WO2013183853A1 - 연료전지 시스템 - Google Patents

연료전지 시스템 Download PDF

Info

Publication number
WO2013183853A1
WO2013183853A1 PCT/KR2013/002594 KR2013002594W WO2013183853A1 WO 2013183853 A1 WO2013183853 A1 WO 2013183853A1 KR 2013002594 W KR2013002594 W KR 2013002594W WO 2013183853 A1 WO2013183853 A1 WO 2013183853A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
heat
hot box
temperature
burner
Prior art date
Application number
PCT/KR2013/002594
Other languages
English (en)
French (fr)
Inventor
양동진
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to US14/405,153 priority Critical patent/US9343766B2/en
Priority to JP2015515931A priority patent/JP5903526B2/ja
Priority to EP13800610.1A priority patent/EP2858158B1/en
Publication of WO2013183853A1 publication Critical patent/WO2013183853A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system, and more particularly to a fuel cell system that can be supplied to the outside air at room temperature directly into the hot box to affect the temperature of the hot box to reduce efficiency.
  • Such a fuel cell has a structure in which hydrogen gas or a hydrocarbon, which is fuel, is supplied to a negative electrode, and oxygen is supplied to the positive electrode to generate electricity.
  • the fuel cell is named as a battery, it can be regarded as a power generating device that actually generates electricity.
  • the fuel cell uses a method of causing an electrochemical reaction between hydrogen and oxygen without burning fuel and converting the energy difference before and after the reaction into electrical energy.
  • a fuel cell is a system that does not generate gases polluting the environment such as NOx and SOx, and has no noise and vibration. It is a clean power generation system with thermal efficiency of 80% or more combined with electricity generation and heat recovery.
  • the reaction of hydrogen and oxygen in the fuel cell is an exothermic reaction, and heat is generated.
  • phosphoric acid is mainly used as an electrolyte, and an operating temperature of the phosphoric acid fuel cell is known to be about 200 ° C. This is the maximum temperature allowed by the phosphate electrolyte, and it is known that the reaction of hydrogen and oxygen occurs smoothly at the reaction temperature of 200 ° C., but the heat is generated by the exothermic reaction of hydrogen and oxygen.
  • the reaction of oxygen may not be smooth and the efficiency may be lowered. Therefore, a cooling structure for cooling the fuel cell is indispensable.
  • an electrolyte includes a dissolved carbonate fuel cell using a mixture of lithium carbide and potassium carbide having a low melting point, and the operating temperature of the dissolved carbonate fuel cell is about 650 ° C.
  • a hot box is installed.
  • Korean Patent No. 10-0787244 includes an air supply device for supplying air containing oxygen for efficient combustion of power raw materials, so that external air is introduced to lower the hot box to an appropriate temperature.
  • a double intake system is used.
  • Patent No. 10-0787244 mentions a configuration in which a carbon monoxide remover for removing carbon monoxide is connected to a suction passage in order to supply air containing oxygen.
  • the present invention has been made in view of the above problems, to provide a fuel cell system capable of minimizing a change in the internal temperature of a hot box due to intake of external air.
  • Another object of the present invention is to provide a fuel cell system that can simplify the structure of the system by unifying the intake line.
  • the fuel cell system of the present invention for solving the above problems, a hot box for accommodating the fuel cell and the reformer, a start burner for heating the temperature of the hot box to the reaction temperature during the initial operation, the heat or exhaust of the start burner
  • the first heat exchanger is configured to heat the outside air that is taken in by using heat of gas to supply the fuel cell, and generates and supplies steam by using the heat of the exhaust gas.
  • a second heat exchanger is cooled to maintain the reaction temperature.
  • the reformer may include a reforming unit for receiving the steam and the raw material gas and reforming the hydrogen gas, and a burner for heating the reforming unit.
  • the burner may heat the reforming unit by an exothermic reaction in which unreacted hydrogen and oxygen are reacted after the reaction in the fuel cell.
  • the burner may include a main burner and an auxiliary burner, and the unreacted hydrogen and oxygen may be sequentially supplied to the main burner and the auxiliary burner to minimize the unreacted gas.
  • It is provided to surround the inside of the hot box and is connected to the first heat exchanger to heat the hot box to the reaction temperature with the heat of the start burner and to lower the temperature of the hot box with the exhaust gas of the second heat exchanger. It may further include a combustion gas line for maintaining the reaction temperature.
  • the fuel cell system of the present invention provides a means for heating the outside air during the initial operation, and subsequently by heating and supplying the outside air intake by using the exhaust gas, to prevent the change of the temperature inside the hot box due to the inlet air As a result, the temperature of the hot box is maintained at the reaction temperature, thereby preventing the power generation efficiency from being lowered.
  • the fuel cell system of the present invention is configured to generate steam for reforming the source gas using exhaust gas, to solve the increase of heat generated from the fuel cell, and to heat the incoming external air.
  • the effect is to increase efficiency and simplify configuration.
  • the fuel cell system of the present invention has an effect of simplifying the configuration of the system by unifying the intake line and the exhaust line, respectively.
  • FIG. 1 is a block diagram of a fuel cell system according to a preferred embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a coupling relationship of a fuel cell system according to an exemplary embodiment of the present invention.
  • connector 600 second heat exchange unit
  • FIG. 1 is a block diagram of a fuel cell system according to a preferred embodiment of the present invention.
  • a fuel cell system may include a start burner 100 that heats a hot box 300 during an initial operation, and a heat of exhaust gas or heat of the start burner 100.
  • a fuel cell 500 that receives the reformed raw material gas from the reformer 400 and receives external air heated through the first heat exchanger 200 and generates power through a catalytic reaction, and the fuel cell
  • the unreacted exhaust gas is supplied through the reformer 400 to generate steam using the sensible heat of the unreacted exhaust gas, and is supplied to the reformer 400 together with the raw material gas NG.
  • the first heat bridge to the heat exchange unreacted exhaust gas It is configured to include a second heat exchange unit 600 via a unit 200, discharged to the outside air.
