WO2017222265A1 - 온도 조절용 열교환 수단을 구비한 연료전지 - Google Patents

온도 조절용 열교환 수단을 구비한 연료전지 Download PDF

Info

Publication number
WO2017222265A1
WO2017222265A1 PCT/KR2017/006431 KR2017006431W WO2017222265A1 WO 2017222265 A1 WO2017222265 A1 WO 2017222265A1 KR 2017006431 W KR2017006431 W KR 2017006431W WO 2017222265 A1 WO2017222265 A1 WO 2017222265A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange means
unit stack
fuel cell
temperature
Prior art date
Application number
PCT/KR2017/006431
Other languages
English (en)
French (fr)
Inventor
손승길
신석재
박세진
이용
김진형
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Publication of WO2017222265A1 publication Critical patent/WO2017222265A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell having a heat control means for temperature control, and more particularly, to a structure in which the heat control means for temperature control is installed on one or both sides of the top, bottom of the stack of the fuel cell to improve the efficiency of the fuel cell. It is about.
  • the fuel cell has a structure that generates electricity by supplying hydrogen gas or a hydrocarbon as a fuel to the cathode and supplying oxygen to the cathode, unlike a conventional secondary battery.
  • the fuel cell is named as a battery, it can be regarded as a power generating device that actually generates electricity.
  • the fuel cell uses a method of causing an electrochemical reaction between hydrogen and oxygen without burning fuel and converting the energy difference before and after the reaction into electrical energy.
  • a fuel cell is a system that does not generate gases polluting the environment such as NOx and SOx, and has no noise and vibration. It is a clean power generation system with thermal efficiency of 80% or more combined with electricity generation and heat recovery.
  • the fuel cell 100 includes a unit stack 120 in which unit cells are stacked in layers.
  • the unit cell includes a cathode 123 for supplying air (oxygen), an electrolyte 124 having high ion conductivity, and a fuel electrode 125 for supplying fuel gas (hydrogen) in the case of a flat SOFC (Solid Oxide Fuel Cell).
  • the separation plate 121 having the through holes 122 through which air passes through is laminated to the cathode 123, and the separation plate 127 having through holes 126 through which fuel gas passes through the anode 125. ) Is glued.
  • the unit cells configured as described above are stacked in plural and one unit stack 120 is formed, and the upper and lower ends of the unit stack 120 have end plates 110 connected to each other via a connection support rod 115. It is pressurized by pressure to ensure the airtightness and structural stability of the unit stack (120).
  • the fuel cell 100 includes an air supply pipe 130 and an air discharge pipe 140 for supplying air containing oxygen into the unit stack 120. Is formed.
  • the air supplied into the unit stack 120 through the air supply pipe 130 contributes to the chemical reaction in the process of passing through the cathode of each unit cell constituting the unit stack 120, and fails to participate in the reaction. Air is discharged to the outside through the air discharge pipe 140.
  • the fuel cell 100 includes a fuel gas supply pipe 150 and a fuel gas discharge pipe for supplying fuel gas including hydrogen into the unit stack 120. 160 is formed.
  • the air supplied into the unit stack 120 through the fuel gas supply pipe 150 contributes to the chemical reaction in the process of passing through the anode of each unit cell constituting the unit stack 120, and does not participate in the reaction. Unsuccessful fuel gas is discharged to the outside through the fuel gas discharge pipe 160.
  • the fuel cell 100 configured as described above heats air or fuel gas supplied into the unit stack 120 to a high temperature in order to increase chemical reactivity.
  • a chemical reaction in which the oxygen and hydrogen that occur inside the fuel cell meet to generate water is an exothermic reaction, dissipating much heat to the outside.
  • the high temperature fuel cell is usually operated at a high temperature of about 600 ⁇ 1000 °C.
  • the present invention was developed to solve such a conventional problem, and a separate temperature control heat exchanger is installed on one side or both sides of the unit stack of the fuel cell, and a high temperature inside the temperature control heat exchanger is provided. It is an object of the present invention to provide a fuel cell having a heat control means for controlling temperature, which is configured such that the entire fuel cell has a uniform temperature by supplying air or fuel gas.
  • a unit stack configured by stacking a plurality of unit cells generating electricity through a chemical reaction combining oxygen and hydrogen according to the present invention for achieving the above object;
  • An air supply pipe and an air discharge pipe for supplying air containing the oxygen into the unit stack;
  • a fuel gas supply pipe and a fuel gas discharge pipe for supplying a fuel gas including the hydrogen into the unit stack;
  • heat exchange means mounted on an end plate installed at an upper end or a lower end of the unit stack, and having a space therein for allowing a fluid such as air or fuel to pass therethrough.
  • the heat exchange means may be mounted to be adjacent to the end plate installed on the upper end of the unit stack, and may be configured to pass the fluid set to a temperature lower than the temperature of the upper portion of the unit stack into the inner space.
  • the heat exchange means may be mounted to be adjacent to an end plate installed at a lower end of the unit stack, and configured to allow the fluid to be set to a temperature higher than a temperature of a lower portion of the unit stack to an inner space thereof.
  • the heat exchange means may be mounted to be adjacent to the end plate installed on the upper end of the unit stack, and may be configured to pass the fluid set to a temperature higher than the temperature of the upper portion of the unit stack into the inner space.
  • the heat exchange means may be mounted to be adjacent to the end plate installed at the lower end of the unit stack, it may be configured to pass the fluid set to a temperature lower than the temperature of the lower portion of the unit stack into the inner space.
  • the heat exchange means is formed to be adjacent to the end plate installed on the top or bottom of the unit stack, the shape may be configured to form a square flat plate or disc.
  • the heat exchange means may be configured such that the air passes through the inner space, the air passing through the inner space of the heat exchange means is supplied into the unit stack through the air supply pipe.
  • the heat exchange means may be configured such that fuel passes through the internal space, and the fuel passed through the internal space of the heat exchange means is supplied into the unit stack through the fuel gas supply pipe.
  • the heat exchange means may be made of metal or ceramic.
  • the heat exchange means may be made of a metal or ceramic for preventing high temperature corrosion of the metal or ceramic, and may be a surface coating treatment with a metal or ceramic for high temperature corrosion of the metal or ceramic.
  • the heat exchange means may be mounted to be adjacent to the end plate through a material having high thermal conductivity to increase thermal conductivity.
  • the heat exchange means may be installed in the zigzag form baffle in the inner space in order to increase the heat exchange efficiency with the unit stack.
  • the baffle is installed to extend in the vertical direction in the heat exchange means to induce the flow of the fluid in a zigzag form in the vertical direction, or to induce the flow of the fluid in a zigzag form in the lateral direction. It may be installed to extend in the left and right direction inside the heat exchange means.
  • the pressure drop of the fluid by the baffle may be adjusted to 20 kPa or less.
  • the stack is reduced by the temperature variation occurring in the upper and lower portions of the stack during operation of the fuel cell so that the entire stack has a uniform temperature distribution. It is possible to prevent the occurrence of cracks between the material constituting the material or the material itself.
  • FIG. 1 is a view showing a structure of a conventional flat plate type fuel cell
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line BB ′ of FIG. 1.
  • FIG. 4 is a view showing a fuel cell equipped with a heat exchange means according to the present invention.
  • FIG. 5 is yet another view showing a fuel cell equipped with a heat exchange means according to the present invention.
  • FIG. 6 shows a fluid flow of a heat exchange means according to the invention.
  • FIG. 9 is a view showing a heat exchange means is installed on the top and bottom of the unit stack in accordance with the present invention.
  • FIG. 10 is a view showing a form in which the heat exchange means according to the present invention is installed through a thermally conductive material.
  • FIG. 11 is a view showing a baffle installed in the heat exchange means according to the present invention.
  • the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. For reference, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
  • the fuel cell 100 is composed of one unit stack 120, and the unit stack 120 supplies an air electrode supplying air (oxygen) and an electrolyte and fuel (hydrogen) having high ion conductivity.
  • a plurality of unit cells are formed by stacking a plurality of unit cells configured by combining the anodes in a flat plate shape, and an air supply pipe 130 and an air discharge pipe 140 for supplying air containing the oxygen into the unit stack 120 are formed.
  • the fuel gas supply pipe 150 and the fuel gas discharge pipe 160 for supplying the fuel gas including hydrogen into the unit stack 120 are formed as described with reference to FIGS. 1 to 3.
  • the unit stack 120 is configured by stacking one or more unit cells mainly composed of a cathode, a zirconia-based solid electrolyte, and a fuel electrode, as in a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • the technical idea of the present invention is not limited to the SOFC type fuel cell, and any of them can be applied as long as it belongs to a high temperature fuel cell. That is, as long as the temperature variation problem of the unit stack occurs as a fuel cell operated at a high temperature, any of the technical ideas according to the present invention may be applicable.
  • a unit stack 120 configured by stacking a plurality of unit cells generating electricity through a chemical reaction in which oxygen and hydrogen combine, and air supplying air containing oxygen to the inside of the unit stack 120
  • the high-temperature fuel cell including a supply pipe 130 and an air discharge pipe 140, a fuel gas supply pipe 150 for supplying fuel gas containing hydrogen into the unit stack 120 and a fuel gas discharge pipe 160
  • heat exchange means (200) mounted on an end plate (110) installed at the top or bottom of the unit stack (120) and having a space therein for allowing fluid for cooling or heating to pass therethrough.
  • FIG. 4 illustrates an example in which the heat exchange means 200 is configured to have a square plate shape and has the same size as that of the unit stack 120 in close contact with the end plate 110.
  • FIG. 5 illustrates the heat exchange means ( An example 200 is configured to have a disc shape and is installed to have the same or wider area as the unit stack 120. 4 and 5 show that the heat exchange means 200 is installed only on the upper end of the unit stack 120, the technical concept of the present invention is not limited to this, but also installed in the lower end of the unit stack 120 Will include. This will be described later in detail with reference to FIG. 9.
