定温度と室内温度との温度差)に応じて、室内ユニット20及び室外ユニット30の各種機器を制御する。また、制御部41は、記憶部42に記憶されたプログラムを読み出して実行することで、検出信号受付部41a、圧縮機制御部41b、保護制御部41c、及び時間管理部41dとして機能する。
 記憶部42には、制御部41で実行されるためのプログラムや各種情報が記憶される。記憶部42は、保護制御部41cにより使用される数値をそれぞれ記憶する、判定温度記憶領域42a及び終了時間記憶領域42bを有する。
 (2-3-1)制御部
 (2-3-1-1)検出信号受付部
 検出信号受付部41aは、吐出管温度センサ51が出力した信号を受け付ける。検出信号受付部41aは、吐出管温度センサ51から受け付けた信号を、吐出管温度Ttに読み替える。吐出管温度Ttは、後述する保護制御部41cが、保護制御を実行するか否かを決定し、更に保護制御の内容を決定するために用いられる。
 (2-3-1-2)圧縮機制御部
 圧縮機制御部41bは、室内ユニット20の空調負荷や、各種制御信号等に応じて、圧縮機31の起動及び停止と、運転周波数fとを決定し、制御する。また、圧縮機制御部41bは、圧縮機31の起動及び停止に関する信号を、後述する保護制御部41c及び時間管理部41dに対して送信する。
 なお、圧縮機制御部41bは、後述する第1保護制御実行中には、後述する保護制御部41cの指令を受けて、圧縮機31の運転周波数fを所定の運転周波数fpに下げる。また、後述する第2保護制御が実行されると、圧縮機制御部41bは、後述する保護制御部41cの指令を受けて、圧縮機31の運転を停止させる。
 (2-3-1-3)保護制御部
 保護制御部41cは、運転中の圧縮機31の保護制御を行う。より具体的には、保護制御部41cは、吐出管温度Ttの数値に応じて、2種類の保護制御の実行及び解除を指示する。保護制御の内容(種類)及びその実行及び解除は、吐出管温度Ttと、後述する判定温度記憶領域42aから呼び出された低温側判定温度TL及び高温側判定温度THと、を比較することで決定される。
 以下に場合分けして説明する。
 なお、低温側判定温度TL及び高温側判定温度THの間には、低温側判定温度TL<高温側判定温度THの関係がある。
 (a)吐出管温度Tt≦低温側判定温度TLの場合
 保護制御部41cは、保護制御を実行しないことを決定する。
 (b)低温側判定温度TL<吐出管温度Tt≦高温側判定温度THの場合
 圧縮機31の運転周波数fを下げる第1保護制御が実行される。具体的には、保護制御部41cは、圧縮機制御部41bに対し、運転周波数fを所定の運転周波数fpに下げるよう指示する。なお、運転周波数fpは、最小値のような固定値であってもよいし、例えば、室内ユニット20の空調負荷等から最適と判断された運転周波数に応じて変化する変動値であってもよい。
 また、保護制御部41cは、室外膨張弁36の開度を所定の開度より上げる(大きくする)ように、運転周波数fの制御と同時又は個別に指示しても良い。
 (c)吐出管温度Tt>高温側判定温度THの場合
 圧縮機31の運転を停止させる、第2保護制御が実行される。具体的には、保護制御部41cは、圧縮機制御部41bに対し、圧縮機31を停止させるよう指示する。
 なお、保護制御部41cは、圧縮機31の起動後の過渡時と、過渡時終了後の定常時とを判断し、過渡時と定常時とで異なる値を、低温側判定温度TL及び高温側判定温度THとして判定温度記憶領域42aから呼び出す。
 過渡時は、冷媒の状態が安定していない期間である。ここでは、保護制御部41cは、圧縮機31の起動後の所定時間を過渡時と判断する。より具体的には、保護制御部41cは、圧縮機31の起動後、後述する過渡時終了判別時間t1が経過する前の時間を過渡時と判断する。定常時は、冷媒の状態が安定した期間である。ここでは、保護制御部41cは、圧縮機31が運転中であって、圧縮機31の起動後、過渡時終了判別時間t1が経過した後の時間を定常時と判断する。過渡時と定常時との違いとして、例えば、過渡時の吐出管温度Ttと圧縮機31内部の温度との温度差は、定常時の吐出管温度Ttと圧縮機31の内部の温度との温度差より大きくなる場合がある。過渡時と定常時との違いについては、後ほど詳述する。
