WO2024005269A1 - 암모니아를 원료로 활용하는 연소 시스템 - Google Patents

암모니아를 원료로 활용하는 연소 시스템 Download PDF

Info

Publication number
WO2024005269A1
WO2024005269A1 PCT/KR2022/015948 KR2022015948W WO2024005269A1 WO 2024005269 A1 WO2024005269 A1 WO 2024005269A1 KR 2022015948 W KR2022015948 W KR 2022015948W WO 2024005269 A1 WO2024005269 A1 WO 2024005269A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
unit
combustor
electrode plate
raw material
Prior art date
Application number
PCT/KR2022/015948
Other languages
English (en)
French (fr)
Inventor
김태일
김동연
최영철
유정현
Original Assignee
주식회사 블루텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 블루텍 filed Critical 주식회사 블루텍
Publication of WO2024005269A1 publication Critical patent/WO2024005269A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus

Definitions

  • the present invention relates to a combustion system using ammonia as a raw material.
  • Patent documents 001 to 004 present prior documents that are technically related to the present invention.
  • Patent document 001 proposes a method for modifying a transparent electrode film in a substrate with a transparent electrode film attached thereto, which includes a substrate and a transparent electrode film formed on the substrate.
  • Patent Document 002 proposes a method of modifying a transparent electrode film in a substrate with a transparent electrode film, including a substrate and a transparent electrode film formed on the substrate.
  • Patent Document 003 proposes a surface modification method of a counter electrode and a surface-modified counter electrode.
  • Patent Document 004 proposes a method of modifying the surface of a carbon material electrode by applying electricity and a surface-modified carbon material electrode.
  • Patent Document 1 KR 10-2011-0061564 (2011.06.09.)
  • Patent Document 2 KR 10-1457098 (2014.11.04.)
  • Patent Document 3 KR 10-1166018 (2021.07.19.)
  • Patent Document 4 KR 10-2297370 (2021.09.01.)
  • the present invention relates to a combustion system using ammonia as a raw material.
  • the present invention relates to a combustion system using ammonia as a raw material.
  • the combustion system using ammonia as a raw material according to the present invention to solve the problems of the prior art includes a combustor 100 that receives fuel containing ammonia and combusts it, and supplies gas and water discharged from the combustor 100.
  • a conversion unit 200 that receives and electrolyzes nitrogen oxides contained in the gas into ammonia and discharges it, and the gas discharged from the conversion unit 200 is stored, and ammonia is separated from the stored gas and the combustor 100. It includes a separation unit 300 that supplies to.
  • the combustor 100 and the separator 300 are connected by a pipe, and the combustor 100 is installed on the pipe.
  • a valve unit 400 that controls whether to open or close and the degree of opening and closing between the separation unit 300, and an ammonia unit installed inside the separation unit 300 to supply the separated ammonia to the combustor 100 according to control. It includes a supply unit and a control unit that controls the valve unit 400 and the ammonia supply unit.
  • the combustion system using ammonia as a raw material according to the present invention to solve the problems of the prior art includes a first sensor that senses the amount of ammonia stored inside the separator, and the control unit detects the amount of ammonia stored in the separator. When the sensed amount of ammonia inside the separation unit 300 exceeds a certain standard value, the valve unit 400 and the ammonia supply unit are controlled to supply ammonia from the separation unit 300 to the combustor 100. .
  • the combustion system using ammonia as a raw material includes a raw material supply unit 500 that supplies raw materials containing ammonia to the combustor 100 and air to the combustor 100. It includes an air supply unit 600 that supplies air, and the raw material supply unit 500 and the air supply unit 600 are controlled by the control unit.
  • the combustion system using ammonia as a raw material according to the present invention to solve the problems of the prior art includes a water supply unit 700 that supplies water to the conversion unit 200, and the water supply unit 700 includes the water supply unit 700. It is controlled by the control unit.
  • the conversion unit 200 is installed at the discharge end of the combustor 100 to collect gas generated from the combustor 100.
  • a negative voltage is applied to the first electrode plate 210 and a positive voltage is applied to the second electrode plate 220. do.
  • the second electrode plate 220 is manufactured from at least one of copper, nickel, and iron.
