WO2017222267A1 - 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템 - Google Patents

연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템 Download PDF

Info

Publication number
WO2017222267A1
WO2017222267A1 PCT/KR2017/006434 KR2017006434W WO2017222267A1 WO 2017222267 A1 WO2017222267 A1 WO 2017222267A1 KR 2017006434 W KR2017006434 W KR 2017006434W WO 2017222267 A1 WO2017222267 A1 WO 2017222267A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
burner
gas
exhaust gas
high temperature
Prior art date
Application number
PCT/KR2017/006434
Other languages
English (en)
French (fr)
Inventor
손승길
신석재
박세진
이용
김진형
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to EP17815680.8A priority Critical patent/EP3477752A4/en
Priority to US16/313,379 priority patent/US20190148743A1/en
Publication of WO2017222267A1 publication Critical patent/WO2017222267A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system including a heat exchanger using combustion flue gas, and more particularly, a heat exchanger using combustion flue gas to preheat air or fuel supplied to a burner using combustion flue gas discharged from a burner. It relates to a fuel cell system comprising.
  • the fuel cell has a structure that generates electricity by supplying hydrogen gas or a hydrocarbon as a fuel to the cathode and supplying oxygen to the cathode, unlike a conventional secondary battery.
  • the fuel cell is named as a battery, it can be regarded as a power generating device that actually generates electricity.
  • the fuel cell uses a method of causing an electrochemical reaction between hydrogen and oxygen without burning fuel and converting the energy difference before and after the reaction into electrical energy.
  • a fuel cell is a system that does not generate gases polluting the environment such as NOx and SOx, and has no noise and vibration. It is a clean power generation system with thermal efficiency of 80% or more combined with electricity generation and heat recovery.
  • the solid oxide fuel cell system (SOLID OXIDE FUEL CELL SYSTEM) is a fuel cell stack that produces electricity through a chemical reaction, a fuel processing device for supplying hydrogen / hydrocarbon and oxygen to the stack, produced in the fuel cell stack An inverter device for converting DC power to AC power, an array recovery device for recovering heat generated from the fuel cell stack, and the like.
  • the fuel cell apparatus includes a high temperature heat exchanger for generating high temperature hydrogen from a fuel such as natural gas, a burner for supplying a heat source necessary for the fuel cell stack and the high temperature heat exchanger, and an auxiliary device for preheating fuel or air supplied to the fuel cell stack.
  • a heat exchanger is included, and the high temperature heat exchanger, the fuel cell stack, the burner, and the auxiliary heat exchanger are installed in a single hot box insulated because they are operated at a high temperature.
  • the burner supplies a heat source for operating the fuel cell, and the amount of heat supplied to the system is changed according to the temperature conditions of the fuel and the air supplied to the burner. Since the difference between the amount of heat supplied by the burner and the amount of heat required by the system is indicated by the system efficiency, the amount of heat emitted from the hot box to the outside has to be recovered as much as possible.
  • the fuel cell system has been configured to install an additional heat exchanger in the hot box so that as much heat can be reused as possible before being discharged to the outside of the hot box.
  • the solid oxide fuel cell system includes a reformer that receives a liquid hydrocarbon-based raw material and generates a hydrogen-rich reformed gas; A heater attached to the reformer outer wall to warm the reformer to an initial ignition temperature; Desulfurizer for receiving the reformed gas discharged from the reformer to remove the sulfur component to produce a fuel gas; A complex heat exchanger for raising a temperature of air and fuel gas discharged from the desulfurizer; A solid oxide fuel cell stack configured to generate electricity by receiving the fuel gas heated in the complex heat exchanger through a cathode gas inlet and receiving the air heated in the complex heat exchanger through a cathode gas inlet; And a catalytic combustor configured to generate a combustion exhaust gas by receiving and combusting the exhaust gas of the cathode and the anode discharged from the solid oxide fuel cell stack
  • the high temperature combustion exhaust gas discharged from the catalytic combustor acting as a burner is preheated by heat exchange with fuel gas or air supplied to the fuel cell stack in the complex heat exchanger, thereby improving the efficiency of the fuel cell system.
  • the heat exchanger installed in the conventional fuel cell system is mainly used only for preheating the fuel gas or air supplied to the fuel cell stack, and the combustion exhaust gas of high temperature still remains outside the hot box. It is being discharged.
  • the present invention was developed to meet the needs of the industry, a fuel cell that improves the operating efficiency of the burner by preheating the fuel or air supplied to the burner by using the high temperature combustion exhaust gas discharged from the burner in the fuel cell system.
  • the purpose is to provide a system.
  • a fuel cell system including a heat exchanger using combustion exhaust gas for achieving the above object, a hot box made of a heat insulating material; A fuel cell stack disposed in the hot box and including an air electrode, an electrolyte, and a fuel electrode; A high temperature heat exchanger disposed in the hot box and configured to receive a fuel gas to generate an anode gas including hydrogen, and supply the anode gas to the anode of the fuel cell stack; A burner disposed in the hot box and configured to receive fuel gas and air to generate hot combustion exhaust gas and supply the combustion exhaust gas to a heat source in the fuel cell system; And disposed in the hot box, is installed on the burner air supply line for supplying air to the burner from the outside of the hot box, and supplies to the burner through the burner air supply line using the hot combustion exhaust gas It includes; a recovery heat exchanger for preheating the air to be.
  • the burner is connected to a combustion exhaust gas supply line for supplying the combustion exhaust gas to the high temperature heat exchanger, and the high temperature heat exchanger generates the anode gas through heat exchange with the fuel gas supplied to the high temperature heat exchanger.
  • the high temperature heat exchanger through-gas supply line for supplying the high temperature heat exchanger through-gas produced in the process to the re-recovery heat exchanger may be connected.
  • recuperation heat exchangers may be installed on the burner air supply line.
  • a fuel cell system including a heat exchanger using combustion exhaust gas for achieving the above object, a hot box made of a heat insulating material; A fuel cell stack disposed in the hot box and including an air electrode, an electrolyte, and a fuel electrode; A high temperature heat exchanger disposed in the hot box and configured to receive a fuel gas to generate an anode gas including hydrogen, and supply the anode gas to the anode of the fuel cell stack; A burner disposed in the hot box and configured to receive fuel gas and air to generate hot combustion exhaust gas and supply the combustion exhaust gas to a heat source in the fuel cell system; And disposed in the hot box and installed on a fuel gas supply line for a burner for supplying fuel gas from the outside of the hot box to the burner, and using the high temperature combustion exhaust gas through the burner fuel gas supply line. It includes; a recovery heat exchanger for preheating the fuel gas supplied to the burner.
  • the burner is connected to a combustion exhaust gas supply line for supplying the combustion exhaust gas to the high temperature heat exchanger, and the high temperature heat exchanger generates the anode gas through heat exchange with the fuel gas supplied to the high temperature heat exchanger.
  • the high temperature heat exchanger through-gas supply line for supplying the high temperature heat exchanger through-gas produced in the process to the re-recovery heat exchanger may be connected.
  • recuperation heat exchangers may be installed on the fuel gas supply line for the burner.
  • a fuel cell system including a heat exchanger using a combustion exhaust gas for achieving the above object, a hot box made of a heat insulating material; A fuel cell stack disposed in the hot box and including an air electrode, an electrolyte, and a fuel electrode; A high temperature heat exchanger disposed in the hot box and configured to receive a fuel gas to generate an anode gas including hydrogen, and supply the anode gas to the anode of the fuel cell stack; A burner disposed in the hot box and configured to receive fuel gas and air to generate hot combustion exhaust gas and supply the combustion exhaust gas to a heat source in the fuel cell system; And disposed in the hot box and installed on a burner anode exhaust gas supply line for supplying the anode exhaust gas discharged from the anode of the fuel cell stack from the outside of the hot box to the burner, by using the high temperature combustion exhaust gas. And a recuperation heat exchanger for preheating the fuel gas supplied to the burner through a fuel electrode exhaust gas supply line
  • the burner is connected to a combustion exhaust gas supply line for supplying the combustion exhaust gas to the high temperature heat exchanger, and the high temperature heat exchanger generates the anode gas through heat exchange with the fuel gas supplied to the high temperature heat exchanger.
  • the high temperature heat exchanger through-gas supply line for supplying the high temperature heat exchanger through-gas produced in the process to the re-recovery heat exchanger may be connected.
  • recuperation heat exchangers may be installed on the anode exhaust gas supply line for the burner.
  • anode exhaust gas may be heat-exchanged while passing through a heat storage tank installed on a fuel cell system and then supplied to the anode exhaust gas supply line for the burner.
  • the anode exhaust gas may discharge water vapor while passing through a condenser installed on a fuel cell system and then be supplied to the anode exhaust gas supply line for the burner.
  • the fuel cell system including the heat exchanger using the combustion exhaust gas of the present invention configured as described above, the combustion exhaust gas discharged to the outside in the hot box of the fuel cell system and the air or fuel gas supplied to the burner installed inside the hot box outside
  • the heat efficiency of the fuel cell system is improved by increasing the heat amount of the air or fuel gas supplied to the burner through heat exchange with the heat exchanger.
  • FIG. 1 is a block diagram of a fuel cell system showing a first-first embodiment according to the present invention.
  • FIG. 2 is a block diagram of a fuel cell system according to an embodiment 1-2 according to the present invention.
  • FIG. 3 is a block diagram of a fuel cell system showing a third embodiment according to the present invention.
  • FIG. 4 is a block diagram of a fuel cell system showing a first to fourth embodiments according to the present invention.
  • FIG. 5 is a configuration diagram of a fuel cell system according to a second embodiment 1-1 according to the present invention.
  • FIG. 6 is a configuration diagram of a fuel cell system according to a second embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a fuel cell system according to a second embodiment of the present invention.
  • FIG. 8 is a block diagram of a fuel cell system according to a second embodiment of the present invention.
  • FIG. 9 is a block diagram of a fuel cell system according to a third embodiment 3-1 according to the present invention.
  • FIG. 10 is a block diagram of a fuel cell system according to a third embodiment of the present invention.
  • FIG. 11 is a block diagram of a fuel cell system showing a third embodiment according to the present invention.
  • FIG. 12 is a block diagram of a fuel cell system showing a fourth embodiment 4-4 according to the present invention.
  • the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and are common in the art to which the present invention pertains. It is provided to fully inform those skilled in the art of the scope of the invention, which is to be defined only by the scope of the claims. For reference, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
  • a fuel cell system including a heat exchanger using combustion exhaust gas according to the present invention basically uses a solid oxide fuel cell system (SOFC). Therefore, the following describes in detail various embodiments of the present invention based on the solid oxide fuel cell system. However, the technical idea of the present invention is not limited thereto and may be applicable to various types of high temperature fuel cell systems using burners and heat exchangers.
  • SOFC solid oxide fuel cell system
  • the solid oxide fuel cell system is typically operated at a high temperature of 500 ° C. or higher because the chemical reaction that combines oxygen and hydrogen to generate water is an exothermic reaction. Therefore, in the entire fuel cell system, various devices and piping that operate at high temperature are arranged in a hot box made of a heat insulating material to prevent heat from being discharged to the outside.