  • the hot box 300 serves to block the reformer 400 and the fuel cell 500 accommodated in the outside to maintain the reaction temperature, preheating is required to the reaction temperature in order to increase the power generation efficiency in the initial operation. .
  • the temperature of the hot box 300 is heated to the reaction temperature by using the start burner 100. Assuming that the reaction temperature in the fuel cell 500 is 750 ° C., a combustion gas line 110 is provided to supply air heated by the start burner 100 to the hot box 300. The temperature of 300) is heated to 750 ° C.
  • combustion gas line 110 passes through the hot box 300 up and down for convenience of description, in practice, the combustion gas line 110 is wound around the inside of the hot box 300. to be.
  • FIG. 2 is a diagram illustrating a coupling relationship of a fuel cell system according to an exemplary embodiment of the present invention.
  • the combustion gas line 110 may be surrounded by a plurality of times spaced apart from the outer surface of the fuel cell 500 by a predetermined interval inside the hot box 300.
  • FIG. 2 a start burner 100, a hot box 300, a reformer 400, and a fuel cell 500 are illustrated, and configurations of the first and second heat exchangers 200 and 600 are omitted.
  • the reformer 400 and the fuel cell 500 provided inside the hot box 300 have a structure arranged up and down with each other, and by this structure, the size of the device can be reduced.
  • the start burner 100 is stopped while the hot box 300 is heated to the reaction temperature by the start burner 100.
  • the combustion gas line 110 is connected to the first heat exchanger 200, and serves to heat external air supplied from the first heat exchanger 200 to the hot box 300 through heat exchange.
  • the heated outside air includes oxygen, and the oxygen, and the heated outside air is taken into the hot box 300 and supplied to the anode 510 of the fuel cell 500.
  • Hydrogen is supplied to the cathode 520 of the fuel cell 500 to generate power by reaction of hydrogen and oxygen.
  • the reformer 400 is used to supply hydrogen to the cathode 520.
  • the reformer 400 includes a reforming unit 420, a main burner 410, and an auxiliary burner 430, and the reforming unit 420 includes steam of the source gas NG and the second heat exchange unit 600. It receives the reformed and supplies hydrogen gas to the fuel cell 500 side.
  • the reformer 400 may include a function of oxidizing and removing carbon monoxide as needed.
  • the reforming reaction occurring at the reforming unit 420 of the reformer 400 is an endothermic reaction and a continuous supply of heat is required to continue the reforming reaction.
  • the reforming unit 420 is heated by the main burner 410 and the auxiliary burner 430.
  • the main burner 410 and the auxiliary burner 430 are catalyst burners, and the reforming unit is heated at 800 to 900 ° C. generated by an exothermic reaction in which hydrogen and oxygen are reacted in the unreacted gas discharged from the fuel cell 500. 420 is heated to cause a reforming reaction.
  • the reformed source gas NG is supplied to the cathode 520 of the fuel cell 500 as described above.
  • Hydrogen is supplied to the cathode 520 of the fuel cell 500, and oxygen is supplied to the anode 510 to generate an electric reaction.
  • the reaction of oxygen and hydrogen is an exothermic reaction, and thus the temperature inside the fuel cell 500 and the hot box 300 is increased.
  • Oxygen and hydrogen react with each other in the fuel cell 500 to generate electricity, and other gases irrelevant to the reaction, or unreacted oxygen and hydrogen, and steam mixed with the oxygen and hydrogen may react with the anode 510. It is discharged through the connection pipe 530 which is the other side of the cathode 520.
  • connection pipe 530 through which the exhaust gas is discharged is sequentially connected to the main burner 410 and the auxiliary burner 430, and the unreacted oxygen and hydrogen are sequentially connected to the main burner 410 and the auxiliary burner 430.
  • the exothermic reaction of the supplied oxygen and hydrogen is caused.
  • the heat generated is 800 to 900 °C as mentioned above is supplied to the reforming unit 420 to reform the mixed gas of the source gas (NG) and steam to hydrogen gas.
  • the separate burner for heating the reforming unit 420 into the main burner 410 and the auxiliary burner 430 is to minimize the discharge of unreacted gas by reacting the oxygen of the exhaust gas with hydrogen stepwise.
  • the exhaust gas discharged from the auxiliary burner 430 is discharged through the exhaust pipe 440 to the outside of the hot box 300.
  • the exhaust gas discharged through the exhaust pipe 440 is heated at the main burner 410 and the auxiliary burner 430 and is close to the reaction temperature, and the exhaust gas is supplied to the second heat exchanger 600 to externally. Heat exchange with water supplied from
  • the water heat-exchanged with the exhaust gas in the second heat exchange unit 600 is phase-converted to a steam state, and is mixed with the source gas NG and supplied to the reforming unit 420 as described above.
  • the exhaust gas deprived of heat to the water in the second heat exchange unit 600 is supplied to the combustion gas line 110 is supplied to the inside of the hot box 300 again.
  • the exhaust gas supplied into the hot box 300 is in a state where the temperature is lowered in the second heat exchanger 600, and the temperature rise in the hot box 300 generated by the exothermic reaction of the fuel cell 500 is increased. Cooling lowers the temperature of the hot box 300 to the reaction temperature.
  • the internal temperature of the hot box 300 can continuously maintain the reaction temperature, the reaction of hydrogen and oxygen in the fuel cell 500 can be smoothly prevented that the power generation efficiency is lowered.
  • the exhaust gas passing through the hot box 300 is supplied to the first heat exchange part 200 again.
  • the exhaust gas is heated again while passing through the hot box 300, and heat-exchanges with the outside air introduced from the first heat exchange part 200 to heat the outside air.
  • the external air is heated to be supplied into the hot box 300, thereby preventing the internal temperature of the hot box 300 from being changed by supplying the external air at room temperature.
  • the exhaust gas heat-exchanged with the outside air is exhausted to the outside.
  • the present invention heats the supplied external air so that a change in the internal temperature of the hot box 300 generated when the external air at room temperature is supplied does not occur, thereby preventing a decrease in power generation efficiency as well as a fuel cell. It is possible to cool the increase in temperature due to the exothermic reaction of 500 using the exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 연료전지 시스템에 관한 것으로, 연료전지와 개질기를 수용하는 핫박스와, 초기 구동시 핫박스의 온도를 반응온도로 가열하는 스타트 버너와, 상기 스타트 버너의 열 또는 배기가스의 열을 이용하여 흡기되는 외부 공기를 가열하여 상기 연료전지로 공급하는 제1열교환부와, 상기 배기가스의 열을 이용하여 스팀을 발생시켜 공급하며, 온도가 낮아진 상기 배기가스로 연료전지를 냉각시켜 상기 반응온도를 유지하는 제2열교환부를 포함한다. 본 발명은 초기 작동시 외부 공기를 가열하는 수단을 마련하고, 이후 배기가스를 이용하여 흡기되는 외부 공기를 지속적으로 가열하여 공급하여, 외부 공기 유입에 따른 핫박스 내부 온도의 변화를 방지함으로써, 핫박스의 온도를 반응온도로 유지하여 발전 효율이 저하되는 것을 방지할 수 있는 효과가 있다.