  • the heat exchange means 200 has a housing formed with a space through which the fluid can pass, a fluid inlet pipe 210 through which fluid acting as a cooling or heating medium flows into one side of the housing, and a fluid passing through the internal space. Is formed in each of the fluid discharge pipe 220 is discharged to the outside.
  • the unit stack 120 of the fuel cell 100 since the heat generated during the exothermic reaction is dissipated upward, the unit stack 120 of the fuel cell 100 generally has a higher temperature than the lower portion. Therefore, when the heat exchange means 200 is mounted on the end plate 110 installed on the top of the unit stack 120, the cooling fluid having a low temperature passes therein to allow the upper portion of the unit stack 120 to pass through. It may be configured to cool, if the heat exchange means 200 is mounted on the end plate 110 installed on the bottom of the unit stack 120, the heating fluid having a high temperature therein passes through the unit stack And may be configured to heat the bottom of 120. As a result, the temperature deviation in the vertical direction of the unit stack 120 is reduced, so that the operation control range of the fuel cell 100 can be adjusted more freely.
  • the temperature of the upper portion of the unit stack 120 may drop more than necessary due to the excessive cooling or excessive heating during operation of the fuel cell 100, and the temperature of the lower portion of the unit stack 120 may rise higher than necessary.
  • the heat exchange means 200 mounted on the end plate 110 installed on the top of the unit stack 120 is preferably configured to pass not only the cooling fluid but also the heating fluid as necessary. In the same principle, it is preferable that not only the heating fluid but also the cooling fluid pass through the heat exchange means 200 mounted on the end plate 110 installed at the bottom of the unit stack 120.
  • the heat exchange means 200 is preferably made of a metal or ceramic material in order to prevent corrosion because the high-temperature fluid can pass through.
  • the metal may be a high-temperature corrosion preventing metal made of chromium, nickel, tungsten or alloy metals thereof.
  • the body housing of the heat exchanging means 200 may be manufactured using general steel, and may be coated with a high temperature corrosion preventing metal such as nickel to prevent high temperature corrosion.
  • a high temperature corrosion preventing metal such as nickel to prevent high temperature corrosion.
  • Nickel is more stable than iron on its own due to its relatively low chemical reactivity and high melting point, but when heated, it reacts with oxygen or water vapor in the air to form an oxide protective film, which effectively prevents high temperature corrosion.
  • the surface may be coated with the high temperature corrosion-resistant ceramic.
  • FIG. 6 is a cross-sectional view showing an embodiment according to the present invention, the heat exchange means 200 is installed on the upper portion of the unit stack (120).
  • the medium temperature SOFC type fuel cell has a temperature range of 650 ⁇ 750 °C for optimum operation.
  • the lower portion of the unit stack 120 is in a normal operating range at a temperature of about 700 to 750 ° C., but the upper portion of the unit stack 120 is exothermic. This results in a temperature of about 800 ° C. or more. If the temperature is too high, cracks may occur in the material constituting the unit stack 120, particularly the sealing material, which may cause problems such as deterioration of fuel cell performance, gas leakage due to poor airtightness, and increased maintenance cost due to frequent replacement of the stack. Generate.
  • the heating phenomenon according to the exothermic reaction is controlled by adjusting the supply temperature, the supply amount or the reaction time of air and fuel. It has been pointed out as the cause.
  • the present invention solves the above-mentioned problems by additionally installing a heat exchange means (200) capable of cooling or heating on one side of the fuel cell (100) in order to solve these problems.
  • the heat exchange means 200 is mounted so as to be adjacent to the end plate 110 installed on the top of the unit stack 120, the fluid of low temperature passes through the heat exchange means 200 As a result, the high temperature of the upper portion of the unit stack 120 is cooled.
  • the means that the heat exchange means 200 is mounted adjacent to the end plate 110 means that the heat exchange means 200 is installed in close contact with the end plate 110 or as close as possible to the heat transfer. do.
  • the heat exchange means 200 is mounted on the end plate 110 installed on the top of the unit stack 120.
  • the heat exchange means 200 passes the low temperature air or fuel used in the fuel cell system.
  • the upper portion of the unit stack 120 is heat-exchanged with the heat exchange means 200, the unit stack 120 is cooled to about 700 ⁇ 750 °C temperature range of the lower end of the unit stack 120 The temperature deviation in the vertical direction is reduced.
  • the air or fuel whose temperature has risen is not discarded as it is, but may be supplied to a burner installed in a fuel cell and recycled to make hot combustion gas.
  • heat exchange means 200 installed on the upper portion of the unit stack 120 as shown in Figure 6 to pass the high temperature air or fuel that is a heating fluid in order to increase the temperature when the upper portion of the unit stack 120 is excessively cooled It may be configured to be as described above.
  • FIG. 7 is a cross-sectional view along the AA ′ direction of FIG. 4, in which air passes through the heat exchange means 200 installed on the unit stack 120, and the air passes through the air supply pipe 130 of the unit stack 120. Indicates the form to be transported.
  • 8 is a cross-sectional view taken along the direction BB ′ of FIG. 4, in which fuel passes through an inside of the heat exchange means 200 installed on the unit stack 120, and the fuel passes through the fuel supply pipe 150 of the unit stack 120. It is conveyed by
  • the fuel cell is a device that generates electricity in a chemical reaction process in which air (oxygen) and fuel (hydrogen) meet to generate water
  • air and fuel are supplied to the lower portion of the unit stack 120.
  • air and fuel supplied at a low temperature must be heated to a predetermined temperature or more, and various heat exchangers are additionally installed in the fuel cell system.
  • the air or fuel supplied into the fuel cell system is first passed through the heat exchange means 200 before being supplied into the unit stack 120 for chemical reaction, thereby preheating the air or fuel.
  • the effect can be obtained.
  • FIG 9 illustrates another embodiment of the present invention, in which the heat exchange means 200 is installed on the upper and lower portions of the unit stack 120.
  • the upper heat exchange means 250 mounted to be adjacent to the end plate 110 installed at the top of the unit stack 120 allows air or fuel at a temperature lower than the temperature of the upper portion of the unit stack 120 to pass through the unit stack.
  • the lower heat exchange means 260 mounted to be able to cool the upper portion of the 120 and adjacent to the end plate 110 installed at the lower end of the unit stack 120 has a temperature higher than the temperature of the lower portion of the unit stack 120. By passing through the air or fuel can be configured to heat the lower portion of the unit stack 120.
  • the temperature of the upper portion of the unit stack 120 may drop more than necessary due to excessive cooling or excessive heating, etc. during operation of the fuel cell 100, or the temperature of the lower portion of the unit stack 120 may rise higher than necessary. Yes is as described above.
  • air or fuel having a temperature higher than the temperature of the upper portion of the unit stack 120 is passed through the upper heat exchanger 250 mounted adjacent to the end plate 110 installed on the upper portion of the unit stack 120. It is possible to heat the top of the stack 120, the lower heat exchange means 260 mounted adjacent to the end plate 110 installed at the bottom of the unit stack 120 is lower than the temperature of the bottom of the unit stack 120 The lower portion of the unit stack 120 may be cooled by passing air or fuel at a temperature.
  • the heat exchange means 200 is mounted to be in close contact with the end plate 110 through a material having a high thermal conductivity in order to increase the thermal conductivity.
  • Thermal grease or the like may be used as the thermally conductive material.
  • the thermal grease fills the minute space between the housing surface of the heat exchange means 200 and the end plate 110 to allow for better heat exchange.
  • a thermal pad or a thermal tape may be used.
  • baffles 230, 240 in order to increase the heat exchange efficiency between the heat exchange means 200 and the unit stack 120, two types of baffles (230, 240) in the inner space of the heat exchange means 200 Indicates the installed form.
  • the baffles 230 and 240 basically slow the passage rate of the cooling or heating fluid passing through the heat exchange means 200, thereby allowing sufficient heat exchange with the unit stack 120.
  • the vertical baffle 230 may be installed to extend vertically in the heat exchange means 200 to induce the flow of the fluid to be zigzag in the vertical direction.
  • the heat exchange means 200 is made of a low height and a wide width so that the heat conduction of the cooling or heating medium is better in the vertical direction adjacent to the end plate 110.
  • the up-and-down baffle 230 when the up-and-down baffle 230 is installed, the fluid moves while meandering up and down inside the housing of the heat exchange means 200 having a low height, so that the meandering distance is relatively short and passes relatively quickly.
  • the vertical baffle 230 may be used when the temperature difference between the cooling or heating fluid and the unit stack is large so that sufficient heat exchange may occur even in a short time.
  • the left and right baffle 240 is installed so as to extend in the left and right direction inside the heat exchange means 200 in order to make the flow of the fluid zigzag in the left and right direction.
  • the heat exchange means 200 is manufactured in a shape having a low height and a narrow width so that the heat conduction of the cooling or heating medium occurs in the up and down direction adjacent to the end plate 110.
  • the left and right baffles 240 when the left and right baffles 240 are installed, the fluid moves while meandering inside the housing of the heat exchange means 200 having a large area from side to side, so that the meandering distance is relatively long and passes relatively slowly.
  • This left and right baffle 240 may be used when the temperature difference between the cooling or heating fluid and the unit stack is small so that heat exchange can occur for a long time.
  • the pressure drop of the fluid by the baffles 230 and 240 is preferably controlled to be 20 kPa or less. This is because when the pressure drop of the fluid exceeds 20 kPa, it is difficult to control the operation such as increasing the conveying pressure of the fluid or reducing the supply amount of the fluid in order to achieve sufficient heat exchange efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 연료전지의 단위 스택의 상부, 하부 중 어느 일측 또는 양측에 별도의 온도 조절용 열교환 수단을 설치하고, 이 온도 조절용 열교환 수단의 내부에 고온의 공기 또는 연료 가스를 공급함으로써 연료전지 전체가 균일한 온도를 가질 수 있도록 구성된 온도 조절용 열교환 수단을 구비한 연료전지를 제공하는데 그 목적이 있다. 상기한 목적을 달성하기 위한 본 발명의 온도 조절용 열교환 수단을 구비한 연료전지는, 산소와 수소와 결합하는 화학 반응을 통해 전기를 발생시키는 단위 셀이 복수 개로 적층되어 구성된 단위 스택(120); 상기 단위 스택(120)의 내부로 상기 산소를 포함한 공기를 공급하기 위한 공기 공급관(130) 및 공기 배출관(140); 상기 단위 스택(120)의 내부로 상기 수소를 포함한 연료가스를 공급하기 위한 연료가스 공급관(150) 및 연료가스 배출관(160); 및 상기 단위 스택(120)의 상단 또는 하단에 설치된 엔드 플레이트(110) 상에 장착되고, 그 내부에 공기 또는 연료와 같은 유체가 통과할 수 있는 공간이 형성된 열교환 수단(200);을 포함한다.