  • the hot box means a box in which a fuel cell stack 20, a burner 30, and various heat exchangers are installed in the inside thereof, operated at a high temperature, and insulated from the outside, although not separately indicated. .
  • a fuel cell stack 20 which is a key device for producing electricity, is disposed inside the hot box.
  • the fuel cell stack 20 is configured in such a manner that a unit cell composed of an air electrode 21, an electrolyte 22, and a fuel electrode 23 is stacked in a plurality of layers.
  • the cathode 21 is connected to the stack air supply line 25 for supplying air (oxygen) from the outside of the hot box, through which the air required for the chemical reaction is supplied.
  • air oxygen
  • a separate heat exchanger (not shown) may be installed in the stack air supply line 25 to increase the amount of heat supplied to the air.
  • the electrolyte 22 is composed of a solid oxide having high ion conductivity, such as zirconia-based, and oxygen ions supplied through the cathode 21 move through the electrolyte 22 to react with hydrogen.
  • the fuel electrode 23 is supplied with fuel gas (hydrogen) from the outside of the hot box.
  • the fuel gas may be a general city gas, propane gas or the like, and is configured to convert all or part of the fuel gas into high-efficiency hydrogen gas in order to increase reaction efficiency in the stack.
  • a burner 30 that receives fuel gas and air to generate hot combustion exhaust gas and supplies the combustion exhaust gas as a heat source in the fuel cell system is disposed in the hot box.
  • the burner 30 receives fuel gas and fuel required for combustion through two paths, respectively.
  • a burner fuel gas supply line 31 and a burner anode gas supply line 32 are connected to the burner 30 so as to receive fuel gas.
  • the burner fuel gas supply line 31 is supplied with fuel gas at room temperature such as general city gas and propane gas from the outside of the hot box.
  • Anode off gas (AOG) which is discharged from the anode 23 of the fuel cell stack 20 and contains unreacted hydrogen gas, is supplied through the anode anode gas supply line 32 for burners.
  • the anode exhaust gas is supplied to the burner 30 at a high temperature of 700 ° C. or more immediately after being discharged from the fuel cell stack 20, or after passing through various heat exchange steps, and then generally at a temperature of 70 ° C.
  • the burner 30 is provided with a burner air supply line 33 and a burner cathode exhaust gas supply line 34. Room temperature air is supplied from the outside of the hot box through the burner air supply line 33.
  • COG high temperature cathode exhaust gas
  • the cathode exhaust gas is directly supplied to the burner 30 at a high temperature of about 650 to 700 ° C. immediately after being discharged from the fuel cell stack 20.
  • a fuel gas such as general city gas or propane gas is supplied from the outside of the hot box to generate a cathode gas heat exchanged at a high temperature suitable for reacting in the fuel cell stack 20, and the anode gas is converted into the fuel cell stack (
  • a high temperature heat exchanger 40 for supplying to the anode 23 of 20 is disposed inside the hot box.
  • the high temperature heat exchanger 40 is connected to the fuel gas supply line 41 for supplying fuel gas from the outside of the hot box, and the anode gas is connected to the anode 23 of the fuel cell stack 20.
  • the anode gas supply line 42 to supply is connected and installed.
  • the high temperature heat exchanger 40 is a combustion for supplying a high temperature combustion exhaust gas (BOG, Burner Off Gas) discharged from the burner 30 in order to supply a high heat source necessary for converting fuel gas into a highly efficient anode gas
  • the exhaust gas supply line 35 is installed.
  • the combustion flue gas maintains a high temperature even after passing through the high temperature heat exchanger 40.
  • the combustion flue gas (hereinafter referred to as "high temperature heat exchanger passing gas") that has passed through the high temperature heat exchanger 40 remains as it is. It has been used to discharge into a hot box or to heat exchange with some fluid inside the hot box.
  • the present invention is to optimize the overall thermal efficiency of the fuel cell system by using a high-heat combustion flue gas to preheat the fuel gas or air supplied to the burner (30).
  • the burners 30 are each supplied with fuel gas or air through two paths. That is, the burner 30 receives the fuel gas containing hydrogen through the fuel gas supply line 31 for the burner and the anode exhaust gas supply line 32 for the burner, and the burner air supply line 33 and the burner The air containing oxygen is supplied through the cathode exhaust gas supply line 34. If the temperature of the fuel gas or air supplied to the burner 30 is high, it is possible to generate combustion calories of a high amount of heat. Therefore, the higher the temperature of the fuel gas or air supplied to the burner 30 is advantageous.
  • the fuel gas supplied through the burner fuel gas supply line 31 is a normal city gas or propane gas at room temperature
  • the air supplied through the burner air supply line 33 is also at room temperature.
  • the anode exhaust gas supplied through the burner anode exhaust gas supply line 32 has a high temperature immediately after being discharged from the anode 23 of the fuel cell stack 20, but passes through a heat exchanger disposed outside the hot box.
  • a heat exchanger disposed outside the hot box.
  • the cathode exhaust gas supplied through the burner cathode exhaust gas supply line 34 is supplied to the burner 30 while maintaining the high temperature which is discharged from the fuel cell stack 20.
  • the amount of heat discharged from the hot box to the outside is determined. It is necessary to recover as much as possible.
  • the present inventors based on the result of analyzing the temperature distribution of the fuel gas or air supplied to the burner 30, the remaining three places, that is, the burner except the cathode exhaust gas supply line 34 for the burner is supplied with high temperature air Recovery heat exchanger (50) for allowing the high-temperature combustion flue gas to directly or indirectly exchange heat on the fuel gas supply line (31), the anode exhaust gas supply line (32), and the burner air supply line (33). ), The overall thermal efficiency of the fuel cell system was optimized.
  • 1 to 4 show an embodiment in which a heat exchanger using combustion exhaust gas is installed on the air supply line 33 for the burner.
  • a recuperation heat exchanger 50 As shown in FIG. 1, a recuperation heat exchanger 50 according to the present embodiment is disposed in the hot box, and the burner air supply line 33 supplies air to the burner 30 from the outside of the hot box. It is installed in the phase, and is configured to preheat the air at room temperature supplied to the burner 30 through the burner air supply line 33 using the high temperature combustion exhaust gas.
  • the high temperature combustion exhaust gas is first supplied to the high temperature heat exchanger 40 through the combustion exhaust gas supply line 35.
  • a cathode gas containing high temperature hydrogen gas is generated.
  • the combustion exhaust gas is generated as a high temperature heat exchanger passing gas whose temperature is lowered through heat exchange, and the high temperature heat exchanger passing gas is reclaimed heat exchanger according to the present invention through the high temperature heat exchanger passing gas supply line 36. 50 is supplied.
  • the temperature of the high temperature heat exchanger passing gas is slightly lowered through the first heat exchange in the high temperature heat exchanger (40), it still maintains a high temperature of 400 ° C or higher.
  • This high temperature high temperature heat exchanger passing gas preheats the air at room temperature supplied from the outside of the hot box in the recuperation heat exchanger (50). The preheated air raises the internal temperature of the burner 30 to reduce the amount of fuel used.
  • the gas whose temperature is lowered through the heat exchange is finally discharged to the outside of the hot box through the recirculation heat exchanger passing gas discharge line 37.
  • the gas transported through the combustion flue gas supply line 35, the high temperature heat exchanger through-gas supply line 36, and the reclaimed heat exchanger through-gas discharge line 37 may be a combustion flue gas, a high temperature heat exchanger through-gas, Although it is named as a recuperation heat exchanger gas, it is intended to indicate that the heat exchange has passed through the device, all three means the combustion exhaust gas discharged from the burner (30). Therefore, this embodiment will be included in the technical idea of the present invention that preheating the fluid flowing into the burner using a heat exchanger using combustion exhaust gas.
  • FIG. 2 is basically a normal temperature supplied to the burner 30 from the outside of the hot box by supplying the combustion exhaust gas discharged from the burner 30 to the recuperation heat exchanger 50 installed in the air supply line 33 for the burner. Same as the embodiment of FIG. 1 in that it preheats the air. However, in FIG. 1, the combustion exhaust gas discharged from the burner 30 is first supplied to the high temperature heat exchanger 40 so that the heat exchange occurs secondarily in the recuperation heat exchanger 50 after the first heat exchange occurs. In FIG. 2, the combustion flue gas is directly supplied to the re-recovery heat exchanger 50 through the combustion flue gas branch line 35a branched from the combustion flue gas supply line 35 so that heat exchange occurs first. .
  • the high temperature combustion exhaust gas discharged from the burner 30 is directly supplied to the re-recovery heat exchanger 50 so that the air at room temperature is supplied from the outside of the hot box along the air supply line 33 for the burner. Preheating allows the air to be heated to higher temperatures. Therefore, the present embodiment can be used when the external air supplied through the air supply line 33 for burners needs to have a higher heat amount in consideration of the total heat amount of fuel gas and air supplied to the burner 30. have.
  • the operation of the burner 30 by configuring the fuel cell system in one of the embodiment of FIG. 1 (for low temperature) or the embodiment of FIG. 2 (for high temperature) in consideration of to what temperature the external air is to be preheated. You can control the range more effectively.
  • 1 and 2 are disclosed as separate embodiments, the high temperature heat exchanger passing gas supply line 36 of FIG. 1 and the combustion flue gas branch line 35a of FIG. It may be installed together and configured to use one of two supply lines in real time using a three-way valve or the like.
  • FIG. 3 shows the combustion exhaust gas discharged from the burner 30 in the high temperature heat exchanger 40, and then supplies the combustion exhaust gas to the recuperation heat exchanger 50 installed in the air supply line 33 for the burner. It is the same as the embodiment of FIG. 1 in that it preheats the air supplied to the burner 30 from the outside. However, in FIG. 1, only one reclaimed heat exchanger 50 is installed, whereas in FIG. 3, two of the first reclaimed heat exchanger 50a and the second reclaimed heat exchanger 50b are installed and a high temperature heat exchanger is provided. It is different in that it is comprised so that high temperature high temperature heat exchanger passage gas may be supplied through the gas passing through the 1st branch line 36a and the high temperature heat exchanger passing gas 2nd branch line 36b, respectively.
  • FIG. 3 shows that there are two recuperation heat exchangers 50a and 50b, the present invention is not limited thereto, and it will naturally include three or more recuperation heat exchangers.
  • Reference numerals 37a and 37b which are not described, indicate a first recovery line through the reheat recovery heat exchanger and a second discharge line through the reheat recovery heat exchanger, respectively.
  • FIG. 4 shows that the combustion flue gas discharged from the burner 30 is branched directly from the combustion flue gas supply line 35 to the combustion flue gas branch line 35a so as not to pass through the high temperature heat exchanger 40, and thus to the burner air supply line 33. It is the same as the embodiment of FIG. 2 in that it is supplied directly to the recuperation heat exchanger installed in the. However, in FIG. 2, only one reclaimed heat exchanger 50 is installed, while in FIG. 4, two of the first reclaimed heat exchanger 50a and the second reclaimed heat exchanger 50b are installed. It is different in that it is comprised so that high temperature combustion flue gas may be supplied through a 1st branch line 35b and a combustion flue gas 2nd branch line 35c, respectively.
  • recuperation heat exchangers may be installed as described above with reference to FIG. 3.
  • Reference numerals 37b and 37c which are not described, indicate a recirculation heat exchanger passing gas first discharge line and a recirculation heat exchanger passing gas second discharge line, respectively.
  • 5 to 8 show an embodiment in which a heat exchanger using combustion exhaust gas is installed on the fuel gas supply line 31 for the burner.
  • a recuperation heat exchanger 50 is disposed in the hot box, and a fuel gas supply line for a burner that supplies fuel gas to the burner 30 from the outside of the hot box ( It is installed on the 31 and configured to preheat the fuel gas at room temperature supplied to the burner 30 through the burner fuel gas supply line 31 using the high temperature combustion exhaust gas.
