WO2015199333A1 - 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법 - Google Patents

열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법 Download PDF

Info

Publication number
WO2015199333A1
WO2015199333A1 PCT/KR2015/004978 KR2015004978W WO2015199333A1 WO 2015199333 A1 WO2015199333 A1 WO 2015199333A1 KR 2015004978 W KR2015004978 W KR 2015004978W WO 2015199333 A1 WO2015199333 A1 WO 2015199333A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
fuel cell
pipe
cell module
endothermic
Prior art date
Application number
PCT/KR2015/004978
Other languages
English (en)
French (fr)
Inventor
이용
박세진
김진형
신석재
손승길
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140079135A external-priority patent/KR101589176B1/ko
Priority claimed from KR1020140079134A external-priority patent/KR20160007749A/ko
Priority claimed from KR1020140079133A external-priority patent/KR101589178B1/ko
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to EP15810891.0A priority Critical patent/EP3163660A4/en
Priority to JP2016573068A priority patent/JP2017527945A/ja
Publication of WO2015199333A1 publication Critical patent/WO2015199333A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell module having an increased thermal efficiency, a heating system using the same, and a control method thereof, and more particularly, fuel, air, and water introduced into a solid oxide fuel cell (SOFC). Preheating enables stable operation even when the temperature of the gas discharged by the burner, which is the main heat source of the fuel cell, is lower than before, and the overall fuel cell efficiency is increased by saving fuel in the burner.
  • the present invention relates to a fuel cell module having an increased thermal efficiency that can be appropriately used for heating according to an operating temperature of a fuel cell, a heating system using the same, and a control method thereof.
  • the Renewable Energy Supply Mandate which has been in force since 2012, is a zero-book that mandates more than a certain amount of electricity generation to generate a certain amount of renewable energy.
  • the promotion of the spread is being promoted.
  • a fuel cell is a device that converts chemical energy contained in a fuel into electrical energy.
  • a fuel cell module generally stacks hydrogen in reformed gas obtained by reforming a fuel such as natural gas, methanol, gasoline, and oxygen in air. It refers to a power generation system that produces electricity by electrochemical reactions at the anode and cathode of a stack).
  • reaction formula and total reaction formula at each pole are as follows.
  • Fuel cells include polymer electrolyte fuel cells (PEMFC), direct methanol fuel cells (DMFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and alkaline fuel cells (AFC).
  • PEMFC polymer electrolyte fuel cells
  • DMFC direct methanol fuel cells
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • AFC alkaline fuel cells
  • SOFC solid oxide fuel cell
  • SOFC solid oxide fuel cell
  • SOFC has an operating temperature of about 700 ° C. and operates at a very high temperature compared to other types of fuel cells.
  • the fuel cell is driven by air, fuel, and water, and in order to reform hydrogen into fuel, which is a direct fuel of the fuel cell, the fuel and water must be preheated to a temperature of about 300 to 400 ° C. and introduced into the reformer.
  • a heat medium such as exhaust gas generated from the fuel cell module is sent to a heat exchanger to exchange heat with hot water or hot water. This is the general way.
  • the present invention has been made to solve such a problem, the object of the present invention in generating power by using a fuel cell, by efficiently preheating the air and water flowing into the fuel cell to enable a stable operation of the fuel cell module It is to provide a fuel cell module having increased thermal efficiency, a heating system using the same, and a control method thereof, which can reduce fuel to be burned and increase the overall efficiency of the system.
  • an object of the present invention is to increase the heat efficiency to maintain the proper operating temperature of the solid oxide fuel cell while at the same time supplying the heating water more efficiently by minimizing the loss of heat in using the heat generated from the fuel cell for heating.
  • An object of the present invention is to efficiently heat the air and water flowing into the fuel cell in the power generation using the fuel cell or to generate heat from the fuel cell to enable a stable operation as a whole and to enter the fuel to the burner It is to provide a fuel cell module with increased thermal efficiency, a heating system using the same, and a method of controlling the same, which can reduce and increase overall efficiency.
  • the solid oxide fuel cell module generating electricity by receiving fuel and air includes a steam generator for heating and steaming preheated water or fuel in an endothermic water pipe or an endothermic gas pipe, respectively; A reformer for reforming hydrogen gas by reforming the fuel supplied from the steam generator; A fuel cell stack that generates electricity and heat by an electrochemical reaction between hydrogen gas supplied from the reformer and air supplied from the outside; And a heat insulating material installed to surround the stamp generator, the reformer, and the fuel cell stack, wherein the endothermic water pipe or the endothermic gas pipe is disposed along the inner surface of the heat insulating material, and the endothermic water pipe or the endothermic gas pipe.
  • the fuel is preheated by heat exchange with the heat insulating material, and is used for power generation of the fuel cell stack via the steam generator and the reformer.
  • the water or fuel preheated by receiving the fuel in the endothermic water pipe or the endothermic gas pipe disposed along the inner surface of the heat insulating material, and the electricity of the air supplied from the outside A fuel cell module generating electricity and heat by a chemical reaction;
  • a hot water tank storing hot water heated by heat exchange between water introduced into the endothermic water pipe of the fuel cell module and the inside of the heat insulating material;
  • a heating module in which hot water supplied from the fuel cell module or the hot water tank is used for heating;
  • a hot water supply module for controlling the flow of hot water between the fuel cell module, the hot water tank, and the heating module according to whether the temperature of the fuel cell module is greater than, equal to, less than a reference set value, and whether the heating module is operated. Characterized in that.
  • the temperature supply module the hot water supplied from the endothermic water pipe inside the insulation when the temperature of the temperature sensor exceeds a set reference value Is supplied to the heating module via the hot water supply pipe and the hot water tank and then controlled to be returned to the endothermic water pipe through the first return pipe and the second return pipe,
  • the temperature supply module when the temperature of the temperature sensor is equal to the set reference value, the hot water supplied from the endothermic water pipe inside the heat insulating material is supplied directly to the heating module through the second hot water distribution pipe and then the first return water Control to return to the heat absorbing pipe inside the heat insulating material through the pipe and the second return pipe,
  • the hot water supply module when the temperature of the temperature sensor is less than the set reference value, the hot water supplied from the hot water tank is supplied to the heating module through the first hot water distribution pipe and then the first return pipe and the third return pipe. Through the control to be returned to the hot water tank,
  • the hot water supply module supplies hot water supplied from an endothermic pipe inside the insulation to the hot water tank through the hot water supply pipe to warm the hot water stored in the hot water tank.
  • the third return pipe and the second return pipe can be controlled to be returned to the endothermic water pipe inside the insulation.
  • the bypass valve is opened on the hot water supply pipe connecting the fuel cell module and the hot water tank to the endothermic water pipe.
  • the heated water may be controlled to be supplied to the fuel cell module or the hot water tank.
  • the thermal efficiency is increased by gas preheating according to an embodiment of the present invention
  • the fuel and the water required to operate the fuel cell module are heated by the high temperature exhaust gas of the burner which is the main heat source of the fuel cell module.
  • the heating system using a fuel cell module according to an embodiment of the present invention to prevent unnecessary heat loss in the process of transferring heat generated from the fuel cell module to the heat exchanger by the heat medium or heat exchange occurs in the heat exchanger
  • the heat generated from the fuel cell module can be efficiently used for heating.
  • the solid oxide fuel cell module can be operated by maintaining a high temperature state, and controls heat generated from the solid oxide fuel cell module. At the same time, this heat can be efficiently used for heating.
  • FIG. 1 is a plan view of a fuel cell module having increased thermal efficiency by gas preheating according to an embodiment of the present invention.
  • FIG. 2 is a front view of a fuel cell module in which thermal efficiency is increased by gas preheating, showing an endothermic water pipe according to an embodiment of the present invention.
  • FIG 3 is a front view of a fuel cell module having increased thermal efficiency by gas preheating, showing an endothermic gas pipe according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a fuel cell module in which thermal efficiency is increased by gas preheating of the endothermic water pipe and the endothermic gas pipe according to one embodiment of the present invention.
  • FIG. 5 is a plan view illustrating an endothermic pipe passing through a heat insulating material and a heat insulating material in the fuel cell module according to the exemplary embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view taken along the line A-A of FIG.
  • FIG. 7 is a schematic operation of the heating system using a fuel cell module according to an embodiment of the present invention.
  • FIG 8 is an operation state diagram of the heating system when the temperature of the fuel cell module according to an embodiment of the present invention exceeds a set reference value.
  • FIG. 9 is an operation state diagram of the heating system when the temperature of the fuel cell module according to the exemplary embodiment of the present invention is equal to the set reference value.
  • FIG. 10 is a diagram illustrating an operating state of a heating system when a temperature of a fuel cell module according to an embodiment of the present invention is lower than a preset reference value.
  • 11 is an operation state diagram of the heating system when not using the heating of the heating system using the fuel cell module according to an embodiment of the present invention.
  • FIG. 12 is a plan view of a fuel cell in which thermal efficiency is increased by gas preheating according to another embodiment of the present invention.
  • FIG. 1 is a plan view of a fuel cell module having increased thermal efficiency by gas preheating according to an embodiment of the present invention.
  • the fuel cell module 100 having increased thermal efficiency by gas preheating has a heat insulating material 110 for maintaining the inside at a high temperature which is easy for an electrochemical reaction, and the heat insulating material. It is disposed in the interior space, the steam generator 120 for generating steam, the fuel reformer 130 for receiving the steam generated from the steam generator 120 to reform the fuel to refine the hydrogen gas, the fuel reformer