 (2-3-1-4)時間管理部
 時間管理部41dは、制御部41の実行する各種制御の時間管理を行う。時間管理には、圧縮機31の起動後の時間tの把握を含む。圧縮機31の起動後の時間tは、圧縮機制御部41bから送信された圧縮機31の起動及び停止に関する信号を用いて把握される。
 (2-3-2)記憶部
 (2-3-2-1)判定温度記憶領域
 判定温度記憶領域42aには、保護制御部41cが、保護制御を実行するか否かを決定し、更に保護制御の内容を決定するために用いられる判定温度が記憶される。より具体的には、過渡時の低温側判定温度TLとして第1低温側温度TL1が、過渡時の高温側判定温度THとして第1高温側温度TH1が、定常時の低温側判定温度TLとして第2低温側温度TL2が、定常時の高温側判定温度THとして第2高温側温度TH2が、それぞれ記憶される。
 なお、それぞれの値の間には、第1低温側温度TL1<第1高温側温度TH1、第2低温側温度TL2<第2高温側温度TH2、第1低温側温度TL1<第2低温側温度TL2、第1高温側温度TH1<第2高温側温度TH2という関係がある。つまり低温側温度(第1低温側温度TL1,第2低温側温度TL2)は、対応する高温側温度(第1高温側温度TH1,第2高温側温度TH2)より小さな値である。第1温度(第1低温側温度TL1,第1高温側温度TH1)は、対応する第2温度(第2低温側温度TL2,第2高温側温度TH2)より小さな値である。
 本実施例においては、第1低温側温度TL1、第1高温側温度TH1、第2低温側温度TL2、及び第2高温側温度TH2は予め判定温度記憶領域42aに記憶された値であるが、これに限定されるものではなく、例えば、後述する入力部43からの入力により書き替えられるものであってもよい。
 (2-3-2-2)終了時間記憶領域
 終了時間記憶領域42bには、保護制御部41cが、過渡時と定常時とを判断するために用いる過渡時終了判定時間t1が記憶される。
 保護制御部41cは、圧縮機31の起動後、過渡時終了判定時間t1経過前であれば、過渡時と判断し、圧縮機31の起動後、過渡時終了判定時間t1経過後は、定常時と判断する。
 過渡時終了判定時間t1は、終了時間記憶領域42bに予め記憶されている情報である。ただし、これに限定されるものではなく、過渡時終了判定時間t1は、例えば、後述する入力部43からの入力により書き替えられるものであってもよい。
 (2-4-3)入力部
 入力部43は、各種情報や各種運転条件が入力されるように構成されている。
 (3)保護制御部による処理の流れ
 以下に、保護制御部41cにより実行される、過渡時/定常時の判断及び判定温度変更の処理と、保護制御に関する処理とについて説明する。
 (3-1)過渡時/定常時の判断及び判定温度変更の処理
 保護制御部41cによる、過渡時/定常時の判断及び判定温度変更処理について、図3のフローチャートに基づき説明する。なお、過渡時/定常時の判断とは、保護制御部41cによる、圧縮機31の起動後の過渡時と、過渡時終了後の定常時との判断を意味する。判定温度変更とは、保護制御部41cが、過渡時と定常時とに応じて、低温側判定温度TL及び高温側判定温度THとして判定温度記憶領域42aから呼び出す値を変更することを意味する。
 ステップS101では、保護制御部41cは、圧縮機31の起動に関する信号を圧縮機制御部41bから受け付けたか否かを判断する。ステップS101は、保護制御部41cが、圧縮機31の起動に関する信号を受け付けたと判断するまで繰り返される。保護制御部41cが、圧縮機31が起動した旨の信号を受け付けたと判断すると、ステップS102に進む。