  • the high temperature combustion exhaust gas is first supplied to the high temperature heat exchanger 40 through the combustion exhaust gas supply line 35.
  • a cathode gas containing high temperature hydrogen gas is generated.
  • the combustion exhaust gas is generated as a high temperature heat exchanger passing gas whose temperature is lowered through heat exchange, and the high temperature heat exchanger passing gas is reclaimed heat exchanger according to the present invention through the high temperature heat exchanger passing gas supply line 36. 50 is supplied.
  • the temperature of the high temperature heat exchanger passing gas is slightly lowered through the first heat exchange in the high temperature heat exchanger (40), it still maintains a high temperature of 400 ° C or higher.
  • the high temperature heat exchanger passing gas preheats the fuel gas at room temperature supplied from the outside of the hot box in the recuperation heat exchanger 50.
  • the preheated fuel gas may increase the internal temperature of the burner 30 to reduce the amount of fuel used.
  • the gas whose temperature is lowered through the heat exchange is finally discharged to the outside of the hot box through the recirculation heat exchanger passing gas discharge line 37.
  • the combustion exhaust gas, the high temperature heat exchanger passing gas, and the recuperation heat exchanger passing gas all mean the combustion exhaust gas, as described above. Therefore, the present embodiment is also introduced into the burner using a heat exchanger using the combustion exhaust gas. It will be included in the technical idea of the present invention to preheat the fluid.
  • FIG. 6 is basically room temperature supplied to the burner 30 from the outside of the hot box by supplying the combustion exhaust gas discharged from the burner 30 to the recuperation heat exchanger 50 installed in the fuel gas supply line 31 for the burner. 5 is the same as the embodiment of FIG. 5 in that the fuel gas is preheated. However, in FIG. 5, the combustion exhaust gas discharged from the burner 30 is first supplied to the high temperature heat exchanger 40 so that the heat exchange occurs secondarily in the recuperation heat exchanger 50 after the first heat exchange occurs. In FIG. 6, the combustion flue gas is directly supplied to the recuperation heat exchanger 50 through the combustion flue gas branch line 35a branched from the combustion flue gas supply line 35, so that heat exchange occurs first. .
  • the fuel cell system is configured in one of the embodiment of FIG. 5 (for low temperature) or the embodiment of FIG. 6 (for high temperature) in consideration of which temperature the external fuel gas is to be preheated.
  • the operating range can be controlled more effectively.
  • 5 and 6 are disclosed as separate embodiments, the high temperature heat exchanger passing gas supply line 36 of FIG. 5 and the combustion exhaust gas branch line 35a of FIG. It may be installed together and configured to use one of two supply lines in real time using a three-way valve or the like.
  • FIG. 7 shows the combustion flue gas discharged from the burner 30 after the first heat exchange in the high temperature heat exchanger 40, and then supplied to the recuperation heat exchanger 50 installed in the fuel gas supply line 31 for the burner.
  • 5 is the same as the embodiment of FIG. 5 in that the fuel gas supplied to the burner 30 is preheated.
  • FIG. 5 only one reclaimed heat exchanger 50 is installed, whereas in FIG. 7, two of the first reclaimed heat exchanger 50a and the second reclaimed heat exchanger 50b are installed and a high temperature heat exchanger is provided. It differs in that it is comprised so that a high temperature high temperature heat exchanger passage gas may be supplied through the gas passing gas 1st branch line 36a and the high temperature heat exchanger passage gas 2nd branch line 36b, respectively.
  • FIG. 7 shows that there are two reclaimed heat exchangers 50a and 50b, the present invention is not limited thereto, and it will naturally include three or more recuperated heat exchangers.
  • FIG. 8 shows that the combustion flue gas discharged from the burner 30 is branched directly from the combustion flue gas supply line 35 to the combustion flue gas branch line 35a so that the fuel gas supply line 31 for the burner does not pass through the high temperature heat exchanger 40. It is the same as the embodiment of FIG. 6 in that it is directly supplied to the recuperation heat exchanger installed on the bed. However, in FIG. 6, only one reheat recovery heat exchanger 50 is installed, whereas in FIG. 8, two of the first reheat recovery heat exchanger 50a and the second reheat recovery heat exchanger 50b are installed, and combustion exhaust gas is provided. It is different in that it is comprised so that high temperature combustion flue gas may be supplied through a 1st branch line 35b and a combustion flue gas 2nd branch line 35c, respectively.
  • recuperation heat exchangers may be installed as described above with reference to FIG. 7.
  • Reference numerals 37b and 37c which are not described, indicate a recirculation heat exchanger passing gas first discharge line and a recirculation heat exchanger passing gas second discharge line, respectively.
  • 9 to 12 show an embodiment in which a heat exchanger using combustion exhaust gas is installed in the anode exhaust gas supply line 32 for the burner.
  • a recuperation heat exchanger 50 is disposed in the hot box, and is a burner for supplying anode flue gas containing unburned hydrogen to the burner 30 from outside the hot box. It is installed on the anode fuel flue gas supply line 32, and is configured to preheat the fuel gas supplied to the burner 30 through the burner anode flue gas supply line 32 using the hot combustion flue gas.
  • the anode flue gas itself is very hot, even after being discharged out of the hot box, the heat is recovered through several heat exchanges.
  • the anode flue gas exchanges heat with hot water while passing through a heat storage tank (not shown) installed on the fuel cell system. This hot water is used for home heating and the like.
  • the anode exhaust gas contains water generated during a chemical reaction in the fuel cell stack 20 in the form of steam. Therefore, in order to supply the anode flue gas to the burner 30 to reuse unreacted hydrogen, it is necessary to remove water vapor contained in the anode flue gas.
  • the anode exhaust gas is configured to separate and discharge water vapor while passing through a condenser (not shown) installed on the fuel cell system. In this process, heat exchange occurs to decrease the temperature.
  • the anode exhaust gas is heat-exchanged in the course of passing through a heat storage tank for supplying hot water or the condenser for separating and discharging water vapor contained in the anode exhaust gas, and is generally supplied to the burner 30 at a temperature of about 70 ° C. . Therefore, according to the present embodiment, the combustion exhaust gas of 400 ° C or more is preheated in the recuperation heat exchanger 50 at 70 ° C.
  • the high temperature combustion exhaust gas is first supplied to the high temperature heat exchanger 40 through the combustion exhaust gas supply line 35.
  • a cathode gas containing high temperature hydrogen gas is generated.
  • the combustion exhaust gas is generated as a high temperature heat exchanger passing gas whose temperature is lowered through heat exchange, and the high temperature heat exchanger passing gas is reclaimed heat exchanger according to the present invention through the high temperature heat exchanger passing gas supply line 36. 50 is supplied.
  • the temperature of the high temperature heat exchanger passing gas is slightly lowered through the first heat exchange in the high temperature heat exchanger (40), it still maintains a high temperature of 400 ° C or higher.
  • This high temperature high temperature heat exchanger passing gas preheats the anode flue gas supplied from the outside of the hot box in the recuperation heat exchanger 50.
  • the preheated anode flue gas increases the internal temperature of the burner 30, thereby reducing the amount of fuel used.
  • the gas whose temperature is lowered through the heat exchange is finally discharged to the outside of the hot box through the heat exchanger through-gas discharge line 37.
  • the combustion exhaust gas, the high temperature heat exchanger passing gas, and the recuperation heat exchanger passing gas all mean the combustion exhaust gas, as described above. Therefore, the present embodiment is also introduced into the burner using a heat exchanger using the combustion exhaust gas. It will be included in the technical idea of the present invention to preheat the fluid.
  • the combustion flue gas is directly supplied to the re-recovery heat exchanger 50 through the combustion flue gas branch line 35a branched from the combustion flue gas supply line 35 so that heat exchange occurs first. .
  • the anode exhaust gas supplied from the outside of the hot box along the anode exhaust gas supply line 32 for the burner by directly supplying the high temperature combustion exhaust gas discharged from the burner 30 to the recuperation heat exchanger 50. Because of this preheating, the anode exhaust gas can be heated to a higher temperature. Therefore, in the present embodiment, when the external fuel gas supplied through the anode exhaust gas supply line 32 for the burner in consideration of the total heat amount of the fuel gas and the air supplied to the burner 30 needs to have a higher heat amount. Can be used.
  • the burner 30 is operated by configuring the fuel cell system as one of the embodiment of FIG. 9 (for low temperature) or the embodiment of FIG. 10 (for high temperature) in consideration of the temperature to which the anode exhaust gas is preheated. You can control the range more effectively.
  • FIGS. 9 and 10 are disclosed as separate embodiments, the high temperature heat exchanger through-gas supply line 36 of FIG. 9 and the combustion exhaust gas branch line 35a of FIG. 10 are included in one fuel cell system. It may be installed together and configured to use one of two supply lines in real time using a three-way valve or the like.
  • FIG. 11 shows the combustion flue gas discharged from the burner 30 through the first heat exchange in the high temperature heat exchanger 40 and then supplied to the recuperation heat exchanger 50 installed in the anode flue gas supply line 32 for the burner.
  • 9 is the same as the embodiment of FIG. 9 in that the fuel gas supplied to the burner 30 from the outside is preheated.
  • only one reheating heat exchanger 50 is installed, whereas in FIG. 11, two of the first reheating heat exchanger 50a and the second reheating heat exchanger 50b are installed. It differs in that it is comprised so that a high temperature high temperature heat exchanger passage gas may be supplied through the gas passing gas 1st branch line 36a and the high temperature heat exchanger passage gas 2nd branch line 36b, respectively.
  • FIG. 11 shows that there are two recuperation heat exchangers 50a and 50b, the present invention is not limited thereto, and it will naturally include three or more recuperation heat exchangers.
  • FIG. 12 shows that the combustion flue gas discharged from the burner 30 is branched directly from the combustion flue gas supply line 35 to the combustion flue gas branch line 35a so that the fuel flue gas supply line 32 for the burner is not passed through the high temperature heat exchanger 40. It is the same as the embodiment of FIG. 10 in that it is directly supplied to the recuperation heat exchanger installed on the bed. However, in FIG. 10, only one reclaimed heat exchanger 50 is installed, whereas in FIG. 12, two first reclaimed heat exchangers 50a and a second reclaimed heat exchanger 50b are installed, and combustion exhaust gas is provided. It is different in that it is comprised so that high temperature combustion flue gas may be supplied through a 1st branch line 35b and a combustion flue gas 2nd branch line 35c, respectively.
  • recuperation heat exchangers it is possible to allow sufficient heat exchange between the combustion flue gas and the external fuel gas through two heat exchanges, and if necessary, three or more recuperation heat exchangers may be installed as described above with reference to FIG. 11.
  • the air supply line 33 for the burner as shown in FIG. Preheating the external air supplied through the fuel gas supplied through the fuel gas supply line 31 for the burner as shown in FIG. 5 or the anode exhaust gas supplied through the anode exhaust gas supply line 32 for the burner as shown in FIG. 9. Preheating may vary in heat exchange efficiency due to flow rate differences in each supply line. This can be used to differently design the use of the flue-gases finally discharged out of the hot box.
  • the supply flow rate of the combustion exhaust gas supply line 35 is the largest, the supply flow rate of the burner air supply line 33 is next, the fuel gas supply line 31 for the burner and the anode exhaust gas supply line for the burner ( The supply flow rate of 32) is relatively very small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 연료전지 시스템 내의 버너에서 배출되는 고온의 연소 배가스를 이용하여 버너로 공급되는 연료 또는 공기를 예열함으로써 버너의 작동 효율을 향상시켜주는 고체산화물 연료전지 시스템을 제공하는데 그 목적이 있다. 상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템은, 단열 재료로 된 핫 박스; 상기 핫 박스 내에 배치되며, 공기극, 전해질 및 연료극을 포함하는 연료전지 스택; 상기 핫 박스 내에 배치되며, 연료가스를 공급받아 수소가 포함된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택의 연료극으로 공급하는 고온 열교환기; 상기 핫 박스 내에 배치되며, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너; 및 상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 상기 버너로 공기를 공급하는 버너용 공기 공급라인 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 공기 공급라인을 통해 상기 버너로 공급되는 공기를 예열시키는 재회수 열교환기;를 포함한다.