  • the fuel cell stack 140 generates electricity and heat by the electrochemical reaction of the hydrogen gas supplied from the 130 and the air supplied from the outside.
  • the heat insulating material 110 may be installed to surround the outside of the fuel cell module 100 to insulate the space inside the fuel cell module 100.
  • the steam generator 120 generates steam by heating the water and fuel heated in the endothermic water pipe (P1) and the endothermic gas pipe (P2), respectively, by the exhaust gas of a high-temperature burner and the steam to the reformer 130. Configured to supply.
  • the endothermic water pipe (P1) is installed along the surface of the heat insulator (100) inside the heat insulator (110) is preheated while the heat insulator 110 and water heat exchanger It is configured to be heated by the exhaust gas of the high temperature burner in the 120 to enter the fuel reformer 130.
  • the endothermic gas pipe (P2) is also installed along the surface of the heat insulating material 110 inside the heat insulating material 110 to supply fuel to the fuel reformer 130 while exchanging heat with the heat insulating material (110). It is composed.
  • Water and fuel preheated by heat-exchanging with the heat insulator 110 in the endothermic water pipe P1 and the endothermic gas pipe P2 are used for power generation through the steam generator 120.
  • the water and the fuel is continuously introduced into the steam generator 120 through the endothermic water pipe (P1) and the endothermic gas pipe (P2) to ensure a contact area with the heat source for heating time and heat exchange. Continuous, fast and even heating of the fuel is possible.
  • the endothermic gas pipe (P2) is preferably installed more inside the endothermic water pipe (P1) relative to the center of the fuel cell module 100.
  • the fuel flowing through the endothermic gas pipe (P2) has a higher specific heat than water flowing through the endothermic water pipe (P1) and requires a lot of heat energy for heating, and in the case of fuel, the endothermic gas pipe ( P2) is introduced into the endothermic water pipe (P1) in the case of water in the liquid state, so the pressure received by the endothermic water pipe (P1) increases when the water phase changes into water vapor in the endothermic water pipe (P1). This is because the battery module may be overwhelmed.
  • FIG. 2 and 3 are front views of a fuel cell module having increased thermal efficiency by gas preheating, respectively, illustrating an endothermic water pipe and an endothermic gas pipe according to an embodiment of the present invention
  • FIG. 4 is an embodiment of the present invention.
  • 5 is a perspective view of a fuel cell module having increased heat efficiency by gas preheating, wherein the endothermic water pipe and the endothermic gas pipe are shown as one pipe
  • FIG. 5 is a heat insulating material and a heat insulating material inside the fuel cell module according to an embodiment of the present invention.
  • It is a top view which shows the endothermic piping which passes through
  • FIG. 6 is a fragmentary sectional view taken along the AA line of FIG. The illustration of other structures of the present invention is omitted.
  • the endothermic gas pipe (P2) is installed to be installed to take up more volume by bending more times along the inner surface of the heat insulating material 110 than the endothermic water pipe (P1). desirable.
  • the endothermic water pipe (P1) or the endothermic gas pipe (P2) may be installed in a straight or curved form along the inner surface of the heat insulating material 110, and the heat insulating material 110 and Widen the contact area of the endothermic water pipe (P1) or the endothermic gas pipe (P2) to sufficiently absorb the heat of the heat insulating material 110, and installed in the shape of the letter 'L' to increase the convenience in construction It is desirable to be.
  • the heat insulator 110 may be composed of a total of three layers.
  • the total thickness of the heat insulator 110 may be 60 ° C. so that the external temperature of the heat insulator 110 made of Morgan BTU-Block heat insulator is 60 ° C. for easy heating. It is preferably about 150 mm, the temperature of 140 mm point from the inside of the heat insulating material 110 was found to be about 100 °C.
  • the endothermic water pipe P1 is installed at 140 mm from the inside of the heat insulator 110 because the boiling water passes through the water having a temperature of 100 ° C. at 1 atm. Most preferably.
  • the temperature change rate according to the thickness will be constant. It is preferable to install the endothermic water pipe P1 at about 14/15 points from the inside of the heat insulator 110. .
  • the endothermic water pipe (P1) is installed in a state inclined to the outermost layer when the heat insulating material 110 is composed of three layers.
  • a heating system using a fuel cell module includes a fuel cell module 100 that is an endothermic system; A hot water tank 200 in which hot water heated by heat exchange between the water flowing into the endothermic water pipe P1 of the fuel cell module 100 and the heat insulating material 110 is stored; And a heating module 300 in which hot water supplied from the fuel cell module 100 or the hot water tank 200 is used. And interlocking the fuel cell module 100 or the hot water tank 200 depending on whether the temperature of the fuel cell module 100 is greater than, less than, equal to, or equal to, the reference set value, or the heating module 300 is operated. It includes a hot water supply module for controlling whether to use the hot water in the fuel cell module 100 or the heating module 300.
  • the hot water supply module is a hot water supply pipe (P3) for supplying hot water heated by heat exchange between the heat absorbing water pipe (P1) and the heat insulating material (110) to the hot water tank (200), the hot water tank (200).
  • the first hot water distribution pipe (P4) for distributing the stored hot water to the heating module 300, the second to directly distribute the hot water heat exchanged with the heat insulating material 110 to the heating module 300 without passing through the hot water tank (200).
  • Hot water distribution pipe (P5), the first return pipe (P6), the first return pipe (P6) for returning the hot water heat exchanged in the heating module 300 into the heat insulating material 110 or the hot water tank (200) ) Is connected to the second return pipe (P7), the first return pipe (P6) for introducing hot water discharged from the first return pipe (P6) into the endothermic water pipe (P1) inside the heat insulating material (110). And hot water discharged from the first return pipe (P6) and the second return pipe (P7). It may include a third return pipe (P8) for returning to the tank 200 or to return the water of the hot water tank 200 to the endothermic water pipe (P1) through the second return pipe (P7). .
  • the hot water supply module is installed on the hot water supply pipe (P3) and is installed on the hot water tank 200 side on the basis of the connection point of the hot water supply pipe (P3) and the second hot water distribution pipe (P6).
  • the fourth valve (V5), the temperature sensor 150 installed in the fuel cell module 100, the hot water supply pipe (P3) is installed in the hot water supply pipe (P3) and the second hot water distribution pipe (P5).
  • the hot water distribution pump 320 installed in the first hot water distribution pipe (P3), the third return pipe (P8) Including a bidirectional pump 330 is installed in, so that the temperature sensor 150 measures the temperature of the fuel cell module 100 is set the temperature of the fuel cell module 100 Hot water can be controlled by operating each of them when they are above or equal to, below a set threshold, or when no heating is used.
  • the hot water supplied from the endothermic water pipe P1 inside the heat insulating material 110 is connected to the hot water supply pipe ( After the P3) and the hot water tank 200 is supplied to the heating module 300, the heat absorbing water pipe inside the heat insulating material 110 through the first return pipe (P6) and the second return pipe (P7). It is controlled to return to P1.
  • the hot water supplied from the endothermic water pipe (P1) inside the heat insulating material 110 is the second hot water distribution pipe (P5).
  • the first return pipe (P6) and the second return pipe (P7) is controlled to be returned to the endothermic water pipe (P1) inside the heat insulating material (110).
  • hot water supplied from the hot water tank 200 is supplied to the heating module 300 through the first hot water distribution pipe P3. After it is controlled to be returned to the hot water tank 200 through the first return pipe (P6) and the third return pipe (P8).
  • the heating system using a fuel cell module can be used again in the burner in the fuel cell module 100 passing through the hot water tank 200. It may further include a gas pipe (P9) to be.
  • the hot gas generated in the fuel cell stamp 130 may be used to heat the hot water stored in the hot water tank 200 to obtain hot water of a higher temperature.
  • gas pipe (P8) is preferably twisted in a coil shape in the hot water tank 200 in order to increase the contact area with the hot water in the hot water tank 200.
  • present invention is not limited thereto and may be manufactured in various shapes for widening the contact area.
  • the hot gas containing water vapor in the gas pipe (P9) is the hot water tank ( When water vapor cooled in the 200) and the water vapor contained in the hot gas phase changes to water, the water may be separated and discharged from other gases included in the hot gas.
  • the reason for separating the steam from the hot gas is that when the hot gas enters the burner inside the fuel cell module 100 and is used to burn fuel, the temperature of the burner if the hot gas contains water vapor.
  • the increase is limited, especially when the burner is used as a catalytic burner, which can cause serious damage to the catalyst.
  • the condenser 340 is installed and returned to the gas pipe (P9) before passing through the inside of the hot water tank 200 to the burner of the fuel cell module 100 Water vapor may be removed from the hot gas to provide a fuel suitable for burning the burner.
  • the heat is transferred to the hot water tank 200 to cool the fuel cell module 100 and also stored in the hot water tank 200. At the same time to send to the heating module 300 to use for heating.
  • the hot water tank 200 does not use heat of the fuel cell module 100.
  • the hot water distribution pump 320 installed in the first hot water distribution pipe (P4) to supply hot water to the heating module 300, the first return pipe (P6) and the third return pipe (P8). Through the hot water tank 200 can be returned to.
  • a capacitor capable of storing extra electricity may be installed to properly balance the amount of electricity generated by the fuel cell module 100 with the heat used for heating.
  • a fuel cell module according to another embodiment of the present invention will now be briefly described with reference to FIG. 12.
  • the fuel cell module 100 supplies the hot water for connecting the bypass valve V1 to the fuel cell module 100 and the hot water tank 200.
  • the water heated by the endothermic water pipe P1 may be supplied to the fuel cell module 100 or the hot water tank 200 according to the operation state of the heating system.
  • the hot water tank 200 can be supplied to all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