Description

연료전지 시스템
본 발명은 연료전지 시스템에 관한 것으로, 보다 상세하게는 상온의 외부공기가 핫박스 내부로 직접 공급되어 핫박스의 온도에 영향을 주어 효율이 저하되는 것을 방지할 수 있는 연료전지 시스템에 관한 것이다.
일반적으로 인류가 사용하고 있는 에너지 중 대부분은 화석연료로부터 얻고 있다. 그러나 이러한 화석연료의 사용은 대기오염 및 산성비, 지구 온난화 등의 환경에 심각한 악영향을 미치고 있으며, 에너지 효율도 낮은 등의 문제점이 있었다.
이러한 화석연료의 사용에 따른 문제점을 해결하기 위하여 최근에는 연료전지 시스템이 개발되고 있다. 이러한 연료전지는 통상의 2차 전지와는 다르게 음극에 연료인 수소가스나 탄화수소를 공급하고, 양극에는 산소를 공급하여 전기를 발생시키는 구조를 갖는다.
즉, 연료전지는 명칭은 전지이지만 실제로는 전기를 발생시키는 발전장치로 볼 수 있다. 기본적으로 연료전지는 연료를 연소시키지 않고 수소와 산소를 전기 화학적 반응을 일으키고, 그 반응 전후의 에너지 차이를 전기에너지로 변환하는 방법을 사용한다.
연료전지는 NOx와 SOx등 환경을 오염시키는 가스가 발생되지 않으며 소음과 진동이 없는 시스템으로서 열효율이 전기발전량과 열회수량을 합하여 80% 이상인 크린 발전 시스템이라 할 수 있다.
이러한 연료전지의 수소와 산소의 반응은 발열반응으로서, 열이 발생하게 된다. 한편 연료전지는 사용되는 전해질로서 인산이 주로 사용되고 있으며, 이러한 인산형 연료전지의 운전온도는 약 200℃로 알려져 있다. 이는 인산 전해질이 허용하는 최대 온도이며, 연료전지가 반응온도인 200℃에서 가장 수소와 산소의 반응이 원활하게 일어나는 것으로 알려져 있으나, 그 수소와 산소의 발열반응에 의하여 열이 발생하게 됨으로써, 수소와 산소의 반응이 원활하게 되지 않아 효율이 낮아질 수 있다. 따라서 연료전지를 냉각시키는 냉각구조가 필수적으로 요구되고 있다.
또한 연료전지의 다른 예로서 전해질은 낮은 용융점을 가지는 탄화리튬과 탄화포타슘의 혼합물을 사용하는 용해 탄산염형 연료전지가 있으며, 용해 탄산염형 연료전지의 운전온도는 약 650℃이며 이러한 운전온도를 유지하기 위한 핫박스가 설치된다.
이와 같은 연료전지의 효율과 밀접한 관계가 있는 운전온도의 유지와 발전효율을 높이기 위해서 다양한 연료전지 시스템이 제안되었다.
예를 들어, 등록특허 10-0787244호에는 발전원료의 효율적인 연소를 위하여 산소가 함유된 공기를 공급하는 공기공급장치를 포함하는 구성으로, 핫박스를 적정한 온도로 낮추기 위한 외부 공기의 유입이 이루어지도록 하는 이중 흡기 방식을 사용하고 있다.
구체적으로 상기 등록특허 10-0787244호에는 산소가 함유된 공기를 공급하기 위하여 일산화탄소를 제거하는 일산화탄소 제거기를 흡입통로에 연결한 구성에 대하여 언급하고 있다.
그러나 외기흡기통, 공기흡입구, 필터를 통해 공급된 직접 공기 공급압력 조절수단을 통해 연료처리장치 등으로 직접 공급하는 구성을 가지고 있으며, 이는 상온의 공기를 직접 공급하여 사용하기 때문에 핫박스 내부의 온도가 낮아지게 되는 현상이 발생할 수 있다.
이처럼 핫박스의 온도가 반응온도에 비해 낮아지는 경우 발전 효율이 낮아질 수 있는 문제점이 있었다.
상기와 같은 문제점을 감안한 본 발명이 해결하고자 하는 기술적 과제는, 흡기되는 외부공기에 의한 핫박스 내부 온도의 변화를 최소화할 수 있는 연료전지 시스템을 제공함에 있다.
또한 본 발명이 해결하고자 하는 다른 과제는, 흡기 라인을 단일화하여 시스템의 구조를 보다 단순화할 수 있는 연료전지 시스템을 제공함에 있다.
상기와 같은 과제를 해결하기 위한 본 발명 연료전지 시스템은, 연료전지와 개질기를 수용하는 핫박스와, 초기 구동시 핫박스의 온도를 반응온도로 가열하는 스타트 버너와, 상기 스타트 버너의 열 또는 배기가스의 열을 이용하여 흡기되는 외부 공기를 가열하여 상기 연료전지로 공급하는 제1열교환부와, 상기 배기가스의 열을 이용하여 스팀을 발생시켜 공급하며, 온도가 낮아진 상기 배기가스로 연료전지를 냉각시켜 상기 반응온도를 유지하는 제2열교환부를 포함한다.
상기 개질기는 상기 스팀과 원료가스를 공급받아 수소 가스로 개질하는 개질부와, 상기 개질부를 가열하는 버너를 포함할 수 있다.
상기 버너는 상기 연료전지에서 반응 후 미반응된 수소 및 산소를 반응시키는 발열반응에 의해 상기 개질부를 가열할 수 있다.
상기 버너는 주버너와 보조버너로 이루어지며, 상기 미반응된 수소 및 산소가 상기 주버너와 상기 보조버너로 순차 공급되도록 하여 미반응 가스를 최소화할 수 있다.
상기 핫박스 내부를 감싸도록 마련됨과 아울러 상기 제1열교환부에 연결되어, 상기 스타트 버너의 열로 상기 핫박스를 반응온도로 가열함과 아울러 상기 제2열교환부의 배기가스로 상기 핫박스의 온도를 낮춰 반응온도를 유지하는 연소가스라인을 더 포함할 수 있다.