Description

온도 조절용 열교환 수단을 구비한 연료전지
본 발명은 온도 조절용 열교환 수단을 구비한 연료전지에 관한 것으로서, 보다 상세하게는 연료전지의 스택의 상부, 하부 중 어느 일측 또는 양측에 온도 조절용 열교환 수단을 설치하여 연료전지의 효율을 향상시킨 구조에 관한 것이다.
일반적으로 인류가 사용하고 있는 에너지 중 대부분은 화석연료로부터 얻고 있다. 그러나 이러한 화석연료의 사용은 대기오염 및 산성비, 지구 온난화 등의 환경에 심각한 악영향을 미치고 있으며, 에너지 효율 또한 낮은 문제점이 있었다.
이러한 화석연료의 사용에 따른 문제점을 해결하기 위하여 최근에 연료전시스템이 개발되고 있다. 연료전지는 통상의 2차 전지와는 다르게 음극에 연료인 수소가스나 탄화수소를 공급하고, 양극에는 산소를 공급하여 전기를 발생시키는 구조를 갖는다. 즉, 연료전지는 명칭은 전지이지만 실제로는 전기를 발생시키는 발전장치로 볼 수 있다. 기본적으로 연료전지는 연료를 연소시키지 않고 수소와 산소를 전기 화학적 반응을 일으키고, 그 반응 전후의 에너지 차이를 전기에너지로 변환하는 방법을 사용한다.
연료전지는 NOx와 SOx등 환경을 오염시키는 가스가 발생되지 않으며 소음과 진동이 없는 시스템으로서 열효율이 전기발전량과 열회수량을 합하여 80% 이상인 크린 발전 시스템이라 할 수 있다.
도 1은 하나의 단위 스택으로 된 연료전지 시스템의 구성을 간단히 나타낸다. 연료전지(100)는 단위 셀이 여러 층으로 적층된 단위 스택(120)으로 구성된다. 상기 단위 셀은 평판형 SOFC(Solid Oxide Fuel Cell)의 경우 공기(산소)를 공급하는 공기극(123)과 높은 이온전도도를 가지는 전해질(124)과 연료가스(수소)를 공급하는 연료극(125)이 적층되며, 상기 공기극(123)에는 공기가 통과하는 관통홈(122)이 형성된 분리판(121)이 접착되고 상기 연료극(125)에는 연료가스가 통과하는 관통홈(126)이 형성된 분리판(127)이 접착된다. 이와 같이 구성된 단위 셀이 복수 개로 적층되어 하나의 단위 스택(120)이 만들어지며, 이 단위 스택(120)의 상, 하 끝단에는 엔드 플레이트(110)가 연결 지지봉(115)을 매개로 일정 크기 이상의 압력으로 가압 장착되어 단위 스택(120)의 기밀성 및 구조적 안정성을 확보한다.
도 1의 A-A' 단면을 나타낸 도 2에서 보듯이, 상기 연료전지(100)는 상기 단위 스택(120)의 내부로 산소를 포함한 공기를 공급하기 위한 공기 공급관(130) 및 공기 배출관(140)이 형성된다. 상기 공기 공급관(130)을 통해 단위 스택(120) 내부로 공급된 공기는 단위 스택(120)을 구성하는 각각의 단위 셀의 공기극을 통과하는 과정에서 화학 반응에 기여하게 되고, 반응에 참여하지 못한 공기는 상기 공기 배출관(140)을 통해 외부로 배출된다.
도 1의 B-B' 단면을 나타낸 도 3에서 보듯이, 상기 연료전지(100)는 상기 단위 스택(120)의 내부로 수소를 포함한 연료가스를 공급하기 위한 연료가스 공급관(150) 및 연료가스 배출관(160)이 형성된다. 상기 연료가스 공급관(150)을 통해 단위 스택(120) 내부로 공급된 공기는 단위 스택(120)을 구성하는 각각의 단위 셀의 연료극을 통과하는 과정에서 화학 반응에 기여하게 되고, 반응에 참여하지 못한 연료가스는 상기 연료가스 배출관(160)을 통해 외부로 배출된다.
이와 같이 구성된 연료전지(100)는 화학 반응성을 높이기 위하여 단위 스택(120) 내부로 공급되는 공기 또는 연료 가스를 고온으로 가열한다. 또한, 연료전지 내부에서 일어나는 산소와 수소가 만나 물을 생성하는 화학 반응은 발열 반응으로서 많은 열을 외부로 발산시킨다. 그 결과, 고온형 연료전지는 통상적으로 600 ~ 1000℃ 정도의 고온에서 작동된다.
이와 같이, 고온으로 공급되는 가스의 흐름 및 발열 반응 등으로 인하여, 도 2 및 도 3에 도시된 바와 같이 스택의 상하방향에 따라 온도 편차가 크게 발생한다. 연료전지의 작동 중에 발생하는 큰 온도 편차는 스택 구성물질의 열팽창 계수의 차이로 인해 물질 사이 또는 물질 자체에서 균열을 발생시킨다. 이러한 균열은 연료전지 스택 내의 가스의 반응성을 감소시켜 전체적으로 연료전지의 효율을 저하시킬 뿐만 아니라, 균열이 더욱 커지면 시스템을 정지하고 스택을 교체하여야 했으며 이는 생산성을 저하시키는 중요한 원인으로 지적되어 왔다.
이를 해결하기 위하여 스택 내의 온도 편차가 크게 나지 않도록 가스의 공급 온도 및 반응시간 등 연료전지의 운전 조건을 제한하는 방식으로 운용되기도 하였으나, 이 또한 연료전지의 발전 효율을 높이는데 장애 요인이 되어왔다.
본 발명은 이러한 종래의 문제점을 해결하기 위하여 개발된 것으로서, 연료전지의 단위 스택의 상부, 하부 중 어느 일측 또는 양측에 별도의 온도 조절용 열교환 수단을 설치하고, 이 온도 조절용 열교환 수단의 내부에 고온의 공기 또는 연료 가스를 공급함으로써 연료전지 전체가 균일한 온도를 가질 수 있도록 구성된 온도 조절용 열교환 수단을 구비한 연료전지를 제공하는데 그 목적이 있다.
상기한 목적을 달성하기 위한 본 발명에 따른 산소와 수소와 결합하는 화학 반응을 통해 전기를 발생시키는 단위 셀이 복수 개로 적층되어 구성된 단위 스택; 상기 단위 스택의 내부로 상기 산소를 포함한 공기를 공급하기 위한 공기 공급관 및 공기 배출관; 상기 단위 스택의 내부로 상기 수소를 포함한 연료가스를 공급하기 위한 연료가스 공급관 및 연료가스 배출관; 및 상기 단위 스택의 상단 또는 하단에 설치된 엔드 플레이트 상에 장착되고, 그 내부에 공기 또는 연료와 같은 유체가 통과할 수 있는 공간이 형성된 열교환 수단;을 포함한다.
또한, 상기 열교환 수단은 상기 단위 스택의 상단에 설치된 엔드 프레이트 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택의 상부의 온도보다 낮은 온도로 설정된 상기 유체가 통과하도록 구성될 수 있다.
상기 열교환 수단은 상기 단위 스택의 하단에 설치된 엔드 프레이트 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택의 하부의 온도보다 높은 온도로 설정된 상기 유체가 통과하도록 구성될 수 있다.
또한, 상기 열교환 수단은 상기 단위 스택의 상단에 설치된 엔드 프레이트 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택의 상부의 온도보다 높은 온도로 설정된 상기 유체가 통과하도록 구성될 수 있다.
또한, 상기 열교환 수단은 상기 단위 스택의 하단에 설치된 엔드 프레이트 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택의 하부의 온도보다 낮은 온도로 설정된 상기 유체가 통과하도록 구성될 수 있다.