본 발명의 일 측면에 따른 연료전지모듈을 이용한 난방시스템은, 단열재 내부면을 따라 배치되는 흡열수배관내 물 또는 흡열가스배관내 연료를 공급받아 예열된 물 또는 연료와, 외부에서 공급되는 공기의 전기화학적 반응에 의하여 전기와 열을 발생시키는 연료전지모듈; 상기 연료전지모듈의 흡열수배관에 유입된 물과 상기 단열재 내부 사이의 열교환에 의해서 가열된 온수가 저장되는 온수탱크; 상기 연료전지모듈 또는 상기 온수탱크로부터 공급되는 온수가 난방에 이용되는 난방모듈; 및 상기 연료전지모듈의 온도가 기준 설정치를 초과, 동일, 미만, 상기 난방모듈의 가동여부에 따라 상기 연료전지모듈, 상기 온수탱크, 및 상기 난방모듈 사이의 온수 흐름을 제어하는 온수공급모듈을 포함하는 것을 특징으로 한다.

Description

열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법
본 발명은 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법에 관한 것으로서, 보다 상세하게는 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)에 유입되는 연료, 공기, 및 물을 모두 예열하여 연료전지의 주 열원인 버너가 배출하는 가스의 온도를 기존보다 낮게 해도 안정적인 운전을 가능하게 하고 버너에 들어갈 연료를 절감하여 전체적인 연료전지의 효율을 증가시키며, 또한 상기 예열된 물을 연료전지의 운전 온도에 따라 적절하게 난방에 활용할 수 있는 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법에 관한 것이다.
지구 온난화 문제를 해결하기 위하여 다양한 신재생 에너지(Renewable Energy)를 활용한 CO2 절감 및 에너지 효율향상 기술 개발을 통한 환경 보호가 범국가적으로 추진되고 있다.
특히 2012년부터 시행된 신재생에너지 공급의무화제도(RPS)는 일정규모 이상의 발전사업자에게 총 발전량 중 일정량 이상을 신재생에너지 전력으로 공급하도록 의무화하는 제로도서, 연료전지 발전시스템의 가중치가 증가되며, 보급의 활성화가 추진되고 있다.
연료전지란 연료가 가지고 있는 화학적 에너지를 전기적 에너지로 변환하는 장치를 말하며, 연료전지모듈이란, 일반적으로 천연가스, 메탄올, 가솔린 등의 연료를 개질하여 얻은 개질가스 중의 수소와 공기 중의 산소를 스택(stack)의 연료극(anode)과 공기극(cathode)에서 전기화학적 반응을 시켜 전기를 생산하는 발전시스템을 말한다.
이 때 각 극에서의 반응식과 총 반응식은 다음과 같다.
연료극(anode) : H2(g) → 2H+ + 2e-
공기극(cathode) : 1/2O2(g) + 2H+ + 2e- → H2O
총 반응식 : H2 + 1/2O2 → H2O
연료전지에는 고분자 전해질 연료전지(PEMFC), 직접 메탄올 연료전지(DMFC), 인산형 연료전지(PAFC), 용융탄산염 연료전지(MCFC), 고체산화물 연료전지(SOFC), 알칼리형 연료전지(AFC) 등이 있으며, 특히 고체산화물 연료전지(SOFC)는 운전온도가 약 700 ℃로 다른 타입의 연료전지에 비하여 매우 고온상태로 가동된다.
한편 연료전지는 크게 공기 및 연료와 물에 의하여 운전되며, 연료전지의 직접적인 연료라 할 수 있는 수소로 개질하기 위해서는 연료와 물이 약 300 ~ 400 ℃의 온도로 예열되어 개질기에 유입되어야 한다.
이에 종래에는 상기 연료와 물을 예열하기 위하여 연료전지의 주 열원인 버너의 고온의 배기가스를 이용하는 등 상당한 양의 열에너지를 사용하여야 하였는바, 이러한 열에너지를 경제적으로 확보하여 공급할 수 있는 시스템의 개발이 요구된다.
연료전지모듈에서 발생하는 이러한 고온의 열을 축열하여 활용하기 위하여 열교환기라는 별도의 장치를 이용하는 종래의 기술에 의하면, 연료전지모듈에서 발생하는 배기가스 등의 열매체를 열교환기로 보내어 난방수나 온수와 열교환하게 하는 방식이 일반적이다.
그런데, 이러한 방식에 의할 경우 열매체를 열교환기로 이송하는 과정이나 열교환기에서 열교환이 일어나는 과정 등에서 불필요한 열손실이 발생하게 되며, 효율적으로 난방수나 온수를 생성하지 못하는 문제가 있었다.
또한, 고체 산화물 연료전지의 경우 전술한 바와 같이 약 700 ℃의 고온상태를 유지하여야 운전 가능한 바, 고체 산화물 연료전지에서 발생하는 열을 제어하지 않지 난방에 이용하는 경우 고체 산화물 연료전지의 운전이 불가능하거나 연료전지모듈에 무리를 주는 문제가 있었다.
본 발명은 이러한 문제점을 해소하기 위하여 안출된 것으로, 본 발명의 목적은 연료전지를 이용하여 발전함에 있어, 연료전지에 유입되는 공기 및 물을 효율적으로 예열하여 연료전지모듈의 안정적인 운전을 가능하게 하고 버너에 들어갈 연료를 절감하여 시스템의 전체적인 효율을 증가시킬 수 있는 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법을 제공하는 것이다.
또한, 본 발명의 목적은 연료전지에서 발생하는 열을 난방에 이용함에 있어, 열의 손실을 최소화하여 보다 경제적으로 난방수를 공급하는 동시에 고체 산화물 연료전지의 적정한 운전온도를 유지할 수 있게 하는 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법을 제공하는 것이다.
본 발명의 목적은 연료전지를 이용하여 발전하거나 연료전지에서 발생하는 열을 난방에 이용함에 있어, 연료전지에 유입되는 공기 및 물을 효율적으로 예열하여 전체적으로 안정적인 운전을 가능하게 하고 버너에 들어갈 연료를 절감하며, 전체적인 효율을 증가시킬 수 있는 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 연료와 공기를 공급받아 전기를 생성하는 고체산화물 연료전지모듈은, 흡열수배관 또는 흡열가스배관에서 각각 예열된 물 또는 연료를 가열하여 스팀화하는 스팀생성기; 상기 스팀생성기로부터 공급된 연료를 개질처리하여 수소가스를 정제하는 개질기; 상기 개질기에서 공급되는 수소가스와 외부에서 공급되는 공기의 전기화학적 반응에 의하여 전기와 열을 발생시키는 연료전지스택; 및 상기 스탬생성기, 개질기, 연료전지스택 외부를 감싸도록 설치되는 단열재를 포함하며, 상기 흡열수배관 또는 상기 흡열가스배관은 상기 단열재 내부면을 따라 배치되며, 상기 흡열수배관내 물 또는 상기 흡열가스배관내 연료가 상기 단열재와 열교환하여 예열되고, 상기 스팀생성기와 상기 개질기를 거쳐 상기 연료전지 스택의 발전에 이용되는 것을 특징으로 한다.
본 발명의 다른 측면에 따른 연료전지모듈을 이용한 난방시스템은, 단열재 내부면을 따라 배치되는 흡열수배관내 물 또는 흡열가스배관내 연료를 공급받아 예열된 물 또는 연료와, 외부에서 공급되는 공기의 전기화학적 반응에 의하여 전기와 열을 발생시키는 연료전지모듈; 상기 연료전지모듈의 흡열수배관에 유입된 물과 상기 단열재 내부 사이의 열교환에 의해서 가열된 온수가 저장되는 온수탱크; 상기 연료전지모듈 또는 상기 온수탱크로부터 공급되는 온수가 난방에 이용되는 난방모듈; 및 상기 연료전지모듈의 온도가 기준 설정치를 초과, 동일, 미만, 상기 난방모듈의 가동여부에 따라 상기 연료전지모듈, 상기 온수탱크, 및 상기 난방모듈 사이의 온수 흐름을 제어하는 온수공급모듈을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 측면에 따른 연료전지모듈을 이용한 난방시스템의 제어방법은, 상기 온도공급모듈이, 상기 온도센서의 온도가 설정 기준치를 초과할 때에는 상기 단열재 내부의 상기 흡열수배관에서 공급되는 온수가 상기 온수공급배관과 상기 온수탱크를 거쳐 상기 난방모듈에 공급된 후 상기 제 1 환수배관과 상기 제 2 환수배관을 통하여 상기 흡열수배관으로 환수되도록 제어하며,