본 발명 연료전지 시스템은 초기 작동시 외부 공기를 가열하는 수단을 마련하고, 이후 배기가스를 이용하여 흡기되는 외부 공기를 지속적으로 가열하여 공급하여, 외부 공기 유입에 따른 핫박스 내부 온도의 변화를 방지함으로써, 핫박스의 온도를 반응온도로 유지하여 발전 효율이 저하되는 것을 방지할 수 있는 효과가 있다.
아울러 본 발명 연료전지 시스템은, 배기가스를 이용하여 원료가스를 개질하기 위한 스팀을 발생시킴과 아울러 연료전지에서 발생하는 열의 증가분을 해소하며, 유입되는 외부 공기를 가열할 수 있도록 구성하여 시스템 구성의 효율성을 높이고 구성을 단순화할 수 있는 효과가 있다.
또한 본 발명 연료전지 시스템은 흡기라인과 배기라인을 각각 단일화하여 시스템의 구성을 보다 단순화할 수 있는 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 연료전지 시스템의 블록 구성도이다.
도 2는 본 발명의 바람직한 실시예에 따른 연료전지 시스템의 결합관계 구성도이다.
** 부호의 설명 **
100:스타트 버너 110:연소가스라인
200:제1열교환부 300:핫박스
400:개질기 410:주버너
420:개질부 430:보조버너
440:배기관 500:연료전지
510:양극 520:음극
530:연결관 600:제2열교환부
도 1은 본 발명의 바람직한 실시예에 따른 연료전지 시스템의 블록 구성도이다.
도 1을 참조하면 본 발명의 바람직한 실시예에 따른 연료전지 시스템은, 초기 동작시 핫박스(300)를 가열하는 스타트 버너(100)와, 상기 스타트 버너(100)의 열 또는 배기가스의 열로 외부 공기를 가열하여 핫박스(300) 내로 공급하는 제1열교환부(200)와, 상기 핫박스(300) 내에 위치하며 원료가스(NG)를 개질하는 개질기(400)와, 상기 핫박스(300) 내에서 상기 개질기(400)로부터 개질된 원료가스를 공급받음과 아울러 상기 제1열교환부(200)를 통해 가열된 외부 공기를 공급받아 촉매반응을 통해 발전하는 연료전지(500)와, 상기 연료전지(500)에서 미반응된 배기가스를 상기 개질기(400)를 통해 공급받아 그 미반응 배기가스의 현열을 이용하여 증기를 발생시켜 상기 원료가스(NG)와 함께 상기 개질기(400)에 공급함과 아울러 상기 열교환된 미반응 배기가스를 상기 제1열교환부(200)를 통해 외기로 배출하는 제2열교환부(600)를 포함하여 구성된다.
이하, 상기와 같이 구성되는 본 발명의 바람직한 실시에에 따른 연료전지 시스템의 구성과 작용을 보다 상세히 설명한다.
먼저, 핫박스(300)는 반응온도를 유지하기 위하여 수용된 개질기(400)와 연료전지(500)를 외기와 차단하는 역할을 하는 것으로, 초기 운전에서도 발전 효율을 높이기 위해서는 반응온도로 예열이 요구된다.
이러한 핫박스(300)의 동작 조건을 만족시키기 위하여 초기 운전시에는 스타트 버너(100)를 사용하여 상기 핫박스(300)의 온도를 반응온도로 가열한다. 상기 연료전지(500)에서의 반응온도가 750℃라고 가정하면, 상기 스타트 버너(100)에 의해 가열된 공기를 상기 핫박스(300)로 공급하는 연소가스라인(110)이 마련되어 그 핫박스(300)의 온도를 750℃로 가열하게 된다.
이때 도 1에서는 설명의 편의를 위하여 상기 연소가스라인(110)이 핫박스(300)를 상하 관통하여 지나는 것으로 도시하였으나, 실제로는 연소가스라인(110)이 핫박스(300)의 내부에 감긴 구조이다.
도 2는 본 발명의 바람직한 실시예에 따른 연료전지 시스템의 결합관계 구성도이다.
도 2를 참조하면 상기 연소가스라인(110)은 핫박스(300)의 내측에서 상기 연료전지(500)의 외측면에서 소정 간격 이격되어 다수 회 감싸고 있는 구성임을 확인할 수 있다.
상기 도 2에서는 스타트 버너(100), 핫박스(300), 개질기(400) 및 연료전지(500)를 도시하였으며, 제1 및 제2열교환부(200,600)의 구성은 생략하였다.
핫박스(300)의 내측에 마련된 개질기(400)와 연료전지(500)는 상호 상하 배치된 구조이며, 이러한 구조에 의해 장치의 크기를 줄일 수 있다.
상기와 같이 스타트 버너(100)에 의해 핫박스(300)가 반응온도로 가열된 상태에서 상기 스타트 버너(100)는 운전이 정지된다.
상기 연소가스라인(110)은 제1열교환부(200)에 연결되어 있으며, 그 제1열교환부(200)에서 핫박스(300)로 공급되는 외부 공기를 열교환을 통해 가열하는 역할을 한다.
이는 상온의 외부 공기가 유입되는 경우 상기 핫박스(300) 내부 온도를 낮아질 수 있으며, 상기 외부 공기를 가열하여 공급되도록 함으로써, 핫박스(300) 내부 온도의 변화를 최소화할 수 있다.
따라서 반응효율의 저하, 즉 발전효율의 저하를 방지할 수 있으며, 전체적인 시스템의 온도 변화를 쉽게 예측하여 정확한 온도 범위에서 동작하도록 설계하기가 용이하게 된다.
상기 가열된 외부 공기는 산소를 포함하고 있으며, 그 산소를 포함하며 가열된 외부 공기는 상기 핫박스(300) 내부로 흡기되어 연료전지(500)의 양극(510)으로 공급된다.
상기 연료전지(500)의 음극(520)에는 수소가 공급되어 수소와 산소의 반응에 의해 발전을 하게 된다. 이와 같이 음극(520)에 수소를 공급하기 위하여 개질기(400)를 사용한다.