또한, 상기 열교환 수단은 상기 단위 스택의 상단 또는 하단에 설치된 엔드 플레이트 상에 인접하도록 형성되고, 그 형상은 사각 평판형 또는 원판형을 이루도록 구성될 수 있다.
또한, 상기 열교환 수단은 공기가 그 내부 공간을 통과하게 되고, 상기 열교환 수단의 내부 공간을 통과한 공기는 상기 공기 공급관을 통해 상기 단위 스택의 내부로 공급되도록 구성될 수 있다.
상기 열교환 수단은 연료가 그 내부 공간을 통과하게 되고, 상기 열교환 수단의 내부 공간을 통과한 연료는 상기 연료가스 공급관을 통해 상기 단위 스택의 내부로 공급되도록 구성될 수 있다.
또한, 상기 열교환 수단은 금속 또는 세라믹으로 이루어질 수 있다. 이 때, 상기 열교환 수단은 상기 금속 또는 세라믹 중에서 고온 부식방지용 금속 또는 세라믹으로 이루어질 수 있고, 상기 금속 또는 세라믹 중에서 고온 부식용 금속 또는 세라믹으로표면 코팅 처리가 될 수도 있다.
상기 열교환 수단은 열전도도를 높이기 위해 열전도율이 높은 물질을 매개로 상기 엔드 플레이트에 인접하도록 장착될 수 있다.
또한, 상기 열교환 수단은 상기 단위 스택과의 열교환 효율을 높이기 위하여 그 내부 공간에 지그재그 형태로 배플이 설치될 수 있다. 이 때, 상기 배플은 상기 유체의 흐름이 상하방향으로 지그재그 형태가 되도록 유도하기 위하여 상기 열교환 수단의 내부에 상하방향으로 연장되도록 설치되거나, 상기 유체의 흐름이 좌우방향으로 지그재그 형태가 되도록 유도하기 위하여 상기 열교환 수단의 내부에 좌우방향으로 연장되도록 설치될 수도 있다.
또한, 상기 배플에 의한 상기 유체의 압력 강하는 20kPa 이하로 조절될 수 있다.
상기와 같이 구성된 본 발명의 온도 조절용 열교환 수단을 구비한 연료전지에 따르면, 연료전지의 작동 중에 스택의 상, 하부에 발생하던 온도 편차를 감소시켜 스택 전체가 균일한 온도 분포를 가지도록 함으로써, 스택을 구성하는 물질 사이 또는 물질 자체에 균열이 발생하는 것을 방지할 수 있다.
그 결과, 스택에 균열이 발생함으로써 생기는 연료전지 성능 저하, 기밀성 저하에 따른 가스 누설, 스택의 잦은 교체로 인한 유지비용 증가 등의 문제점을 해결할 수 있다.
또한, 스택의 온도 편차를 감소시키기 위해 연료전지의 운전 조건을 제한적으로 운용하던 종래의 방법에서 벗어나 연료전지의 제어 범위를 확장할 수 있어 안정적인 시스템 제어가 가능할 뿐만 아니라, 연료전지의 발전 성능을 향상시키는데도 기여할 수 있다.
도 1은 일반적인 평판 적층형 연료전지 구조를 나타낸 도면.
도 2는 도 1의 A-A' 선에 따른 단면을 나타낸 도면.
도 3은 도 1의 B-B' 선에 따른 단면을 나타낸 도면.
도 4는 본 발명에 따른 열교환 수단이 설치된 연료전지를 나타낸 도면.
도 5는 본 발명에 따른 열교환 수단이 설치된 연료전지를 나타낸 또 다른 도면.
도 6은 본 발명에 따른 열교환 수단의 유체 흐름을 나타낸 도면.
도 7은 본 발명에 따른 열교환 수단의 공기 흐름을 나타낸 도면.
도 8은 본 발명에 따른 열교환 수단의 연료 흐름을 나타낸 도면.
도 9는 본 발명에 따른 열교환 수단이 단위 스택의 상단 및 하단에 설치된 형태를 나타낸 도면.
도 10은 본 발명에 따른 열교환 수단이 열전도성 물질을 매개로 설치된 형태를 나타낸 도면.
도 11은 본 발명에 따른 열교환 수단에 배플이 설치된 형태를 나타낸 도면.
이하에서 첨부된 도면을 참조로 본 발명에 따른 온도 조절용 열교환 수단을 구비한 연료전지를 보다 상세히 설명한다.
그러나, 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 참고로, 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 4 및 도 5는 본 발명에 따른 온도 조절용 열교환 수단을 구비한 연료전지의 2 가지 실시예를 나타낸다.
본 실시예에서 연료전지(100)는 하나의 단위 스택(120)으로 구성되고, 이 단위 스택(120)은 공기(산소)를 공급하는 공기극과 높은 이온전도도를 가지는 전해질과 연료(수소)를 공급하는 연료극이 평판 형태로 결합되어 구성된 단위 셀이 복수 개로 적층되어 만들어지며, 상기 단위 스택(120)의 내부로 상기 산소를 포함한 공기를 공급하기 위한 공기 공급관(130) 및 공기 배출관(140)이 형성되고, 상기 단위 스택(120)의 내부로 상기 수소를 포함한 연료가스를 공급하기 위한 연료가스 공급관(150) 및 연료가스 배출관(160)이 형성된다는 것은 도 1 내지 도 3을 참조로 설명한 바와 같다.
상기 단위 스택(120)은 주로 SOFC(Solid Oxide Fuel Cell)에서와 같이 공기극, 지르코니아 계열의 고체 전해질, 연료극으로 구성된 단위 전지가 하나 이상 적층되어 구성된다. 그러나, 본 발명의 기술 사상은 SOFC 타입의 연료전지에 한정되지 아니하고, 고온형 연료전지에 속하는 것이면 어느 것이든 적용 가능하다. 즉, 고온에서 운용되는 연료전지로서 단위 스택의 온도 편차 문제점이 발생하는 것이면, 어느 것이라도 본 발명에 따른 기술 사상을 적용 가능하다 할 것이다.
본 발명에 따르면, 산소와 수소가 결합하는 화학 반응을 통해 전기를 발생시키는 단위 셀이 복수 개로 적층되어 구성된 단위 스택(120), 이 단위 스택(120)의 내부로 산소를 포함한 공기를 공급하는 공기 공급관(130) 및 공기 배출관(140), 상기 단위 스택(120)의 내부로 수소를 포함한 연료가스를 공급하는 연료가스 공급관(150) 및 연료가스 배출관(160)을 포함하는 고온형 연료전지에 있어서, 상기 단위 스택(120)의 상단 또는 하단에 설치된 엔드 플레이트(110) 상에 장착되고, 그 내부에 냉각 또는 가열을 위한 유체가 통과할 수 있는 공간이 형성된 열교환 수단(200);을 포함한다.
도 4는 상기 열교환 수단(200)이 사각 평판형으로 구성되어 상기 엔드 플레이트(110)에 밀착된 단위 스택(120)의 면적과 동일한 크기를 가지도록 설치된 예를 나타내고, 도 5는 상기 열교환 수단(200)이 원판형으로 구성되어 상기 단위 스택(120)과 동일하거나 더 넓은 면적을 가지도록 설치된 예를 나타낸다. 도 4 및 도 5는 상기 열교환 수단(200)이 상기 단위 스택(120)의 상단에만 설치된 형태를 도시하고 있으나, 본 발명의 기술사상은 이에 한정되지 아니하고 단위 스택(120)의 하단에 설치된 형태도 포함한다 할 것이다. 이에 대해서는 도 9를 참조로 상세히 후술하기로 한다.
상기 열교환 수단(200)은 내부에 유체가 통과할 수 있도록 공간이 형성된 하우징과, 이 하우징의 일측에 냉각 또는 가열 매체로서 작용하는 유체가 유입되는 유체 유입관(210)과 내부 공간을 통과한 유체가 외부로 배출되는 유체 배출관(220)이 각각 형성된다.