상기 온도공급모듈은, 상기 온도센서의 온도가 설정 기준치와 동일한 때에는 상기 단열재 내부의 상기 흡열수배관에서 공급되는 온수가 상기 제 2 온수배급배관을 통하여 직접 상기 난방모듈에 공급된 후 상기 제 1 환수배관과 상기 제 2 환수배관을 통하여 상기 단열재 내부의 흡열배관으로 환수되도록 제어하고,
상기 온수공급모듈은, 상기 온도센서의 온도가 설정 기준치 미만일 때에는 상기 온수탱크에서 공급되는 온수가 상기 제 1 온수배급배관을 통하여 상기 난방모듈에 공급된 후 상기 제 1 환수배관과 상기 제 3 환수배관을 통하여 상기 온수탱크로 환수되도록 제어하며,
상기 난방모듈을 사용하지 않는 경우, 상기 온수공급모듈은, 상기 온수탱크에 저장된 온수의 가온을 위하여 상기 단열재 내부의 흡열배관에서 공급되는 온수를 상기 온수공급배관을 거쳐 상기 온수탱크에 공급한 후 상기 제 3 환수배관과 상기 제 2 환수배관을 통하여 상기 단열재 내부의 흡열수배관으로 환수되도록 제어할 수 있다.
상기 연료전지모듈이 장시간 작동하여 상기 연료전지모듈의 온도가 기준 설정치보다 고온인 경우에 상기 연료전지모듈과 상기 온수탱크를 연결하는 상기 온수공급배관상에 바이패스밸브를 개방하여 상기 흡열수배관에 의하여 가열된 물을 상기 연료전지모듈 또는 상기 온수탱크로 공급하도록 제어할 수 있다.
본 발명의 일 실시예에 따른 가스예열에 의하여 열효율이 증가된 연료전지모듈에 의하면 연료전지모듈의 주 열원인 버너의 고온의 배기가스에 의하여 연료전지모듈의 운전에 필요한 연료 및 물을 가열하기 이전에 상기 연료 및 물을 예열하여 연료전지모듈의 안정적인 운전을 가능하게 하고 버너에 들어갈 연료를 절감하여 시스템의 전체적인 효율을 증가시키는 효과가 있다.
또한, 본 발명의 일 실시예에 따른 연료전지모듈를 이용한 난방시스템에 의하면 연료전지모듈에서 발생하는 열을 열매체에 의하여 열교환기로 이송하는 과정이나 열교환기에서 열교환이 일어나는 과정 등에서의 불필요한 열손실을 방지하여 효율적으로 연료전지모듈에서 발생하는 열을 난방에 이용하는 효과가 있다.
또한 본 발명의 다른 실시예에 따른 연료전지모듈을 이용한 난방시스템의 제어방법에 의하면 고체 산화물 연료전지모듈의 경우 고온상태를 유지하여야 운전 가능한 바, 고체 산화물 연료전지모듈에서 발생하는 열을 제어함과 동시에 이에 의한 열을 난방에 효율적으로 이용 가능하다.
도 1 은 본 발명의 일 실시예에 따른 가스예열에 의하여 열효율이 증가된 연료전지모듈의 평면도이다.
도 2는 본 발명의 일 실시예에 따른 흡열수배관을 도시한 가스예열에 의하여 열효율이 증가된 연료전지모듈의 정면도이다.
도 3은 본 발명의 일 실시예에 따른 흡열가스배관을 도시한 가스예열에 의하여 열효율이 증가된 연료전지모듈의 정면도이다.
도 4는 본 발명의 일 실시예에 따른 흡열수배관과 흡열가스배관을 하나의 관으로 도시한 가스예열에 의하여 열효율이 증가된 연료전지모듈의 사시도이다.
도 5는 본 발명의 일 실시예에 따른 연료전지모듈에 있어서 단열재와 단열재 내부를 통과하는 흡열배관의 나타내는 평면도이다.
도 6은 도 5의 A-A선을 따라 취한 부분 단면도이다.
도 7은 본 발명의 일 실시예에 따른 연료전지모듈을 이용한 난방시스템의 작동 개요도이다.
도 8은 본 발명의 일 실시예에 따른 연료전지모듈의 온도가 설정기준치를 초과할 때의 난방시스템의 작동 상태도이다.
도 9는 본 발명의 일 실시예에 따른 연료전지모듈의 온도가 설정기준치와 동일할 때의 난방시스템의 작동 상태도이다.
도 10은 본 발명의 일 실시예에 따른 연료전지모듈의 온도가 설정기준치 미만일 때의 난방시스템의 작동 상태도이다.
도 11은 본 발명의 일 실시예에 따른 연료전지모듈을 이용한 난방시스템의 난방을 사용하는 경우가 아닌 때의 난방시스템의 작동 상태도이다.
도 12는 본 발명의 다른 실시예에 따른 가스예열에 의하여 열효율이 증가된 연료전지의 평면도이다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다. 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나, 이는 하나의 실시예로서 설명되는 것이며 본 발명이 이에 한정되는 것은 아니다.
도 1 은 본 발명의 일 실시예에 따른 가스예열에 의하여 열효율이 증가된 연료전지모듈의 평면도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 가스예열에 의하여 열효율이 증가된 연료전지모듈(100)은 내부를 전기화학적 반응에 용이한 고온상태로 유지하는 단열재(110)와, 상기 단열재(110) 내부 공간에 배치되며, 스팀을 생성하는 스팀생성기(120), 상기 스팀생성기(120)로부터 생성된 스팀을 받아 연료를 개질처리하여 수소가스를 정제하는 연료개질기(130), 상기 연료개질기(130)에서 공급되는 수소가스와 외부에서 공급되는 공기의 전지화학적 반응에 의하여 전기와 열을 발생시키는 연료전지 스택(140)을 포함한다.
상기 단열재(110)는 연료전지모듈(100) 내부 공간을 단열할 수 있도록 상기 연료전지모듈(100)의 외부를 감싸도록 설치될 수 있다.
상기 스팀생성기(120)는 흡열수배관(P1) 및 흡열가스배관(P2)에서 각각 가열된 물 및 연료를 고온의 버너의 배기가스에 의하여 가열하여 스팀을 생성하고 상기 스팀을 개질기(130)에 공급하도록 구성된다.
본 발명의 일 실시예에 따르면, 상기 흡열수배관(P1)은 상기 단열재(110) 내부에 상기 단열재(100) 면을 따라 설치되어 상기 단열재(110)와 물이 열교환하면서 예열된 후 상기 스팀생성기(120)내의 고온의 버너의 배기가스에 의하여 가열되어 연료개질기(130)에 유입되도록 구성된다.
또한, 상기 흡열가스배관(P2)도 마찬가지로 상기 단열재(110) 내부에 상기 단열재(110)의 면을 따르도록 설치되어 상기 단열재(110)와 열교환하면서 상기 연료개질기(130)에 연료를 공급할 수 있도록 구성된다.
상기 흡열수배관(P1) 및 흡열가스배관(P2)에서 상기 단열재(110)와 열교환하여 예열된 물과 연료가 상기 스팀생성기(120)를 거쳐 발전에 이용된다.
한편 상기 버너 및 버너의 배기가스가 상기 스팀생성기(120)로 전달되는 배관에 관한 도시는 생략하였다. 또한 연료전지가 운전되기 위하여는 외부의 공기가 유입되어야 하나 도시를 생략하였다.
이러한 구성에 의하면, 상기 단열재(110) 내면을 따르는 흡열수배관(P1) 및 흡열가스배관(P2)을 통하여 물과 연료가 예열되어 상기 스팀생성기(120)로 유입되므로 별도의 장치를 장착하여 상기 물과 연료를 가열할 필요가 없다.
특히 상기 물과 연료가 상기 흡열수배관(P1) 및 흡열가스배관(P2)을 통하여 연속적으로 상기 스팀생성기(120) 내로 유입되므로 가열시간과 열교환을 위한 열원과의 접촉면적을 확보하여 상기 물과 연료의 연속적이고 빠르며 고른 가열이 가능하게 된다.
이때, 상기 흡열가스배관(P2)이 연료전지모듈(100)의 중심을 기준으로 상기 흡열수배관(P1) 보다 더 내부에 설치되는 것이 바람직하다.