Description

연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
본 발명은 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템에 관한 것으로서, 보다 상세하게는 버너로부터 배출되는 연소 배가스를 이용하여 버너로 공급되는 공기 또는 연료를 예열할 수 있도록 해주는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템에 관한 것이다.
일반적으로 인류가 사용하고 있는 에너지 중 대부분은 화석연료로부터 얻고 있다. 그러나 이러한 화석연료의 사용은 대기오염 및 산성비, 지구 온난화 등의 환경에 심각한 악영향을 미치고 있으며, 에너지 효율 또한 낮은 문제점이 있었다.
이러한 화석연료의 사용에 따른 문제점을 해결하기 위하여 최근에 연료전지스템이 개발되고 있다. 연료전지는 통상의 2차 전지와는 다르게 음극에 연료인 수소가스나 탄화수소를 공급하고, 양극에는 산소를 공급하여 전기를 발생시키는 구조를 갖는다. 즉, 연료전지는 명칭은 전지이지만 실제로는 전기를 발생시키는 발전장치로 볼 수 있다. 기본적으로 연료전지는 연료를 연소시키지 않고 수소와 산소를 전기 화학적 반응을 일으키고, 그 반응 전후의 에너지 차이를 전기에너지로 변환하는 방법을 사용한다.
연료전지는 NOx와 SOx등 환경을 오염시키는 가스가 발생되지 않으며 소음과 진동이 없는 시스템으로서 열효율이 전기발전량과 열회수량을 합하여 80% 이상인 크린 발전 시스템이라 할 수 있다.
통상적으로 고체산화물 연료전지 시스템(SOLID OXIDE FUEL CELL SYSTEM)은 화학반응을 통하여 전기를 생산하는 연료전지 스택(Stack), 스택에 수소/탄화수소 및 산소를 공급하는 연료처리 장치, 연료전지 스택에서 생산된 DC 전력을 AC 전력으로 전환하는 인버터 장치, 연료전지 스택에서 발생하는 열을 회수하는 배열회수 장치 등을 포함한다.
상기 연료전지 장치는 천연가스와 같은 연료에서 고온의 수소를 발생시키는 고온 열교환기, 상기 연료전지 스택 및 고온 열교환기에 필요한 열원을 공급하는 버너, 상기 연료전지 스택으로 공급되는 연료 또는 공기를 예열하는 보조 열교환기 등이 포함되며, 상기 고온 열교환기, 연료전지 스택, 버너 및 보조 열교환기는 고온에서 작동되기 때문에 단열이 되는 하나의 핫 박스(Hot box) 내에 설치된다.
상기 버너는 연료전지를 운전하기 위한 열원을 공급하는데, 버너로 공급되는 연료 및 공기의 온도 조건에 따라 시스템에 공급하는 열량이 변하게 된다. 버너가 공급하는 열량과 시스템이 필요로 하는 열량의 차이가 시스템 효율로 나타나게 되므로, 핫 박스에서 외부로 배출되는 열량을 가능한 많이 회수하여야 했다. 이를 위해 핫 박스 내에 열교환기를 추가로 설치하여 핫 박스의 외부로 배출되기 전에 최대한 많은 열을 재사용할 수 있도록 연료전지 시스템을 구성하여 왔다.
그 대표적인 예가 대한민국 공개특허 제2010-0083027호(발명의 명칭: 고체산화물 연료전지 시스템)(특허문헌 1)에 개시되어 있다. 이 고체산화물 연료전지 시스템은, 액상의 탄화수소계 원료를 공급받아 수소-리치(rich)한 개질 가스를 생성하는 개질기; 개질기 외벽에 부착되어 개질기를 초기 발화온도까지 승온시키는 가열기; 상기 개질기에서 배출된 개질 가스를 공급받아 황 성분을 제거하여 연료가스를 생성하는 탈황기; 공기 및 상기 탈황기에서 배출된 연료가스의 온도를 상승시키는 복합열교환기; 상기 복합열교환기에서 승온된 연료가스를 연료극가스 유입구로 공급받고, 상기 복합열교환기에서 승온된 공기를 공기극 가스 유입구로 공급받아 전기를 생성하는 고체산화물 연료전지 스택; 및 상기 고체상기 고체산화물 연료전지 스택에서 배출된 공기극 및 연료극의 배출가스를 공급받아 연소시켜 연소 배가스를 생성하는 촉매연소기를 포함하여 구성되며, 상기 복합열교환기는 상기 연소 배가스와 상기 연료가스 및 공기의 열교환이 이루어지며, 상기 고체산화물 연료전지 스택, 개질기, 가열기, 탈황기, 촉매연소기 및 복합 열교환기는 하나의 핫 박스 내에 구비되어 있다.
즉, 버너 역할을 하는 상기 촉매연소기로부터 배출되는 고온의 연소 배가스가 복합열교환기 내에서 연료전지 스택으로 공급되는 연료가스 또는 공기와 열교환을 통해 이를 예열시키도록 하여 연료전지 시스템의 효율을 향상시켜준다.
그러나, 이 특허문헌 1에서와 같이 종래의 연료전지 시스템에 설치된 열교환기는 주로 연료전지 스택으로 공급되는 연료가스 또는 공기를 예열시키는 것에만 한정적으로 사용되고 있어 여전히 높은 온도의 연소 배가스가 핫 박스 외부로 그대로 배출되고 있는 실정이다.
이러한 문제점을 해결하기 위해서는, 핫 박스 내의 열원을 최대한 재활용하기 위해 열교환기를 최적의 위치에 설치한 새로운 배치 형태를 가진 연료전지 시스템의 개발이 필요하다.
본 발명은 이러한 업계의 필요성을 충족시키기 위하여 개발된 것으로서, 연료전지 시스템 내의 버너에서 배출되는 고온의 연소 배가스를 이용하여 버너로 공급되는 연료 또는 공기를 예열함으로써 버너의 작동 효율을 향상시켜주는 연료전지 시스템을 제공하는데 그 목적이 있다.
상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템은, 단열 재료로 된 핫 박스; 상기 핫 박스 내에 배치되며, 공기극, 전해질 및 연료극을 포함하는 연료전지 스택; 상기 핫 박스 내에 배치되며, 연료가스를 공급받아 수소가 포함된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택의 연료극으로 공급하는 고온 열교환기; 상기 핫 박스 내에 배치되며, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너; 및 상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 상기 버너로 공기를 공급하는 버너용 공기 공급라인 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 공기 공급라인을 통해 상기 버너로 공급되는 공기를 예열시키는 재회수 열교환기;를 포함한다.
또한, 상기 버너에는 상기 연소 배가스를 상기 고온 열교환기로 공급하는 연소 배가스 공급라인이 연결되고, 상기 고온 열교환기에는 상기 연소 배가스가 상기 고온 열교환기로 공급된 상기 연료가스와 열교환을 통해 상기 연료극 가스를 생성하는 과정에서 만들어지는 고온 열교환기 통과가스를 상기 재회수 열교환기로 공급하는 고온 열교환기 통과가스 공급라인이 연결될 수 있다.
또한, 상기 재회수 열교환기는 상기 버너용 공기 공급라인 상에 하나 또는 둘 이상 설치될 수 있다.
상기한 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템은, 단열 재료로 된 핫 박스; 상기 핫 박스 내에 배치되며, 공기극, 전해질 및 연료극을 포함하는 연료전지 스택; 상기 핫 박스 내에 배치되며, 연료가스를 공급받아 수소가 포함된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택의 연료극으로 공급하는 고온 열교환기; 상기 핫 박스 내에 배치되며, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너; 및 상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 상기 버너로 연료가스를 공급하는 버너용 연료가스 공급라인 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 연료가스 공급라인을 통해 상기 버너로 공급되는 연료가스를 예열시키는 재회수 열교환기;를 포함한다.
또한, 상기 버너에는 상기 연소 배가스를 상기 고온 열교환기로 공급하는 연소 배가스 공급라인이 연결되고, 상기 고온 열교환기에는 상기 연소 배가스가 상기 고온 열교환기로 공급된 상기 연료가스와 열교환을 통해 상기 연료극 가스를 생성하는 과정에서 만들어지는 고온 열교환기 통과가스를 상기 재회수 열교환기로 공급하는 고온 열교환기 통과가스 공급라인이 연결될 수 있다.
또한, 상기 재회수 열교환기는 상기 버너용 연료가스 공급라인 상에 하나 또는 둘 이상 설치될 수 있다.
한편, 상기한 목적을 달성하기 위한 본 발명의 또 다른 실시예에 따른 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템은, 단열 재료로 된 핫 박스; 상기 핫 박스 내에 배치되며, 공기극, 전해질 및 연료극을 포함하는 연료전지 스택; 상기 핫 박스 내에 배치되며, 연료가스를 공급받아 수소가 포함된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택의 연료극으로 공급하는 고온 열교환기; 상기 핫 박스 내에 배치되며, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너; 및 상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 상기 연료전지 스택의 연료극으로부터 배출된 연료극 배가스를 상기 버너로 공급하는 버너용 연료극 배가스 공급라인 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 연료극 배가스 공급라인을 통해 상기 버너로 공급되는 연료가스를 예열시키는 재회수 열교환기;를 포함할 수 있다.
또한, 상기 버너에는 상기 연소 배가스를 상기 고온 열교환기로 공급하는 연소 배가스 공급라인이 연결되고, 상기 고온 열교환기에는 상기 연소 배가스가 상기 고온 열교환기로 공급된 상기 연료가스와 열교환을 통해 상기 연료극 가스를 생성하는 과정에서 만들어지는 고온 열교환기 통과가스를 상기 재회수 열교환기로 공급하는 고온 열교환기 통과가스 공급라인이 연결될 수 있다.
또한, 상기 재회수 열교환기는 상기 버너용 연료극 배가스 공급라인 상에 하나 또는 둘 이상 설치될 수 있다.
또한, 상기 연료극 배가스는 연료전지 시스템 상에 설치된 축열조를 통과하면서 열교환을 한 다음 상기 버너용 연료극 배가스 공급라인으로 공급될 수 있다.
또한, 상기 연료극 배가스는 연료전지 시스템 상에 설치된 응축기를 통과하면서 수증기를 분리 배출한 다음 상기 버너용 연료극 배가스 공급라인으로 공급될 수 있다.
상기와 같이 구성된 본 발명의 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템은, 연료전지 시스템의 핫 박스 내에서 외부로 배출되는 연소 배가스와 핫 박스 외부에서 내부에 설치된 버너로 공급되는 공기 또는 연료가스와의 열교환을 통해 상기 버너로 공급되는 공기 또는 연료가스의 열량을 증가시킴으로써, 연료전지 시스템 전체의 열 효율을 향상시켜준다.
또한, 고온의 연소 배가스와 저온의 공기 또는 연료가스의 열교환을 통해 상기 버너로 공급되는 공기 또는 연료가스의 열량을 제어할 수 있어, 최종적으로 상기 버너로부터 배출되는 연소 배가스의 제어 범위를 확장시킬 수 있다.