 ステップS102では、保護制御部41cは、圧縮機31が起動してからの時間tが、過渡時終了判定時間t1以上の値であるか否かを判断する。具体的には、保護制御部41cは、時間管理部41dに圧縮機31が起動してからの時間tを問い合わせ、時間tが終了時間記憶領域42bから呼び出された過渡時終了判定時間t1以上の値であるか否かを判断する。ステップS102は、保護制御部41cにより、時間tが過渡時終了判定時間t1以上の値になったと判断されるまで繰り返される。保護制御部41cにより、時間tが過渡時終了判定時間t1以上であると判断されると、ステップS103に進む。
 なお、保護制御部41cは、ステップS102の判断が行われている間は過渡時であると判断する。言い換えれば、保護制御部41cは、低温側判定温度TLとして第1低温側温度TL1を、高温側判定温度THとして第1高温側温度TH1を、保護制御に関する処理の判定温度として用いる。
 ステップS103では、保護制御部41cは、過渡時が終了したと判断する。そして、保護制御部41cは、低温側判定温度TL及び高温側判定温度THとして判定温度記憶領域42aから呼び出す値を変更する。具体的には、保護制御部41cにより、低温側判定温度TLとして第2低温側温度TL2が、高温側判定温度THとして第2高温側温度TH2がそれぞれ呼び出される。呼び出された低温側判定温度TL及び高温側判定温度THは、保護制御に関する処理の判定温度として使用される。
 ステップS104では、保護制御部41cは、圧縮機制御部41bから圧縮機31の停止に関する信号を受け付けたか否かを判断する。ステップS104は、保護制御部41cが、圧縮機31の停止に関する信号を受け付けたと判断するまで繰り返される。保護制御部41cにより、圧縮機31の停止に関する信号が受け付けられたと判断されると、ステップS105に進む。
 なお、保護制御部41cは、ステップS104の判断が行われている間は定常時であると判断する。言い換えれば、ステップS104の判断が行われている間は、保護制御部41cは、低温側判定温度TLとして第2低温側温度TL2を、高温側判定温度THとして第2高温側温度TH2を、保護制御に関する処理の判定温度として用いる。
 ステップS105では、保護制御部41cは、圧縮機31の運転が終了したと判断する。そして、保護制御部41cは、低温側判定温度TL及び高温側判定温度THとして判定温度記憶領域42aから呼び出す値を変更する。具体的には、保護制御部41cにより、低温側判定温度TLとして第1低温側温度TL1が、高温側判定温度THとして第1高温側温度TH1がそれぞれ呼び出される。その後、ステップS101に戻る。なお、呼び出された低温側判定温度TL及び高温側判定温度THは、次にステップS103に進むまで変更されずに保持される。
 (3-2)保護制御に関する処理
 保護制御は、過熱により故障等が発生することから運転中の圧縮機31を保護するための制御である。保護制御に関する処理では、上記の判定温度変更の処理の結果、保護制御部41cにより、低温側判定温度TL及び高温側判定温度THとして判定温度記憶領域42aから呼び出されている値が、判定温度として用いられる。
 保護制御に関する処理について、図4のフローチャートに基づき説明する。
 ステップS201では、保護制御部41cにより、吐出管温度Ttが、低温側判定温度TL以下か否かが判断される。吐出管温度Ttが低温側判定温度TL以下と判断される場合には、ステップS202に進み、吐出管温度Ttが低温側判定温度TLより大きいと判断される場合には、ステップS204に進む。
 ステップS202では、保護制御部41cにより第1保護制御が実行されているか否かが判断される。第1保護制御が実行されていると判断された場合にはステップS203に進み、第1保護制御が実行されていないと判断された場合にはステップS201に戻る。