이는 상기 흡열가스배관(P2)을 통하여 유입되는 연료가 상기 흡열수배관(P1)을 통하여 유입되는 물 보다 비열이 높아 가열에 많은 열에너지를 필요로 하고, 연료의 경우 기체 상태로 상기 흡열가스배관(P2)에 유입되나 물의 경우는 액체상태로 상기 흡열수배관(P1)에 유입되므로 상기 흡열수배관(P1)에서 물이 수증기로 상변화시 상기 흡열수배관(P1)이 받는 압력이 커져 전체 연료전지모듈에 무리를 줄 수 있기 때문이다.
도 2 및 도 3은 각각 본 발명의 일 실시예에 따른 흡열수배관 및 흡열가스배관을 도시한 가스예열에 의하여 열효율이 증가된 연료전지모듈의 정면도이고, 도 4는 본 발명의 일 실시예에 따른 흡열수배관과 흡열가스배관을 하나의 관으로 도시한 가스예열에 의하여 열효율이 증가된 연료전지모듈의 사시도이며, 도 5는 본 발명의 일 실시예에 따른 연료전지모듈에 있어서 단열재와 단열재 내부를 통과하는 흡열배관의 나타내는 평면도이고, 도 6은 도 5의 A-A선을 따라 취한 부분 단면도이다. 본 발명의 그 외의 구성에 대하여는 도시를 생략하였다.
도 2 및 도 3에 도시된 바와 같이, 상기 흡열가스배관(P2)을 상기 흡열수배관(P1) 보다 상기 단열재(110) 내면을 따라 더 길게 여러번 굴곡 설치하여 더 많은 부피를 차지하도록 설치하는 것이 바람직하다.
이는 상기 흡열가스배관(P2)을 통하여 유입되는 연료가 상기 흡열수배관(P1)을 통하여 유입되는 물 보다 비열이 높기 때문에 가열에 많은 열에너지를 필요로 하므로 상기 단열재(110) 내부에 상기 흡열가스배관(P2)을 길게하여 연료의 체류시간을 길게 하여 충분히 가열하기 위함이다.
도 4에 도시된 바와 같이, 상기 흡열수배관(P1) 또는 상기 흡열가스배관(P2)은 상기 단열재(110)의 내면을 따라 직선 또는 곡선의 형태로 설치될 수 있으나, 상기 단열재(110)와 상기 흡열수배관(P1) 또는 상기 흡열가스배관(P2)의 접촉면적을 넓혀 상기 단열재(110)의 열을 충분히 흡수하도록 하고, 시공상의 편의를 높이기 위하여 도시한 바와 같이 'ㄹ' 자의 형상으로 설치되는 것이 바람직하다.
한편 단열재(110)는 총 3 개의 층으로 구성될 수 있다.
다층으로 구성되는 단열재를 설치하기 위하여 단열재에 열처리를 하는 경우 각 층의 단열재의 종류가 다르면 각 층간의 단열재가 서로 다른 모양으로 성형되어 사용하기에 적합하지 않으므로 각 층의 단열재는 같은 종류의 단열재를 사용하는 것이 바람직하다. 상기 단열재(110)의 각층의 도시는 생략하였다.
상기 흡열수배관(P1) 또는 상기 흡열가스배관(P2)이 동일한 소재의 3층으로 구성된 단열재(110)내 배치될 적정 위치와 관련하여 상기 단열재(110)의 두께를 고려하여 실험하기 위하여, 인화 H&C에서 제작한 Morgan BTU-Block 단열재로 실험하였다.
실험결과, 상기 연료전지 스택(140)의 온도가 750 ℃일 때 Morgan BTU-Block 단열재로 된 단열재(110)의 외부온도가 난방에 용이한 60 ℃가 되기 위해서는 상기 단열재(110)의 총 두께는 약 150 mm 인 것이 바람직하며, 상기 단열재(110)의 내부로부터 140 mm 지점의 온도가 약 100 ℃인 것으로 나타났다.
이러한 실험결과에 의거할 경우, 도 5에 도시된 바와 같이, 상기 흡열수배관(P1)은 끓는점이 1 기압에서 100 ℃인 물이 통과하는 배관이므로 상기 단열재(110)의 내부로부터 140mm 지점에 설치되는 것이 가장 바람직하다.
다른 종류의 단열재를 사용하더라도 종류에 상관없이 두께에 따른 온도 변화율은 일정할 것인 바, 상기 단열재(110)의 내부로부터 약 14/15 지점에 상기 흡열수배관(P1)을 설치하는 것이 바람직하다.
즉, 도 6에 도시된 바와 같이, 상기 흡열수배관(P1)은 상기 단열재(110)가 3층으로 구성될 때 최외층에 치우친 상태로 설치된다.
이제 이와 같이 구성된 본 발명의 일 실시예 따른 연료전지모듈을 이용한 난방시스템 및 그 작동 방법에 대해서 도 7 내지 도 11을 참조하여 설명한다.
도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 연료전지모듈을 이용한 난방시스템는 흡열시스템인 연료전지모듈(100); 상기 연료전지모듈(100)의흡열수배관(P1)에 유입된 물과 상기 단열재(110) 사이의 열교환에 의해서 가열된 온수가 저장되는 온수탱크(200); 및 상기 연료전지모듈(100) 또는 온수탱크(200)로부터 공급되는 온수가 사용되는 난방모듈(300); 및 상기 연료전지모듈(100)의 온도가 기준설정치 초과, 미만, 동일, 또는 상기 난방모듈(300)을 작동하는 지 여부에 따라 상기 연료전지모듈(100) 또는 상기 온수탱크(200)를 연동시켜 상기 온수를 상기 연료전지모듈(100) 또는 상기 난방모듈(300)에 이용할지 여부를 제어하는 온수공급모듈을 포함한다.
상기 온수공급모듈은 상기 흡열수배관(P1)과 상기 단열재(110) 사이의 열교환에 의해서 가열된 온수를 상기 온수탱크(200)로 공급하는 온수공급배관(P3), 상기 온수탱크(200)에 저장된 온수를 난방모듈(300)로 배급하는 제 1 온수배급배관(P4), 상기 단열재(110)와 열교환한 온수를 상기 온수탱크(200)를 거치지 않고 직접 난방모듈(300)로 배급하는 제 2 온수배급배관(P5), 상기 난방모듈(300)에서 열교환한 온수를 상기 단열재(110) 내부 또는 상기 온수탱크(200)로 환수하기 위한 제 1 환수배관(P6), 상기 제 1 환수배관(P6)과 연결되어 상기 제 1 환수배관(P6)에서 배출된 온수를 상기 단열재(110) 내부의 상기 흡열수배관(P1)으로 유입시키기 위한 제 2 환수배관(P7), 상기 제 1 환수배관(P6) 및 상기 제 2 환수배관(P7)과 이어지며 상기 제 1 환수배관(P6)에서 배출된 온수를 상기 온수탱크(200)로 환수시키거나 상기 온수탱크(200)의 물을 상기 제 2 환수배관(P7)을 통하여 상기 흡열수배관(P1)으로 환수시키기 위한 제 3 환수배관(P8)을 포함할 수 있다.
또한, 상기 온수공급모듈은 상기 온수공급배관(P3)에 설치되며 상기 온수공급배관(P3)과 상기 제 2 온수배급배관(P6)의 연결지점을 기준으로 온수탱크(200) 측에 설치되는 제 1 밸브(V2), 제 2 온수배급배관(P5)에 설치되는 제 2 밸브(V3), 제 1 환수배관(P6)에 설치되는 제 3 밸브(V4), 제 2 환수배관(P7)에 설치되는 제 4 밸브(V5), 연료전지모듈(100) 내부에 설치되는 온도센서(150), 상기 온수공급배관(P3)에 설치되며 상기 온수공급배관(P3)과 상기 제 2 온수 배급배관(P5)의 연결지점을 기준으로 상기 연료전지모듈(100) 측에 설치되는 온수공급펌프(310), 제 1 온수배급배관(P3)에 설치되는 온수배급펌프(320), 제 3 환수배관(P8)에 설치되는 양방향펌프(330)를 포함하여, 상기 온도센서(150)가 상기 연료전지모듈(100)의 온도를 측정하도록 하여 상기 연료전지모듈(100)의 온도가 설정 기준치를 초과하거나, 동일하거나, 설정 기준치 미만, 또는 난방을 사용하지 않는 경우에 이들을 각각 작동시켜 온수를 제어할 수 있다.
이러한 구성에 의하여, 상기 연료전지모듈(100)의 온도센서(150)의 온도가 설정 기준치를 초과할 때에는 상기 단열재(110) 내부의 흡열수배관(P1)에서 공급되는 온수를 상기 온수공급배관(P3)과 상기 온수탱크(200)를 거쳐 난방모듈(300)에 공급된 후, 상기 제 1 환수배관(P6)과 상기 제 2 환수배관(P7)을 통하여 상기 단열재(110) 내부의 흡열수배관(P1)으로 환수되도록 제어된다.