상기 개질기(400)는 개질부(420)와, 주버너(410) 및 보조버너(430)로 구성되어 있으며, 개질부(420)에서는 원료가스(NG)와 제2열교환부(600)의 스팀을 공급받아 개질하여 수소가스를 연료전지(500)측으로 공급한다.
상기 개질기(400)는 필요에 따라 일산화탄소를 산화시켜 제거하는 기능을 포함할 수 있다. 상기 개질기(400)의 개질부(420)에서 일어나는 개질반응은 흡열반응이며 이러한 개질반응을 지속하기 위해서는 지속적인 열의 공급이 필요하다.
이와 같은 열을 공급하기 위하여 주버너(410)와 보조버너(430)로 개질부(420)를 가열을 하게 된다.
상기 주버너(410)와 보조버너(430)는 촉매 버너이며, 연료전지(500)에서 배출되는 미반응가스에서 수소와 산소를 반응시키는 발열반응에 의해 발생되는 800 내지 900℃의 열로 상기 개질부(420)를 가열하여 개질반응이 일어나도록 한다.
이처럼 개질된 원료가스(NG)는 앞서 설명한 바와 같이 상기 연료전지(500)의 음극(520)으로 공급된다.
상기 연료전지(500)의 음극(520)에 수소가 공급되고, 양극(510)에 산소가 공급되어 전기적인 반응을 하게 되어 발전을 하게 된다. 이와 같은 산소와 수소의 반응은 발열반응이며, 따라서 연료전지(500) 및 핫박스(300) 내부 온도가 상승하게 된다.
이러한 핫박스(300)의 내부 온도 및 연료전지(500)의 온도 상승은 다시 연료전지(500)의 발전 효율을 저하시키는 원인이 되기 때문에 이를 반응온도로 냉각시켜 유지할 필요가 있으며, 이러한 냉각과정은 이후에 보다 상세하게 설명한다.
상기 연료전지(500)의 내에서 산소와 수소가 반응하여 발전을 하고, 그 반응과는 무관한 다른 가스 또는 미반응된 산소와 수소 및 그 산소와 수소가 혼합된 수증기는 상기 양극(510)과 음극(520)의 타측인 연결관(530)을 통해 배출된다.
상기 배기가스가 배출되는 연결관(530)은 주버너(410)와 보조버너(430)에 순차 연결되어 있으며, 주버너(410)와 보조버너(430)에 상기 미반응된 산소와 수소가 순차 공급되어 산소와 수소가 반응하는 발열반응이 일어나게 된다.
이때 발생하는 열은 앞서 언급한 바와 같이 800 내지 900℃가 되며 상기 개질부(420)에 공급하여 원료가스(NG)와 스팀의 혼합가스를 수소가스로 개질되도록 한다.
상기 개질부(420)를 가열하는 버너를 주버너(410)와 보조버너(430)로 분리 구성한 것은 배기가스의 산소와 수소를 단계적으로 반응시켜 미반응 가스의 배출을 최소화하기 위한 것이다.
그 다음, 상기 보조버너(430)에서 배출되는 배기가스는 상기 핫박스(300)의 외부로 배기관(440)을 통해 배출된다.
상기 배기관(440)을 통해 배출되는 배기가스는 상기 주버너(410)와 보조버너(430)에서 가열된 것으로 반응온도에 가까운 온도이며, 이 배기가스는 제2열교환부(600)에 공급되어 외부에서 공급되는 물과 열교환된다.
이때 제2열교환부(600)에서 배기가스와 열교환 된 물은 스팀 상태로 상 전환되며 앞서 설명한 바와 같이 상기 원료가스(NG)와 혼합되어 개질부(420)로 공급된다.
또한 상기 제2열교환부(600)에서 상기 물에 열을 빼앗긴 배기가스는 상기 연소가스라인(110)으로 공급되어 다시 핫박스(300) 내부로 공급된다. 상기 핫박스(300)의 내부로 공급된 배기가스는 제2열교환부(600)에서 온도가 낮아진 상태이며, 상기 연료전지(500)의 발열반응에 의해 발생된 핫박스(300) 내부 온도 상승분을 냉각시켜 핫박스(300)의 온도를 반응온도로 낮추게 된다.
따라서 그 핫박스(300)의 내부 온도는 반응온도를 지속적으로 유지할 수 있게 되며, 연료전지(500)의 수소와 산소의 반응이 원활하게 이루어져 발전 효율이 저하되는 것을 방지할 수 있게 된다.
상기 핫박스(300)를 지난 상기 배기가스는 다시 제1열교환부(200)로 공급된다. 상기 핫박스(300)를 지나면서 상기 배기가스는 다시 가열된 상태가 되며, 제1열교환부(200)에서 유입되는 외부 공기와 열교환되어 그 외부 공기를 가열하게 된다.
따라서 앞서 설명한 바와 같이 외부 공기를 가열하여 핫박스(300) 내부로 공급하게 됨으로써, 핫박스(300)의 내부 온도가 상온의 외부 공기가 공급되어 변화되는 것을 방지할 수 있게 된다.
상기 외부 공기와 열교환된 배기가스는 외부로 배기된다.
이처럼 본 발명은 공급되는 외부공기를 가열하여, 상온의 외부 공기가 공급되었을 때 발생하는 핫박스(300) 내부 온도의 변화가 발생하지 않도록 함으로써, 발전 효율의 저하를 방지할 수 있을 뿐만 아니라 연료전지(500)의 발열반응에 따른 온도의 상승분을 배기가스를 사용하여 냉각시킬 수 있게 된다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정, 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (5)