 ステップS203では、保護制御部41cは第1保護制御の実行を解除する。より具体的には、保護制御部41cは、圧縮機制御部41bに対し第1保護制御の実行の解除を指示する。その後ステップS201に戻る。
 ステップS204では、保護制御部41cにより、吐出管温度Ttが、高温側判定温度TH以下か否かが判断される。吐出管温度Ttが高温側判定温度TH以下と判断される場合には、ステップS205に進み、吐出管温度Ttが高温側判定温度THより大きいと判断される場合には、ステップS206に進む。
 ステップS205では、保護制御部41cにより、第1保護制御が行われる。第1保護制御は、圧縮機31の運転周波数fを下げる制御である。保護制御部41cは、圧縮機制御部41bに対し、運転周波数fを所定の運転周波数fpに下げるよう指示する。その後ステップS201に戻る。
 なお、既に第1保護制御を実行中である場合には、そのまま第1保護制御が継続される。この場合には、保護制御部41cは、圧縮機制御部41bに対して改めて運転周波数fを下げる指示を行わない。
 ステップS206では、保護制御部41cにより、第2保護制御が実行される。第2保護制御では、圧縮機31の運転が停止される。より具体的には、保護制御部41cは、圧縮機制御部41bに対し、圧縮機31の停止を指示する。この結果、冷媒回路10に冷媒が流れない状態になる。その後ステップS207に進む。
 ステップS207では、保護制御部41cにより、吐出管温度Ttが、判定温度記憶領域42aに記憶される低温側判定温度TL以下か否かが判断される。ステップS207は、吐出管温度Ttが低温側判定温度TL以下と判断されるまで繰り返される。吐出管温度Ttが低温側判定温度TL以下と判断されると、ステップS208に進む。
 ステップS208では、保護制御部41cは保護制御を解除する。より具体的には、保護制御部41cは、圧縮機制御部41bに対し、圧縮機31の停止の解除を指示する。また、圧縮機制御部41bに対して運転周波数fを所定の運転周波数fpに下げる指示が行われていた場合には、保護制御部41cは、圧縮機制御部41bに対して、その制御を解除するよう指示する。その後ステップS201に戻る。
 (4)過渡時と定常時との違いについて
 以下に、過渡時と定常時との違いについて説明する。
 まず、運転条件一定下における、吐出管温度Tt、圧縮機31内部の温度、吐出管温度Ttと圧縮機31内部の温度との温度差、圧縮機31から吐出される冷媒の圧力である吐出圧Po、及び、圧縮機31が吸入する冷媒の圧力である吸入圧Piの時間変化を、図5を用いて説明する。なお、ここでは、吐出ポート温度Tpを圧縮機31内部の温度として説明する。吐出ポート温度Tpとは、圧縮機31の圧縮機構の圧縮室から吐出された直後の冷媒の温度を意味する。
 まず、吐出管温度Tt、吐出ポート温度Tp、及び吐出ポート温度Tpと吐出管温度Ttの温度差(Tp-Tt)の時間変化について説明する。
 図5のように、空気調和装置1が運転を開始すると、圧縮機31が起動する。そして、圧縮機31の起動後、吐出管温度Ttと、吐出ポート温度Tpとは上昇を始める。吐出管温度Ttの変化を表すグラフは、図5のように、圧縮機31の起動後上昇し、概ね一定値に漸近するような曲線を示す。一方、吐出ポート温度Tpの変化を表すグラフは、一旦大きく上昇して最大値を示し、その後減少し、概ね一定値に漸近するような曲線を示す。このような、圧縮機31の起動後における、吐出ポート温度Tpと吐出管温度Ttとの温度変化の傾向の違いから、吐出ポート温度Tpと吐出管温度Ttの温度差の変化を表すグラフも、一旦大きく上昇して最大値を示し、その後減少し、概ね一定値に漸近するような曲線を示す。図5のように、吐出ポート温度Tpと吐出管温度Ttの温度差が、時間と共に変動しているのが過渡時であり、ほぼ一定値となるのが定常時である。なお、図5から分かるように、吐出ポート温度Tpと吐出管温度Ttの温度差は、過渡時に最大となる。つまり、過渡時と定常時とを比べると、同一の吐出管温度Ttであっても、吐出ポート温度Tpは過渡時の方が高いという状態が起こりうる。なお、圧縮機31起動後の吐出ポート温度Tpと、吐出管温度Ttとの温度変化の傾向の違いは、冷媒の温度が、吐出管に伝わるまでに時間がかかることが1つの原因である。