  • the control unit determines that the potential difference between the first electrode plate 210 and the second electrode plate 220 is 1.2 to 1.4V.
  • the power supply unit is controlled so that
  • nitrogen oxides contained in the exhaust gas discharged from the combustor through the conversion unit are converted into ammonia. This has the effect of recycling some of the fuel by converting it and using the converted ammonia as a raw material for the combustor.
  • the voltage between the first and second electrode plates of the switching unit is controlled to 1.2 to 1.4 V, which has the effect of further improving ammonia production efficiency.
  • FIG. 1 is a schematic diagram of a combustion system according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a switching unit of a combustion system according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a combustion system according to another embodiment of the present invention.
  • the present invention relates to a combustion system, comprising: a combustor 100 that receives fuel containing ammonia and combusts it; A conversion unit 200 that receives the gas and water discharged from the combustor 100, electrolyzes them, reduces nitrogen oxides contained in the gas to ammonia, and discharges it; It includes a separation unit 300 that stores the gas discharged from the conversion unit 200, separates ammonia from the stored gas, and supplies it to the combustor.
  • ammonia has been used as a raw material in power plants such as thermal power plants.
  • thermal power plants used 100% coal as a raw material
  • power generation has been achieved using 80% coal and 20% ammonia.
  • ammonia When ammonia is used as a raw material for the purpose of carbon reduction in a thermal power plant, due to the chemical characteristics of ammonia (NH3), nitrogen oxides (NOx) are produced about 30 times more than in the case of power generation using only conventional coal.
  • the conventional method for removing nitrogen oxides was the Selective Catalytic Reduction (SCR) method, which sprayed a reducing agent on gas containing nitrogen oxides and passed it through a catalyst layer to proceed with the reduction reaction of nitrogen oxides. It's the way to do it.
  • the selective reduction catalyst uses ammonia as a reducing agent. Recently, ammonia has been used as a raw material for thermal power plants, so there has been a problem in that a large amount of ammonia is required, and the present invention was created to solve this problem.
  • the combustor 100 can receive fuel, combust it, and produce power through the heat generated during combustion. That is, the combustion system according to the present invention can be used for power generation purposes.
  • gas is generated during combustion, and the gas includes nitrogen oxides (NOx) and unburned ammonia (NH3) gas.
  • the conversion unit 200 serves to convert nitrogen oxides contained in the gas into ammonia.
  • the method by which the conversion unit 200 converts nitrogen oxides into ammonia is a reduction method through electrolysis, and a detailed description of the electrolysis process will be described later.
  • the separation unit 300 contains a gas containing a predetermined amount of ammonia according to the operation of the combustion system according to the present invention.
  • the separation unit 300 separates the ammonia contained in the gas from other substances and removes the remaining gas components except ammonia. discharge. At this time, the gas components emitted do not include nitrogen oxides (NOx) and ammonia (NH3).
  • Ammonia separated in the separation unit 300 can be reintroduced into the combustor 100 and used as fuel.
  • the amount of ammonia saved through this process may vary depending on the embodiment or actual equipment, but compared to a combustion system that does not reintroduce ammonia through a circulation method, approximately 10% of the ammonia used as a raw material can be saved. there is.
  • Example 1-2 The present invention relates to a combustion system.
  • the combustor 100 and the separator 300 are connected by a pipe, and are installed in the pipe to connect the combustor and the separator.
  • a valve unit 400 that controls the opening/closing and the degree of opening/closing between the valves 300, an ammonia supply unit installed inside the separation unit 300 and supplying the separated ammonia to the combustor 100 according to control, and a valve unit 400.
  • control unit that controls the ammonia supply unit and a first sensor that senses the amount of ammonia stored inside the separation unit 300, and the control unit determines that the amount of ammonia inside the separation unit 300 sensed by the first sensor is set to a certain standard value. If this occurs, the valve unit 400 and the ammonia supply unit are controlled to supply ammonia from the separation unit 300 to the combustor 100.
  • Ammonia stored in the separation unit 300 may not be supplied to the combustor 100 in real time, but may be stored in the separation unit 300 until a certain amount is stored.