  1. 연료전지와 개질기를 수용하는 핫박스;
    초기 구동시 핫박스의 온도를 반응온도로 가열하는 스타트 버너;
    상기 스타트 버너의 열 또는 배기가스의 열을 이용하여 흡기되는 외부 공기를 가열하여 상기 연료전지로 공급하는 제1열교환부; 및
    상기 배기가스의 열을 이용하여 스팀을 발생시켜 공급하며, 온도가 낮아진 상기 배기가스로 연료전지를 냉각시켜 상기 반응온도를 유지하는 제2열교환부를 포함하는 연료전지 시스템.
  2. 제1항에 있어서,
    상기 개질기는,
    상기 스팀과 원료가스를 공급받아 수소 가스로 개질하는 개질부; 및
    상기 개질부를 가열하는 버너를 포함하는 연료전지 시스템.
  3. 제2항에 있어서,
    상기 버너는,
    상기 연료전지에서 반응 후 미반응된 수소 및 산소를 반응시키는 발열반응에 의해 상기 개질부를 가열하는 것을 특징으로 하는 연료전지 시스템.
  4. 제3항에 있어서,
    상기 버너는,
    주버너와 보조버너로 이루어지며, 상기 미반응된 수소 및 산소가 상기 주버너와 상기 보조버너로 순차 공급되는 것을 특징으로 하는 연료전지 시스템.
  5. 제1항에 있어서,
    상기 핫박스 내부를 감싸도록 마련됨과 아울러 상기 제1열교환부에 연결되어, 상기 스타트 버너의 열로 상기 핫박스를 반응온도로 가열함과 아울러 상기 제2열교환부의 배기가스로 상기 핫박스의 온도를 낮춰 반응온도를 유지하는 연소가스라인을 더 포함하는 연료전지 시스템.
PCT/KR2013/002594 2012-06-04 2013-03-28 연료전지 시스템 WO2013183853A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/405,153 US9343766B2 (en) 2012-06-04 2013-03-28 Fuel cell system
JP2015515931A JP5903526B2 (ja) 2012-06-04 2013-03-28 燃料電池システム
EP13800610.1A EP2858158B1 (en) 2012-06-04 2013-03-28 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0059675 2012-06-04
KR1020120059675A KR101363365B1 (ko) 2012-06-04 2012-06-04 연료전지 시스템