 次に、吐出圧Po及び吸入圧Piの時間変化について説明する。
 まず、吐出圧Poの変化を表すグラフは、図5のように、圧縮機31の起動後上昇し、概ね一定値に漸近するような曲線を示す。一方、吸入圧Piの変化を表すグラフは、一旦減少して最小値を示し、その後上昇し、概ね一定値に漸近するような曲線を示す。吸入圧Piの変化を表すグラフにおいて、極小となるタイミング(最小値を示し、その後上昇するタイミング)は、過渡時に含まれる。
 そのため、試運転時等に、運転条件一定の下、圧縮機31の吸入圧力Piを測定し、吸入管圧力Piが極小となるタイミングを含めるように過渡時を設定すれば、吐出ポート温度Tpを試運転時等に実測しなくても、簡便な方法で適切な過渡時終了判定時間t1を導出できる。
 (5)特徴
 (5-1)
 本実施形態の空気調和装置1は、圧縮機31と、吐出管温度センサ51と、保護制御部41cと、を備える。圧縮機31は、冷媒を圧縮する。吐出管温度センサ51は、圧縮機31の外部の吐出管において、圧縮機31から吐出される冷媒の温度を吐出管温度Ttとして検出する。保護制御部41cは、圧縮機31の起動後の過渡時と、過渡時の終了後であって冷媒の状態が安定した定常時とを判断し、過渡時には、吐出管温度センサ51で検出された吐出管温度Ttが第1低温側温度TL1及び第1高温側温度TH1(第1判定温度)を超える場合に、圧縮機31の第1保護制御及び第2保護制御をそれぞれ行い、定常時には、吐出管温度Ttが第2低温側温度TL2及び第2高温側温度TH2(第2判定温度)を超える場合に、圧縮機31の第1保護制御及び第2保護制御をそれぞれ行う。
 ここでは、圧縮機31の起動後の過渡時と、冷媒の状態が安定した定常時とが判断され、過渡時と定常時とでは、異なる判定温度に基づいて圧縮機31の保護制御が実行される。そのため、過渡時の吐出管温度Ttと圧縮機31の内部の温度との温度差が、定常時の吐出管温度Ttと圧縮機31の内部の温度との温度差とは異なる場合であっても、圧縮機31の内部が過熱する前に、適切な保護制御を実行できる。その結果、信頼性の高い空気調和装置1が実現される。
 (5-2)
 本実施形態の空気調和装置1では、過渡時には、圧縮機31の吸入圧力Piが極小となるタイミングを含む。
 ここでは、圧縮機31の吸入圧力Piの変化を用いて、過渡時を判断できる。試運転時等に、圧縮機31の内部の温度(例えば吐出ポート温度Tp)と吐出管温度Ttとの温度差を実測により求めなくても、簡便かつ適切に過渡時を決定でき、圧縮機31の内部が過熱する前に適切な保護制御を実行できる。その結果、信頼性の高い空気調和装置1が実現される。
 (5-3)  
 本実施形態の空気調和装置1では、保護制御部41cは、圧縮機31の起動後、過渡時終了判定時間t1が経過するまでは過渡時と判断し、過渡時終了判定時間t1経過後は定常時と判断する。
 ここでは、圧縮機31の起動後の時間tを用いて、過渡時と定常時とが判断されるので、過渡時の終了を容易に判断して判定温度を変更できる。そのため、圧縮機31の内部が過熱する前に適切な保護制御を実行できる。その結果、信頼性の高い空気調和装置1が実現される。
 (5-4)
 本実施形態の空気調和装置1は、第1低温側温度TL1及び第1高温側温度TH1は、それぞれ第2低温側温度TL2及び第2高温側温度TH2よりも小さい。