  • the control unit measures the amount of ammonia stored in the separation unit 300, and when the measured amount exceeds a predetermined standard value, it controls the valve unit 400 and the ammonia supply unit so that an appropriate amount of ammonia is supplied to the combustor 100. can do.
  • this embodiment may include a first sensor that senses the amount of ammonia stored in the separator 300.
  • the first sensor can sense the amount of ammonia stored in the separation unit 300 in various ways. As an example of the first sensor, the first sensor is connected to the pipe connecting the conversion unit 200 and the separation unit 300.
  • the amount of gas sensed by the first flow meter including a first flow meter installed to sense the amount of gas supplied to the separator 300 and a second flow meter to sense the flow rate of the gas discharged from the separator 300.
  • the valve unit 400 may be implemented by including a general valve that opens and closes the pipe, and the ammonia supply unit is installed inside the separation unit 300 or on the pipe and includes a type of pump that supplies ammonia to the combustor 100. It can be implemented.
  • the present invention relates to a combustion system, and in (Example 1-2), a raw material supply unit 500 that supplies a raw material containing ammonia to the combustor 100; An air supply unit 600 that supplies air to the combustor 100; It includes a control unit that controls the operation of the raw material supply unit 500 and the air supply unit 600.
  • the raw materials supplied from the raw material supply unit 500 may be fossil fuels such as coal or natural gas, except for the ammonia described above.
  • the raw material supply unit 500 may supply ammonia and coal as raw materials, or ammonia and natural gas as raw materials.
  • Ammonia and coal/natural gas may be individually supplied to the combustor 100 through respective pipes or supply passages. And the supply amount can be controlled by the controller.
  • the air supply unit 600 may be implemented through a type of fan, and the air supply unit 600 and the combustor 100 may be connected through a pipe.
  • the present invention relates to a combustion system, and in (Example 1-2), a water supply unit 700 that supplies water to the conversion unit 200; It includes a control unit that controls the water supply unit 700.
  • the water supply unit 700 serves to supply water to the conversion unit 200.
  • the water supply unit 700 may include a water supply means installed in a pipe connecting a water storage tank in which water is stored and a water storage tank or a water storage tank and the switching unit 200.
  • the water supply means may be implemented as a device such as a type of pump.
  • the present invention relates to a combustion system.
  • the switching unit 200 is installed at the discharge end of the combustor 100 and allows the gas generated from the combustor to pass through.
  • a first electrode plate 210 which matches the side of the first electrode plate 210, and which accommodates the water supplied from the conversion unit 200 and the water generated during the conversion process, a water receiving unit 230,
  • a predetermined voltage is applied to the second electrode plate 220 and the first electrode plate 210 and the second electrode plate 220, which are arranged to be spaced apart from the first electrode plate 210, and includes a power unit controlled by a control unit.
  • the second electrode plate 220 is made of at least one of copper, nickel, and iron.
  • the first electrode plate 210 Since the first electrode plate 210 must allow gas to pass through, it may be made of a porous material. A predetermined voltage is applied to the first electrode plate 210 to induce a reduction reaction of nitrogen oxides (NOx) contained in the gas generated from the combustor 100.
  • NOx nitrogen oxides
  • the chemical formula of the reduction reaction that occurs in the first electrode plate 210 is as follows.
  • the chemical formulas (1) to (3) above occur simultaneously on the surface of the first electrode plate 210, the surface copper of the first electrode plate 210 is modified, and nitrogen oxides (NOx) are generated. Nitrogen monoxide is converted into nitrous oxide, nitrogen gas, and ammonia. At this time, as the surface of the first electrode plate 210 is modified, the electrical conductivity of the first electrode plate 210 increases compared to before modification, and at the same time, the conversion rate of nitrous oxide, nitrogen gas, and ammonia increases.
  • the first electrode plate 210 is made of nickel or iron rather than copper, nitrogen monoxide (NOx) is converted into nitrous oxide, nitrogen gas, and ammonia through the same reaction, and the first electrode plate 210 As the surface of the first electrode plate 210 is modified, electrical conductivity is improved in the same way as when the first electrode plate 210 is made of copper, and the conversion rate of nitrous oxide, nitrogen gas, and ammonia increases.