앞서 설명한 바와 같이, 연료전지(100)의 단위 스택(120)은 발열 반응 과정에서 발생한 열이 위로 발산되기 때문에 통상적으로 상부가 하부보다 더 온도가 높게 된다. 따라서, 상기 열교환 수단(200)이 단위 스택(120)의 상단에 설치된 엔드 플레이트(110) 상에 장착된 경우에는 그 내부로 낮은 온도를 갖는 냉각 유체가 통과하도록 하여 단위 스택(120)의 상부를 냉각시키도록 구성될 수 있고, 상기 열교환 수단(200)이 단위 스택(120)의 하단에 설치된 엔드 플레이트(110) 상에 장착된 경우에는 그 내부로 높은 온도를 갖는 가열 유체가 통과하도록 하여 단위 스택(120)의 하부를 가열시키도록 구성될 수 있다. 그 결과, 단위 스택(120)의 상하방향으로의 온도 편차가 감소되어 연료전지(100)의 운전 제어범위를 더욱 자유롭게 조절할 수 있게 된다.
그러나, 연료전지(100)의 운전 중에 과잉 냉각이나 과잉 가열로 인해 단위 스택(120)의 상부가 필요 이상으로 온도가 떨어질 수도 있고, 단위 스택(120)의 하부가 필요 이상으로 온도가 올라갈 수도 있다. 따라서, 단위 스택(120)의 상단에 설치된 엔드 플레이트(110)에 장착된 열교환 수단(200)이라고 하여 반드시 냉각 유체만 통과시키는 것이 아니라 필요에 따라 가열 유체도 통과할 수 있도록 구성하는 바람직하다. 같은 원리로, 단위 스택(120)의 하단에 설치된 엔드 플레이트(110)에 장착된 열교환 수단(200)에도 가열 유체뿐만 아니라 냉각 유체가 통과하도록 구성하는 것이 바람직하다.
한편, 상기 열교환 수단(200)은 고온의 유체가 통과할 수 있기 때문에 부식 방지를 위하여 금속 또는 세라믹 재질로 구성하는 것이 바람직하다. 특히, 상기 금속은 크롬, 니켈, 텅스텐 또는 이들의 합금 금속 등으로 이루어진 고온 부식방지용 금속을 사용할 수 있다.
또한, 열교환 수단(200)의 본체 하우징은 일반 강재를 사용하여 제작하고, 고온 부식을 방지하기 위하여 니켈 등과 같은 고온 부식방지용 금속으로 표면을 코팅할 수도 있다. 니켈은 화학 반응성이 비교적 작고 녹는점이 높아 그 자체로도 철보다 더 안정하나, 가열하면 공기 중의 산소 또는 수증기와 반응하여 산화물 보호 피막을 형성함으로써 더욱 효과적으로 고온 부식을 방지해준다. 한편, 상기 고온 부식방지용 세라믹으로 표면을 코팅할 수도 있다.
도 6은 본 발명에 따른 일 실시예로서, 상기 열교환 수단(200)이 단위 스택(120)의 상부에 설치된 형태를 나타낸 단면도이다.
중온형 SOFC 타입의 연료전지는 최적 운전을 위한 온도 범위가 650 ~ 750 ℃ 이다. 이 SOFC 타입의 연료전지가 운전을 시작하고 일정 시간이 경과하면 단위 스택(120)의 하부는 약 700 ~ 750 ℃의 온도로서 정상 운전범위에 속하지만, 단위 스택(120)의 상부는 발열 반응으로 인해 약 800℃ 이상의 온도를 나타내게 된다. 온도가 너무 높아지면 단위 스택(120)을 구성하는 물질, 특히 실링재에 균열이 발생하게 되고, 이는 연료전지 성능 저하, 기밀성 저하에 따른 가스 누설, 스택의 잦은 교체로 인한 유지비용 증가 등의 문제점을 발생시킨다.
종래에는 이러한 과열에 따른 문제점을 해결하기 위하여 공기 및 연료의 공급온도, 공급량 또는 반응 시간 등을 조절하여 발열 반응에 따른 가열 현상을 조절하였으나, 이는 연료전지의 운전 범위를 제한하여 발전 효율을 감소시키는 원인으로 지적되어 왔다. 본 발명은 이러한 종래의 문제점을 해결하기 위하여 연료전지(100)의 일측에 냉각 또는 가열이 가능한 열교환 수단(200)을 추가로 설치함으로써 상기한 종래의 문제점을 해결한 것이다.
즉, 본 실시예에 따르면, 상기 열교환 수단(200)이 단위 스택(120)의 상단에 설치된 엔드 플레이트(110)에 인접하도록 장착되고, 이 열교환 수단(200)의 내부로 낮은 온도의 유체가 통과함으로써 단위 스택(120)의 상부의 높은 온도를 냉각시켜준다. 여기서, 상기 열교환 수단(200)이 엔드 플레이트(110)에 인접하도록 장착된다는 의미는 열교환 수단(200)이 엔드 플레이트(110)에 완전히 밀착되거나, 열전달이 효과적으로 이루어질 수 있는 간격만큼 가까이 설치된다는 것을 의미한다.
보다 상세하게 설명하면, 정상 운전 중에 800℃ 이상으로 가열되는 단위 스택(120)의 상부를 냉각시키기 위하여 상기 단위 스택(120)의 상단에 설치된 엔드 플레이트(110)에 열교환 수단(200)을 장착하고, 여기에 연료전지 시스템에 사용되는 낮은 온도의 공기 또는 연료를 통과시킨다. 그 결과, 단위 스택(120)의 상단 부분은 상기 열교환 수단(200)과의 사이에 열교환이 일어나, 단위 스택(120)의 하단의 온도 범위인 700 ~ 750℃ 정도까지 냉각됨으로써 단위 스택(120)의 상하방향으로의 온도 편차가 감소되는 것이다.
상기 열교환 수단(200)을 통과하는 과정에서 온도가 높아진 공기 또는 연료는 그대로 버려지는 것이 아니라, 연료전지 내에 설치된 버너로 공급되어 고온의 연소가스를 만드는데 재활용될 수 있다.
물론, 도 6과 같이 단위 스택(120)의 상부에 설치된 열교환 수단(200)이라 하더라도 단위 스택(120)의 상부가 과잉 냉각된 경우에 온도를 높이기 위하여 가열 유체인 높은 온도의 공기 또는 연료를 통과시키도록 구성될 수도 있음은 상기한 바와 같다.
도 7 및 도 8은 본 발명에 따른 다른 실시예를 나타낸다. 도 7은 도 4의 A-A' 방향 단면도로서, 상기 단위 스택(120)의 상부에 설치된 열교환 수단(200) 내부로 공기가 통과되고, 통과된 공기가 단위 스택(120)의 공기 공급관(130)으로 이송되는 형태를 나타낸다. 도 8은 도 4의 B-B' 방향 단면도로서, 상기 단위 스택(120)의 상부에 설치된 열교환 수단(200)의 내부로 연료가 통과되고, 통과된 연료가 단위 스택(120)의 연료 공급관(150)으로 이송되는 형태를 나타낸다.
상기한 바와 같이, 연료전지는 공기(산소)와 연료(수소)가 만나 물을 생성하는 화학 반응 과정에서 전기를 생산하는 장치이므로, 단위 스택(120)의 하부로 공기와 연료가 공급된다. 이 때, 화학 반응성을 높이기 위하여 낮은 온도로 공급되는 공기와 연료를 일정 온도 이상으로 가열하여야 하고, 이를 위해 연료전지 시스템 내에 여러 가지 열교환 장치가 추가로 설치된다.
본 실시예에 따르면, 연료전지 시스템 내로 공급되는 공기 또는 연료가 화학 반응을 위하여 단위 스택(120)의 내부로 공급되기 이전에 상기 열교환 수단(200)을 먼저 통과하도록 함으로써, 공기 또는 연료를 예열시키는 효과를 얻을 수 있다.