 本実施形態のようにR32が冷媒として使用される場合、圧縮機31の起動後の過渡時に、定常時よりも吐出管温度Ttと圧縮機31の内部の温度との温度差が大きくなる場合があるが、適切な保護制御を実行できる。
 (6)変形例
 以下に本実施形態の変形例を示す。なお、複数の変形例を適宜組み合わせてもよい。
 (6-1)変形例A
 上記実施形態では、冷媒としてR32が使用されるが、これに限定されるものではなく、他の冷媒、例えばR410A、R407C等が使用されるものであってもよい。
 なお、R32などの比熱比κが大きい冷媒では、特に、過渡時の吐出管温度Ttと圧縮機31の内部の温度が、定常時の吐出管温度Ttと圧縮機31の内部の温度に比べ大きくなりやすいので、本発明が特に有用である。
 また、空気調和装置1は、複数の冷媒を切り替えて使用可能であってもよい。例えば、空気調和装置1は、R410A、R407C及びR32の3種類を冷媒として使用することが可能で、制御ユニット40の入力部43から使用する冷媒の種類を指定することで、制御ユニット40により運転条件が変更され、使用する冷媒にあわせた適切な運転が実行されてもよい。
 この際、冷媒別に第1判定温度(第1低温側温度TL1及び第1高温側温度TH1)、第2判定温度(第2低温側温度TL2及び第2高温側温度TH2)が用意されてもよい。
 (6-2)変形例B
 上記実施形態では、保護制御として第1及び第2保護制御が実行されるが、これに限定されるものではなく、より多くの種類の保護制御が行われてもよい。
 また、保護制御を1種類、例えば第2保護制御だけとしてもよい。
 (6-3)変形例C
 上記実施形態では、過渡時と定常時とで、判定温度記憶領域42aに記憶された異なる値を呼び出して(呼び出す値を変更して)、低温側判定温度TL及び高温側判定温度THとして用いるが、これに限定されるものではない。例えば、低温側判定温度TL及び高温側判定温度THは、過渡時と定常時とで低温側判定温度TL及び高温側判定温度THが変更されるように、計算式により算出されてもよい。
 (6-4)変形例D
 上記実施形態では、保護制御部41cは、過渡時と定常時の2通りしか判断されないが、これに限定されるものではなく、例えば、過渡時をより細かく(例えば、第1過渡時~第N過渡時に)分割し、それぞれの過渡時に対して、異なる判定温度が用意されてもよい。
 (6-5)変形例E
 上記実施形態では、過渡時か定常時かだけで判定温度を変更するが、例えば参考文献1のように、さらに圧縮機の運転周波数fに応じて判定温度を変更するようにしてもよい。
 これにより、より適切な保護制御が実行されやすくなる。
 (6-6)変形例F
 上記実施形態では、第2保護制御が実行された後、吐出管温度Ttが低温側判定温度TL以下になるまで保護制御が解除されないが、これに限定されるものではなく、例えば、吐出管温度Ttが高温側判定温度THより低くなれば、第2保護制御を解除し、圧縮機31の運転を再開してもよい。
 (6-7)変形例G
 上記実施形態では、圧縮機31は、運転周波数fを変更可能なインバータ圧縮機であるが、これに限定されるものではなく、インバータ式でない(運転周波数fを変更できない)圧縮機31であってもよい。この場合には、運転周波数fを変更する第1保護制御は実行されない。
 本発明によれば、圧縮機の保護制御が、起動時、定常時を問わずに適切に実行され、信頼性の高い冷凍装置が実現される。
1 空気調和装置(冷凍装置)
31 圧縮機
41c 保護制御部
51 吐出管温度センサ(温度検出部)
Pi 吸入圧力
t1 過渡時終了判定時間(所定時間)
Tt 吐出管温度(検出温度)
TL1 第1低温側判定温度(第1判定温度)
TH1 第1高温側判定温度(第1判定温度)
TL2 第2低温側判定温度(第2判定温度)
TH2 第2高温側判定温度(第2判定温度)
特開2002-107016号公報