  • NOx nitrogen monoxide
  • the second electrode plate 220 may be made of any material as long as it is made of a conductor.
  • the outer part of the switching unit 200 is composed of a housing 240, and a space is formed between the housing 240 and the first electrode plate 210, creating a passage through which gas containing nitrogen oxides (NOx) flows. It can be used as A kind of coating layer 211 is formed on the surface of the first electrode plate 210 to prevent water in the water receiving portion 230 from penetrating the first electrode plate 210 and gas containing nitrogen oxides (NOx). can be made permeable.
  • Example 1-6 The present invention relates to a combustion system.
  • a negative voltage is applied to the first electrode plate 210, and a positive voltage is applied to the second electrode plate 220. This is approved.
  • the first electrode plate 210 In order for the reduction reaction to occur in the first electrode plate 210 described in Example 1-5, a negative voltage must be applied to the first electrode plate 210. If a positive voltage is applied to the first electrode plate 210, an oxidation reaction is induced and no ammonia is generated, or even if a reduction reaction occurs in the first electrode plate 210, the amount is reduced. That is, in this embodiment, the first electrode plate 210 can be said to be a type of anode.
  • Example 1--7 The present invention relates to a combustion system.
  • the control unit determines that the potential difference between the first electrode plate 210 and the second electrode plate 220 is 1.2 to 1.4. Control the power supply so that it becomes V.
  • the rate at which nitrogen monoxide is converted into nitrous oxide, nitrogen gas, and ammonia may vary.
  • the potential difference between the first electrode plate 210 and the second electrode plate 220 is limited to 1.2 to 1.4 V to provide a potential difference range with a high conversion ratio.
  • the first electrode plate 210 By limiting the potential difference between the and the second electrode plate 220 to 1.3V, the conversion rate of nitrogen monoxide into nitrous oxide, nitrogen gas, and ammonia is maximized.
  • the conversion rate of nitrogen monoxide according to the potential difference between the first electrode plate 210 and the second electrode plate 220 is shown in the drawing.
  • Example 2-1 The present invention relates to a combustion system.
  • a first separator 310 and a second separator 320 are connected in parallel to the combustor 100. ) includes.
  • the combustor 100, the first separator 310, and the second separator 320 are connected to each other in parallel.
  • a first valve unit 410 and a second valve unit 420 are installed between the discharge ends of each of the first separator 310 and the second separator 320 and the combustor 100, respectively.
  • the reason that the first separator 310 and the second separator 320 are connected in parallel to the combustor 100 in this embodiment is that the first separator 310 and the second separator 320 are accommodated in each of the first separator 310 and the second separator 320. This is because the amount of ammonia available is limited, and it is not easy to separate ammonia from gas while supplying the separated ammonia to the combustor 100.
  • one of the first separator 310 and the second separator 320 supplies ammonia to the combustor 100, and the other one stores the gas and then separates the ammonia.
  • a switching valve 800 for selectively supplying gas may be installed on the inlet side of the first separator 310 and the second separator 320.
  • Control of the above-described first separator 310, second separator 320, first valve part 410, second valve part 420, and switching valve 800 may be performed by the control unit.
  • Coating layer 300 Separation part
  • first separator 320 second separator
  • valve part 410 first valve part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)

Abstract

본 발명은 암모니아를 원료로 활용하는 연소 시스템에 관한 것으로, 암모니아를 포함하는 연료를 공급받아 연소시키는 연소기(100), 상기 연소기(100)에서 배출된 가스와 물을 공급받아 전기분해하여 상기 가스에 포함된 질소산화물을 암모니아로 환원해 배출하는 전환부(200) 및 상기 전환부(200)에서 배출된 가스가 저장되고, 저장된 가스 중 암모니아를 분리하여 상기 연소기(100)로 공급하는 분리부(300)를 포함해, 화석연료로의 암모니아를 덜 사용하면서도 동일한 에너지를 발전할 수 있는 효과가 있다.

Description

암모니아를 원료로 활용하는 연소 시스템
본 발명은 암모니아를 원료로 활용하는 연소 시스템에 관한 것이다.