다시 말해, 낮은 온도의 공기 또는 연료가 높은 온도를 갖는 단위 스택(120)의 상부에 설치된 엔드 플레이트(110)에 장착된 열교환 수단(200)의 내부를 통과하는 과정에서, 상대적으로 높은 온도를 갖는 단위 스택(120)의 상부는 열교환을 통해 온도가 낮아지는 반면, 상대적으로 낮은 온도를 가진 공기 또는 연료는 열교환을 통해 온도가 높아지게 된다. 이에 따라, 종래에 공기 또는 연료를 예열시키기 위해 설치되었던 다른 열교환 장치를 생략하거나 감소시킬 수 있어 더욱 컴팩트하고 생산성이 높은 연료전지 시스템을 구성할 수 있다.
도 9는 본 발명의 또 다른 실시예로서, 상기 열교환 수단(200)이 단위 스택(120)의 상부 및 하부에 함께 설치된 형태를 나타낸다.
산소와 수소가 만나 물을 생성하는 화학 반응은 발열 반응이고, 이 과정에서 발생한 열은 위로 상승하기 때문에 통상적으로 단위 스택(120)의 상부는 온도가 높고 단위 스택(120)의 하부는 온도가 낮게 된다. 이 때, 단위 스택(120)의 전체를 최적 운전을 위한 온도 범위로 제어하기 위하여 단위 스택(120)의 상부는 냉각을 하고, 단위 스택(120)의 하부는 가열을 해야 할 필요가 있을 때에는 본 실시예와 같이 설치할 수 있다.
다시 말해, 단위 스택(120)의 상단에 설치된 엔드 플레이트(110)에 인접하도록 장착된 상부 열교환 수단(250)에는 단위 스택(120)의 상부의 온도보다 낮은 온도의 공기 또는 연료를 통과시켜 단위 스택(120)의 상부를 냉각시킬 수 있도록 하고, 단위 스택(120)의 하단에 설치된 엔드 플레이트(110)에 인접하도록 장착된 하부 열교환 수단(260)에는 단위 스택(120)의 하부의 온도보다 높은 온도의 공기 또는 연료를 통과시켜 단위 스택(120)의 하부를 가열할 수 있도록 구성할 수 있다.
다만, 연료전지(100)의 운전 중에 과잉 냉각이나 과잉 가열 등으로 인해 단위 스택(120)의 상부가 필요 이상으로 온도가 떨어질 수도 있고, 단위 스택(120)의 하부가 필요 이상으로 온도가 올라갈 수도 있음은 상기한 바와 같다. 이를 대비하여, 단위 스택(120)의 상단에 설치된 엔드 플레이트(110)에 인접하도록 장착된 상부 열교환 수단(250)에 단위 스택(120)의 상부의 온도보다 높은 온도의 공기 또는 연료를 통과시켜 단위 스택(120)의 상부를 가열시킬 수 있도록 하고, 단위 스택(120)의 하단에 설치된 엔드 플레이트(110)에 인접하도록 장착된 하부 열교환 수단(260)에는 단위 스택(120)의 하부의 온도보다 낮은 온도의 공기 또는 연료를 통과시켜 단위 스택(120)의 하부를 냉각시킬 수 있도록 구성할 수 있다.
도 10은 본 발명에 따른 또 다른 실시예로서, 상기 열교환 수단(200)은 열전도도를 높이기 위해 열전도율이 높은 물질을 매개로 상기 엔드 플레이트(110)에 밀착되도록 장착된 형태를 나타낸다. 상기 열전도성 물질로서 서멀 그리스(thermal grease) 등이 사용될 수 있다. 본 실시예에서는 냉각 또는 가열 유체는 열교환 수단(200)의 하우징과 엔드 플레이트(110)라는 이중 벽체를 통과하여 단위 스택(120)과 열교환이 이루어지므로, 열교환 수단(200)의 하우징과 엔드 플레이트(110)가 밀착되지 아니하면 열교환 효율이 감소될 수 있다. 상기 서멀 그리스는 상기 열교환 수단(200)의 하우징 표면과 엔드 플레이트(110) 사이의 미세한 공간을 메워서 열교환이 더 잘 이루어질 수 있도록 해준다. 상기 서멀 그리스 이 외에도 서멀 패드(Thermal Pad)나 서멀 테이프(Thermal Tape) 등이 사용될 수도 있다.
도 11은 본 발명에 따른 또 다른 실시예로서, 상기 열교환 수단(200)과 단위 스택(120)과의 열교환 효율을 높이기 위하여 열교환 수단(200)의 내부 공간에 2가지 종류의 배플(230,240)이 설치된 형태를 나타낸다. 이 배플(230,240)은 기본적으로 열교환 수단(200)을 통과하는 냉각 또는 가열 유체의 통과 속도를 늦추어 줌으로써, 단위 스택(120)과의 열교환이 충분히 이루어질 수 있도록 해준다.
도 11의 (a)에 도시된 바와 같이, 상하방향 배플(230)은 상기 유체의 흐름이 상하방향으로 지그재그 형태가 되도록 유도하기 위하여 상기 열교환 수단(200)의 내부에 상하방향으로 연장되도록 설치될 수 있다. 열교환 수단(200)은 냉각 또는 가열 매체의 열 전도가 엔드 플레이트(110)와 인접한 상하방향으로 더 잘 일어나도록 하기 위해 높이가 낮고 너비가 넒은 형태로 제작된다.
따라서, 상기 상하방향 배플(230)을 설치하게 되면, 유체가 낮은 높이를 갖는 열교환 수단(200)의 하우징 내부를 상하로 사행하면서 이동하게 되므로, 사행거리가 비교적 짧아 상대적으로 빠르게 통과하게 된다. 이 상하방향 배플(230)은 냉각 또는 가열 유체와 단위 스택과의 온도 차이가 커서 짧은 시간에도 충분한 열교환이 일어날 수 있는 경우에 사용될 수 있다.
한편, 도 11의 (b)에 도시된 바와 같이, 좌우방향 배플(240)은 상기 유체의 흐름이 좌우방향으로 지그재그 형태가 되도록 하기 위하여 상기 열교환 수단(200)의 내부에 좌우방향으로 연장되도록 설치될 수 있다. 앞서 설명한 바와 같이, 열교환 수단(200)은 냉각 또는 가열 매체의 열 전도가 엔드 플레이트(110)와 인접한 상하방향으로 더 잘 일어나도록 하기 위해 높이가 낮고 너비가 넒은 형태로 제작된다.
따라서, 좌우방향 배플(240)을 설치하게 되면, 유체가 넓은 면적을 갖는 열교환 수단(200)의 하우징 내부를 좌우로 사행하면서 이동하게 되므로, 사행거리가 비교적 길어 상대적으로 느리게 통과하게 된다. 이 좌우방향 배플(240)은 냉각 또는 가열 유체와 단위 스택과의 온도 차이가 작아서 긴 시간 동안 열교환이 일어날 수 있도록 해야 하는 경우에 사용될 수 있다.
마지막으로, 상기 배플(230,240)에 의한 유체의 압력 강하는 20kPa 이하가 되도록 제어하는 것이 바람직하다. 왜냐하면, 유체의 압력 강하가 20kPa을 초과하게 되면 충분한 열교환 효율을 달성하기 위하여 유체의 이송 압력을 높이거나 유체의 공급량을 감소시켜야 하는 등 운전 제어가 어렵기 때문이다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징들이 변경되지 않고서 다른 구체적인 형태로 실시될 수 있다는 것으로 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
100: 연료 전지 110: 엔드 플레이트
115: 지지봉 120: 단위 스택
130: 공기 공급관 140: 공기 배출관
150: 연료가스 공급관 160: 연료가스 배출관
200: 열교환 수단 210: 유체 공급관
220: 유체 배출관 230: 상하방향 배플
240: 좌우방향 배플 250: 상부 열교환 수단
260: 하부 열교환 수단