또한, 상기 버너로 공급되는 공기의 열량을 증가시킴으로써 이와 함께 연소되는 연료가스의 공급량을 감소시킬 수 있어 운전 비용을 절감할 수 있다.
도 1은 본 발명에 따른 제1-1 실시예를 나타낸 연료전지 시스템의 구성도.
도 2는 본 발명에 따른 제1-2 실시예를 나타낸 연료전지 시스템의 구성도.
도 3은 본 발명에 따른 제1-3 실시예를 나타낸 연료전지 시스템의 구성도.
도 4는 본 발명에 따른 제1-4 실시예를 나타낸 연료전지 시스템의 구성도.
도 5은 본 발명에 따른 제2-1 실시예를 나타낸 연료전지 시스템의 구성도.
도 6은 본 발명에 따른 제2-2 실시예를 나타낸 연료전지 시스템의 구성도.
도 7은 본 발명에 따른 제2-3 실시예를 나타낸 연료전지 시스템의 구성도.
도 8은 본 발명에 따른 제2-4 실시예를 나타낸 연료전지 시스템의 구성도.
도 9는 본 발명에 따른 제3-1 실시예를 나타낸 연료전지 시스템의 구성도.
도 10은 본 발명에 따른 제3-2 실시예를 나타낸 연료전지 시스템의 구성도.
도 11는 본 발명에 따른 제3-3 실시예를 나타낸 연료전지 시스템의 구성도.
도 12은 본 발명에 따른 제4-4 실시예를 나타낸 연료전지 시스템의 구성도.
이하에서 첨부된 도면을 참조로 본 발명에 따른 온도 조절용 열교환 수단을 포함하는 연료전지를 보다 상세히 설명한다.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 참고로, 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명에 따른 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템은 기본적으로 고체산화물 연료전지 시스템(SOFC)을 사용한다. 따라서, 이하에서는 고체산화물 연료전지 시스템을 기반으로 본 발명에 따른 여러 가지 실시예를 상세히 설명한다. 그러나, 본 발명의 기술사상은 이에 한정되지 아니하며, 버너와 열교환기를 사용하는 다양한 종류의 고온 연료전지 시스템에 적용 가능하다 할 것이다.
고체산화물 연료전지 시스템은 산소와 수소가 결합하여 물을 생성하는 화학 반응이 발열 반응인 관계로 통상적으로 500℃ 이상의 고온에서 운전된다. 따라서 전체 연료전지 시스템에 있어서 고온 상태에서 작동하는 여러 가지 장치 및 배관을 단열 재료로 된 핫 박스 내에 배치하여 외부로 열이 배출되는 것을 차단한다.
본 발명의 구체적인 설명에 앞서 도 1을 참조로 상기 핫 박스 내부에 설치되는 장치 및 배관을 간단히 설명하면 다음과 같다. 여기서 핫 박스라 함은 별도로 표시하지는 않았지만, 그 내부에 연료전지 스택(20), 버너(30) 및 각종 열교환 장치 등이 장착되고, 고온 상태에서 작동되며, 외부와는 단열 처리된 박스를 의미한다.
전기를 생산하는 핵심 장치인 연료전지 스택(20)이 상기 핫 박스 내부에 배치된다. 이 연료전지 스택(20)은 공기극(21), 전해질(22) 및 연료극(23)으로 구성된 단위 셀이 여러 층으로 적층된 형태로 구성된다.
상기 공기극(21)은 핫 박스의 외부로부터 공기(산소)를 공급하는 스택용 공기 공급라인(25)이 연결되고, 이를 통해 화학 반응에 필요한 공기가 공급된다. 반응 효율을 높이기 위하여 상기 스택용 공기 공급라인(25)에 별도의 열교환기(미도시)가 설치되어 공급되는 공기의 열량을 증가시켜주도록 구성될 수 있다. 상기 전해질(22)은 지르코니아 계열과 같이 높은 이온전도도를 갖는 고체 산화물로 구성되고 상기 공기극(21)을 통해 공급된 산소 이온이 전해질(22)을 통해 이동하여 수소와 반응하게 된다. 상기 연료극(23)은 핫 박스의 외부로부터 연료가스(수소)가 공급된다. 이 연료가스는 일반 도시가스, 프로판 가스 등을 사용할 수 있는데, 스택 내에서의 반응 효율을 높이기 위하여 상기 연료가스의 전부 또는 일부를 고효율의 수소가스로 변환하여 공급하도록 구성된다.
한편, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너(30)가 상기 핫 박스 내에 배치된다. 이 버너(30)는 연소에 필요한 연료가스와 연료를 각각 2가지 경로를 통해 공급받는다.
먼저, 연료가스를 공급받기 위하여 상기 버너(30)에는 버너용 연료가스 공급라인(31)과 버너용 연료극 배가스 공급라인(32)이 각각 연결 설치된다. 상기 버너용 연료가스 공급라인(31)을 통해 핫 박스의 외부로부터 일반 도시가스, 프로판 가스와 같은 상온의 연료가스가 공급된다. 상기 버너용 연료극 배가스 공급라인(32)을 통해 상기 연료전지 스택(20)의 연료극(23)으로부터 배출되고 미반응된 수소가스를 포함하고 있는 연료극 배가스(AOG, Anode Off Gas)가 공급된다. 이 연료극 배가스는 연료전지 스택(20)에서 배출되는 직후에는 700℃ 이상의 고온이나, 여러 가지 열교환 단계를 통과한 다음 통상 70℃의 온도로 상기 버너(30)로 공급된다.
공기를 공급받기 위하여 상기 버너(30)에는 버너용 공기 공급라인(33)과 버너용 공기극 배가스 공급라인(34)이 각각 연결 설치된다. 상기 버너용 공기 공급라인(33)을 통해 핫 박스의 외부로부터 상온의 공기가 공급된다. 상기 버너용 공기극 배가스 공급라인(34)을 통해 상기 연료전지 스택(20)의 공기극(21)으로부터 배출되고 미반응된 공기를 포함하고 있는 고온의 공기극 배가스(COG, Cathode Off Gas)가 공급된다. 이 공기극 배가스는 연료전지 스택(20)에서 배출되는 직후에 약 650 ~ 700℃ 정도의 고온인 상태로 버너(30)로 직접 공급된다.
한편, 상기 핫 박스의 외부로부터 일반 도시가스, 프로판 가스와 같은 연료가스를 공급받아 연료전지 스택(20)에서 반응하기에 적합한 고온으로 열교환된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택(20)의 연료극(23)으로 공급하는 고온 열교환기(40)가 핫 박스 내부에 배치된다.
이를 위해 상기 고온 열교환기(40)에는 핫 박스의 외부로부터 연료가스를 공급하는 고온 열교환기용 연료가스 공급라인(41)이 연결 설치되고, 연료극 가스를 연료전지 스택(20)의 연료극(23)으로 공급하는 연료극 가스 공급라인(42)이 연결 설치된다. 또한, 상기 고온 열교환기(40)에는 연료가스를 고효율의 연료극 가스로 변환하는데 필요한 높은 열원을 공급하기 위하여 상기 버너(30)에서 배출되는 고온의 연소 배가스(BOG, Burner Off Gas)를 공급하는 연소 배가스 공급라인(35)이 연결 설치된다.
상기 연소 배가스는 고온 열교환기(40)를 통과한 후에도 높은 온도를 유지하고 있는데, 종래에는 이 고온 열교환기(40)를 통과한 연소 배가스(이하에서 "고온 열교환기 통과가스"라고 함)를 그대로 핫 박스 내부로 배출시키거나, 핫 박스 내부에 있는 일부 유체와 열교환하는데 사용되어 왔다.
본 발명은 높은 열량을 가진 연소 배가스를 상기 버너(30)로 공급되는 연료가스 또는 공기를 예열하는데 사용함으로써 연료전지 시스템의 전체 열 효율을 최적화한 것이다.
앞서 설명한 바와 같이, 상기 버너(30)는 각각 2가지 경로를 통해 연료가스 또는 공기를 공급받는다. 즉, 상기 버너(30)는 버너용 연료가스 공급라인(31) 및 버너용 연료극 배가스 공급라인(32)을 통해 수소를 함유한 연료가스를 공급받고, 버너용 공기 공급라인(33) 및 버너용 공기극 배가스 공급라인(34)을 통해 산소를 함유한 공기를 공급받는다. 버너(30)로 공급되는 연료가스 또는 공기의 온도가 높으면 그 만큼 높은 열량의 연소 배가스를 생성할 수 있기 때문에 버너(30)로 공급되는 연료가스 또는 공기는 온도가 높을수록 유리하다.
그러나, 상기 버너용 연료가스 공급라인(31)을 통해 공급되는 연료가스는 일반 도시가스나 프로판 가스로서 상온 상태이고, 상기 버너용 공기 공급라인(33)을 통해 공급되는 공기도 상온 상태이다.
상기 버너용 연료극 배가스 공급라인(32)을 통해 공급되는 연료극 배가스는 비록 연료전지 스택(20)의 연료극(23)에서 배출된 직후에는 높은 온도를 가지나, 핫 박스 외부에 배치된 열교환 장치를 통과하는 동안에 온도가 떨어져 버너용 연료극 배가스 공급라인(32)을 통해 버너(30)로 공급되는 시점에는 약 70℃ 정도의 온도를 가진다.
다만, 상기 버너용 공기극 배가스 공급라인(34)을 통해 공급되는 공기극 배가스는 연료전지 스택(20)에서 배출될 때 가지는 높은 온도를 그대로 유지한 채 버너(30)로 공급된다.
상술한 바와 같이, 핫 박스 내에 배치된 버너(30)로부터 공급되는 총 열량에 대하여 핫 박스의 내부에서 사용되는 열량의 차이가 전체 시스템의 효율을 결정하게 되므로, 핫 박스에서 외부로 배출되는 열량을 가능한 많이 회수하는 것이 필요하다. 본 발명자는 버너(30)로 공급되는 연료가스 또는 공기의 온도 분포를 분석한 결과를 토대로, 높은 온도의 공기가 공급되는 상기 버너용 공기극 배가스 공급라인(34)을 제외한 나머지 3 곳, 다시 말해 버너용 연료가스 공급라인(31), 버너용 연료극 배가스 공급라인(32) 및 버너용 공기 공급라인(33) 상에 상기 고온의 연소 배가스가 직접 또는 간접적으로 열교환할 수 있도록 해주는 재회수 열교환기(50)를 설치함으로써, 연료전지 시스템의 전체 열 효율을 최적화하였다.
도 1 내지 도 4는 이 중에서 상기 버너용 공기 공급라인(33) 상에 연소 배가스를 이용한 열교환기가 설치된 실시예를 나타낸다.
도 1에 도시된 바와 같이, 본 실시예에 따른 재회수 열교환기(50)는 상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 버너(30)로 공기를 공급하는 버너용 공기 공급라인(33) 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 공기 공급라인(33)을 통해 버너(30)로 공급되는 상온의 공기를 예열시키도록 구성된다.
이 때, 상기 고온의 연소 배가스는 1차적으로 연소 배가스 공급라인(35)을 통해 상기 고온 열교환기(40)에 먼저 공급된다. 고온 열교환기(40) 내에서 상기 고온 열교환기용 연료가스 공급라인(41)을 통해 공급된 연료가스와 열교환함으로써 고온의 수소가스가 포함된 연료극 가스를 생성한다. 그 결과, 상기 연소 배가스는 열교환을 통해 온도가 낮아진 고온 열교환기 통과가스로 생성되고, 이 고온 열교환기 통과가스는 상기 고온 열교환기 통과가스 공급라인(36)을 통해 본 발명에 따른 재회수 열교환기(50)로 공급된다.
상기 고온 열교환기 통과가스는 고온 열교환기(40)에서의 1차 열교환을 통해 온도가 조금 낮아지기는 하나, 여전히 400℃ 이상의 높은 온도를 유지하고 있다. 이 높은 온도의 고온 열교환기 통과가스가 재회수 열교환기(50)에서 핫 박스의 외부에서 공급되는 상온의 공기를 예열한다. 예열된 공기는 버너(30)의 내부 온도를 상승시켜 연료의 사용량을 절감할 수 있도록 해준다. 열교환을 통해 온도가 낮아진 가스는 재회수 열교환기 통과가스 배출라인(37)을 통해 핫 박스의 외부로 최종 배출된다.