특허문헌 001 내지 004는 본 발명과 기술적 관련성이 존재하는 선행문헌을 제시하고 있다. 특허문헌 001은 투명 전극막의 개질 방법으로, 기판과, 상기 기판 상에 형성된 투명 전극막을 구비하는 투명 전극막이 부착된 기판에 있어서의 투명 전극막의 개질 방법을 제시하고 있다. 특허문헌 002는 기판과, 상기 기판 상에 형성된 투명 전극막을 구비하는 투명 전극막이 부착된 기판에 있어서의 투명 전극막의 개질 방법을 제시하고 있다. 특허문헌 003은 대향전극의 표면개질방법 및 표면개질된 대향전극을 제시하고 있다. 특허문헌 004는 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극을 제시하고 있다.
(특허문헌 1) KR 10-2011-0061564 (2011.06.09.)
(특허문헌 2) KR 10-1457098 (2014.11.04.)
(특허문헌 3) KR 10-1166018 (2021.07.19.)
(특허문헌 4) KR 10-2297370 (2021.09.01.)
본 발명은 암모니아를 원료로 활용하는 연소 시스템에 관한 것이다.
본 발명은 암모니아를 원료로 활용하는 연소 시스템에 관한 것이다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 암모니아를 포함하는 연료를 공급받아 연소시키는 연소기(100), 상기 연소기(100)에서 배출된 가스와 물을 공급받아 전기분해하여 상기 가스에 포함된 질소산화물을 암모니아로 환원해 배출하는 전환부(200) 및 상기 전환부(200)에서 배출된 가스가 저장되고, 저장된 가스 중 암모니아를 분리하여 상기 연소기(100)로 공급하는 분리부(300)를 포함한다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 연소기(100)와 상기 분리부(300)는 배관으로 연결되고, 상기 배관상에 설치되어 상기 연소기(100)와 상기 분리부(300) 사이의 개폐여부 및 개폐정도를 조절하는 밸브부(400), 상기 분리부(300) 내부에 설치되어 제어에 따라 상기 연소기(100)측으로 분리된 암모니아를 공급하는 암모니아 공급부 및 상기 밸브부(400)와 상기 암모니아 공급부를 제어하는 제어부를 포함한다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 분리부 내부에 저장된 암모니아의 양을 센싱하는 제1센서를 포함하고, 상기 제어부는, 상기 제1센서에서 센싱되는 상기 분리부(300) 내부의 암모니아의 양이 일정 기준치 이상이 되면, 상기 밸브부(400)와 상기 암모니아 공급부를 제어하여 상기 분리부(300)에서 상기 연소기(100)측으로 암모니아를 공급한다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 연소기(100)에 암모니아를 포함하는 원료를 공급하는 원료 공급부(500) 및 상기 연소기(100)에 공기를 공급하는 공기 공급부(600)를 포함하고, 상기 원료 공급부(500)와 상기 공기 공급부(600)는 상기 제어부에 의해 제어된다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 전환부(200)에 물을 공급하는 물 공급부(700)를 포함하고, 상기 물 공급부(700)는 상기 제어부에 의해 제어된다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 전환부(200)는, 상기 연소기(100)의 배출단에 설치되어 상기 연소기(100)에서 발생하는 가스가 투과하는 제1전극판(210), 상기 제1전극판(210)의 측면에 매치되며, 상기 전환부(200)에서 공급되는 물과, 전환 과정에서 발생하는 물이 수용되는 물 수용부(230), 상기 제1전극판(210)과 이격되어 배치되는 제2전극판(220) 및 상기 제1전극판(210)과 상기 제2전극판(220)에 소정의 전압을 인가하며, 상기 제어부에 의해 제어되는 전원부를 포함한다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 제1전극판(210)에는 음전압이 인가되고, 상기 제2전극판(220)에는 양전압이 인가된다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 제2전극판(220)은, 구리, 니켈 및 철 중 적어도 어느 하나로 제조된다.
종래기술의 문제점을 해결하기 위한 본 발명에 의한 암모니아를 원료로 활용하는 연소 시스템은, 상기 제어부는, 상기 제1전극판(210)과 상기 제2전극판(220)의 전위차는 1.2~1.4V가 되도록 상기 전원부를 제어한다.