Claims (16)

  1. 산소와 수소와 결합하는 화학 반응을 통해 전기를 발생시키는 단위 셀이 복수 개로 적층되어 구성된 단위 스택(120);
    상기 단위 스택(120)의 내부로 상기 산소를 포함한 공기를 공급하기 위한 공기 공급관(130) 및 공기 배출관(140);
    상기 단위 스택(120)의 내부로 상기 수소를 포함한 연료가스를 공급하기 위한 연료가스 공급관(150) 및 연료가스 배출관(160); 및
    상기 단위 스택(120)의 상단 또는 하단에 설치된 엔드 플레이트(110) 상에 장착되고, 그 내부에 공기 또는 연료와 같은 유체가 통과할 수 있는 공간이 형성된 열교환 수단(200);을 포함하는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  2. 청구항 1에 있어서,
    상기 열교환 수단(200)은 상기 단위 스택(120)의 상단에 설치된 엔드 프레이트(110) 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택(120)의 상부의 온도보다 낮은 온도로 설정된 상기 유체가 통과하는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  3. 청구항 1에 있어서,
    상기 열교환 수단(200)은 상기 단위 스택(120)의 하단에 설치된 엔드 프레이트(110) 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택(120)의 하부의 온도보다 높은 온도로 설정된 상기 유체가 통과하는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  4. 청구항 1에 있어서,
    상기 열교환 수단(200)은 상기 단위 스택(120)의 상단에 설치된 엔드 프레이트(110) 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택(120)의 상부의 온도보다 높은 온도로 설정된 상기 유체가 통과하는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  5. 청구항 1에 있어서,
    상기 열교환 수단(200)은 상기 단위 스택(120)의 하단에 설치된 엔드 프레이트(110) 상에 인접하도록 장착되고, 그 내부 공간으로 상기 단위 스택(120)의 하부의 온도보다 낮은 온도로 설정된 상기 유체가 통과하는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  6. 청구항 1에 있어서,
    상기 열교환 수단(200)은 상기 단위 스택(120)의 상단 또는 하단에 설치된 엔드 플레이트(110) 상에 인접하도록 형성되고, 그 형상은 사각 평판형 또는 원판형으로 된 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  7. 청구항 1에 있어서,
    상기 열교환 수단(200)은 공기가 그 내부 공간을 통과하게 되고, 상기 열교환 수단(200)의 내부 공간을 통과한 공기는 상기 공기 공급관(130)을 통해 상기 단위 스택(120)의 내부로 공급되는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  8. 청구항 1에 있어서,
    상기 열교환 수단(200)은 연료가 그 내부 공간을 통과하게 되고, 상기 열교환 수단(200)의 내부 공간을 통과한 연료는 상기 연료가스 공급관(150)을 통해 상기 단위 스택(120)의 내부로 공급되는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  9. 청구항 1에 있어서,
    상기 열교환 수단(200)은 금속 또는 세라믹으로 이루어진 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  10. 청구항 9에 있어서,
    상기 열교환 수단(200)은 상기 금속 또는 세라믹 중에서 고온 부식방지용 금속 또는 세라믹으로 이루어진 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  11. 청구항 9에 있어서,
    상기 열교환 수단(200)은 상기 금속 또는 세라믹 재료 중에서 고온 부식방지용 금속 또는 세라믹으로 표면 코팅 처리가 된 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  12. 청구항 1에 있어서,
    상기 열교환 수단(200)은 열전도도를 높이기 위해 열전도율이 높은 물질을 매개로 상기 엔드 플레이트(110)에 인접하도록 장착되는 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  13. 청구항 1에 있어서,
    상기 열교환 수단(200)은 상기 단위 스택(120)과의 열교환 효율을 높이기 위하여 그 내부 공간에 지그재그 형태로 배플이 설치된 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  14. 청구항 13에 있어서,
    상기 배플은 상기 유체의 흐름이 상하방향으로 지그재그 형태가 되도록 유도하기 위하여 상기 열교환 수단(200)의 내부에 상하방향으로 연장되도록 설치된 상하방향 배플(230)인 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  15. 청구항 13에 있어서,
    상기 배플은 상기 유체의 흐름이 좌우방향으로 지그재그 형태가 되도록 하기 위하여 상기 열교환 수단(200)의 내부에 좌우방향으로 연장되도록 설치된 좌우방향 배플(240)인 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
  16. 청구항 13 내지 청구항 15 중 어느 한 청구항에 있어서,
    상기 배플(230,240)에 의한 상기 유체의 압력 강하는 20kPa 이하인 것을 특징으로 하는 온도 조절용 열교환 수단을 구비한 연료전지.
PCT/KR2017/006431 2016-06-23 2017-06-20 온도 조절용 열교환 수단을 구비한 연료전지 WO2017222265A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0078429 2016-06-23
KR1020160078429A KR20180000448A (ko) 2016-06-23 2016-06-23 온도 조절용 열교환 수단을 구비한 연료전지