본 실시예에서 상기 연소 배가스 공급라인(35), 고온 열교환기 통과가스 공급라인(36) 및 재회수 열교환기 통과가스 배출라인(37)을 통해 이송되는 가스는 연소 배가스, 고온 열교환기 통과가스, 재회수 열교환기 통과가스로 명명되고 있으나, 이는 열교환이 일어난 장치를 통과하였다는 것을 나타내기 위한 것이며, 3 가지 모두가 상기 버너(30)로부터 배출되는 연소 배가스를 의미한다. 따라서, 본 실시예는 연소 배가스를 이용하는 열교환기를 사용하여 버너로 유입되는 유체를 예열한다는 본 발명의 기술 사상에 포함된다 할 것이다.
도 2는 기본적으로 버너(30)로부터 배출되는 연소 배가스를 상기 버너용 공기 공급라인(33)에 설치된 재회수 열교환기(50)로 공급하여 핫 박스의 외부로부터 버너(30)로 공급되는 상온의 공기를 예열한다는 점에서 도 1의 실시예와 동일하다. 다만, 도 1에서는 상기 버너(30)로부터 배출된 연소 배가스가 고온 열교환기(40)로 먼저 공급되어 1차 열교환이 일어난 후에 재회수 열교환기(50)에서 2차로 열교환이 일어나도록 구성되어 있는 반면에, 도 2에서는 연소 배가스 공급라인(35)에서 분기된 연소 배가스 분기라인(35a)를 통해 연소 배가스가 재회수 열교환기(50)로 직접 공급되어 1차로 열교환이 일어나도록 하였다는 점에서 상이하다.
도 2의 실시예에 따르면 버너(30)에서 배출된 고온의 연소 배가스를 직접 재회수 열교환기(50)로 공급하여 버너용 공기 공급라인(33)을 따라 핫 박스의 외부에서 공급되는 상온의 공기를 예열하기 때문에 공기를 더욱 높은 온도로 가열할 수 있다. 따라서, 본 실시예는 버너(30)로 공급되는 연료가스 및 공기의 총 열량을 고려하여 버너용 공기 공급라인(33)을 통해 공급되는 외부 공기가 더욱 높은 열량을 가질 필요가 있는 경우에 사용될 수 있다.
본 발명에 따르면, 외부 공기를 어느 온도까지 예열할 것인지를 고려하여 연료전지 시스템을 도 1의 실시예(저온용) 또는 도 2의 실시예(고온용) 중 하나로 구성함으로써 버너(30)의 운전 범위를 더욱 효과적으로 제어할 수 있다. 또한, 도 1 및 도 2는 별개의 실시예로서 개시되어 있기는 하나, 도 1의 고온 열교환기 통과가스 공급라인(36)과 도 2의 연소 배가스 분기라인(35a)을 하나의 연료전지 시스템 내에 함께 설치하고, 삼방 밸브 등을 이용하여 2개의 공급라인 중 하나를 실시간으로 선택하여 사용하도록 구성할 수도 있다.
도 3은 버너(30)로부터 배출되는 연소 배가스를 고온 열교환기(40)에서 1차 열교환을 시킨 다음 상기 버너용 공기 공급라인(33)에 설치된 재회수 열교환기(50)로 공급하여 핫 박스의 외부로부터 버너(30)로 공급되는 공기를 예열한다는 점에서 도 1의 실시예와 동일하다. 다만, 도 1에서는 상기 재회수 열교환기(50)가 하나만 설치되어 있는 반면에 도 3에서는 제1 재회수 열교환기(50a) 및 제2 재회수 열교환기(50b)의 2 개가 설치되고, 고온 열교환기 통과가스 제1 분기라인(36a) 및 고온 열교환기 통과가스 제2 분기라인(36b)을 통해 각각 높은 온도 고온 열교환기 통과가스가 공급되도록 구성되어 있다는 점에서 상이하다.
재회수 열교환기 내에서 고온의 연소 배가스와 상온의 외부 공기 사이에 열교환이 일어나지만, 상대적으로 빠른 유체의 통과 속도로 인해 충분한 열교환이 일어나지 않을 수 있다. 본 실시예는 2 번의 열교환을 통해 이러한 문제점을 해결한 것이다. 비록 도 3은 2 개의 재회수 열교환기(50a, 50b)가 있는 것으로 도시되어 있으나, 본 발명은 이에 한정되지 아니하고, 3 개 이상의 재회수 열교환기가 설치된 형태도 당연히 포함한다 할 것이다. 미설명 도면 부호인 37a, 37b는 각각 재회수 열교환기 통과가스 제1 배출라인, 재회수 열교환기 통과가스 제2 배출라인을 나타낸다.
도 4는 버너(30)로부터 배출되는 연소 배가스가 연소 배가스 공급라인(35)에서 연소 배가스 분기라인(35a)으로 곧바로 분기되어 고온 열교환기(40)를 거치지 아니하고 버너용 공기 공급라인(33) 상에 설치된 재회수 열교환기로 직접 공급되도록 하였다는 점에서 상기 도 2의 실시예와 동일하다. 다만, 도 2에서는 상기 재회수 열교환기(50)가 하나만 설치되어 있는 반면에 도 4에서는 제1 재회수 열교환기(50a) 및 제2 재회수 열교환기(50b)의 2 개가 설치되고, 연소 배가스 제1 분기라인(35b) 및 연소 배가스 제2 분기라인(35c)를 통해 각각 고온의 연소 배가스가 공급되도록 구성되어 있다는 점에서 상이하다.
이에 따르면 2 번의 열교환을 통해 연소 배가스와 외부 공기 사이에 충분한 열교환이 일어나도록 해줄 수 있으며, 필요한 경우 3 개 이상의 재회수 열교환기가 설치된 형태도 가능하다는 점은 도 3을 참조로 상술한 바와 같다. 미설명 도면 부호인 37b, 37c는 각각 재회수 열교환기 통과가스 제1 배출라인, 재회수 열교환기 통과가스 제2 배출라인을 나타낸다.
도 5 내지 도 8은 상기 버너용 연료가스 공급라인(31) 상에 연소 배가스를 이용한 열교환기가 설치된 실시예를 나타낸다.
도 5에 도시된 바와 같이, 본 실시예에 따른 재회수 열교환기(50)는 상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 버너(30)로 연료가스를 공급하는 버너용 연료가스 공급라인(31) 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 연료가스 공급라인(31)을 통해 버너(30)로 공급되는 상온의 연료가스를 예열시키도록 구성된다.
이 때, 상기 고온의 연소 배가스는 1차적으로 연소 배가스 공급라인(35)을 통해 상기 고온 열교환기(40)에 먼저 공급된다. 고온 열교환기(40) 내에서 상기 고온 열교환기용 연료가스 공급라인(41)을 통해 공급된 연료가스와 열교환함으로써 고온의 수소가스가 포함된 연료극 가스를 생성한다. 그 결과, 상기 연소 배가스는 열교환을 통해 온도가 낮아진 고온 열교환기 통과가스로 생성되고, 이 고온 열교환기 통과가스는 상기 고온 열교환기 통과가스 공급라인(36)을 통해 본 발명에 따른 재회수 열교환기(50)로 공급된다.
상기 고온 열교환기 통과가스는 고온 열교환기(40)에서의 1차 열교환을 통해 온도가 조금 낮아지기는 하나, 여전히 400℃ 이상의 높은 온도를 유지하고 있다. 이 높은 온도의 고온 열교환기 통과가스가 재회수 열교환기(50)에서 핫 박스의 외부에서 공급되는 상온의 연료가스를 예열한다. 예열된 연료가스는 버너(30)의 내부 온도를 상승시켜 연료의 사용량을 절감할 수 있도록 해준다. 열교환을 통해 온도가 낮아진 가스는 재회수 열교환기 통과가스 배출라인(37)을 통해 핫 박스의 외부로 최종 배출된다.
본 실시예에서 상기 연소 배가스, 고온 열교환기 통과가스, 재회수 열교환기 통과가스는 모두 연소 배가스를 의미함은 상술한 바와 같으며, 따라서 본 실시예도 연소 배가스를 이용하는 열교환기를 사용하여 버너로 유입되는 유체를 예열한다는 본 발명의 기술 사상에 포함된다 할 것이다.
도 6은 기본적으로 버너(30)로부터 배출되는 연소 배가스를 상기 버너용 연료가스 공급라인(31)에 설치된 재회수 열교환기(50)로 공급하여 핫 박스의 외부로부터 버너(30)로 공급되는 상온의 연료가스를 예열한다는 점에서 도 5의 실시예와 동일하다. 다만, 도 5에서는 상기 버너(30)로부터 배출된 연소 배가스가 고온 열교환기(40)로 먼저 공급되어 1차 열교환이 일어난 후에 재회수 열교환기(50)에서 2차로 열교환이 일어나도록 구성되어 있는 반면에, 도 6에서는 연소 배가스 공급라인(35)에서 분기된 연소 배가스 분기라인(35a)를 통해 연소 배가스가 재회수 열교환기(50)로 직접 공급되어 1차로 열교환이 일어나도록 하였다는 점에서 상이하다.
도 6의 실시예에 따르면 버너(30)에서 배출된 고온의 연소 배가스를 직접 재회수 열교환기(50)로 공급하여 버너용 연료가스 공급라인(31)을 따라 핫 박스의 외부에서 공급되는 상온의 연료가스를 예열하기 때문에 연료가스를 더욱 높은 온도로 가열할 수 있다. 따라서, 본 실시예는 버너(30)로 공급되는 연료가스 및 공기의 총 열량을 고려하여 버너용 연료가스 공급라인(31)을 통해 공급되는 외부 연료가스가 더욱 높은 열량을 가질 필요가 있는 경우에 사용될 수 있다.
본 발명에 따르면, 외부 연료가스를 어느 온도까지 예열할 것인지를 고려하여 연료전지 시스템을 도 5의 실시예(저온용) 또는 도 6의 실시예(고온용) 중 하나로 구성함으로써 버너(30)의 운전 범위를 더욱 효과적으로 제어할 수 있다. 또한, 도 5 및 도 6은 별개의 실시예로서 개시되어 있기는 하나, 도 5의 고온 열교환기 통과가스 공급라인(36)과 도 6의 연소 배가스 분기라인(35a)을 하나의 연료전지 시스템 내에 함께 설치하고, 삼방 밸브 등을 이용하여 2개의 공급라인 중 하나를 실시간으로 선택하여 사용하도록 구성할 수도 있다.
도 7은 버너(30)로부터 배출되는 연소 배가스를 고온 열교환기(40)에서 1차 열교환을 시킨 다음 상기 버너용 연료가스 공급라인(31)에 설치된 재회수 열교환기(50)로 공급하여 핫 박스의 외부로부터 버너(30)로 공급되는 연료가스를 예열한다는 점에서 도 5의 실시예와 동일하다. 다만, 도 5에서는 상기 재회수 열교환기(50)가 하나만 설치되어 있는 반면에 도 7에서는 제1 재회수 열교환기(50a) 및 제2 재회수 열교환기(50b)의 2 개가 설치되고, 고온 열교환기 통과가스 제1 분기라인(36a) 및 고온 열교환기 통과가스 제2 분기라인(36b)를 통해 각각 고온의 고온 열교환기 통과가스가 공급되도록 구성되어 있다는 점에서 상이하다.
재회수 열교환기 내에서 고온의 연소 배가스와 상온의 외부 연료가스 사이에 열교환이 일어나지만, 상대적으로 빠른 유체의 통과 속도로 인해 충분한 열교환이 일어나지 않을 수 있다. 본 실시예는 2 번의 열교환을 통해 이러한 문제점을 해결한 것이다. 비록 도 7은 2 개의 재회수 열교환기(50a, 50b)가 있는 것으로 도시되어 있으나, 본 발명은 이에 한정되지 아니하고, 3 개 이상의 재회수 열교환기가 설치된 형태도 당연히 포함한다 할 것이다. 미설명 도면 부호인 37a, 37b는 각각 재회수 열교환기 통과가스 제1 배출라인, 재회수 열교환기 통과가스 제2 배출라인을 나타낸다.
도 8은 버너(30)로부터 배출되는 연소 배가스가 연소 배가스 공급라인(35)에서 연소 배가스 분기라인(35a)으로 곧바로 분기되어 고온 열교환기(40)를 거치지 아니하고 버너용 연료가스 공급라인(31) 상에 설치된 재회수 열교환기로 직접 공급되도록 하였다는 점에서 상기 도 6의 실시예와 동일하다. 다만, 도 6에서는 상기 재회수 열교환기(50)가 하나만 설치되어 있는 반면에 도 8에서는 제1 재회수 열교환기(50a) 및 제2 재회수 열교환기(50b)의 2 개가 설치되고, 연소 배가스 제1 분기라인(35b) 및 연소 배가스 제2 분기라인(35c)를 통해 각각 고온의 연소 배가스가 공급되도록 구성되어 있다는 점에서 상이하다.