또한, 상기 연료전지모듈(100)의 온도센서(150)의 온도가 설정 기준치와 동일한 때에는 상기 단열재(110) 내부의 흡열수배관(P1)에서 공급되는 온수가 상기 제 2 온수배급배관(P5)을 통하여 직접 상기 난방모듈(300)에 공급된 후 상기 제 1 환수배관(P6)과 상기 제 2 환수배관(P7)을 통하여 상기 단열재(110) 내부의 흡열수배관(P1)으로 환수되도록 제어된다.
상기 연료전지모듈(100)의 온도센서(150)의 온도가 설정 기준치 미만일 때에는 상기 온수탱크(200)에서 공급되는 온수가 상기 제 1 온수배급배관(P3)을 통하여 상기 난방모듈(300)에 공급된 후 상기 제 1 환수배관(P6)과 상기 제 3 환수배관(P8)을 통하여 상기 온수탱크(200)로 환수되도록 제어된다.
물론, 상기 경우와 달리 난방을 사용하지 않는 경우에는, 상기 온수탱크(200)에 저장된 온수의 가온을 위하여 상기 단열재(110) 내부의 상기 흡열수배관(P1)에서 공급되는 온수를 상기 온수공급배관(P3)을 거쳐 상기 온수탱크(200)에 공급되게 한 후 상기 제 3 환수배관(P8)과 상기 제 2 환수배관(P7)을 통하여 상기 단열재(110) 내부의 상기 흡열수배관(P1)으로 환수되도록 제어된다.
한편, 본 발명의 일 실시예에 따른 연료전지모듈을 이용한 난방시스템는, 연료전지 스택(130)에서 발생하는 고온의 가스를 온수탱크(200)를 지나 다시 연료전지모듈(100) 내 버너에서 이용할 수 있도록 가스배관(P9)을 더 포함할 수 있다.
이에 의하면, 상기 연료전지 스탬(130)에서 발생하는 고온의 가스를 온수탱크(200)에 저장된 온수를 가온하는 데에 이용하여 보다 고온의 온수를 얻을 수 있다.
또한, 상기 가스배관(P8)은 상기 온수탱크(200) 내의 온수와의 접촉면적을 넓히기 위하여 상기 온수탱크(200) 내에서 코일 형상으로 꼬아서 설치하는 것이 바람직하다. 다만 이에 한정되지 않고 상기 접촉면적을 넓히기 위한 다양한 형상으로 제작될 수 있다.
또한, 상기 연료전지모듈(100)과 상기 온수탱크(200) 사이의 가스배관(P9)에 응축기(340)를 설치하여, 상기 가스배관(P9)내 수증기를 포함한 고온의 가스가 상기 온수탱크(200) 내에서 냉각되어 상기 고온의 가스에 포함된 수증기가 물로 상변화하는 경우 상기 물을 상기 고온의 가스에 포함된 다른 기체와 분리하여 배출할 수 있다.
이와 같이, 상기 고온의 가스에서 수증기를 분리하는 이유는, 상기 고온의 가스가 연료전지모듈(100) 내부의 버너로 들어가 연료를 연소시키는데 사용되는 경우, 상기 고온의 가스에 수증기가 있으면 버너의 온도 증가가 제한되고, 특히 버너를 촉매버너로 사용할 경우 수증기가 촉매에 심각한 손상을 줄 수 있기 때문이다.
즉, 본 발명의 일 실시예에 따르면, 상기 응축기(340)가 상기 온수탱크(200)의 내부를 지나 상기 연료전지모듈(100)의 버너로 연결되기 전의 가스배관(P9) 에 설치되어 환수되는 고온의 가스에서 수증기가 제거되어 버너의 연소에 적합한 연료를 공급할 수 있다.
도 8에 도시된 바와 같이, 본 발명의 일 실시예에 따른 난방시스템의 온도센서(150)의 온도가 설정 기준치를 초과할 때에는 상기 연료전지모듈(100)의 단열재(110) 내부의 흡열수배관(P1)에서 공급되는 온수가 온수공급배관(P3)과 온수탱크(200)를 거쳐 난방모듈(300)에 공급된 후 제 1 환수배관(P6)과 제 2 환수배관(P7)을 통하여 상기 단열재(110) 내부의 흡열수배관(P1)으로 환수된다.
이 경우는 상기 연료전지모듈(100)의 온도가 비교적 고온이므로 이에 의한 열을 상기 온수탱크(200)로 전달하여 상기 연료전지모듈(100)을 식혀줄 뿐만 아니라 상기 온수탱크(200)에 저장함과 동시에 난방모듈(300)로 보내어 난방에 이용하기 위함이다.
도 9에 도시된 바와 같이, 본 발명의 일 실시예에 따른 난방시스템의 온도센서(150)의 온도가 설정 기준치와 동일한 때에는 상기 연료전지모듈(100)의 단열재(110) 내부의 흡열수배관(P1)에서 공급되는 온수를 상기 온수공급배관(P3)으로부터 분기되는 상기 제 2 온수배급배관(P5)에 설치되는 제 2 밸브(V3)를 개방하여 상기 제 2 온수배급배관(P5)을 통해 직접 난방모듈(300)에 공급한 후 상기 제 1 환수배관(P6)과 상기 제 2 환수배관(P7)을 통하여 상기 단열재(110) 내부의 흡열배관(P1)으로 환수할 수 있다.
이는 상기 연료전지모듈(100)의 열을 상기 온수탱크(200)에 저장함 없이 바로 난방에 이용하여 난방모듈(300)의 온도를 올리고, 이를 회수하여 상기 연료전지모듈(100)에서 이용하기 위함이다.
도 10에 도시된 바와 같이, 본 발명의 일 실시예에 따른 난방시스템의 온도센서(150)의 온도가 설정 기준치 미만일 때에는 상기 연료전지모듈(100)의 열을 이용하지 않고, 상기 온수탱크(200)에서 상기 제 1 온수배급배관(P4)에 설치된 온수배급펌프(320)를 가동시켜 온수를 상기 난방모듈(300)에 공급하며, 상기 제 1 환수배관(P6)과 제 3 환수배관(P8)을 통하여 상기 온수탱크(200)로 환수할 수 있다.
이는 상기 연료전지모듈(100)의 열을 난방모듈(300)에 사용하지 않음으로써 상기 연료전지모듈(100)을 원활하게 운전하여 전기를 발생시킴과 동시에 상기 온수탱크(200)에 저장된 열만을 이용하여 상기 온수탱크(200)의 열을 낮추는 효과가 있다.
도 11에 도시된 바와 같이, 본 발명의 일 실시예에 따른 연료전지모듈을 이용한 난방시스템가 난방에 이용되지 않는 때에는 상기 온수탱크(200)에 저장된 온수의 가온을 위하여 상기 단열재(110) 내부의 흡열수배관(P1)에서 공급되는 온수가 상기 온수공급펌프(310)의 작동에 의해서 상기 온수공급배관(P3)을 거쳐 개방된 상기 제 1 밸브(V2)를 통해 상기 온수탱크(200)에 공급된 후 상기 양방향펌프(330)의 작동에 의해서 상기 제 3 환수배관(P8)과 상기 제 2 환수배관(P7)을 통하여 상기 단열재(110) 내부의 흡열수배관(P1)으로 환수된다.
이는 난방을 사용하지 않는 동안에 상기 연료전지모듈(100)에서 발생하는 열을 상기 온수탱크(200)에 저장하여 추후 난방에 대비하기 위함이다.
한편 도 7 내지 도 11에는 도시하지는 않았으나, 상기 연료전지모듈(100)의 운전에 의해 발생된 전기의 양과 난방에 이용되는 열의 적절한 조화를 위하여 여분의 전기를 저장할 수 있는 축전기가 설치될 수 있다.
이제 도 12를 참조하여 본 발명의 다른 실시예에 따른 연료전지모듈을 간단히 설명한다.
도 12에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 연료전지모듈(100)은 바이패스밸브(V1)를 상기 연료전지모듈(100)과 상기 온수탱크(200)를 연결하는 상기 온수공급배관(P3)상에 두어 난방시스템의 운전 상태에 따라 상기 흡열수배관(P1)에 의하여 가열된 물을 연료전지모듈(100) 또는 상기 온수탱크(200)에 공급할 수 있다.
예를 들어 상기 연료전지모듈(100)이 장시간 가동되어 상기 연료전지모듈(100)의 온도가 정상치 보다 고온인 경우에는 많은 열에너지가 발생하게 되므로 이에 의하여 가열된 물을 상기 연료전지모듈(100) 및 상기 온수탱크(200)에 모두에 공급할 수 있다.
본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.