Publications (1)

Publication Number Publication Date
WO2013183853A1 true WO2013183853A1 (ko) 2013-12-12

Family

ID=49712215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002594 WO2013183853A1 (ko) 2012-06-04 2013-03-28 연료전지 시스템

Country Status (5)

Country Link
US (1) US9343766B2 (ko)
EP (1) EP2858158B1 (ko)
JP (1) JP5903526B2 (ko)
KR (1) KR101363365B1 (ko)
WO (1) WO2013183853A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101897486B1 (ko) * 2016-06-23 2018-09-12 주식회사 경동나비엔 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
KR101897500B1 (ko) * 2016-06-23 2018-09-12 주식회사 경동나비엔 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
AT520417B1 (de) * 2017-08-18 2020-07-15 Avl List Gmbh Stationäres Brennstoffzellensystem mit Heizvorrichtung außerhalb der Hotbox
EP3614475A1 (de) 2018-08-20 2020-02-26 Siemens Aktiengesellschaft Verfahren zur behandlung wasserstoffhaltiger und sauerstoffhaltiger restgase von brennstoffzellen sowie restgasbehandlungssystem
KR102352277B1 (ko) 2021-05-21 2022-01-18 주식회사 씨에이치피테크 수소추출기용 버너

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318909A (ja) * 2005-05-09 2006-11-24 Modine Mfg Co 一体型熱交換網を有する高温燃料電池システム
KR20070096971A (ko) * 2006-03-27 2007-10-02 가시오게산키 가부시키가이샤 연료전지형 발전장치, 전자기기 및 연료의 처리방법
KR100787244B1 (ko) 2006-11-28 2007-12-21 (주)퓨얼셀 파워 안정적인 공기공급장치를 구비한 연료전지 시스템
KR20090078700A (ko) * 2008-01-15 2009-07-20 한국전력공사 열적 자립운전이 가능한 고체 산화물 연료전지 시스템