Claims (4)

  1.  冷媒を圧縮する圧縮機(31)と、
     前記圧縮機の外部において、前記圧縮機から吐出される前記冷媒の温度を検出する温度検出部(51)と、
     前記圧縮機の起動後の過渡時と、前記過渡時の終了後であって前記冷媒の状態が安定した定常時とを判断し、前記過渡時には、前記温度検出部で検出された検出温度(Tt)が第1判定温度(TL1,TH1)を超える場合に前記圧縮機の保護制御を行い、前記定常時には、前記検出温度が第2判定温度(TL2,TH2)を超える場合に前記圧縮機の前記保護制御を行う保護制御部(41c)と、
    を備える冷凍装置(1)。
  2.  前記過渡時には、前記圧縮機の吸入圧力(Pi)が極小となるタイミングを含む、
    請求項1に記載の冷凍装置。
  3.  前記保護制御部は、前記圧縮機の起動後、所定時間(t1)が経過するまでは前記過渡時と判断し、前記所定時間経過後は前記定常時と判断する、
    請求項1又は2に記載の冷凍装置。
  4.  前記第1判定温度は、前記第2判定温度よりも小さい、
    請求項1から3のいずれか1項に記載の冷凍装置。
     
PCT/JP2013/062621 2012-06-13 2013-04-30 冷凍装置 WO2013187147A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112014030628A BR112014030628A2 (pt) 2012-06-13 2013-04-30 dispositivo de refrigeração
AU2013275605A AU2013275605B2 (en) 2012-06-13 2013-04-30 Refrigerating Device
CN201380030096.XA CN104334981B (zh) 2012-06-13 2013-04-30 冷冻装置
KR1020157000595A KR101570644B1 (ko) 2012-06-13 2013-04-30 냉동 장치
ES13803544.9T ES2642371T3 (es) 2012-06-13 2013-04-30 Dispositivo de refrigeración
US14/407,428 US9677798B2 (en) 2012-06-13 2013-04-30 Refrigerating device
EP13803544.9A EP2863150B1 (en) 2012-06-13 2013-04-30 Refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-133932 2012-06-13
JP2012133932A JP5310911B1 (ja) 2012-06-13 2012-06-13 冷凍装置