Claims (18)

  1. 연료와 공기를 공급받아 전기를 생성하는 고체산화물 연료전지모듈에 있어서,
    흡열수배관 또는 흡열가스배관에서 각각 예열된 물 또는 연료를 가열하여 스팀화하는 스팀생성기;
    상기 스팀생성기로부터 공급된 연료를 개질처리하여 수소가스를 정제하는 개질기;
    상기 개질기에서 공급되는 수소가스와 외부에서 공급되는 공기의 전기화학적 반응에 의하여 전기와 열을 발생시키는 연료전지스택; 및
    상기 스탬생성기, 개질기, 연료전지스택 외부를 감싸도록 설치되는 단열재를 포함하며,
    상기 흡열수배관 또는 상기 흡열가스배관은 상기 단열재 내부면을 따라 배치되며, 상기 흡열수배관내 물 또는 상기 흡열가스배관내 연료가 상기 단열재와 열교환하여 예열되고, 상기 스팀생성기와 상기 개질기를 거쳐 상기 연료전지 스택의 발전에 이용되는 연료전지모듈.
  2. 제 1 항에 있어서,
    상기 흡열수배관 또는 상기 흡열가스배관이 상기 단열재의 측면을 따라 'ㄹ' 자 형상으로 설치되는 연료전지모듈.
  3. 제 1 항에 있어서,
    상기 흡열가스배관이 상기 흡열수배관보다 더 내부에 설치되는 연료전지모듈.
  4. 제 1 항에 있어서,
    상기 흡열가스배관이 상기 흡열수배관보다 상기 단열재 내부에서 더 길거나 더 부피가 증가되게 설치되는 연료전지모듈.
  5. 제 3 항에 있어서,
    상기 흡열수배관은 상기 단열재가 동일재료의 다층구조로 이루어진 경우 최외층에 배치되는 연료전지모듈.
  6. 단열재 내부면을 따라 배치되는 흡열수배관내 물 또는 흡열가스배관내 연료를 공급받아 예열된 물 또는 연료와, 외부에서 공급되는 공기의 전기화학적 반응에 의하여 전기와 열을 발생시키는 연료전지모듈; 상기 연료전지모듈의 흡열수배관에 유입된 물과 상기 단열재 내부 사이의 열교환에 의해서 가열된 온수가 저장되는 온수탱크; 상기 연료전지모듈 또는 상기 온수탱크로부터 공급되는 온수가 난방에 이용되는 난방모듈; 및 상기 연료전지모듈의 온도가 기준 설정치를 초과, 동일, 미만, 상기 난방모듈의 가동여부에 따라 상기 연료전지모듈, 상기 온수탱크, 및 상기 난방모듈 사이의 온수 흐름을 제어하는 온수공급모듈을 포함하는 연료전지모듈을 이용한 난방시스템.
  7. 제 6 항에 있어서,
    상기 연료전지시스템에서 발생하는 고온의 가스를 상기 온수탱크를 통과하여 다시 상기 연료전지시스템으로 회수하기 위한 가스배관을 더 포함하는 것을 특징으로 하는 연료전지모듈을 이용한 난방시스템.
  8. 제 7 항에 있어서,
    상기 온수공급모듈은 상기 단열재 내부에서 열교환하여 온수로 변화된 물을 상기 온수탱크에 공급하는 온수공급배관, 상기 온수탱크에 저장된 온수를 상기 난방모듈로 배급하는 제 1 온수배급배관, 상기 단열재의 내부에서 열교환한 온수를 상기 온수탱크를 거치지 않고 직접 상기 난방모듈로 배급하는 제 2 온수배급배관, 상기 난방모듈에서 열교환한 물을 상기 단열재 내부 또는 상기 온수탱크로 환수하기 위한 제 1 환수배관, 상기 제 1 환수배관과 이어지며 상기 제 1 환수배관에서 배출된 물을 상기 단열재 내부의 상기 흡열수배관으로 유입시키기 위한 제 2 환수배관, 상기 제 1 환수배관 및 상기 제 2 환수배관과 이어지며 상기 제 1 환수배관에서 배출된 물을 상기 온수탱크로 환수시키거나 상기 온수탱크의 물을 상기 제 2 환수배관을 통하여 상기 흡열수배관으로 환수시키기 위한 제 3 환수배관을 포함하는 연료전지모듈을 이용한 난방시스템.
  9. 제 8 항에 있어서,
    상기 온수공급모듈은 상기 온수공급배관에 설치되며 상기 온수공급배관과 상기 제 2 온수배급배관의 연결지점을 기준으로 상기 온수탱크 측에 설치되는 제 1 밸브, 상기 제 2 온수배급배관에 설치되는 제 2 밸브, 상기 제 1 환수배관에 설치되는 제 3 밸브, 상기 제 2 환수배관에 설치되는 제 4 밸브, 상기 온수공급배관에 설치되며 상기 온수공급배관과 상기 제 2 온수 배급배관의 연결지점을 기준으로 상기 연료전지모듈 측에 설치되는 온수공급펌프, 상기 제 1 온수배급배관에 설치되는 온수배급펌프, 상기 제 3 환수배관에 설치되는 양방향펌프를 포함하며, 상기 온수공금모듈은 상기 연료전지모듈의 내부에 설치되는 온도센서에 의해서 측정되는 온도에 따라 제어되는 연료전지모듈을 이용한 난방시스템.
  10. 제 7 항에 있어서,
    상기 연료전지시스템에서 발생하는 고온의 가스를 상기 온수탱크를 통과하여 다시 상기 연료전지시스템으로 회수하기 위한 가스배관을 더 포함하는 것을 특징으로 하는 연료전지모듈을 이용한 난방시스템.
  11. 제 10 항에 있어서,
    상기 가스배관은 상기 온수탱크의 내부에서 코일 형상으로 꼬여있는 것을 특징으로 하는 연료전지모듈를 이용한 난방시스템.
  12. 제 10 항에 있어서,
    상기 가스배관과 상기 연료전지모듈 사이에 상기 고온의 가스로부터 물을 분리하여 배출하도록 응축기를 더 포함하는 연료전지모듈을 이용한 난방시스템.
  13. 제 10 항에 있어서,
    상기 연료전지모듈과 상기 온수탱크를 연결하는 상기 온수공급배관상에 바이패스밸브를 포함하여 상기 흡열수배관에 의하여 가열된 물을 상기 연료전지모듈 또는 상기 온수탱크로 공급하는 연료전지모듈을 이용한 난방시스템.
  14. 단열재 내부면을 따라 배치되는 흡열수배관내 물 또는 흡열가스배관내 연료를 공급받아 예열된 물 또는 연료와, 외부에서 공급되는 공기의 전기화학적 반응에 의하여 전기와 열을 발생시키는 연료전지모듈; 상기 연료전지모듈의 흡열수배관에 유입된 물과 상기 단열재 내부 사이의 열교환에 의해서 가열된 온수가 저장되는 온수탱크; 상기 연료전지모듈 또는 상기 온수탱크로부터 공급되는 온수가 난방에 이용되는 난방모듈; 및 상기 연료전지모듈의 온도가 기준 설정치를 초과, 동일, 미만, 상기 난방모듈의 가동여부에 따라 상기 연료전지모듈, 상기 온수탱크, 및 상기 난방모듈 사이의 온수 흐름을 제어하는 온수공급모듈을 포함하는 연료전지모듈을 이용한 난방시스템의 제어방법에 있어서,
    상기 온도공급모듈은, 상기 온도센서의 온도가 설정 기준치를 초과할 때에는 상기 단열재 내부의 상기 흡열수배관에서 공급되는 온수가 상기 온수공급배관과 상기 온수탱크를 거쳐 상기 난방모듈에 공급된 후 상기 제 1 환수배관과 상기 제 2 환수배관을 통하여 상기 흡열수배관으로 환수되도록 제어하는 연료전지모듈을 이용한 난방시스템의 제어방법
  15. 제 14 항에 있어서,
    상기 온도공급모듈은, 상기 온도센서의 온도가 설정 기준치와 동일한 때에는 상기 단열재 내부의 상기 흡열수배관에서 공급되는 온수가 상기 제 2 온수배급배관을 통하여 직접 상기 난방모듈에 공급된 후 상기 제 1 환수배관과 상기 제 2 환수배관을 통하여 상기 단열재 내부의 흡열배관으로 환수되도록 제어하는 연료전지모듈을 이용한 난방시스템의 제어방법.
  16. 제 14 항에 있어서,
    상기 온수공급모듈은, 상기 온도센서의 온도가 설정 기준치 미만일 때에는 상기 온수탱크에서 공급되는 온수가 상기 제 1 온수배급배관을 통하여 상기 난방모듈에 공급된 후 상기 제 1 환수배관과 상기 제 3 환수배관을 통하여 상기 온수탱크로 환수되도록 제어하는 연료전지모듈을 이용한 난방시스템의 제어방법.
  17. 제 14 항에 있어서,
    상기 난방모듈을 사용하지 않는 경우, 상기 온수공급모듈은, 상기 온수탱크에 저장된 온수의 가온을 위하여 상기 단열재 내부의 흡열배관에서 공급되는 온수를 상기 온수공급배관을 거쳐 상기 온수탱크에 공급한 후 상기 제 3 환수배관과 상기 제 2 환수배관을 통하여 상기 단열재 내부의 흡열수배관으로 환수되도록 제어하는 연료전지모듈을 이용한 난방시스템의 제어방법.
  18. 제 14 항에 있어서,
    상기 연료전지모듈이 장시간 작동하여 상기 연료전지모듈의 온도가 기준 설정치보다 고온인 경우에 상기 연료전지모듈과 상기 온수탱크를 연결하는 상기 온수공급배관상에 바이패스밸브를 개방하여 상기 흡열수배관에 의하여 가열된 물을 상기 연료전지모듈 또는 상기 온수탱크로 공급하는 연료전지모듈을 이용한 난방시스템의 제어방법.
PCT/KR2015/004978 2014-06-26 2015-05-18 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법 WO2015199333A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15810891.0A EP3163660A4 (en) 2014-06-26 2015-05-18 Fuel cell module having increased thermal efficiency, and heating system using same and control method thereof
JP2016573068A JP2017527945A (ja) 2014-06-26 2015-05-18 熱効率が増加した燃料電池モジュール、これを用いた暖房システムおよびその制御方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2014-0079133 2014-06-26
KR1020140079135A KR101589176B1 (ko) 2014-06-26 2014-06-26 열효율이 증가된 연료전지를 이용한 난방장치
KR1020140079134A KR20160007749A (ko) 2014-06-26 2014-06-26 가스예열에 의하여 열효율이 증가된 연료전지
KR10-2014-0079134 2014-06-26
KR1020140079133A KR101589178B1 (ko) 2014-06-26 2014-06-26 연료전지를 이용한 난방장치
KR10-2014-0079135 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015199333A1 true WO2015199333A1 (ko) 2015-12-30

