WO2013183854A1 - 연료전지와 보일러의 복합 시스템 - Google Patents

연료전지와 보일러의 복합 시스템 Download PDF

Info

Publication number
WO2013183854A1
WO2013183854A1 PCT/KR2013/002595 KR2013002595W WO2013183854A1 WO 2013183854 A1 WO2013183854 A1 WO 2013183854A1 KR 2013002595 W KR2013002595 W KR 2013002595W WO 2013183854 A1 WO2013183854 A1 WO 2013183854A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
exhaust gas
heat exchanger
burner
boiler
Prior art date
Application number
PCT/KR2013/002595
Other languages
English (en)
French (fr)
Inventor
양동진
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to US14/405,154 priority Critical patent/US9917317B2/en
Priority to JP2015515932A priority patent/JP5964502B2/ja
Priority to EP13801331.3A priority patent/EP2886964B1/en
Publication of WO2013183854A1 publication Critical patent/WO2013183854A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D7/00Central heating systems employing heat-transfer fluids not covered by groups F24D1/00 - F24D5/00, e.g. oil, salt or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0084Combustion air preheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/18Flue gas recuperation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/19Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/32Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/06Heat exchangers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a complex system of a fuel cell and a boiler, and more particularly, to a complex system of a fuel cell and a boiler that can increase the thermal efficiency of the boiler by using the exhaust gas of the fuel cell.
  • Such a fuel cell has a structure in which hydrogen gas or a hydrocarbon, which is fuel, is supplied to a negative electrode, and oxygen is supplied to the positive electrode to generate electricity.
  • the fuel cell is named as a battery, it can be regarded as a power generating device that actually generates electricity.
  • the fuel cell uses a method of causing an electrochemical reaction between hydrogen and oxygen without burning fuel and converting the energy difference before and after the reaction into electrical energy.
  • a fuel cell is a system that does not generate gases polluting the environment such as NOx and SOx, and has no noise and vibration. It is a clean power generation system with thermal efficiency of 80% or more combined with electricity generation and heat recovery.
  • the reaction of hydrogen and oxygen in the fuel cell is an exothermic reaction, and heat is generated.
  • phosphoric acid is mainly used as an electrolyte, and an operating temperature of the phosphoric acid fuel cell is known to be about 200 ° C. This is the maximum temperature allowed by the phosphate electrolyte, and it is known that the reaction of hydrogen and oxygen occurs smoothly at the reaction temperature of 200 ° C., but the heat is generated by the exothermic reaction of hydrogen and oxygen.
  • the reaction of oxygen may not be smooth and the efficiency may be lowered. Therefore, a cooling structure for cooling the fuel cell is indispensable.
  • an electrolyte includes a dissolved carbonate fuel cell using a mixture of lithium carbide and potassium carbide having a low melting point, and the operating temperature of the dissolved carbonate fuel cell is about 650 ° C.
  • a hot box is installed.
  • Patent No. 10-0787244 is a configuration including an air supply device for supplying oxygen-containing air for efficient combustion of power raw materials, so that the inflow of external air to lower the hot box to an appropriate temperature is made The dual intake method is used, and electric power is produced using the oxygen of the intake air.
  • the air taken up in this way is finally exhausted to the outside.
  • the exhaust gas has a higher temperature than the outside air, and when exhaust gas is discharged, white smoke may be generated.
  • Patent No. 10-0787244 mentions a configuration in which a carbon monoxide remover for removing carbon monoxide to an intake passage to supply oxygen-containing air.
  • the present invention has been made in view of the above problems, and provides a complex system of a fuel cell and a boiler capable of efficiently utilizing heat of exhaust gas of a fuel cell.
  • Another technical problem to be solved by the present invention is to provide a complex system of a fuel cell and a boiler that can minimize the change in the internal temperature of the hot box by the intake air.
  • Another object of the present invention is to provide a complex system of a fuel cell and a boiler that can simplify the structure of the system by unifying the intake line and the exhaust line.
  • the composite system of the fuel cell and the boiler of the present invention for solving the problems described above is connected to the fuel cell unit and the exhaust pipe of the fuel cell unit to generate electricity through a catalytic reaction by receiving external air and raw material gas. It may include a boiler unit having a latent heat exchanger for recovering the latent heat of the exhaust gas of the fuel cell unit and the latent heat of its own exhaust gas.
  • the boiler unit may include a connection pipe connected to the exhaust pipe to guide the exhaust gas of the fuel cell unit to be in contact with a side surface of the latent heat exchanger and to supply the latent heat exchanger.
  • the fuel cell unit may include a hot box accommodating a fuel cell and a reformer, a start burner for heating the temperature of the hot box to a reaction temperature during initial operation, and external air intaked using heat of the start burner or heat of exhaust gas.
  • a second heat exchanger configured to heat and supply the fuel cell to the fuel cell, and generate and supply steam using the heat of the exhaust gas, and maintain the reaction temperature by cooling the fuel cell with the exhaust gas whose temperature is lowered. It may include a heat exchanger.
  • the reformer may include a reforming unit for receiving the steam and the raw material gas and reforming the hydrogen gas, and a burner for heating the reforming unit.
  • the burner may heat the reforming unit by an exothermic reaction for reacting unreacted hydrogen and oxygen after the reaction in the fuel cell.
  • the burner may include a main burner and an auxiliary burner, and the unreacted hydrogen and oxygen may be sequentially supplied to the main burner and the auxiliary burner.
  • It is provided to surround the inside of the hot box and is connected to the first heat exchanger to heat the hot box to the reaction temperature with the heat of the start burner and to lower the temperature of the hot box with the exhaust gas of the second heat exchanger. It may further include a combustion gas line for maintaining the reaction temperature.
  • the exhaust gas of the fuel cell by supplying the exhaust gas of the fuel cell to the latent heat exchanger of the boiler to be exchanged with the exhaust gas of the boiler in the latent heat exchanger, the exhaust gas is increased, thereby improving the efficiency of the boiler and unifying the exhaust pipe.
  • the effect is to simplify the configuration.
  • the present invention provides a means for heating the outside air during the initial operation, and then by continuously heating and supplying the outside air intake by using the exhaust gas, by preventing the change in the temperature inside the hot box according to the outside air inflow, By maintaining the temperature of the hot box at the reaction temperature there is an effect that can prevent the power generation efficiency is lowered.
  • the present invention by generating the steam for reforming the raw material gas by using the exhaust gas, and eliminates the increase in heat generated from the fuel cell, and configured to heat the incoming outside air to increase the efficiency of the system configuration
  • the effect is to simplify the configuration.
  • FIG. 1 is a configuration diagram of a complex system of a fuel cell and a boiler according to a preferred embodiment of the present invention.
  • FIG. 2 is a detailed configuration diagram of the boiler in FIG.
  • FIG. 3 is a detailed configuration diagram of the fuel cell unit in FIG. 1.
  • connector 160 second heat exchanger
  • FIG. 1 is a block diagram of a fuel cell and a boiler composite system according to a preferred embodiment of the present invention.
  • a complex system of a fuel cell and a boiler includes a fuel cell unit 100 and latent heat exchanger 20 configured to generate electricity through a catalytic reaction by receiving external air and source gas.
  • the exhaust pipe 170 of the fuel cell unit 100 is connected to the front end of the latent heat exchanger 210 and includes a boiler unit 200 to which the exhaust gas of the fuel cell unit 100 is supplied. .
  • the fuel cell unit 100 takes in external air including a fuel cell, receives fuel gas such as natural gas, and reforms it into oxygen and hydrogen components to generate electricity through a catalytic reaction in an embedded fuel cell. Let's do it.
  • the electricity generated at this time is stored using a storage battery, or directly used.
  • the boiler unit 200 may use electricity produced by the fuel cell unit 100 as a power source.
  • the fuel cell unit 100 is provided with a discharge pipe 170 for discharging the gas or unreacted gas not involved in the catalytic reaction to the outside, the gas discharged through the discharge pipe 170 is a hot box to be described later It is heated while being used for cooling the fuel cell within.
  • the exhaust gas of the fuel cell unit 100 discharged through the discharge pipe 170 is introduced into the front end of the latent heat exchanger 210 of the boiler 200 to recover waste heat from the latent heat exchanger 210. do.
  • FIG. 2 is a detailed configuration diagram of the boiler 200.
  • the boiler unit 200 includes a blower 210 disposed at an uppermost end thereof, and a downward combustion burner 220, a combustion chamber 230, a sensible heat exchanger 240, and a latent heat exchanger 250.
  • the condensate receiver 270 and the condensate outlet 280 is located on the lower side of the latent heat exchanger 250 and the exhaust hood 290 is installed on one side thereof, the sensible heat exchanger 240 and the latent heat exchanger
  • It consists of a structure further comprises a connection pipe 263 connected to the discharge pipe 170 between the 250.
  • the air supplied through the blower 210 is heated by the downward combustion burner 220, and the heated air is heat-exchanged in the sensible heat exchanger 240 to heat the heating water.
  • the heated heating water is transferred to the room through a supply pipe 261 connected to one side of the sensible heat exchanger 240 to transfer the thermal energy, and then cooled to return to the return pipe 262 connected to one side of the latent heat exchanger 250.
  • the heating water returned to the return pipe 262 is introduced into the latent heat exchanger 250 again to condense the water vapor contained in the combustion product passing through the sensible heat exchanger 240 to recover latent heat.
  • the exhaust gas of the fuel cell unit 100 is supplied together to the latent heat exchanger 250 side through the connection pipe 263, and the latent heat exchanger 250 passes through the sensible heat exchanger 240.
  • the thermal efficiency can be improved.
  • the exhaust hood 290 may be configured to discharge both the exhaust gas of the boiler unit 200 and the exhaust gas of the fuel cell unit 100, thereby simplifying the apparatus by unifying the exhaust port.
  • the connector tube 263 has a bent structure surrounding the side portion of the latent heat exchanger 250 in order to further increase its thermal efficiency, and the fuel cell unit 100 is formed around the latent heat exchanger 250.
  • the exhaust gas is supplied to prevent the latent heat exchanger 250 from being locally overheated.
  • 3 is a block diagram of the fuel cell unit.
  • the fuel cell unit 100 includes a start burner 110 that heats the hot box 130 during an initial operation, and heats external air by heat of the start burner 110 or heat of exhaust gas.
  • a first heat exchanger 120 to supply the hot box 130, a reformer 140 to reform the raw material gas NG located in the hot box 130, and the reformer within the hot box 130.
  • the fuel cell 150 receives the reformed raw material gas from the 140 and receives the heated external air through the first heat exchanger 120 to generate power through a catalytic reaction, and the fuel cell 150 in the fuel cell 150.
  • the unreacted exhaust gas is supplied through the reformer 140 to generate steam using the sensible heat of the unreacted exhaust gas, and is supplied to the reformer 140 together with the raw material gas NG.
  • the reaction exhaust gas is discharged to the outside air through the first heat exchange unit 120.
  • Claim 2 is configured to include a heat exchanger 160, an exhaust pipe 170 for the first supply of the exhaust gas heat exchanger 120 to the boiler 200.
  • the hot box 130 is the outside of the reformer 140 and the fuel cell 150 accommodated to maintain the reaction temperature It serves to block, preheating is required to the reaction temperature in order to increase the power generation efficiency even in the initial operation.
  • the temperature of the hot box 130 is heated to the reaction temperature using the start burner 110. Assuming that the reaction temperature in the fuel cell 150 is 750 ° C., a combustion gas line 111 is provided to supply air heated by the start burner 110 to the hot box 130. 130) is heated to 750 °C.
  • combustion gas line 111 is shown as passing through the hot box 130 up and down, but in practice, the combustion gas line 111 is wound around the inside of the hot box 130. to be.
  • the start burner 110 is stopped while the hot box 130 is heated to the reaction temperature by the start burner 110.
  • the combustion gas line 111 is connected to the first heat exchanger 120, and serves to heat external air supplied from the first heat exchanger 120 to the hot box 130 through heat exchange.
  • the heated outside air includes oxygen, and the oxygen, and the heated outside air is taken into the hot box 130 and supplied to the anode 151 of the fuel cell 150.
  • Hydrogen is supplied to the cathode 152 of the fuel cell 150 to generate power by reaction of hydrogen and oxygen.
  • the reformer 140 is used to supply hydrogen to the cathode 152.
  • the reformer 140 is composed of a reforming unit 142, the main burner 141 and the auxiliary burner 143, the reforming unit 142, the steam of the raw material gas (NG) and the second heat exchange unit (160). It receives the reformed and supplies hydrogen gas to the fuel cell 150 side.
  • the reformer 140 may include a function of oxidizing and removing carbon monoxide as needed.
  • the reforming reaction occurring at the reforming unit 142 of the reformer 140 is an endothermic reaction and a continuous supply of heat is required to continue the reforming reaction.
  • the reformer 142 is heated by the main burner 141 and the auxiliary burner 143.
  • the main burner 141 and the auxiliary burner 143 are catalyst burners, and the reforming unit is heated to 800 to 900 ° C. by an exothermic reaction in which hydrogen and oxygen are reacted in the unreacted gas discharged from the fuel cell 150. 142 is heated to cause a reforming reaction.
  • the reformed source gas NG is supplied to the cathode 152 of the fuel cell 150 as described above.
  • Hydrogen is supplied to the cathode 152 of the fuel cell 150 and oxygen is supplied to the anode 151 to perform an electrical reaction to generate electricity.
  • the reaction of oxygen and hydrogen is an exothermic reaction, and thus the temperature inside the fuel cell 150 and the hot box 130 is increased.
  • Oxygen and hydrogen react with each other in the fuel cell 150 to generate electricity, and other gases irrelevant to the reaction or unreacted oxygen and hydrogen, and water vapor in which the oxygen and hydrogen are mixed, react with the anode 151. It is discharged through the connection pipe 153 which is the other side of the cathode 152.
  • connection pipe 153 through which the exhaust gas is discharged is sequentially connected to the main burner 141 and the auxiliary burner 143, and the unreacted oxygen and hydrogen are sequentially connected to the main burner 141 and the auxiliary burner 143.
  • the exothermic reaction of the supplied oxygen and hydrogen is caused.
  • the heat generated is 800 to 900 °C as mentioned above is supplied to the reforming unit 142 to reform the mixed gas of the source gas (NG) and steam to hydrogen gas.
  • the separate burner for heating the reforming unit 142 into the main burner 141 and the auxiliary burner 143 is to minimize the discharge of the unreacted gas by reacting the oxygen of the exhaust gas with hydrogen stepwise.
  • the exhaust gas discharged from the auxiliary burner 143 is discharged through the exhaust pipe 144 to the outside of the hot box 130.
  • the exhaust gas discharged through the exhaust pipe 144 is heated at the main burner 141 and the auxiliary burner 143 and is close to the reaction temperature, and the exhaust gas is supplied to the second heat exchanger 160 to the outside. Heat exchange with water supplied from
  • the water heat-exchanged with the exhaust gas in the second heat exchanger 160 is phase-converted to a steam state, and is mixed with the source gas NG and supplied to the reforming unit 142 as described above.
  • the exhaust gas deprived of heat to the water from the second heat exchanger 160 is supplied to the combustion gas line 111 is supplied into the hot box 130 again.
  • the exhaust gas supplied into the hot box 130 is in a state where the temperature is lowered in the second heat exchanger 160, and the temperature rise in the hot box 130 generated by the exothermic reaction of the fuel cell 150 is increased. Cooling lowers the temperature of the hot box 130 to the reaction temperature.
  • the internal temperature of the hot box 130 can continuously maintain the reaction temperature, the reaction of hydrogen and oxygen in the fuel cell 150 can be smoothly prevented to reduce the power generation efficiency.
  • the exhaust gas passing through the hot box 130 is supplied to the first heat exchanger 120 again. After passing through the hot box 130, the exhaust gas is heated again, and heat exchanges with external air introduced from the first heat exchanger 120 to heat the external air, and after heating the external air. Is supplied to the boiler 200 through the exhaust pipe 170, and since the following operation has been described in detail above it will be omitted.
  • the external air is heated to be supplied into the hot box 130, thereby preventing the internal temperature of the hot box 130 from being changed by supplying the external air at room temperature.
  • the present invention heats the supplied external air so that a change in the internal temperature of the hot box 130 generated when the external air at room temperature is supplied does not occur, thereby preventing a decrease in power generation efficiency as well as a fuel cell.
  • the increase in temperature due to the exothermic reaction of 150 may be cooled using exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 연료전지와 보일러 복합 시스템에 관한 것으로, 외부 공기 및 원료가스를 공급받아 촉매반응을 통해 전기를 발생시키는 연료전지부와, 상기 연료전지부의 배기관에 연결되어 상기 연료전지부의 배기가스의 잠열과 자체 배기가스의 잠열을 함께 회수하는 잠열 열교환기를 구비하는 보일러부를 포함한다. 본 발명은 연료전지의 배기가스를 보일러의 잠열교환기로 공급하여 보일러의 배기가스와 함께 잠열교환기에서 열교환되어 배출되도록 함으로써, 보일러의 효율을 높임과 아울러 배기관을 단일화하여 구성을 단순화할 수 있는 효과가 있다.

Description

연료전지와 보일러의 복합 시스템
본 발명은 연료전지와 보일러의 복합 시스템에 관한 것으로, 보다 상세하게는 연료전지의 배기가스를 이용하여 보일러의 열효율을 높일 수 있는 연료전지와 보일러의 복합 시스템에 관한 것이다.
일반적으로 인류가 사용하고 있는 에너지 중 대부분은 화석연료로부터 얻고 있다. 그러나 이러한 화석연료의 사용은 대기오염 및 산성비, 지구 온난화 등의 환경에 심각한 악영향을 미치고 있으며, 에너지 효율도 낮은 등의 문제점이 있었다.
이러한 화석연료의 사용에 따른 문제점을 해결하기 위하여 최근에는 연료전지 시스템이 개발되고 있다. 이러한 연료전지는 통상의 2차 전지와는 다르게 음극에 연료인 수소가스나 탄화수소를 공급하고, 양극에는 산소를 공급하여 전기를 발생시키는 구조를 갖는다.
즉, 연료전지는 명칭은 전지이지만 실제로는 전기를 발생시키는 발전장치로 볼 수 있다. 기본적으로 연료전지는 연료를 연소시키지 않고 수소와 산소를 전기 화학적 반응을 일으키고, 그 반응 전후의 에너지 차이를 전기에너지로 변환하는 방법을 사용한다.
연료전지는 NOx와 SOx등 환경을 오염시키는 가스가 발생되지 않으며 소음과 진동이 없는 시스템으로서 열효율이 전기발전량과 열회수량을 합하여 80% 이상인 크린 발전 시스템이라 할 수 있다.
이러한 연료전지의 수소와 산소의 반응은 발열반응으로서, 열이 발생하게 된다. 한편 연료전지는 사용되는 전해질로서 인산이 주로 사용되고 있으며, 이러한 인산형 연료전지의 운전온도는 약 200℃로 알려져 있다. 이는 인산 전해질이 허용하는 최대 온도이며, 연료전지가 반응온도인 200℃에서 가장 수소와 산소의 반응이 원활하게 일어나는 것으로 알려져 있으나, 그 수소와 산소의 발열반응에 의하여 열이 발생하게 됨으로써, 수소와 산소의 반응이 원활하게 되지 않아 효율이 낮아질 수 있다. 따라서 연료전지를 냉각시키는 냉각구조가 필수적으로 요구되고 있다.
또한 연료전지의 다른 예로서 전해질은 낮은 용융점을 가지는 탄화리튬과 탄화포타슘의 혼합물을 사용하는 용해 탄산염형 연료전지가 있으며, 용해 탄산염형 연료전지의 운전온도는 약 650℃이며 이러한 운전온도를 유지하기 위한 핫박스가 설치된다.
이와 같은 연료전지의 효율과 밀접한 관계가 있는 운전온도의 유지와 발전효율을 높이기 위해서 다양한 연료전지 시스템이 제안되었다.
예를 들어, 등록특허 10-0787244호에는 발전원료의 효율적인 연소를 위하여 산소가 함유된 공기를 공급하는 공기공급장치를 포함하는 구성으로, 핫박스를 적정한 온도로 낮추기 위한 외부 공기의 유입이 이루어지도록 하는 이중 흡기 방식을 사용하며, 이렇게 흡기된 공기의 산소를 이용하여 전력을 생산하게 된다.
이와 같이 흡기된 공기는 최종적으로 외부로 배기 된다. 이때 배기가스는 온도가 외기에 비해 더 높은 것이며, 배기가스가 배출될 때 백연이 발생되는 등의 문제가 발생할 수 있다.
또한 상기 등록특허 10-0787244호에는 산소가 함유된 공기를 공급하기 위하여 일산화탄소를 제거하는 일산화탄소 제거기를 흡입통로에 연결한 구성에 대하여 언급하고 있다.
그러나 외기흡기통, 공기흡입구, 필터를 통해 공급된 직접 공기 공급압력 조절수단을 통해 연료처리장치 등으로 직접 공급하는 구성을 가지고 있으며, 이는 상온의 공기를 직접 공급하여 사용하기 때문에 핫박스 내부의 온도가 낮아지게 되는 현상이 발생할 수 있다. 이처럼 핫박스의 온도가 반응온도에 비해 낮아지는 경우 발전 효율이 낮아질 수 있는 문제점이 있었다.
상기와 같은 문제점을 감안한 본 발명이 해결하고자 하는 기술적 과제는, 연료전지의 배기가스의 열을 효율적으로 이용할 수 있는 연료전지와 보일러의 복합 시스템을 제공함에 있다.
아울러 본 발명이 해결하고자 하는 다른 기술적 과제는, 흡기되는 외부공기에 의한 핫박스 내부 온도의 변화를 최소화할 수 있는 연료전지와 보일러의 복합 시스템을 제공함에 있다.
또한 본 발명이 해결하고자 하는 다른 과제는, 흡기 라인과 배기 라인을 단일화하여 시스템의 구조를 보다 단순화할 수 있는 연료전지와 보일러의 복합 시스템을 제공함에 있다.
상기와 같은 과제를 해결하기 위한 본 발명 연료전지와 보일러의 복합 시스템은, 외부 공기 및 원료가스를 공급받아 촉매반응을 통해 전기를 발생시키는 연료전지부와, 상기 연료전지부의 배기관에 연결되어 상기 연료전지부의 배기가스의 잠열과 자체 배기가스의 잠열을 함께 회수하는 잠열 열교환기를 구비하는 보일러부를 포함할 수 있다.
상기 보일러부는, 상기 배기관에 연결되어 상기 연료전지부의 배기가스를 상기 잠열 열교환기의 측면에 접하도록 유도하여 상기 잠열 열교환기로 공급하는 연결관을 포함할 수 있다.
상기 연료전지부는, 연료전지와 개질기를 수용하는 핫박스와, 초기 구동시 핫박스의 온도를 반응온도로 가열하는 스타트 버너와, 상기 스타트 버너의 열 또는 배기가스의 열을 이용하여 흡기되는 외부 공기를 가열하여 상기 연료전지로 공급하는 제1열교환부와, 상기 배기가스의 열을 이용하여 스팀을 발생시켜 공급하며, 온도가 낮아진 상기 배기가스로 연료전지를 냉각시켜 상기 반응온도를 유지하는 제2열교환부를 포함할 수 있다.
상기 개질기는, 상기 스팀과 원료가스를 공급받아 수소 가스로 개질하는 개질부와, 상기 개질부를 가열하는 버너를 포함할 수 있다.
상기 버너는, 상기 연료전지에서 반응 후 미반응된 수소 및 산소를 반응시키는 발열반응에 의해 상기 개질부를 가열할 수 있다.
상기 버너는, 주버너와 보조버너로 이루어지며, 상기 미반응된 수소 및 산소가 상기 주버너와 상기 보조버너로 순차 공급될 수 있다.
상기 핫박스 내부를 감싸도록 마련됨과 아울러 상기 제1열교환부에 연결되어, 상기 스타트 버너의 열로 상기 핫박스를 반응온도로 가열함과 아울러 상기 제2열교환부의 배기가스로 상기 핫박스의 온도를 낮춰 반응온도를 유지하는 연소가스라인을 더 포함할 수 있다.
본 발명 연료전지와 보일러의 복합 시스템은, 연료전지의 배기가스를 보일러의 잠열교환기로 공급하여 보일러의 배기가스와 함께 잠열교환기에서 열교환되어 배출되도록 함으로써, 보일러의 효율을 높임과 아울러 배기관을 단일화하여 구성을 단순화할 수 있는 효과가 있다.
또한 본 발명은 초기 작동시 외부 공기를 가열하는 수단을 마련하고, 이후 배기가스를 이용하여 흡기되는 외부 공기를 지속적으로 가열하여 공급하여, 외부 공기 유입에 따른 핫박스 내부 온도의 변화를 방지함으로써, 핫박스의 온도를 반응온도로 유지하여 발전 효율이 저하되는 것을 방지할 수 있는 효과가 있다.
아울러 본 발명은, 배기가스를 이용하여 원료가스를 개질하기 위한 스팀을 발생시킴과 아울러 연료전지에서 발생하는 열의 증가분을 해소하며, 유입되는 외부 공기를 가열할 수 있도록 구성하여 시스템 구성의 효율성을 높이고 구성을 단순화할 수 있는 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 연료전지와 보일러의 복합 시스템 구성도이다.
도 2는 도 1에서 보일러부의 상세 구성도이다.
도 3은 도 1에서 연료전지부의 상세 구성도이다.
** 부호의 설명 **
100:연료전지부 200:보일러부
110:스타트 버너 111:연소가스라인
120:제1열교환부 130:핫박스
140:개질기 141:주버너
142:개질부 143:보조버너
144:배기관 150:연료전지
151:양극 152:음극
153:연결관 160:제2열교환부
170:배기관 210:송풍기
220:하향 연소식 버너 230:연소실
240:현열 열교환기 250:잠열 열교환기
261:공급관 262:환수관
263:연결관 270:응축수받이
280:배출구 290:배기후드
도 1은 본 발명의 바람직한 실시예에 따른 연료전지와 보일러 복합 시스템의 구성도이다.
도 1을 참조하면 본 발명의 바람직한 실시에에 따른 연료전지와 보일러의 복합 시스템은, 외부 공기 및 원료가스를 공급받아 촉매반응을 통해 전기를 발생시키는 연료전지부(100)와, 잠열 교환기(20)를 포함하며, 상기 연료전지부(100)의 배기관(170)이 연결되어 상기 잠열교환기(210)의 전단에 상기 연료전지부(100)의 배기가스가 공급되는 보일러부(200)를 포함한다.
이하, 상기와 같이 구성되는 본 발명의 바람직한 실시예에 따른 연료전지와 보일러 복합 시스템의 구성과 작용에 대하여 보다 상세하게 설명한다.
먼저, 연료전지부(100)는 연료전지를 포함하여 외부의 공기를 흡기하며, 천연가스 등의 연료가스를 공급받아 각각 산소와 수소 성분으로 개질하여 내장된 연료전지에서 촉매반응을 통해 전기를 발생시킨다. 이때 발생된 전기는 축전지 등을 사용하여 저장하거나, 직접 사용한다. 상기 보일러부(200)는 전원으로 상기 연료전지부(100)에서 생산한 전기를 사용할 수 있다.
상기 연료전지부(100)는 상기 촉매 반응에 관여하지 않은 가스 또는 미반응 가스를 외부로 배출하는 배출관(170)이 마련되어 있으며, 그 배출관(170)을 통해 배출되는 가스는 이후에 설명될 핫박스 내에서 상기 연료전지를 냉각시키는 용도로 사용되면서 가열된 것이다.
이와 같이 배출관(170)을 통해 배출되는 상기 연료전지부(100)의 배출가스는 상기 보일러부(200)의 잠열교환기(210)의 전단부로 유입되어 잠열교환기(210)에서 폐열을 회수할 수 있게 된다.
도 2는 상기 보일러부(200)의 상세 구성도이다.
도 2를 참조하면 상기 보일러부(200)는, 최상단에 송풍기(210)가 위치하고, 그 하측으로 하향 연소식 버너(220)와 연소실(230), 현열 열교환기(240), 잠열 열교환기(250)가 위치하며, 잠열 열교환기(250)의 하측에 응축수받이(270)와 응축수 배출구(280)가 위치하고 그 일측으로 배기후드(290)가 설치되며, 상기 현열 열교환기(240)와 잠열 열교환기(250)의 사이에 상기 배출관(170)과 연결되는 연결관(263)을 더 포함하여 된 구조로 이루어져 있다.
상기 송풍기(210)를 통해 공급되는 공기는 하향 연소식 버너(220)에 의해 가열되고, 그 가열된 공기는 현열 열교환기(240)에서 열교환되어 난방수를 가열한다. 상기 가열된 난방수는 현열 열교환기(240)의 일측에 연결된 공급관(261)을 통해 실내로 이송되어 열에너지를 전달한 후 냉각되어 잠열 열교환기(250)의 일측에 연결된 환수관(262)으로 되돌아 오며, 상기 환수관(262)으로 환수된 난방수는 다시 잠열 열교환기(250)로 유입되어 현열 열교환기(240)를 통과한 연소생성물에 포함된 수증기를 응축시켜 잠열을 회수하게 된다.
이때 연결관(263)을 통해서는 상기 연료전지부(100)의 배기가스가 상기 잠열 열교환기(250)측으로 함께 공급되어, 상기 잠열 열교환기(250)는 상기 현열 열교환기(240)를 경유한 보일러부(200)의 배기가스뿐만 아니라 연료전지부(100)의 배기가스의 잠열도 회수하게 됨으로써, 열효율을 높일 수 있게 된다.
또한 상기 배기후드(290)를 통해 보일러부(200)의 배기가스와 상기 연료전지부(100)의 배기가스를 모두 배출하도록 구성함으로써, 배기구를 일원화하여 장치를 단순화할 수 있다.
상기 연결관(263)의 형상은 그 열효율을 보다 높이기 위하여 상기 잠열 열교환기(250)의 측면부를 감싸는 절곡구조를 가지며, 그 잠열 열교환기(250)의 둘레 전체에 상기 연료전지부(100)의 배기가스가 공급되도록 하여 잠열 열교환기(250)가 국부적으로 과열되는 것을 방지하게 된다.
도 3은 상기 연료전지부의 블록 구성도이다.
도 3을 참조하면 상기 연료전지부(100)는, 초기 동작시 핫박스(130)를 가열하는 스타트 버너(110)와, 상기 스타트 버너(110)의 열 또는 배기가스의 열로 외부 공기를 가열하여 핫박스(130) 내로 공급하는 제1열교환부(120)와, 상기 핫박스(130) 내에 위치하며 원료가스(NG)를 개질하는 개질기(140)와, 상기 핫박스(130) 내에서 상기 개질기(140)로부터 개질된 원료가스를 공급받음과 아울러 상기 제1열교환부(120)를 통해 가열된 외부 공기를 공급받아 촉매반응을 통해 발전하는 연료전지(150)와, 상기 연료전지(150)에서 미반응된 배기가스를 상기 개질기(140)를 통해 공급받아 그 미반응 배기가스의 현열을 이용하여 증기를 발생시켜 상기 원료가스(NG)와 함께 상기 개질기(140)에 공급함과 아울러 상기 열교환된 미반응 배기가스를 상기 제1열교환부(120)를 통해 외기로 배출하는 제2열교환부(160)와, 상기 제1열교환부(120)의 배기가스를 상기 보일러부(200)에 공급하는 배기관(170)을 포함하여 구성된다.
이처럼 구성되는 본 발명에 적용되는 연료전지부(100)의 구성과 작용을 보다 상세히 설명하면, 핫박스(130)는 반응온도를 유지하기 위하여 수용된 개질기(140)와 연료전지(150)를 외기와 차단하는 역할을 하는 것으로, 초기 운전에서도 발전 효율을 높이기 위해서는 반응온도로 예열이 요구된다.
이러한 핫박스(130)의 동작 조건을 만족시키기 위하여 초기 운전시에는 스타트 버너(110)를 사용하여 상기 핫박스(130)의 온도를 반응온도로 가열한다. 상기 연료전지(150)에서의 반응온도가 750℃라고 가정하면, 상기 스타트 버너(110)에 의해 가열된 공기를 상기 핫박스(130)로 공급하는 연소가스라인(111)이 마련되어 그 핫박스(130)의 온도를 750℃로 가열하게 된다.
이때 도 1에서는 설명의 편의를 위하여 상기 연소가스라인(111)이 핫박스(130)를 상하 관통하여 지나는 것으로 도시하였으나, 실제로는 연소가스라인(111)이 핫박스(130)의 내부에 감긴 구조이다.
상기와 같이 스타트 버너(110)에 의해 핫박스(130)가 반응온도로 가열된 상태에서 상기 스타트 버너(110)는 운전이 정지된다.
상기 연소가스라인(111)은 제1열교환부(120)에 연결되어 있으며, 그 제1열교환부(120)에서 핫박스(130)로 공급되는 외부 공기를 열교환을 통해 가열하는 역할을 한다.
이는 상온의 외부 공기가 유입되는 경우 상기 핫박스(130) 내부 온도를 낮아질 수 있으며, 상기 외부 공기를 가열하여 공급되도록 함으로써, 핫박스(130) 내부 온도의 변화를 최소화할 수 있다.
따라서 반응효율의 저하, 즉 발전효율의 저하를 방지할 수 있으며, 전체적인 시스템의 온도 변화를 쉽게 예측하여 정확한 온도 범위에서 동작하도록 설계하기가 용이하게 된다.
상기 가열된 외부 공기는 산소를 포함하고 있으며, 그 산소를 포함하며 가열된 외부 공기는 상기 핫박스(130) 내부로 흡기되어 연료전지(150)의 양극(151)으로 공급된다.
상기 연료전지(150)의 음극(152)에는 수소가 공급되어 수소와 산소의 반응에 의해 발전을 하게 된다. 이와 같이 음극(152)에 수소를 공급하기 위하여 개질기(140)를 사용한다.
상기 개질기(140)는 개질부(142)와, 주버너(141) 및 보조버너(143)로 구성되어 있으며, 개질부(142)에서는 원료가스(NG)와 제2열교환부(160)의 스팀을 공급받아 개질하여 수소가스를 연료전지(150)측으로 공급한다.
상기 개질기(140)는 필요에 따라 일산화탄소를 산화시켜 제거하는 기능을 포함할 수 있다. 상기 개질기(140)의 개질부(142)에서 일어나는 개질반응은 흡열반응이며 이러한 개질반응을 지속하기 위해서는 지속적인 열의 공급이 필요하다.
이와 같은 열을 공급하기 위하여 주버너(141)와 보조버너(143)로 개질부(142)를 가열을 하게 된다.
상기 주버너(141)와 보조버너(143)는 촉매 버너이며, 연료전지(150)에서 배출되는 미반응가스에서 수소와 산소를 반응시키는 발열반응에 의해 발생되는 800 내지 900℃의 열로 상기 개질부(142)를 가열하여 개질반응이 일어나도록 한다.
이처럼 개질된 원료가스(NG)는 앞서 설명한 바와 같이 상기 연료전지(150)의 음극(152)으로 공급된다.
상기 연료전지(150)의 음극(152)에 수소가 공급되고, 양극(151)에 산소가 공급되어 전기적인 반응을 하게 되어 발전을 하게 된다. 이와 같은 산소와 수소의 반응은 발열반응이며, 따라서 연료전지(150) 및 핫박스(130) 내부 온도가 상승하게 된다.
이러한 핫박스(130)의 내부 온도 및 연료전지(150)의 온도 상승은 다시 연료전지(150)의 발전 효율을 저하시키는 원인이 되기 때문에 이를 반응온도로 냉각시켜 유지할 필요가 있으며, 이러한 냉각과정은 이후에 보다 상세하게 설명한다.
상기 연료전지(150)의 내에서 산소와 수소가 반응하여 발전을 하고, 그 반응과는 무관한 다른 가스 또는 미반응된 산소와 수소 및 그 산소와 수소가 혼합된 수증기는 상기 양극(151)과 음극(152)의 타측인 연결관(153)을 통해 배출된다.
상기 배기가스가 배출되는 연결관(153)은 주버너(141)와 보조버너(143)에 순차 연결되어 있으며, 주버너(141)와 보조버너(143)에 상기 미반응된 산소와 수소가 순차 공급되어 산소와 수소가 반응하는 발열반응이 일어나게 된다.
이때 발생하는 열은 앞서 언급한 바와 같이 800 내지 900℃가 되며 상기 개질부(142)에 공급하여 원료가스(NG)와 스팀의 혼합가스를 수소가스로 개질되도록 한다.
상기 개질부(142)를 가열하는 버너를 주버너(141)와 보조버너(143)로 분리 구성한 것은 배기가스의 산소와 수소를 단계적으로 반응시켜 미반응 가스의 배출을 최소화하기 위한 것이다.
그 다음, 상기 보조버너(143)에서 배출되는 배기가스는 상기 핫박스(130)의 외부로 배기관(144)을 통해 배출된다.
상기 배기관(144)을 통해 배출되는 배기가스는 상기 주버너(141)와 보조버너(143)에서 가열된 것으로 반응온도에 가까운 온도이며, 이 배기가스는 제2열교환부(160)에 공급되어 외부에서 공급되는 물과 열교환된다.
이때 제2열교환부(160)에서 배기가스와 열교환 된 물은 스팀 상태로 상 전환되며 앞서 설명한 바와 같이 상기 원료가스(NG)와 혼합되어 개질부(142)로 공급된다.
또한 상기 제2열교환부(160)에서 상기 물에 열을 빼앗긴 배기가스는 상기 연소가스라인(111)으로 공급되어 다시 핫박스(130) 내부로 공급된다. 상기 핫박스(130)의 내부로 공급된 배기가스는 제2열교환부(160)에서 온도가 낮아진 상태이며, 상기 연료전지(150)의 발열반응에 의해 발생된 핫박스(130) 내부 온도 상승분을 냉각시켜 핫박스(130)의 온도를 반응온도로 낮추게 된다.
따라서 그 핫박스(130)의 내부 온도는 반응온도를 지속적으로 유지할 수 있게 되며, 연료전지(150)의 수소와 산소의 반응이 원활하게 이루어져 발전 효율이 저하되는 것을 방지할 수 있게 된다.
상기 핫박스(130)를 지난 상기 배기가스는 다시 제1열교환부(120)로 공급된다. 상기 핫박스(130)를 지나면서 상기 배기가스는 다시 가열된 상태가 되며, 제1열교환부(120)에서 유입되는 외부 공기와 열교환되어 그 외부 공기를 가열하게 되며, 그 외부 공기를 가열한 후에는 배기관(170)을 통해 상기 보일러부(200)에 공급되며, 이후의 작용은 앞서 상세히 설명하였으므로 이를 생략한다.
앞서 설명한 바와 같이 외부 공기를 가열하여 핫박스(130) 내부로 공급하게 됨으로써, 핫박스(130)의 내부 온도가 상온의 외부 공기가 공급되어 변화되는 것을 방지할 수 있게 된다.
이처럼 본 발명은 공급되는 외부공기를 가열하여, 상온의 외부 공기가 공급되었을 때 발생하는 핫박스(130) 내부 온도의 변화가 발생하지 않도록 함으로써, 발전 효율의 저하를 방지할 수 있을 뿐만 아니라 연료전지(150)의 발열반응에 따른 온도의 상승분을 배기가스를 사용하여 냉각시킬 수 있게 된다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정, 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (7)

  1. 외부 공기 및 원료가스를 공급받아 촉매반응을 통해 전기를 발생시키는 연료전지부; 및
    상기 연료전지부의 배기관에 연결되어 상기 연료전지부의 배기가스의 잠열과 자체 배기가스의 잠열을 함께 회수하는 잠열 열교환기를 구비하는 보일러부를 포함하는 연료전지와 보일러 복합 시스템.
  2. 제1항에 있어서,
    상기 보일러부는,
    상기 배기관에 연결되어 상기 연료전지부의 배기가스를 상기 잠열 열교환기의 측면에 접하도록 유도하여 상기 잠열 열교환기로 공급하는 연결관을 포함하는 연료전지와 보일러 복합 시스템.
  3. 제1항에 있어서,
    상기 연료전지부는,
    연료전지와 개질기를 수용하는 핫박스;
    초기 구동시 핫박스의 온도를 반응온도로 가열하는 스타트 버너;
    상기 스타트 버너의 열 또는 배기가스의 열을 이용하여 흡기되는 외부 공기를 가열하여 상기 연료전지로 공급하는 제1열교환부; 및
    상기 배기가스의 열을 이용하여 스팀을 발생시켜 공급하며, 온도가 낮아진 상기 배기가스로 연료전지를 냉각시켜 상기 반응온도를 유지하는 제2열교환부를 포함하는 연료전지와 보일러 복합 시스템.
  4. 제3항에 있어서,
    상기 개질기는,
    상기 스팀과 원료가스를 공급받아 수소 가스로 개질하는 개질부; 및
    상기 개질부를 가열하는 버너를 포함하는 연료전지와 보일러 복합 시스템.
  5. 제4항에 있어서,
    상기 버너는,
    상기 연료전지에서 반응 후 미반응된 수소 및 산소를 반응시키는 발열반응에 의해 상기 개질부를 가열하는 것을 특징으로 하는 연료전지와 보일러 복합 시스템.
  6. 제5항에 있어서,
    상기 버너는,
    주버너와 보조버너로 이루어지며, 상기 미반응된 수소 및 산소가 상기 주버너와 상기 보조버너로 순차 공급되는 것을 특징으로 하는 연료전지와 보일러 복합 시스템.
  7. 제3항에 있어서,
    상기 핫박스 내부를 감싸도록 마련됨과 아울러 상기 제1열교환부에 연결되어, 상기 스타트 버너의 열로 상기 핫박스를 반응온도로 가열함과 아울러 상기 제2열교환부의 배기가스로 상기 핫박스의 온도를 낮춰 반응온도를 유지하는 연소가스라인을 더 포함하는 연료전지와 보일러 복합 시스템.
PCT/KR2013/002595 2012-06-04 2013-03-28 연료전지와 보일러의 복합 시스템 WO2013183854A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/405,154 US9917317B2 (en) 2012-06-04 2013-03-28 Combined fuel cell and boiler system
JP2015515932A JP5964502B2 (ja) 2012-06-04 2013-03-28 燃料電池とボイラの複合システム
EP13801331.3A EP2886964B1 (en) 2012-06-04 2013-03-28 Combined fuel cell and boiler system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0059676 2012-06-04
KR1020120059676A KR101392971B1 (ko) 2012-06-04 2012-06-04 연료전지와 보일러의 복합 시스템

Publications (1)

Publication Number Publication Date
WO2013183854A1 true WO2013183854A1 (ko) 2013-12-12

Family

ID=49712216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002595 WO2013183854A1 (ko) 2012-06-04 2013-03-28 연료전지와 보일러의 복합 시스템

Country Status (5)

Country Link
US (1) US9917317B2 (ko)
EP (1) EP2886964B1 (ko)
JP (1) JP5964502B2 (ko)
KR (1) KR101392971B1 (ko)
WO (1) WO2013183854A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576667B1 (ko) * 2014-03-17 2015-12-11 주식회사 경동나비엔 콘덴싱 가스보일러의 열교환기
DE102019211177A1 (de) * 2019-07-26 2021-01-28 Thyssenkrupp Ag Vorrichtung und Verfahren zum automatisierbaren Anfahren einer Dampfreformeranordnung in den Normalbetriebszustand sowie Verwendung sowie Steuerungs-/Regelungseinrichtung sowie Computerprogrammprodukt
CN112648677A (zh) * 2020-09-21 2021-04-13 李倩雯 一种家用新型节能环保采暖炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148166A (ja) * 1994-11-25 1996-06-07 Mitsubishi Heavy Ind Ltd オンサイト型固体電解質燃料電池システム
JPH1186893A (ja) * 1997-09-04 1999-03-30 Aisin Seiki Co Ltd 燃料電池システム
JP2003185388A (ja) * 2001-12-12 2003-07-03 Tokyo Gas Co Ltd 潜熱回収用熱交換器
KR100787244B1 (ko) 2006-11-28 2007-12-21 (주)퓨얼셀 파워 안정적인 공기공급장치를 구비한 연료전지 시스템
KR20090078700A (ko) * 2008-01-15 2009-07-20 한국전력공사 열적 자립운전이 가능한 고체 산화물 연료전지 시스템

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080487A (en) * 1977-02-09 1978-03-21 United Technologies Corporation Process for cooling molten carbonate fuel cell stacks and apparatus therefor
DE3716297A1 (de) * 1987-05-15 1988-12-15 Erich Gerking Gasheizungs-brennstoffzellen-elektrowaermeversorgung "multi-mini-kraftwaermekopplung"
JP2670607B2 (ja) 1987-11-11 1997-10-29 千代田化工建設株式会社 メタノールを燃料とする燃料電池発電プラント
JP2899709B2 (ja) * 1989-11-25 1999-06-02 石川島播磨重工業株式会社 溶融炭酸塩型燃料電池発電装置
DE59609016D1 (de) 1996-07-11 2002-05-08 Sulzer Hexis Ag Winterthur Verfahren zur gleichzeitigen Erzeugung von elektrischer Energie und Wärme für Heizzwecke
JPH10308230A (ja) * 1997-05-02 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電装置
AT406900B (de) * 1998-03-23 2000-10-25 Vaillant Gmbh Heizeinrichtung
JPH11153360A (ja) 1997-11-21 1999-06-08 Tokyo Gas Co Ltd 潜熱回収用熱交換器
AT411387B (de) * 1999-01-11 2003-12-29 Vaillant Gmbh Heizeinrichtung
AT407592B (de) * 1999-02-16 2001-04-25 Vaillant Gmbh Blockheizkraftwerk
NL1013474C2 (nl) * 1999-05-27 2000-12-01 Plug Power Inc Systeem voor het genereren van elektrische energie en warmte.
JP4169518B2 (ja) * 2002-02-19 2008-10-22 大阪瓦斯株式会社 潜熱回収式加熱装置における排気凝縮水中和装置
EP1603994A4 (en) * 2003-02-24 2009-09-02 Texaco Development Corp STEAM DIESEL REFORMING WITH CO 2 / SB CO.
JP2005147647A (ja) * 2003-10-20 2005-06-09 Miura Co Ltd 排ガスボイラ
JP2005294207A (ja) * 2004-04-05 2005-10-20 Babcock Hitachi Kk 燃料電池システム
US20060251934A1 (en) * 2005-05-09 2006-11-09 Ion America Corporation High temperature fuel cell system with integrated heat exchanger network
US20070248860A1 (en) * 2006-04-21 2007-10-25 Michael Penev Integrated exhaust combustor and thermal recovery for fuel cells
DE102006021866A1 (de) * 2006-05-09 2007-11-15 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
GB0621784D0 (en) * 2006-11-01 2006-12-13 Ceres Power Ltd Fuel cell heat exchange systems and methods
KR100790901B1 (ko) * 2006-12-29 2008-01-03 삼성전자주식회사 연료전지 시스템 및 그 운영방법
US20110223501A1 (en) * 2008-11-18 2011-09-15 Tokyo Gas Co., Ltd. Hydrogen-recycling mcfc power-generating system
KR100987823B1 (ko) * 2009-01-12 2010-10-18 한국과학기술원 고체산화물 연료전지 시스템
JP5478299B2 (ja) * 2010-03-02 2014-04-23 西松建設株式会社 温水供給システム
WO2011155005A1 (ja) 2010-06-11 2011-12-15 三浦工業株式会社 ボイラシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148166A (ja) * 1994-11-25 1996-06-07 Mitsubishi Heavy Ind Ltd オンサイト型固体電解質燃料電池システム
JPH1186893A (ja) * 1997-09-04 1999-03-30 Aisin Seiki Co Ltd 燃料電池システム
JP2003185388A (ja) * 2001-12-12 2003-07-03 Tokyo Gas Co Ltd 潜熱回収用熱交換器
KR100787244B1 (ko) 2006-11-28 2007-12-21 (주)퓨얼셀 파워 안정적인 공기공급장치를 구비한 연료전지 시스템
KR20090078700A (ko) * 2008-01-15 2009-07-20 한국전력공사 열적 자립운전이 가능한 고체 산화물 연료전지 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2886964A4

Also Published As

Publication number Publication date
KR101392971B1 (ko) 2014-05-08
KR20130136100A (ko) 2013-12-12
EP2886964B1 (en) 2018-02-21
EP2886964A1 (en) 2015-06-24
JP2015525448A (ja) 2015-09-03
JP5964502B2 (ja) 2016-08-03
EP2886964A4 (en) 2016-04-20
US20150104725A1 (en) 2015-04-16
US9917317B2 (en) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2021230562A1 (ko) 암모니아 기반 고체산화물 연료전지(sofc) 시스템
US7169495B2 (en) Thermally integrated SOFC system
WO2011138988A1 (ko) Lng 운반선의 전기 생산 장치 및 방법
WO2013100490A1 (ko) 연료전지 하이브리드 시스템
WO2013183853A1 (ko) 연료전지 시스템
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2024063347A1 (ko) 공기 및 연료 공급 모듈 및 이를 구비하는 연료전지 시스템
WO1996003782A1 (en) Thermal integration of an air-cooled fuel cell stack
WO2010005165A2 (en) Fuel processor of fuel cell system
WO2019209045A1 (ko) 연료전지 시스템
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
WO2013183854A1 (ko) 연료전지와 보일러의 복합 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2017003089A1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
KR101457589B1 (ko) 연소기의 가연 한계 확장 구조를 갖는 연료전지 시스템
KR20090020687A (ko) 연료 전지 시스템 및 연료 전지 시스템의 온도 관리 방법
JPH0845523A (ja) 燃料電池/ガスタービン複合発電システム
JP4342172B2 (ja) エネルギー併給システム
WO2010035927A1 (ko) 열에너지 회수 시스템
WO2021080260A1 (ko) 하이브리드 발전 시스템
WO2023234553A1 (ko) Soe-sofc-ccs 하이브리드 시스템
WO2015199333A1 (ko) 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법
WO2023096145A1 (ko) 발열체에 의한 승온이 적용되는 암모니아 기반 고체산화물 연료전지(sofc) 시스템, 및 이의 작동방법
WO2015102138A1 (ko) 고체 산화물 연료전지 시스템의 일체형 예열 모듈
WO2021230456A1 (ko) 연료전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405154

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015515932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013801331

Country of ref document: EP