이에 따르면 2 번의 열교환을 통해 연소 배가스와 외부 연료가스 사이에 충분한 열교환이 일어나도록 해줄 수 있으며, 필요한 경우 3 개 이상의 재회수 열교환기가 설치된 형태도 가능하다는 점은 도 7을 참조로 상술한 바와 같다. 미설명 도면 부호인 37b, 37c는 각각 재회수 열교환기 통과가스 제1 배출라인, 재회수 열교환기 통과가스 제2 배출라인을 나타낸다.
도 9 내지 도 12는 상기 버너용 연료극 배가스 공급라인(32)에 연소 배가스를 이용한 열교환기가 설치된 실시예를 나타낸다.
도 9에 도시된 바와 같이, 본 실시예에 따른 재회수 열교환기(50)는 상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 버너(30)로 미연소 수소가 포함된 연료극 배가스를 공급하는 버너용 연료극 배가스 공급라인(32) 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 연료극 배가스 공급라인(32)을 통해 버너(30)로 공급되는 연료가스를 예열시키도록 구성된다.
이 연료극 배가스는 자체가 매우 고온이기 때문에 핫 박스 외부로 배출된 다음에도 여러 번의 열교환을 통해 열을 회수하는 단계를 거치게 된다. 대표적으로 연료극 배가스는 연료전지 시스템 상에 설치된 축열조(미도시)를 통과하면서 온수와 열교환된다. 이 온수는 가정 내의 난방 등에 사용된다. 또한, 연료극 배가스는 연료전지 스택(20) 내에서 화학 반응 중에 발생한 수분이 수증기 형태로 함유되어 있다. 따라서, 이 연료극 배가스를 버너(30)로 공급하여 미반응된 수소를 재사용하기 위해서는 연료극 배가스에 포함된 수증기를 제거할 필요가 있다. 이를 위해 연료극 배가스는 연료전지 시스템 상에 설치된 응축기(미도시)를 통과하면서 수증기를 분리 배출하도록 구성되고, 이 과정에서 열교환이 일어나 온도가 하강한다.
이와 같이, 연료극 배가스는 온수 등을 공급하기 위한 축열조나 연료극 배가스 내에 함유된 수증기를 분리 배출하기 위한 응축기를 통과하는 과정에서 열교환이 일어나 통상적으로 약 70℃ 정도의 온도로 버너(30)로 공급된다. 따라서, 본 실시예에 따르면 재회수 열교환기(50) 내에서 400℃ 이상이 되는 연소 배가스를 이용하여 70℃의 연료극 배가스를 예열하게 된다.
이 때, 상기 고온의 연소 배가스는 1차적으로 연소 배가스 공급라인(35)을 통해 상기 고온 열교환기(40)에 먼저 공급된다. 고온 열교환기(40) 내에서 상기 고온 열교환기용 연료가스 공급라인(41)을 통해 공급된 연료가스와 열교환함으로써 고온의 수소가스가 포함된 연료극 가스를 생성한다. 그 결과, 상기 연소 배가스는 열교환을 통해 온도가 낮아진 고온 열교환기 통과가스로 생성되고, 이 고온 열교환기 통과가스는 상기 고온 열교환기 통과가스 공급라인(36)을 통해 본 발명에 따른 재회수 열교환기(50)로 공급된다.
상기 고온 열교환기 통과가스는 고온 열교환기(40)에서의 1차 열교환을 통해 온도가 조금 낮아지기는 하나, 여전히 400℃ 이상의 높은 온도를 유지하고 있다. 이 높은 온도의 고온 열교환기 통과가스가 재회수 열교환기(50)에서 핫 박스의 외부에서 공급되는 연료극 배가스를 예열한다. 예열된 연료극 배가스는 버너(30)의 내부 온도를 상승시켜 연료의 사용량을 절감할 수 있도록 해준다. 열교환을 통해 온도가 낮아진 가스는 열교환기 통과가스 배출라인(37)을 통해 핫 박스의 외부로 최종 배출된다.
본 실시예에서 상기 연소 배가스, 고온 열교환기 통과가스, 재회수 열교환기 통과가스는 모두 연소 배가스를 의미함은 상술한 바와 같으며, 따라서 본 실시예도 연소 배가스를 이용하는 열교환기를 사용하여 버너로 유입되는 유체를 예열한다는 본 발명의 기술 사상에 포함된다 할 것이다.
도 10은 기본적으로 버너(30)로부터 배출되는 연소 배가스를 상기 버너용 연료극 배가스 공급라인(32)에 설치된 재회수 열교환기(50)로 공급하여 핫 박스의 외부로부터 버너(30)로 공급되는 연료극 배가스를 예열한다는 점에서 도 9의 실시예와 동일하다. 다만, 도 9에서는 상기 버너(30)로부터 배출된 연소 배가스가 고온 열교환기(40)로 먼저 공급되어 1차 열교환이 일어난 후에 재회수 열교환기(50)에서 2차로 열교환이 일어나도록 구성되어 있는 반면에, 도 10에서는 연소 배가스 공급라인(35)에서 분기된 연소 배가스 분기라인(35a)를 통해 연소 배가스가 재회수 열교환기(50)로 직접 공급되어 1차로 열교환이 일어나도록 하였다는 점에서 상이하다.
도 10의 실시예에 따르면 버너(30)에서 배출된 고온의 연소 배가스를 직접 재회수 열교환기(50)로 공급하여 버너용 연료극 배가스 공급라인(32)을 따라 핫 박스의 외부에서 공급되는 연료극 배가스를 예열하기 때문에 연료극 배가스를 더욱 높은 온도로 가열할 수 있다. 따라서, 본 실시예는 버너(30)로 공급되는 연료가스 및 공기의 총 열량을 고려하여 버너용 연료극 배가스 공급라인(32)을 통해 공급되는 외부 연료가스가 더욱 높은 열량을 가질 필요가 있는 경우에 사용될 수 있다.
본 발명에 따르면, 연료극 배가스를 어느 온도까지 예열할 것인지를 고려하여 연료전지 시스템을 도 9의 실시예(저온용) 또는 도 10의 실시예(고온용) 중 하나로 구성함으로써 버너(30)의 운전 범위를 더욱 효과적으로 제어할 수 있다. 또한, 도 9 및 도 10은 별개의 실시예로서 개시되어 있기는 하나, 도 9의 고온 열교환기 통과가스 공급라인(36)과 도 10의 연소 배가스 분기라인(35a)을 하나의 연료전지 시스템 내에 함께 설치하고, 삼방 밸브 등을 이용하여 2개의 공급라인 중 하나를 실시간으로 선택하여 사용하도록 구성할 수도 있다.
도 11은 버너(30)로부터 배출되는 연소 배가스를 고온 열교환기(40)에서 1차 열교환을 시킨 다음 상기 버너용 연료극 배가스 공급라인(32)에 설치된 재회수 열교환기(50)로 공급하여 핫 박스의 외부로부터 버너(30)로 공급되는 연료가스를 예열한다는 점에서 도 9의 실시예와 동일하다. 다만, 도 9에서는 상기 재회수 열교환기(50)가 하나만 설치되어 있는 반면에 도 11에서는 제1 재회수 열교환기(50a) 및 제2 재회수 열교환기(50b)의 2 개가 설치되고, 고온 열교환기 통과가스 제1 분기라인(36a) 및 고온 열교환기 통과가스 제2 분기라인(36b)를 통해 각각 고온의 고온 열교환기 통과가스가 공급되도록 구성되어 있다는 점에서 상이하다.
재회수 열교환기 내에서 고온의 연소 배가스와 연료극 배가스 사이에 열교환이 일어나지만, 상대적으로 빠른 유체의 통과 속도로 인해 충분한 열교환이 일어나지 않을 수 있다. 본 실시예는 2 번의 열교환을 통해 이러한 문제점을 해결한 것이다. 비록 도 11은 2 개의 재회수 열교환기(50a, 50b)가 있는 것으로 도시되어 있으나, 본 발명은 이에 한정되지 아니하고, 3 개 이상의 재회수 열교환기가 설치된 형태도 당연히 포함한다 할 것이다. 미설명 도면 부호인 37a, 37b는 각각 재회수 열교환기 통과가스 제1 배출라인, 재회수 열교환기 통과가스 제2 배출라인을 나타낸다.
도 12는 버너(30)로부터 배출되는 연소 배가스가 연소 배가스 공급라인(35)에서 연소 배가스 분기라인(35a)으로 곧바로 분기되어 고온 열교환기(40)를 거치지 아니하고 버너용 연료극 배가스 공급라인(32) 상에 설치된 재회수 열교환기로 직접 공급되도록 하였다는 점에서 상기 도 10의 실시예와 동일하다. 다만, 도 10에서는 상기 재회수 열교환기(50)가 하나만 설치되어 있는 반면에 도 12에서는 제1 재회수 열교환기(50a) 및 제2 재회수 열교환기(50b)의 2 개가 설치되고, 연소 배가스 제1 분기라인(35b) 및 연소 배가스 제2 분기라인(35c)를 통해 각각 고온의 연소 배가스가 공급되도록 구성되어 있다는 점에서 상이하다.
이에 따르면 2 번의 열교환을 통해 연소 배가스와 외부 연료가스 사이에 충분한 열교환이 일어나도록 해줄 수 있으며, 필요한 경우 3 개 이상의 재회수 열교환기가 설치된 형태도 가능하다는 점은 도 11을 참조로 상술한 바와 같다. 미설명 도면 부호인 37b, 37c는 각각 재회수 열교환기 통과가스 제1 배출라인, 재회수 열교환기 통과가스 제2 배출라인을 나타낸다.
마지막으로, 연소 배가스 공급라인(35)을 통해 버너(30)로부터 배출되는 연소 배가스를 이용하여 버너(30)로 공급되는 유체를 예열함에 있어서, 도 1과 같이 버너용 공기 공급라인(33)을 통해 공급되는 외부 공기를 예열하는 것과, 도 5와 같이 버너용 연료가스 공급라인(31)을 통해 공급되는 연료가스 또는 도 9와 같이 버너용 연료극 배가스 공급라인(32)을 통해 공급되는 연료극 배가스를 예열하는 것은 각각의 공급라인의 유량 차이로 인해 열교환 효율이 달라질 수 있다. 이를 이용하여 핫 박스 외부로 최종 배출되는 연소 배가스의 활용을 다르게 설계할 수 있다. 통상적으로, 연소 배가스 공급라인(35)의 공급 유량이 가장 크고, 버너용 공기 공급라인(33)의 공급 유량이 다음으로 크며, 버너용 연료가스 공급라인(31) 및 버너용 연료극 배가스 공급라인(32)의 공급 유량이 상대적으로 매우 작다.
공급 유량의 차이가 크지 않은 연소 배가스와 외부 공기 사이에는 열교환이 충분히 일어나 최종적으로 배출되는 재회수 열교환기 통과가스의 온도가 낮아진다. 그 결과, 후속하는 축열조에서 열교환 효율이 상대적으로 감소한다. 반면에 공급 유량의 차이가 큰 연소 배가스와 연료가스(또는 연료극 배가스) 사이에는 열교환이 충분히 일어나지 않아 최종적으로 배출되는 재회수 열교환기 통과가스의 온도가 높아진다. 그 결과, 후속하는 축열조에서 열교환 효율이 상대적으로 증가한다. 연료전지 시스템은 전기와 열을 동시에 생성할 수 있는 시스템이므로, 축열조에서의 열의 회수 효율을 고려하여 본 발명의 여러 실시예 중에서 공기를 예열하는 것으로 할지 연료가스(또는 연료극 배가스)를 예열하는 것으로 할지를 선택할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징들이 변경되지 않고서 다른 구체적인 형태로 실시될 수 있다는 것으로 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
20: 연료전지 스택 21: 공기극
22: 전해질 23: 연료극
25: 스택용 공기 공급라인 30: 버너
31: 버너용 연료가스 공급라인 32: 버너용 연료극 배가스 공급라인
33: 버너용 공기 공급라인 34: 버너용 공기극 배가스 공급라인
35: 연소 배가스 공급라인 36: 고온 열교환기 통과가스 공급라인
37: 재회수 열교환기 통과가스 배출라인 40: 고온 열교환기
41: 고온 열교환기용 연료가스 공급라인 42: 연료극 가스 공급라인
50: 재회수 열교환기