Family

ID=54938381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004978 WO2015199333A1 (ko) 2014-06-26 2015-05-18 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법

Country Status (3)

Country Link
EP (1) EP3163660A4 (ko)
JP (1) JP2017527945A (ko)
WO (1) WO2015199333A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200436745Y1 (ko) * 2006-10-24 2007-10-01 주식회사 효성 난방용 연료전지 시스템의 배관구조
KR20080005030A (ko) * 2006-07-07 2008-01-10 엘지전자 주식회사 연료 전지의 선택적 스택 단열장치
KR20090039975A (ko) * 2007-10-19 2009-04-23 (주)퓨얼셀 파워 연료전지 시스템의 열회수 장치
JP2010238440A (ja) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp 燃料電池モジュール
JP2010238454A (ja) * 2009-03-30 2010-10-21 Aisin Seiki Co Ltd 燃料電池システム
JP2012186041A (ja) * 2011-03-07 2012-09-27 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362800A (ja) * 2003-06-02 2004-12-24 Mitsubishi Materials Corp 燃料電池
WO2007052633A1 (ja) * 2005-10-31 2007-05-10 Kyocera Corporation 燃料電池システム
JPWO2013046582A1 (ja) * 2011-09-27 2015-03-26 パナソニックIpマネジメント株式会社 高温動作型燃料電池モジュール、および高温動作型燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080005030A (ko) * 2006-07-07 2008-01-10 엘지전자 주식회사 연료 전지의 선택적 스택 단열장치
KR200436745Y1 (ko) * 2006-10-24 2007-10-01 주식회사 효성 난방용 연료전지 시스템의 배관구조
KR20090039975A (ko) * 2007-10-19 2009-04-23 (주)퓨얼셀 파워 연료전지 시스템의 열회수 장치
JP2010238440A (ja) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp 燃料電池モジュール
JP2010238454A (ja) * 2009-03-30 2010-10-21 Aisin Seiki Co Ltd 燃料電池システム
JP2012186041A (ja) * 2011-03-07 2012-09-27 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163660A4 *

Also Published As

Publication number Publication date
JP2017527945A (ja) 2017-09-21
EP3163660A4 (en) 2017-11-22
EP3163660A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2021230562A1 (ko) 암모니아 기반 고체산화물 연료전지(sofc) 시스템
CN102881923B (zh) 一种由阳极支撑管型固体氧化燃料电池构建的电站
WO2024063347A1 (ko) 공기 및 연료 공급 모듈 및 이를 구비하는 연료전지 시스템
KR20160030281A (ko) 개량된 연료 전지 시스템 및 방법
WO2019209045A1 (ko) 연료전지 시스템
WO2010090403A2 (ko) 연료전지 시스템
WO2010005165A2 (en) Fuel processor of fuel cell system
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2018217005A1 (ko) 연료전지 시스템
WO2017003089A1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
WO2013183853A1 (ko) 연료전지 시스템
WO2017003088A1 (ko) 열효율이 향상된 고체산화물 연료전지 시스템 및 고온가스에 의하여 가열되는 고체산화물 연료전지 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2017204520A1 (ko) 연료전지 시스템
WO2015199333A1 (ko) 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법
KR100778207B1 (ko) 전력변환장치의 폐열을 이용한 연료전지 시스템
WO2013183854A1 (ko) 연료전지와 보일러의 복합 시스템
WO2015130095A1 (ko) 고체산화물 연료전지 시스템에서 비상 정지 또는 정전 시 스텍 보호 방법
KR101080311B1 (ko) 분리형 보조 버너를 갖는 연료전지시스템 및 이의 운전 방법
WO2021080260A1 (ko) 하이브리드 발전 시스템
JP3961198B2 (ja) 排熱利用燃料電池
KR20140081123A (ko) 고효율 연료전지 모듈
WO2021230456A1 (ko) 연료전지 시스템
KR101589176B1 (ko) 열효율이 증가된 연료전지를 이용한 난방장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573068

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015810891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810891

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE