WO2010079922A2 - 연료극 가스 가열 겸용 연료전지용 증기 발생기 - Google Patents

연료극 가스 가열 겸용 연료전지용 증기 발생기 Download PDF

Info

Publication number
WO2010079922A2
WO2010079922A2 PCT/KR2009/007975 KR2009007975W WO2010079922A2 WO 2010079922 A2 WO2010079922 A2 WO 2010079922A2 KR 2009007975 W KR2009007975 W KR 2009007975W WO 2010079922 A2 WO2010079922 A2 WO 2010079922A2
Authority
WO
WIPO (PCT)
Prior art keywords
steam
steam generator
anode gas
fuel cell
superheater
Prior art date
Application number
PCT/KR2009/007975
Other languages
English (en)
French (fr)
Other versions
WO2010079922A3 (ko
Inventor
박종승
백승호
이기풍
이태원
문길호
김윤성
장인갑
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to EP09837682.5A priority Critical patent/EP2378598A4/en
Priority to JP2011545288A priority patent/JP2012515415A/ja
Priority to US13/144,283 priority patent/US20120003550A1/en
Publication of WO2010079922A2 publication Critical patent/WO2010079922A2/ko
Publication of WO2010079922A3 publication Critical patent/WO2010079922A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1869Hot gas water tube boilers not provided for in F22B1/1807 - F22B1/1861
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/30Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent in U-loop form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a steam generator for a fuel cell combined with a cathode gas heating, and more particularly, it is possible to integrate a steam generator, a steam superheater, a cathode gas heater and receive heat from the cathode exhaust gas, thereby miniaturizing the fuel cell system. And a steam generator for a fuel cell combined with a cathode gas heating capable of precisely controlling droplets.
  • the internally reformed molten carbonate fuel cell is a molten carbonate fuel cell in which a reforming catalyst of methane-vapor is charged inside a fuel cell stack to directly use hydrogen produced as a fuel. Heat can be used for the endotherm of the reforming reaction, and the hydrogen produced in the adjacent portion of the electrode is continuously supplied to the reaction directly, which has the advantage that a high conversion rate of the fuel can be expected.
  • the reforming reaction can be divided into a methane reforming reaction and an aqueous reforming reaction, and both have a characteristic of supplying water.
  • the water must not only cause great damage to the catalyst but also must be uniformly mixed with the supplied fuel gas so as to cause a uniform reaction. Therefore, the water must be well converted to the vapor and mixed with the supplied fuel gas.
  • US Patent No. 7,264,234 and US Patent Publication No. 2006/0097412 A1 disclose gas mixed steam generators used in conventional internally reforming molten carbonate fuel cell systems.
  • the gas-mixed steam generator has an advantage that the size is largely reduced by configuring a heat exchanger to supply water by using a plate-fin type and to generate steam by using a cathode discharge gas.
  • the water supply part is inserted into several injection pipes from one header, and it is manufactured in a form that is joined by welding, so that the cost of production is high and the direction of steam is gravity direction, so that water droplets can flow into the rear end. This is large, there is a problem that it is difficult to precisely control the droplet (steam / carbon ratio: S / C ratio) because 100% of the water vaporization is not made.
  • the present inventors can provide a structure in which an anode gas heater, a steam generator, and a steam superheater are integrated to greatly reduce the connection pipe, thereby miniaturizing the fuel cell system, and
  • heat exchange can be used without additional heat energy supply, and a steam generator and a steam superheater with the direction of steam in the antigravity direction can be provided to increase the residence time of the droplet and to achieve complete vaporization through the heat source supply.
  • a steam generator for a fuel cell combined with a cathode gas heating that can be precisely controlled, can raise the temperature of the anode gas to a high temperature, can be easily manufactured, and the cost can be reduced.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a structure in which a steam generator, a steam superheater, and an anode gas heating unit are integrated, thereby greatly reducing the connecting pipe, thereby miniaturizing a fuel cell system. It is to provide a steam generator for a fuel cell combined with a gas heating.
  • another object of the present invention is to provide a steam generator for a fuel cell combined fuel cell that can supply heat to the steam generator, steam superheater and anode gas heating unit through heat exchange without additional heat energy supply using the cathode discharge gas as a heat source.
  • another object of the present invention can increase the residence time of the droplets by providing a steam generator and a steam superheater in which the direction of the steam is set to the anti-gravity direction, it is possible to achieve a complete vaporization through the heat source supply, precisely droplets It is to provide a steam generator for a fuel cell for dual fuel cell heating that can be controlled.
  • another object of the present invention is to provide a steam generator for a combined fuel gas fuel cell capable of raising the temperature of the anode gas to a high temperature through heat exchange of the cathode exhaust gas.
  • Another object of the present invention is to provide a steam generator for a fuel cell combined with a cathode gas heating, which is easy to manufacture and can reduce production and manufacturing costs.
  • the steam generator for a combined fuel cell fuel cell includes a steam generator 100 that generates steam by heating input water, a steam superheater 200 that supplies superheated steam to heat the steam, and a fuel gas.
  • the anode gas heater 300 for supplying heat to the anode gas to increase the temperature is characterized in that it is integrally configured.
  • the steam generator for a combined fuel cell fuel cell according to the present invention is connected to the steam generator 100 for generating steam by heating the input water and the steam generator 100 to supply superheated steam to heat up the steam.
  • the steam superheater 200 and the anode gas heater 300 for supplying heat to the anode gas to heat up the anode gas are integrally formed, and the steam generator 100, the steam superheater 200, and the anode gas heater 300 are integrated. Is connected to the cathode exhaust gas flow path through which the cathode exhaust gas is characterized in that the heat is supplied through heat exchange.
  • the steam generator 100 is characterized in that it comprises a steam generator chamber 110 and the steam generator tube sheet 120.
  • the steam generator 100 has a purified water inlet is formed, the high-pressure purified water is introduced, the introduced water is heat exchanged with the cathode exhaust gas of the cathode exhaust gas flow path via the heat exchange tube sheet 120 And vaporized with steam.
  • the steam superheater 200 is characterized in that it comprises a steam superheater chamber 210, steam superheater tube sheet 220 and steam superheater inlet and outlet separator 230.
  • the steam superheater 200 is formed with an inlet port through which the steam generated from the steam generator 100 flows in such a way that steam is introduced therein, and the introduced steam is a cathode via the U-shaped steam superheater tube sheet 220. Heat exchange with the cathode exhaust gas of the exhaust gas flow path is overheated and discharged to the outside through the steam outlet.
  • the anode gas heater 300 includes an anode gas heater chamber 310, an anode gas heater tube sheet 320, and an anode gas heater inlet / outlet separator 330.
  • the anode gas heater 300 is provided with a cathode gas inlet through which the anode gas is introduced so that the anode gas is introduced, and the introduced anode gas is the cathode discharge gas via the U-shaped anode gas heater tube sheet 320.
  • Heat exchange with the cathode exhaust gas of the flow path is characterized in that the temperature is raised and discharged to the outside through the anode gas outlet.
  • the steam superheater 200 further comprises a pressure check connection 240 for pressure control.
  • the pressure check connector 240 is preferably formed on the steam outlet (F) of the steam superheater (200).
  • the steam generator 100 and the steam superheater 200 is characterized in that connected to the shrink expansion tube (130).
  • the steam generator 100 further comprises a line heater 400.
  • the tube sheet is characterized in that the U-shaped tube sheet.
  • the fuel cell steam generator for dual fuel gas heating further comprises a small heat exchanger.
  • a structure in which a steam generator, a steam superheater, and an anode gas heater are integrated may be provided, thereby reducing the connection pipe, thereby miniaturizing the fuel cell system.
  • the residence time of the droplets can be increased, and complete vaporization can be achieved through the heat source supply, so that the droplets can be precisely controlled.
  • the effect is that you can.
  • FIG. 1 is a schematic cross-sectional view of a steam generator for a fuel cell combined fuel cell according to the present invention.
  • anode gas heater chamber 320 anode gas heater tube sheet
  • FIG. 1 is a schematic cross-sectional view of a steam generator for a fuel cell combined fuel cell according to the present invention.
  • the fuel cell steam generator for dual fuel cell heating may include a steam generator 100, a steam superheater 200, and a fuel gas heater 300 which are integrally formed.
  • the steam generator 100, the steam superheater 200, and the anode gas heater 300 may be sequentially connected to the cathode exhaust gas passage through which the high temperature cathode exhaust gas passes, and may receive heat through heat exchange.
  • the steam generator 100 includes a steam generator chamber 110 for moving the cathode waste heat and constructing a structure, and a tube sheet 120 for heat exchange for steam generation.
  • the steam generator chamber 110 may accommodate the heat exchange tube sheet 120 therein, the configuration is not particularly limited as long as it can perform heat exchange with the cathode discharge gas.
  • the high-pressure purified water is introduced into the steam generator chamber 110 of the steam generator 100 of the present invention through the purified water inlet (E), the tube It is evenly distributed in the front manifold.
  • the dispersed water is then heat-exchanged with the cathode waste heat of the cathode exhaust gas flow path through the heat exchange tube sheet 120 to vaporize with steam.
  • the evaporated water is supplied to the steam superheater 200 through the shrinkage expansion tube (130).
  • the steam superheater 200 includes a steam superheater chamber 210, a steam superheater tube sheet 220, and a steam superheater inlet and outlet separator 230.
  • the steam superheater chamber 210 functions to move the cathode waste heat and to construct a structure
  • the steam superheater tube sheet 220 is a component for superheating steam generated through the steam generator, and the steam superheater inlet / outlet separator 230 ) Is a component for distinguishing the inlet and outlet located at the top of the steam superheater tube sheet 220.
  • the steam superheater 200 may accommodate the steam superheater tube sheet 220 therein, the configuration is not particularly limited as long as it can perform heat exchange with the cathode discharge gas.
  • the steam superheater 200 is formed with an inlet through which the steam generated from the steam generator 100 is introduced, the steam is introduced, the introduced steam is a U-shaped steam superheater
  • the tube sheet 220 is heat-exchanged with the cathode discharge gas of the cathode discharge gas flow path to overheat and is discharged to the outside through the steam outlet.
  • the U-shaped steam superheater tube sheet 220 there is an effect that the outlet of the steam in the anti-gravity direction and can increase the air droplets time of the fine droplets and steam. Meanwhile, the upper part of the steam superheater tube sheet 220 is divided into the inlet and outlet parts through the steam superheater inlet and outlet separator plate 230.
  • the steam superheater 200 may further include a pressure check connection 240 for controlling the pressure of the system.
  • the pressure check connection 240 may be formed on the steam outlet.
  • the pressure check connection unit 240 prevents excessive increase in the outlet pressure of the steam through connection using a rupture disk.
  • the water is branched from the front end of the purified water inlet (E) of the steam generator (100), and the small heat exchanger using waste heat from the control bypass water preheater (G) through the preheater (400).
  • the control process may include a control process (not shown) that can be supplied to the rear end of the steam outlet (F) of the steam superheater (200).
  • the anode gas heater 300 includes an anode gas heater chamber 310, an anode gas heater tube sheet 320, and an anode gas heater entrance / exit separator 330.
  • the anode gas heater chamber 310 functions to move the cathode waste heat and to construct a structure
  • the anode gas heater tube sheet 320 is a component for raising the temperature of the anode gas
  • the anode gas heater inlet / outlet separator 330 is Located at the top of the anode gas heater tube sheet 320 is a component for distinguishing the inlet and outlet.
  • the anode gas heater 300 may accommodate the anode gas heater tube sheet 320 therein, and the configuration thereof is not particularly limited as long as it can perform heat exchange with the cathode discharge gas.
  • the anode gas heater 300 is formed in the anode gas inlet (C) to the anode gas flows into the anode gas is introduced, the anode gas is U-shaped Heat exchanged with the cathode discharge gas of the cathode discharge gas flow path via the anode gas heater tube sheet 320, the temperature is elevated and discharged to the outside through the anode gas outlet (D).
  • the cathode discharge gas is introduced through the cathode waste heat inlet A of the cathode discharge gas flow path, and performs heat exchange with the anode gas heater 300, the steam superheater 200, and the steam generator 100, respectively, and the cathode discharge gas. It is discharged through the cathode waste heat outlet (B) of the flow path.
  • the steam generator for a combined fuel cell fuel cell includes a cathode gas heater 300 requiring a temperature increase of 600 ° C. or higher, a steam superheater 200 for evaporating fine droplets of generated steam, and vaporizing purified water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기는, 투입된 물을 가열하여 증기를 발생시키는 증기 발생기(100), 상기 증기 발생기(100)와 연결되며 상기 증기를 승온시키기 위해 증기에 과열을 공급하는 증기 과열기(200) 및 연료극 가스를 승온시키기 위해 연료극 가스에 열을 공급하는 연료극 가스 가열기(300)가 일체로 구성되며, 상기 증기 발생기(100), 증기 과열기(200) 및 연료극 가스 가열기(300)는 공기극 배출 가스가 통과하는 공기극 배출 가스 유로를 연결되어 열교환을 통해 열을 공급받는 것을 특징으로 한다.

Description

연료극 가스 가열 겸용 연료전지용 증기 발생기
본 발명은 연료극 가스 가열 겸용 연료전지용 증기 발생기에 관한 것으로, 보다 상세하게는 증기 발생기, 증기 과열기, 연료극 가스 가열기를 일체화하고 공기극 배출 가스로부터 열을 공급받을 수 있어, 그로 인해 연료전지 시스템을 소형화할 수 있고 액적을 정밀하게 제어할 수 있는 연료극 가스 가열 겸용 연료전지용 증기 발생기에 관한 것이다.
내부 개질형 용융탄산염 연료전지라 함은 연료전지 스택 내부에 메탄-수증기의 개질 촉매가 충진되어 여기에서 생성된 수소가 직접 연료로 사용되는 용융탄산염 연료전지로, 제작비가 적게 들고 전극반응에서 생성된 열을 개질 반응의 흡열에 이용할 수 있으며, 전극 인접 부분에서 생성된 수소가 직접 반응에 계속하여 공급되므로 연료의 높은 전환율을 기대할 수 있다는 이점을 가진다.
개질 반응은 메탄 개질 반응과 수성화 개질 반응으로 구분할 수 있고, 모두 물을 공급해야 한다는 특징이 있다. 그러나 물은 촉매에 큰 손상을 줄 뿐만 아니라 공급되는 연료 가스와 균일하게 혼합되어야 균일한 반응을 일으킬 수 있으므로 증기로의 변환 및 공급되는 연료가스와의 혼합이 잘 이루어져야 한다. 또한, 증기의 경우 유량을 측정하기가 매우 까다롭기 때문에 공급된 물이 100% 증기로 변환되어야 한다는 문제점을 가진다.
미국 특허 제 7,264,234호 및 미국 특허 공개 제 2006/0097412 A1은 종래의 내부 개질형 용융탄산염 연료전지 시스템에 이용된 가스 혼합형 증기 발생기를 개시하고 있다. 상기 가스 혼합형 증기 발생기는 플레이트-핀 타입(Plate-Fin type)을 이용하여 물을 공급하고 공기극 배출가스를 이용하여 증기를 생성할 수 있도록 열교환기 형태로 구성하여 크기를 크게 감소시켰다는 이점이 있으나, 물 공급부가 하나의 헤더(header)로부터 여러 개의 주입관으로 삽입되고, 용접에 의하여 결합되는 형태로 제작되어 제작 원가가 높고, 증기의 방향이 중력 방향이기 때문에 수적(水滴)이 후단으로 유입될 가능성이 크며, 물의 100% 증기화가 이루어지지 않아 액적(液滴),(steam/carbon ratio: S/C ratio)을 정밀하게 제어하기 어렵다는 문제점이 있었다.
이에 본 발명자들은 상기 종래 기술의 문제점을 해결하기 위하여, 연료극 가스 가열부, 증기 발생기 및 증기 과열기를 일체화시킨 구조를 제공하여 연결 배관을 크게 감소시켜 연료전지 시스템을 소형화할 수 있고, 공기극 배출가스를 열원으로 하여 추가적인 열 에너지 공급없이 열교환을 이용할 수 있으며, 증기의 방향을 반중력 방향으로 하는 증기 발생기 및 증기 과열기를 제공함으로써 액적의 체류시간 증가 및 열원 공급을 통해 완전 증기화를 이룰 수 있어 액적을 정밀하게 제어할 수 있고, 연료극 가스를 고온으로 승온시킬 수 있으며, 제작이 쉽고 비용의 절감이 가능한 연료극 가스 가열 겸용 연료전지용 증기 발생기를 개발하기에 이르렀다.
본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 증기 발생기, 증기 과열기 및 연료극 가스 가열부를 일체화시킨 구조를 제공하여 연결 배관을 크게 감소시켜 연료전지 시스템을 소형화할 수 있는 연료극 가스 가열 겸용 연료전지용 증기 발생기를 제공하는 것이다.
또한 본 발명의 다른 목적은 공기극 배출 가스를 열원으로 하여 추가적인 열 에너지 공급없이 열교환을 통해 증기 발생기, 증기 과열기 및 연료극 가스 가열부에 열을 공급할 수 있는 연료극 가스 가열 겸용 연료전지용 증기 발생기를 제공하는 것이다.
또한 본 발명의 다른 목적은 증기의 방향을 반중력 방향으로 설정한 증기 발생기 및 증기 과열기를 제공함으로써 액적의 체류 시간 증가시킬 수 있고, 열원 공급을 통해 완전 증기화를 이룰 수 있어, 액적을 정밀하게 제어할 수 있는 연료극 가스 가열 겸용 연료전지용 증기 발생기를 제공하는 것이다.
또한 본 발명의 다른 목적은 공기극 배출 가스의 열교환을 통해 연료극 가스를 고온으로 승온시킬 수 있는 연료극 가스 가열 겸용 연료전지용 증기 발생기를 제공하는 것이다.
더욱이 본 발명의 다른 목적은 제작이 용이하고 생산 및 제조 비용의 절감이 가능한 연료극 가스 가열 겸용 연료전지용 증기 발생기를 제공하기 위한 것이다.
본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기는, 투입된 물을 가열하여 증기를 발생시키는 증기 발생기(100), 상기 증기를 승온시키기 위해 증기에 과열을 공급하는 증기 과열기(200) 및 연료극 가스를 승온시키기 위해 연료극 가스에 열을 공급하는 연료극 가스 가열기(300)가 일체로 구성되는 것을 특징으로 한다.
본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기는, 투입된 물을 가열하여 증기를 발생시키는 증기 발생기(100), 상기 증기 발생기(100)와 연결되며 상기 증기를 승온시키기 위해 증기에 과열을 공급하는 증기 과열기(200) 및 연료극 가스를 승온시키기 위해 연료극 가스에 열을 공급하는 연료극 가스 가열기(300)가 일체로 구성되며, 상기 증기 발생기(100), 증기 과열기(200) 및 연료극 가스 가열기(300)는 공기극 배출 가스가 통과하는 공기극 배출 가스 유로를 연결되어 열교환을 통해 열을 공급받는 것을 특징으로 한다.
바람직하게는, 상기 증기 발생기(100)는 증기 발생기 챔버(110) 및 증기 발생기 튜브 시트(120)를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 증기 발생기(100)에는 정제 물 입구가 형성되어 고압의 정제된 물이 유입되고, 유입된 물은 열교환용 튜브시트(120)를 매개로 공기극 배출 가스 유로의 공기극 배출 가스와 열교환되어 증기로 기화되는 것을 특징으로 한다.
바람직하게는, 상기 증기 과열기(200)는 증기 과열기 챔버(210), 증기 과열기 튜브 시트(220) 및 증기 과열기 입출구 분리판(230)을 포함하는 것을 특징으로 한다.
바람직하게는, 상기 증기 과열기(200)에는 상기 증기 발생기(100)로부터 발생하는 증기가 유입되는 유입구가 형성되어 증기가 유입되고, 유입된 증기는 U자형 증기 과열기 튜브 시트(220)를 매개로 공기극 배출 가스 유로의 공기극 배출 가스와 열교환되어 과열되고 증기 배출구를 통하여 외부로 배출되는 것을 특징으로 한다.
바람직하게는, 상기 연료극 가스 가열기(300)는 연료극 가스 가열기 챔버(310), 연료극 가스 가열기 튜브 시트(320) 및 연료극 가스 가열기 입출구 분리판(330)을 포함하는 것을 특징으로 한다.
바람직하게는, 상기 연료극 가스 가열기(300)에는 연료극 가스가 유입되는 연료극 가스 입구가 형성되어 연료극 가스가 유입되고, 유입된 연료극 가스는 U자형 연료극 가스 가열기 튜브 시트(320)를 매개로 공기극 배출 가스 유로의 공기극 배출 가스와 열교환되어 승온되고 연료극 가스 출구를 통하여 외부로 배출되는 것을 특징으로 한다.
바람직하게는, 상기 증기 과열기(200)는 압력 제어를 위한 압력 점검 연결부(240)를 더 포함하는 것을 특징으로 한다. 또한 바람직하게는 상기 압력 점검 연결부(240)는 상기 증기 과열기(200)의 증기 배출구(F) 상에 형성되는 것을 특징으로 한다.
바람직하게는, 상기 증기 발생기(100) 및 증기 과열기(200)는 수축 팽창 튜브(130)로 연결되는 것을 특징으로 한다.
바람직하게는, 상기 증기 발생기(100)는 선 가열부(400)를 더 포함하는 것을 특징으로 한다.
바람직하게는, 상기 튜브 시트는 U자형 튜브 시트인 것을 특징으로 한다.
바람직하게는, 상기 연료극 가스 가열 겸용 연료전지용 증기 발생기는 소형 열교환기를 더 포함하는 것을 특징으로 한다.
본 발명에 따르면, 증기 발생기, 증기 과열기 및 연료극 가스 가열부를 일체화시킨 구조를 제공하여 연결 배관을 크게 감소시켜 연료전지 시스템을 소형화할 수 있다는 효과가 있다.
또한 본 발명에 따르면, 추가적인 열 에너지 공급없이 공기극 배출 가스와의 열교환을 통해 증기 발생기, 증기 과열기 및 연료극 가스 가열부에 열을 공급할 수 있다는 효과가 있다.
또한 본 발명에 따르면, 증기의 방향을 반중력 방향으로 설정한 증기 발생기 및 증기 과열기를 제공함으로써 액적의 체류 시간 증가시킬 수 있고, 열원 공급을 통해 완전 증기화를 이룰 수 있어, 액적을 정밀하게 제어할 수 있다는 효과가 있다.
또한 본 발명에 따르면, 공기극 배출 가스의 열교환을 통해 연료극 가스를 고온으로 승온시킬 수 있다는 효과가 있다.
더욱이 본 발명에 따르면, 제작이 용이하고 생산 및 제조 비용의 절감이 가능한 연료극 가스 가열 겸용 연료전지용 증기 발생기를 제공할 수 있다.
도 1은 본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기의 개략적인 단면도이다.
* 도면의 주요부분에 대한 부호의 설명 *
100: 증기 발생기 110: 증기 발생기 챔버
120: 증기 발생기 튜브시트 130: 수축 팽창 튜브
200: 증기 과열기 210: 증기 과열기 챔버
220: 증기 과열기 튜브시트 230: 증기 과열기 입출구 분리판
240: 압력 점검 연결부 300: 연료극 가스 가열기
310: 연료극 가스 가열기 챔버 320: 연료극 가스 가열기 튜브 시트
330: 연료극 가스 가열기 입출구 분리판
400: 선 가열부
이하, 첨부된 도면을 참조하여 본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기에 대하여 상세하게 설명하지만, 본 발명이 후술하는 내용에 제한되는 것은 아니며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다.
<실시예>
도 1은 본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기의 개략적인 단면도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기는 일체로 구성되는 증기 발생기(100), 증기 과열기(200) 및 연료극 가스 가열기(300)를 포함할 수 있다. 이러한 증기 발생기(100), 증기 과열기(200) 및 연료극 가스 가열기(300)는 고온의 공기극 배출 가스가 통과하는 공기극 배출 가스 유로와 순서데로 연결되어 열교환을 통해 열을 공급받을 수 있다.
증기 발생기(100)는 공기극 폐열의 이동 및 구조물 구성을 위한 증기 발생기 챔버(110)와 증기 발생을 위한 열교환용 튜브시트(120)를 포함한다. 한편, 증기 발생기 챔버(110)는 내부에 열교환용 튜브시트(120)를 수용할 수 있으며, 공기극 배출 가스와 열교환을 수행할 수 있는한 그 구성은 특별히 제한되지 않음을 유의한다.
증기 발생기(100)의 작동 원리에 대해서 보다 구체적으로 살펴보면, 먼저 고압의 정제된 물은 본 발명의 증기 발생기(100)의 증기 발생기 챔버(110) 내로 정제 물 입구(E)를 통하여 유입되고, 튜브 전단의 매니폴드에서 균일하게 분산되게 된다. 그 다음 분산된 물은 열교환용 튜브시트(120)를 매개로 공기극 배출 가스 유로의 공기극 폐열과 열교환되어 증기로 기화되게 된다. 이때, 증발된 물은 수축 팽창 튜브(130)를 통해 증기 과열기(200)로 공급된다.
증기 과열기(200)는 증기 과열기 챔버(210), 증기 과열기 튜브 시트(220) 및 증기 과열기 입출구 분리판(230)을 포함한다. 증기 과열기 챔버(210)는 공기극 폐열의 이동 및 구조물 구성을 위한 기능을 하고, 증기 과열기 튜브 시트(220)는 증기 발생기를 통해 발생된 증기가 과열시키기 위한 구성 요소이며, 증기 과열기 입출구 분리판(230)은 증기 과열기 튜브 시트(220) 상단에 위치하여 입출구를 구분하기 위한 구성 요소이다. 한편, 증기 과열기(200)는 내부에 증기 과열기 튜브 시트(220)를 수용할 수 있으며, 공기극 배출 가스와 열교환을 수행할 수 있는한 그 구성은 특별히 제한되지 않음을 유의한다.
증기 과열기(200)의 작동 원리에 대해서 보다 구체적으로 살펴보면, 증기 과열기(200)에는 증기 발생기(100)로부터 발생하는 증기가 유입되는 유입구가 형성되어 증기가 유입되고, 유입된 증기는 U자형 증기 과열기 튜브 시트(220)를 매개로 공기극 배출 가스 유로의 공기극 배출 가스와 열교환되어 과열되고 증기 배출구를 통하여 외부로 배출되게 된다.
이때, U자형 증기 과열기 튜브 시트(220)를 사용함으로써 증기의 출구가 반중력 방향이 되도록하고 미세 액적 및 증기의 체공시간을 늘려줄 수 있다는 효과가 있다. 한편 증기 과열기 튜브 시트(220) 상단은 증기 과열기 입출구 분리판(230)을 통해 입출구 부가 구분된다.
또한, 증기 과열기(200)는 시스템의 압력을 제어하기 위한 압력 점검 연결부(240)를 더 포함할 수 있다. 상기 압력 점검 연결부(240)는 증기 배출구 상에 형성될 수 있다. 상기 압력 점검 연결부(240)는 파열판(Rupture disk) 등을 사용하여 연결하는 것을 통해 증기의 출구압력이 과다하게 상승하는 것을 막아준다.
추가적으로 액적의 정밀한 제어를 위해 증기 발생기(100)의 정제 물 입구(E)전단에서 물을 분기한 후 선가열부(400)를 거쳐 제어용 우회 물 선가열부(G)에서 나오는 폐열을 이용하여 소형 열교환기를 통해 증기화한 후, 증기 과열기(200)의 증기 배출구(F) 후단에 공급할 수 있는 제어 프로세스(도면 미표시)를 포함할 수도 있다.
연료극 가스 가열기(300)는 연료극 가스 가열기 챔버(310), 연료극 가스 가열기 튜브 시트(320) 및 연료극 가스 가열기 입출구 분리판(330)을 포함한다. 연료극 가스 가열기 챔버(310)는 공기극 폐열의 이동 및 구조물 구성을 위한 기능을 하고, 연료극 가스 가열기 튜브 시트(320)는 연료극 가스의 승온을 위한 구성 요소이며, 연료극 가스 가열기 입출구 분리판(330)은 연료극 가스 가열기 튜브 시트(320) 상단에 위치하여 입출구를 구분하기 위한 구성 요소이다. 한편, 연료극 가스 가열기(300)는 내부에 연료극 가스 가열기 튜브 시트(320)를 수용할 수 있으며, 공기극 배출 가스와 열교환을 수행할 수 있는한 그 구성은 특별히 제한되지 않음을 유의한다.
연료극 가스 가열기(300)의 작동 원리에 대해서 보다 구체적으로 살펴보면, 연료극 가스 가열기(300)에는 연료극 가스가 유입되는 연료극 가스 입구(C)가 형성되어 연료극 가스가 유입되고, 유입된 연료극 가스는 U자형 연료극 가스 가열기 튜브 시트(320)를 매개로 공기극 배출 가스 유로의 공기극 배출 가스와 열교환되어 승온되고 연료극 가스 출구(D)를 통하여 외부로 배출되는 것을 특징으로 한다.
한편, 공기극 배출 가스는 공기극 배출 가스 유로의 공기극 폐열 입구(A)를 통하여 유입되고, 연료극 가스 가열기(300), 증기 과열기(200) 및 증기 발생기(100)와 각각 열교환을 수행하고, 공기극 배출 가스 유로의 공기극 폐열 출구(B)를 통하여 배출되게 된다.
본 발명에 따른 연료극 가스 가열 겸용 연료전지용 증기 발생기는 전체적으로 600℃ 이상의 승온을 요구하는 연료극 가스 가열기(300), 발생된 증기의 미세 액적까지 증발시키기 위한 증기 과열기(200), 정제된 물을 증기화하는 증기 발생기(100)의 순서로 공기극 배출 가스의 폐열을 활용함으로써 폐열 이용 효율을 극대화할 수 있으며, 고온용 연료전지에 추가되는 별도의 승온에 필요한 시스템을 제거함으로써 시스템 및 배관의 크기를 줄일 수 있다는 장점이 있다.
이상, 여기에서는 본 발명을 특정 실시예에 관련하여 도시하고 설명하였지만, 본 발명이 그에 한정되는 것은 아니며, 이하의 특허청구의 범위는 본 발명의 정신과 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변형될 수 있다는 것을 당업계에서 통상의 지식을 가진 자가 용이하게 알 수 있다.

Claims (9)

  1. 투입된 물을 가열하여 증기를 발생시키는 증기 발생기(100);
    상기 증기를 승온시키기 위해 증기에 과열을 공급하는 증기 과열기(200); 및
    연료극 가스를 승온시키기 위해 연료극 가스에 열을 공급하는 연료극 가스 가열기(300);가 일체로 구성되는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  2. 제1항에 있어서,
    상기 증기 발생기(100)는 증기 발생기 챔버(110) 및 증기 발생기 튜브 시트(120)를 포함하는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  3. 제1항에 있어서,
    상기 증기 과열기(200)는 증기 과열기 챔버(210), 증기 과열기 튜브 시트(220) 및 증기 과열기 입출구 분리판(230)을 포함하는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  4. 제1항에 있어서,
    상기 연료극 가스 가열기(300)는 연료극 가스 가열기 챔버(310), 연료극 가스 가열기 튜브 시트(320) 및 연료극 가스 가열기 입출구 분리판(330)을 포함하는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  5. 제3항에 있어서,
    상기 증기 과열기(200)는 압력 제어를 위한 압력 점검 연결부(240)를 더 포함하는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  6. 제1항에 있어서,
    상기 증기 발생기(100) 및 상기 증기 과열기(200)는 수축 팽창 튜브(130)로 연결되는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  7. 제1항 또는 제2항에 있어서,
    상기 증기 발생기(100)는 선가열부(400)를 더 포함하는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  8. 제2항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 튜브 시트는 U자형 튜브 시트인 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
  9. 제1항 내지 제6항 중 어느 하나의 항에 있어서,
    상기 연료극 가스 가열 겸용 연료전지용 증기 발생기는 소형 열교환기를 더 포함하는 것을 특징으로 하는,
    연료극 가스 가열 겸용 연료전지용 증기 발생기.
PCT/KR2009/007975 2009-01-12 2009-12-30 연료극 가스 가열 겸용 연료전지용 증기 발생기 WO2010079922A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09837682.5A EP2378598A4 (en) 2009-01-12 2009-12-30 Steam generator for fuel cell with dual use for heating fuel electrode gas
JP2011545288A JP2012515415A (ja) 2009-01-12 2009-12-30 燃料極ガス加熱兼用燃料電池用蒸気発生器
US13/144,283 US20120003550A1 (en) 2009-01-12 2009-12-30 Steam generator for fuel cell with dual use for heating fuel electrode gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0002345 2009-01-12
KR1020090002345A KR100992340B1 (ko) 2009-01-12 2009-01-12 연료극 가스 가열 겸용 연료전지용 증기 발생기

Publications (2)

Publication Number Publication Date
WO2010079922A2 true WO2010079922A2 (ko) 2010-07-15
WO2010079922A3 WO2010079922A3 (ko) 2010-09-16

Family

ID=42316959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007975 WO2010079922A2 (ko) 2009-01-12 2009-12-30 연료극 가스 가열 겸용 연료전지용 증기 발생기

Country Status (5)

Country Link
US (1) US20120003550A1 (ko)
EP (1) EP2378598A4 (ko)
JP (1) JP2012515415A (ko)
KR (1) KR100992340B1 (ko)
WO (1) WO2010079922A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940071A (zh) * 2014-04-29 2014-07-23 佛山市冠哲金属实业有限公司 一种容积式蒸汽壁挂炉
FR3040635B1 (fr) * 2015-09-07 2017-08-25 Commissariat Energie Atomique Dispositif de conversion d'un liquide en vapeur
US20230411658A1 (en) * 2020-11-11 2023-12-21 Ceres Intellectual Property Company Limited Solid oxide fuel cell system and steam generator thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097412A1 (en) 2002-07-18 2006-05-11 Sumitomo Precision Products Co., Ltd., Gas humidifier

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169073A (ja) * 1990-10-31 1992-06-17 Kawasaki Heavy Ind Ltd 燃料電池の排熱回収方法及び装置
US6821660B2 (en) * 1998-09-08 2004-11-23 Fideris, Inc. Gas humidification device for operation, testing, and evaluation of fuel cells
JP4313464B2 (ja) 1999-04-30 2009-08-12 本田技研工業株式会社 燃料改質装置
JP2001132901A (ja) 1999-10-29 2001-05-18 Toyo Radiator Co Ltd 蒸気発生器
DE10003273B4 (de) * 2000-01-26 2005-07-21 Ballard Power Systems Ag Vorrichtung zum Verdampfen und/oder Überhitzen eines Mediums
US6835354B2 (en) 2000-04-05 2004-12-28 Hyradix, Inc. Integrated reactor
JP2003240477A (ja) * 2002-02-19 2003-08-27 Calsonic Kansei Corp 積層型熱交換器のコア部構造
JP2004156825A (ja) * 2002-11-06 2004-06-03 Nissan Motor Co Ltd 熱交換器
WO2005101562A1 (en) * 2004-03-31 2005-10-27 Modine Manufacturing Company Fuel humidifier and pre-heater for use in a fuel cell system
JP4751580B2 (ja) * 2004-03-31 2011-08-17 東京瓦斯株式会社 発電装置
JP4698987B2 (ja) 2004-08-26 2011-06-08 株式会社日鉄エレックス 加湿ガス供給システムおよびその供給方法
US8691462B2 (en) * 2005-05-09 2014-04-08 Modine Manufacturing Company High temperature fuel cell system with integrated heat exchanger network
US7858256B2 (en) * 2005-05-09 2010-12-28 Bloom Energy Corporation High temperature fuel cell system with integrated heat exchanger network
US20060248799A1 (en) * 2005-05-09 2006-11-09 Bandhauer Todd M High temperature fuel cell system with integrated heat exchanger network
JP2008096087A (ja) * 2006-10-16 2008-04-24 Ebara Corp 蒸気ボイラ装置
US7832364B2 (en) * 2006-12-14 2010-11-16 Texaco Inc. Heat transfer unit for steam generation and gas preheating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097412A1 (en) 2002-07-18 2006-05-11 Sumitomo Precision Products Co., Ltd., Gas humidifier
US7264234B2 (en) 2002-07-18 2007-09-04 Sumitomo Precision Co., Ltd. Gas humidifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2378598A4

Also Published As

Publication number Publication date
KR20100083005A (ko) 2010-07-21
EP2378598A4 (en) 2017-08-02
WO2010079922A3 (ko) 2010-09-16
JP2012515415A (ja) 2012-07-05
KR100992340B1 (ko) 2010-11-04
US20120003550A1 (en) 2012-01-05
EP2378598A2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
ES2567636T3 (es) Aparato de electrólisis
WO2024063347A1 (ko) 공기 및 연료 공급 모듈 및 이를 구비하는 연료전지 시스템
WO2019209045A1 (ko) 연료전지 시스템
WO2001020702A3 (en) Fuel cell electric power generation system
WO2016167461A1 (ko) 수증기 발생 장치 및 이를 포함하는 연료전지 시스템
WO2010079922A2 (ko) 연료극 가스 가열 겸용 연료전지용 증기 발생기
WO2018217005A1 (ko) 연료전지 시스템
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
CN108461781A (zh) 启动燃料电池设备的方法以及燃料电池设备
WO2014017846A1 (ko) 연료전지 공용분배기
WO2013183853A1 (ko) 연료전지 시스템
WO2024025289A1 (ko) 수증기 발생 장치 및 이를 포함하는 연료전지 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2017204520A1 (ko) 연료전지 시스템
WO2024005269A1 (ko) 암모니아를 원료로 활용하는 연소 시스템
KR101490691B1 (ko) 고체산화물 연료전지의 bop 시스템, 이를 포함하는 고체산화물 연료전지 스택모듈 및 그 열효율 향상 작동 방법.
WO2013095025A1 (ko) 연료전지용 가습 열교환기
CN216413124U (zh) 一种尾气模拟加湿加热系统
WO2013183854A1 (ko) 연료전지와 보일러의 복합 시스템
WO2019066207A1 (ko) 이중 구조의 연료전지 박스 및 이를 이용한 연료전지 시스템
WO2011040714A2 (ko) 소형 열병합 발전 시스템의 운전방법
WO2015102138A1 (ko) 고체 산화물 연료전지 시스템의 일체형 예열 모듈
WO2021080260A1 (ko) 하이브리드 발전 시스템
CN210105994U (zh) 一种微管式固体氧化物燃料电池的联合发电系统及装置
CN112952162A (zh) 一种套筒式燃料处理器及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837682

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011545288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009837682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13144283

Country of ref document: US