Claims (11)

  1. 단열 재료로 된 핫 박스;
    상기 핫 박스 내에 배치되며, 공기극, 전해질 및 연료극을 포함하는 연료전지 스택;
    상기 핫 박스 내에 배치되며, 연료가스를 공급받아 고온의 수소가 포함된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택의 연료극으로 공급하는 고온 열교환기;
    상기 핫 박스 내에 배치되며, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너; 및
    상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 상기 버너로 공기를 공급하는 버너용 공기 공급라인 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 공기 공급라인을 통해 상기 버너로 공급되는 공기를 예열시키는 재회수 열교환기;를 포함하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  2. 청구항 1에 있어서,
    상기 버너에는 상기 연소 배가스를 상기 고온 열교환기로 공급하는 연소 배가스 공급라인이 연결되고, 상기 고온 열교환기에는 상기 연소 배가스가 상기 고온 열교환기로 공급된 상기 연료가스와 열교환을 통해 상기 연료극 가스를 생성하는 과정에서 만들어지는 고온 열교환기 통과가스를 상기 재회수 열교환기로 공급하는 고온 열교환기 통과가스 공급라인이 연결된 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 재회수 열교환기는 상기 버너용 공기 공급라인 상에 하나 또는 둘 이상 설치되는 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  4. 단열 재료로 된 핫 박스;
    상기 핫 박스 내에 배치되며, 공기극, 전해질 및 연료극을 포함하는 연료전지 스택;
    상기 핫 박스 내에 배치되며, 연료가스를 공급받아 고온의 수소가 포함된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택의 연료극으로 공급하는 고온 열교환기;
    상기 핫 박스 내에 배치되며, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너; 및
    상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 상기 버너로 연료가스를 공급하는 버너용 연료가스 공급라인 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 연료가스 공급라인을 통해 상기 버너로 공급되는 연료가스를 예열시키는 재회수 열교환기;를 포함하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  5. 청구항 4에 있어서,
    상기 버너에는 상기 연소 배가스를 상기 고온 열교환기로 공급하는 연소 배가스 공급라인이 연결되고, 상기 고온 열교환기에는 상기 연소 배가스가 상기 고온 열교환기로 공급된 상기 연료가스와 열교환을 통해 상기 연료극 가스를 생성하는 과정에서 만들어지는 고온 열교환기 통과가스를 상기 재회수 열교환기로 공급하는 고온 열교환기 통과가스 공급라인이 연결된 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  6. 청구항 4 또는 청구항 5에 있어서,
    상기 재회수 열교환기는 상기 버너용 연료가스 공급라인 상에 하나 또는 둘 이상 설치되는 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  7. 단열 재료로 된 핫 박스;
    상기 핫 박스 내에 배치되며, 공기극, 전해질 및 연료극을 포함하는 연료전지 스택;
    상기 핫 박스 내에 배치되며, 연료가스를 공급받아 고온의 수소가 포함된 연료극 가스를 생성하고 이 연료극 가스를 상기 연료전지 스택의 연료극으로 공급하는 고온 열교환기;
    상기 핫 박스 내에 배치되며, 연료가스 및 공기를 공급받아 고온의 연소 배가스를 생성하고 이 연소 배가스를 연료전지 시스템 내에 열원으로 공급하는 버너; 및
    상기 핫 박스 내에 배치되며, 상기 핫 박스 외부로부터 상기 연료전지 스택의 연료극으로부터 배출된 연료극 배가스를 상기 버너로 공급하는 버너용 연료극 배가스 공급라인 상에 설치되고, 상기 고온의 연소 배가스를 이용하여 상기 버너용 연료극 배가스 공급라인을 통해 상기 버너로 공급되는 연료가스를 예열시키는 재회수 열교환기;를 포함하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  8. 청구항 7에 있어서,
    상기 버너에는 상기 연소 배가스를 상기 고온 열교환기로 공급하는 연소 배가스 공급라인이 연결되고, 상기 고온 열교환기에는 상기 연소 배가스가 상기 고온 열교환기로 공급된 상기 연료가스와 열교환을 통해 상기 연료극 가스를 생성하는 과정에서 만들어지는 고온 열교환기 통과가스를 상기 재회수 열교환기로 공급하는 고온 열교환기 통과가스 공급라인이 연결된 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  9. 청구항 7 또는 청구항 8에 있어서,
    상기 재회수 열교환기는 상기 버너용 연료극 배가스 공급라인 상에 하나 또는 둘 이상 설치되는 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  10. 청구항 7에 있어서,
    상기 연료극 배가스는 연료전지 시스템 상에 설치된 축열조를 통과하면서 열교환을 한 다음 상기 버너용 연료극 배가스 공급라인으로 공급되는 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
  11. 청구항 7 또는 청구항 10에 있어서,
    상기 연료극 배가스는 연료전지 시스템 상에 설치된 응축기를 통과하면서 수증기를 분리 배출한 다음 상기 버너용 연료극 배가스 공급라인으로 공급되는 것을 특징으로 하는 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템.
PCT/KR2017/006434 2016-06-23 2017-06-20 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템 WO2017222267A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17815680.8A EP3477752A4 (en) 2016-06-23 2017-06-20 FUEL CELL SYSTEM COMPRISING A HEAT EXCHANGER USING A COMBUSTION EXHAUST GAS
US16/313,379 US20190148743A1 (en) 2016-06-23 2017-06-20 Fuel cell system including heat exchanger using burner off-gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160078436A KR101897486B1 (ko) 2016-06-23 2016-06-23 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
KR10-2016-0078436 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017222267A1 true WO2017222267A1 (ko) 2017-12-28

Family

ID=60784889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006434 WO2017222267A1 (ko) 2016-06-23 2017-06-20 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템

Country Status (4)

Country Link
US (1) US20190148743A1 (ko)
EP (1) EP3477752A4 (ko)
KR (1) KR101897486B1 (ko)
WO (1) WO2017222267A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447367B (zh) * 2021-12-31 2024-04-19 武汉科技大学 一种集成化热工部件、发电系统及固体氧化物燃料电池
CN114361513B (zh) * 2022-01-13 2024-04-16 潍柴动力股份有限公司 一种氢燃料电池发动机加热氢气的系统和方法
GB2621338A (en) * 2022-08-08 2024-02-14 Ceres Ip Co Ltd Fuel cell system and method of operating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246047A (ja) * 2001-02-21 2002-08-30 Nissan Motor Co Ltd 燃料電池システム
KR20100083027A (ko) 2009-01-12 2010-07-21 한국과학기술원 고체산화물 연료전지 시스템
KR20120082582A (ko) * 2011-01-14 2012-07-24 삼성중공업 주식회사 연료전지시스템 및 이를 구비한 선박
KR20130030998A (ko) * 2011-09-20 2013-03-28 에스티엑스중공업 주식회사 촉매 연소기를 구비하는 가정용 연료전지 보일러 시스템
KR20130136099A (ko) * 2012-06-04 2013-12-12 주식회사 경동나비엔 연료전지 시스템
KR20160030281A (ko) * 2013-07-09 2016-03-16 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 개량된 연료 전지 시스템 및 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128700A (en) * 1977-11-26 1978-12-05 United Technologies Corp. Fuel cell power plant and method for operating the same
US20050019626A1 (en) * 2003-07-21 2005-01-27 Burch Steven D. High-efficiency fuel processor via steam integration from a water-cooled stack
US7964176B2 (en) * 2005-03-29 2011-06-21 Chevron U.S.A. Inc. Process and apparatus for thermally integrated hydrogen generation system
JP4981281B2 (ja) * 2005-08-29 2012-07-18 電源開発株式会社 燃料電池システムおよび燃料電池システムの制御方法
WO2007110587A2 (en) * 2006-03-24 2007-10-04 Ceres Intellectual Property Company Limited Sofc stack system assembly with thermal enclosure
JP2009099437A (ja) * 2007-10-18 2009-05-07 Honda Motor Co Ltd 燃料電池モジュール
KR101009453B1 (ko) * 2008-01-15 2011-01-19 한국전력공사 열적 자립운전이 가능한 고체 산화물 연료전지 시스템
JP2009205868A (ja) * 2008-02-26 2009-09-10 Think Tank Phoenix:Kk 固体電解質燃料電池システムおよび固体電解質燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246047A (ja) * 2001-02-21 2002-08-30 Nissan Motor Co Ltd 燃料電池システム
KR20100083027A (ko) 2009-01-12 2010-07-21 한국과학기술원 고체산화물 연료전지 시스템
KR20120082582A (ko) * 2011-01-14 2012-07-24 삼성중공업 주식회사 연료전지시스템 및 이를 구비한 선박
KR20130030998A (ko) * 2011-09-20 2013-03-28 에스티엑스중공업 주식회사 촉매 연소기를 구비하는 가정용 연료전지 보일러 시스템
KR20130136099A (ko) * 2012-06-04 2013-12-12 주식회사 경동나비엔 연료전지 시스템
KR20160030281A (ko) * 2013-07-09 2016-03-16 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 개량된 연료 전지 시스템 및 방법

Also Published As

Publication number Publication date
EP3477752A4 (en) 2019-08-14
US20190148743A1 (en) 2019-05-16
KR101897486B1 (ko) 2018-09-12
EP3477752A1 (en) 2019-05-01
KR20180000451A (ko) 2018-01-03

Similar Documents

Publication Publication Date Title
WO2021230562A1 (ko) 암모니아 기반 고체산화물 연료전지(sofc) 시스템
WO2024063347A1 (ko) 공기 및 연료 공급 모듈 및 이를 구비하는 연료전지 시스템
US7169495B2 (en) Thermally integrated SOFC system
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2013100490A1 (ko) 연료전지 하이브리드 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2019209045A1 (ko) 연료전지 시스템
WO2010005165A2 (en) Fuel processor of fuel cell system
CN100573995C (zh) 燃料电池设备内的预热装置
WO2021075802A1 (ko) 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치
WO2013183853A1 (ko) 연료전지 시스템
WO2017003089A1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
KR101457589B1 (ko) 연소기의 가연 한계 확장 구조를 갖는 연료전지 시스템
WO2013183854A1 (ko) 연료전지와 보일러의 복합 시스템
WO2019093691A1 (ko) 2단 보일러를 구비한 가압 기력발전 시스템 및 그에 사용되는 보일러
WO2017222265A1 (ko) 온도 조절용 열교환 수단을 구비한 연료전지
WO2021080260A1 (ko) 하이브리드 발전 시스템
WO2020262776A1 (ko) 연료처리장치 및 그 연료처리장치를 이용하는 가상발전시스템
WO2010079922A2 (ko) 연료극 가스 가열 겸용 연료전지용 증기 발생기
JP2018133169A (ja) 燃料電池システム
WO2015199333A1 (ko) 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법
WO2023234553A1 (ko) Soe-sofc-ccs 하이브리드 시스템
KR102570606B1 (ko) 연료전지 개질부의 폐열을 활용한 연료비 절감장치
WO2023096145A1 (ko) 발열체에 의한 승온이 적용되는 암모니아 기반 고체산화물 연료전지(sofc) 시스템, 및 이의 작동방법
KR20140081123A (ko) 고효율 연료전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815680

Country of ref document: EP

Effective date: 20190123