Publications (1)

Publication Number Publication Date
WO2013187147A1 true WO2013187147A1 (ja) 2013-12-19

Family

ID=49529535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062621 WO2013187147A1 (ja) 2012-06-13 2013-04-30 冷凍装置

Country Status (9)

Country Link
US (1) US9677798B2 (ja)
EP (1) EP2863150B1 (ja)
JP (1) JP5310911B1 (ja)
KR (1) KR101570644B1 (ja)
CN (1) CN104334981B (ja)
AU (1) AU2013275605B2 (ja)
BR (1) BR112014030628A2 (ja)
ES (1) ES2642371T3 (ja)
WO (1) WO2013187147A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3173708A4 (en) * 2014-09-03 2017-08-02 Mitsubishi Heavy Industries, Ltd. Air-conditioning system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858022B2 (ja) * 2013-10-24 2016-02-10 ダイキン工業株式会社 空気調和装置
US10767881B2 (en) 2017-03-30 2020-09-08 Gd Midea Air-Conditioning Equipment Co., Ltd. Method and device for controlling a compressor
CA3021241C (en) * 2017-03-30 2020-07-14 Gd Midea Air-Conditioning Equipment Co., Ltd. Method and device for controlling a compressor
JP7057510B2 (ja) * 2019-06-14 2022-04-20 ダイキン工業株式会社 冷媒サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143054A (ja) * 1988-11-22 1990-06-01 Nippon Kentetsu Co Ltd 保冷庫の圧縮機制御方法
JPH02230054A (ja) * 1989-03-02 1990-09-12 Tabai Espec Corp 冷凍機
JP2002107016A (ja) 2000-10-03 2002-04-10 Daikin Ind Ltd 冷凍装置
JP2007285571A (ja) * 2006-04-14 2007-11-01 Daikin Ind Ltd ヒートポンプ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134635B2 (ja) * 1993-11-15 2001-02-13 松下電器産業株式会社 周波数制御式空気調和機の保護制御装置
US7448226B2 (en) * 2002-03-29 2008-11-11 Kabushiki Kaisha Toshiba Refrigerator
US7412842B2 (en) * 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
WO2006030776A1 (ja) * 2004-09-13 2006-03-23 Daikin Industries, Ltd. 冷凍装置
JP4596426B2 (ja) * 2005-09-21 2010-12-08 日立アプライアンス株式会社 熱源装置
TR201905117T4 (tr) * 2006-04-26 2019-05-21 Toshiba Carrier Corp Klima.
JP4976239B2 (ja) 2007-09-03 2012-07-18 オリオン機械株式会社 冷却装置の圧縮機保護方法
JP2009281191A (ja) 2008-05-20 2009-12-03 Toyota Industries Corp 圧縮機保護制御方法及びこの制御方法を用いた冷凍サイクル
CN101813357B (zh) * 2010-04-01 2012-07-11 广东美的电器股份有限公司 空调器压缩机的保护方法
JP5108923B2 (ja) * 2010-09-09 2012-12-26 パナソニック株式会社 空気調和機
CN102331067A (zh) * 2011-05-24 2012-01-25 宁波奥克斯电气有限公司 直流变频空调器中制冷循环时压缩机保护的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143054A (ja) * 1988-11-22 1990-06-01 Nippon Kentetsu Co Ltd 保冷庫の圧縮機制御方法
JPH02230054A (ja) * 1989-03-02 1990-09-12 Tabai Espec Corp 冷凍機
JP2002107016A (ja) 2000-10-03 2002-04-10 Daikin Ind Ltd 冷凍装置
JP2007285571A (ja) * 2006-04-14 2007-11-01 Daikin Ind Ltd ヒートポンプ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3173708A4 (en) * 2014-09-03 2017-08-02 Mitsubishi Heavy Industries, Ltd. Air-conditioning system

Also Published As

Publication number Publication date
CN104334981B (zh) 2016-02-24
EP2863150B1 (en) 2017-09-27
AU2013275605B2 (en) 2015-12-24
KR101570644B1 (ko) 2015-11-19
AU2013275605A1 (en) 2015-01-22
EP2863150A4 (en) 2015-07-01
BR112014030628A2 (pt) 2017-06-27
CN104334981A (zh) 2015-02-04
KR20150012319A (ko) 2015-02-03
EP2863150A1 (en) 2015-04-22
JP5310911B1 (ja) 2013-10-09
ES2642371T3 (es) 2017-11-16
JP2013257090A (ja) 2013-12-26
US20150153085A1 (en) 2015-06-04
US9677798B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP5403112B2 (ja) 冷凍装置
JP5092829B2 (ja) 空気調和装置
AU2009263640B2 (en) Air conditioning apparatus refrigerant quantity determination method and air conditioning apparatus
JP5447499B2 (ja) 冷凍装置
JP5310911B1 (ja) 冷凍装置
JP6109307B2 (ja) 空気調和装置
JP2011099591A (ja) 冷凍装置
JP2008082654A (ja) 冷凍装置の故障診断方法、及び冷凍装置
JP2019002639A (ja) 空気調和機の冷媒漏洩検知方法、および、空気調和機
JP2013257088A (ja) 冷凍装置
JP2011242097A (ja) 冷凍装置
JP5245576B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
KR101485848B1 (ko) 멀티형 공기조화기의 제어방법
KR101460714B1 (ko) 멀티형 공기조화기 및 그 난방운전 협조제어 방법
JP2018141587A (ja) 空調機
JP6111665B2 (ja) 冷凍装置
JP2008249288A (ja) 空気調和機
JP2020153563A (ja) 装置評価システム及び装置評価方法
JP6519098B2 (ja) 空気調和装置
JP7328533B2 (ja) 冷凍サイクル装置
JP6057512B2 (ja) クランクケースヒータを備えた空気調和機
JP5446348B2 (ja) 空気調和装置
JP2008106953A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380030096.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14407428

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013803544

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157000595

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013275605

Country of ref document: AU

Date of ref document: 20130430

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030628

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014030628

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141208