Publications (1)

Publication Number Publication Date
WO2017222265A1 true WO2017222265A1 (ko) 2017-12-28

Family

ID=60784888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006431 WO2017222265A1 (ko) 2016-06-23 2017-06-20 온도 조절용 열교환 수단을 구비한 연료전지

Country Status (2)

Country Link
KR (1) KR20180000448A (ko)
WO (1) WO2017222265A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744242A (zh) * 2022-05-16 2022-07-12 清华大学 液态金属换热装置及固体氧化物燃料电池电堆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140468B1 (ko) * 2018-12-26 2020-08-03 한국과학기술연구원 스택 내부의 열분포가 개선된 연료전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709200B1 (ko) * 2005-11-28 2007-04-18 삼성에스디아이 주식회사 연료 전지 시스템
KR20070117841A (ko) * 2006-06-09 2007-12-13 삼성에스디아이 주식회사 스택에 열교환기가 내장된 연료전지
KR20140042374A (ko) * 2012-09-28 2014-04-07 한국에너지기술연구원 균일한 유동분배 구조를 갖는 금속재 실링 고체산화물 연료전지 스택
KR20140078904A (ko) * 2012-12-18 2014-06-26 포스코에너지 주식회사 종채널과 횡채널을 갖는 고체산화물 연료전지
JP2015088468A (ja) * 2013-09-27 2015-05-07 本田技研工業株式会社 燃料電池スタック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709200B1 (ko) * 2005-11-28 2007-04-18 삼성에스디아이 주식회사 연료 전지 시스템
KR20070117841A (ko) * 2006-06-09 2007-12-13 삼성에스디아이 주식회사 스택에 열교환기가 내장된 연료전지
KR20140042374A (ko) * 2012-09-28 2014-04-07 한국에너지기술연구원 균일한 유동분배 구조를 갖는 금속재 실링 고체산화물 연료전지 스택
KR20140078904A (ko) * 2012-12-18 2014-06-26 포스코에너지 주식회사 종채널과 횡채널을 갖는 고체산화물 연료전지
JP2015088468A (ja) * 2013-09-27 2015-05-07 本田技研工業株式会社 燃料電池スタック

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744242A (zh) * 2022-05-16 2022-07-12 清华大学 液态金属换热装置及固体氧化物燃料电池电堆
CN114744242B (zh) * 2022-05-16 2024-02-23 清华大学 液态金属换热装置及固体氧化物燃料电池电堆

Also Published As

Publication number Publication date
KR20180000448A (ko) 2018-01-03

Similar Documents

Publication Publication Date Title
CA2048710C (en) Solid electrolytic fuel cell and method of dissipating heat therein
US20110117466A1 (en) Solid Oxide Fuel Cell Systems
WO2011013868A1 (ko) 연료 전지용 공냉식 금속 분리판 및 이를 이용한 연료 전지 스택
EP3147984B1 (en) Fuel cell module including heat exchanger
US5906898A (en) Finned internal manifold oxidant cooled fuel cell stack system
WO2017222265A1 (ko) 온도 조절용 열교환 수단을 구비한 연료전지
EP3811447B1 (en) Electrochemical assembly including heat exchanger
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
JP2005078859A (ja) 燃料電池システム
JP2009193808A (ja) 固体酸化物形燃料電池
KR101398584B1 (ko) 열교환 성능을 갖는 연료전지 스택의 핫박스 장치
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
KR102588375B1 (ko) 열 솔루션을 제공하는 연료 전지 시스템
US20090162713A1 (en) Stack for fuel cell and bipolar plate and cooling plate adopted in the same
KR20150135560A (ko) 연료전지 시스템용 판형 열교환식 개질기
JP2621240B2 (ja) 燃料電池
JP5216197B2 (ja) 燃料電池発電システム
WO2017155255A1 (ko) 온도 조절용 재킷을 구비한 연료전지
WO2020004786A1 (ko) 연료전지 구조체
CN101647144B (zh) 燃料电池组流动罩
JPS5975573A (ja) 燃料電池
CN220553472U (zh) 一种固体氧化物燃料电池系统的电堆堆栈结构
CN219419105U (zh) 一种交叉流管箱式固体氧化物燃料电池电堆
JP6507869B2 (ja) 燃料電池モジュール
WO2016190673A1 (ko) 분리판 및 이를 포함하는 연료 전지 스택

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815678

Country of ref document: EP

Kind code of ref document: A1