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814526B1 (de) * 1996-06-19 2003-03-05 Sulzer Hexis AG Verfahren zum Betreiben einer Vorrichtung mit Brennstoffzellen
US6627339B2 (en) * 2000-04-19 2003-09-30 Delphi Technologies, Inc. Fuel cell stack integrated with a waste energy recovery system
US6562496B2 (en) * 2000-05-01 2003-05-13 Delphi Technologies, Inc. Integrated solid oxide fuel cell mechanization and method of using for transportation industry applications
US7422810B2 (en) * 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same
US20060251934A1 (en) 2005-05-09 2006-11-09 Ion America Corporation High temperature fuel cell system with integrated heat exchanger network
JP2006351292A (ja) * 2005-06-14 2006-12-28 Idemitsu Kosan Co Ltd 固体酸化物形燃料電池システム及びその停止方法
JP5237829B2 (ja) * 2006-01-23 2013-07-17 ブルーム エナジー コーポレーション モジュール式燃料電池システム
EP2011183B1 (en) * 2006-04-03 2016-06-08 Bloom Energy Corporation Fuel cell system and balance of plant configuration
JP2007311072A (ja) * 2006-05-16 2007-11-29 Acumentrics Corp 燃料電池システム及びその運転方法
DE112008000254T5 (de) * 2007-01-31 2009-12-24 Modine Manufacturing Co., Racine Brennstoffzellensystem
JP2010116304A (ja) * 2008-11-14 2010-05-27 Idemitsu Kosan Co Ltd 改質装置、燃料電池システム、改質装置の運転方法
JP2010238433A (ja) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp 燃料電池モジュール
JP2012221934A (ja) * 2011-04-14 2012-11-12 Honda Motor Co Ltd 燃料電池モジュール
JP5834527B2 (ja) * 2011-06-21 2015-12-24 日産自動車株式会社 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318909A (ja) * 2005-05-09 2006-11-24 Modine Mfg Co 一体型熱交換網を有する高温燃料電池システム
KR20070096971A (ko) * 2006-03-27 2007-10-02 가시오게산키 가부시키가이샤 연료전지형 발전장치, 전자기기 및 연료의 처리방법
KR100787244B1 (ko) 2006-11-28 2007-12-21 (주)퓨얼셀 파워 안정적인 공기공급장치를 구비한 연료전지 시스템
KR20090078700A (ko) * 2008-01-15 2009-07-20 한국전력공사 열적 자립운전이 가능한 고체 산화물 연료전지 시스템

Also Published As

Publication number Publication date
KR20130136099A (ko) 2013-12-12
KR101363365B1 (ko) 2014-02-17
EP2858158B1 (en) 2017-08-23
US20150194687A1 (en) 2015-07-09
EP2858158A1 (en) 2015-04-08
EP2858158A4 (en) 2016-01-27
JP2015519004A (ja) 2015-07-06
US9343766B2 (en) 2016-05-17
JP5903526B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2021230562A1 (ko) 암모니아 기반 고체산화물 연료전지(sofc) 시스템
US7169495B2 (en) Thermally integrated SOFC system
WO2013183853A1 (ko) 연료전지 시스템
WO2024063347A1 (ko) 공기 및 연료 공급 모듈 및 이를 구비하는 연료전지 시스템
WO2013100490A1 (ko) 연료전지 하이브리드 시스템
WO2019209045A1 (ko) 연료전지 시스템
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
WO2021075802A1 (ko) 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치
WO2010005165A2 (en) Fuel processor of fuel cell system
CN102881923A (zh) 一种由阳极支撑管型固体氧化燃料电池构建的电站
WO2017003089A1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2013183854A1 (ko) 연료전지와 보일러의 복합 시스템
KR20140038007A (ko) 연소기의 가연 한계 확장 구조를 갖는 연료전지 시스템
KR20110091304A (ko) 주기용 엔진의 폐열을 이용하는 보기용 연료전지 시스템
JP2014229438A (ja) 燃料電池装置
JP4342172B2 (ja) エネルギー併給システム
WO2017204520A1 (ko) 연료전지 시스템
JP2003059521A (ja) 固体酸化物形燃料電池と燃焼を利用する産業プロセスとのコンバインドシステムとその運転方法
WO2017222265A1 (ko) 온도 조절용 열교환 수단을 구비한 연료전지
WO2020262776A1 (ko) 연료처리장치 및 그 연료처리장치를 이용하는 가상발전시스템
WO2023234553A1 (ko) Soe-sofc-ccs 하이브리드 시스템
WO2021080260A1 (ko) 하이브리드 발전 시스템
WO2015199333A1 (ko) 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405153

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015515931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013800610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013800610

Country of ref document: EP