상기한 바와 같은 본 발명의 다양한 실시예에 의한 암모니아를 원료로 활용하는 연소 시스템에 의하면, 암모니아를 원료로 하는 연소 시스템에 있어서, 전환부를 통해 연소기에서 배출되는 배기가스에 포함된 질소산화물을 암모니아로 변환하고, 변환된 암모니아를 연소기의 원료로 사용해, 연료 중 일부를 재활용할 수 있는 효과가 있다.
또한 본 발명에 의하면, 전환부의 제1전극판과 제2전극판 사이의 전압이 1.2~1.4V로 제어되어, 암모니아 생성 효율을 보다 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 의한 연소 시스템의 개략도이고,
도 2는 본 발명의 일실시예에 의한 연소 시스템의 전환부의 개략도이며,
도 3은 본 발명의 다른 실시예에 의한 연소 시스템의 개략도이다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시 예를 상세하게 설명한다.
아래의 실시예에서 인용하는 번호는 인용대상에만 한정되지 않으며, 모든 실시예에 적용될 수 있다. 실시예에서 제시한 구성과 동일한 목적 및 효과를 발휘하는 대상은 균등한 치환대상에 해당된다. 실시예에서 제시한 상위개념은 기재하지 않은 하위개념 대상을 포함한다.
(실시예 1-1) 본 발명은 연소 시스템에 관한 것으로, 암모니아를 포함하는 연료를 공급받아 연소시키는 연소기(100); 상기 연소기(100)에서 배출된 가스와 물을 공급받아 전기분해하여 상기 가스에 포함된 질소산화물을 암모니아로 환원해 배출하는 전환부(200); 상기 전환부(200)에서 배출된 가스가 저장되고, 저장된 가스 중 암모니아를 분리하여 상기 연소기로 공급하는 분리부(300);를 포함한다.
최근 탄소감축을 목적으로, 화력발전소와 같은 발전소에서 암모니아를 원료로 발전하고 있다. 예를 들어, 종래 화력발전소에서 원료로 석탄을 100%로 사용했다고 하면, 최근에는 석탄 80%에 암모니아 20%를 원료로 발전이 이루어지고 있다.
화력발전소에서 탄소감축을 목적으로 암모니아를 원료로 사용할 경우, 암모니아(NH3)의 화학적 특성상, 종래 석탄보다 질소산화물(NOx)가 종래 석탄만 사용하여 발전하는 경우보다 약 30배가량 많이 나오고 있다. 이러한 질소산화물을 제거하기 위한 종래의 방식으로는 선택적 환원 촉매(Selective Catalytic Reduction, SCR) 방식이 있었는데, 이는 질소산화물이 포함된 가스에 환원제를 분사하여 촉매층을 통과시켜, 질소산화물의 환원반응을 진행시키는 방식이다. 그러나 선택적 환원 촉매제는 환원제로 암모니아를 사용하는데, 최근에는 화력발전소의 원료로 암모니아를 사용하고 있는 실정이므로 암모니아가 다량 필요하게 되는 문제점이 있었으며, 본 발명은 이러한 문제점을 해결하기 위해 안출되었다.
연소기(100)는 연료를 공급받아 연소시키고, 연소시 발생한 열을 통해 전력을 생산할 수 있다. 즉, 본 발명에 의한 연소 시스템은 발전 용도로 사용될 수 있다. 연소기(100)에서는 연소시 가스가 발생하며, 가스에는 질소산화물(NOx)과 미연소된 암모니아(NH3) 가스가 포함되어 있다.
전환부(200)는 가스에 포함된 질소산화물을 암모니아로 전환시키는 역할을 한다. 본 발명에서 전환부(200)가 질소산화물을 암모니아로 전환시키는 방식은 전기분해를 통한 환원 방식으로, 전기분해과정에 대한 자세한 설명은 후술한다. 전환부(200)에서 전환된 암모니아는 미연소된 암모니아를 포함하는 가스와 함께, 분리부(300) 측으로 이동되어, 분리부(300)에 저장된다. 분리부(300)에는 본 발명에 의한 연소 시스템의 운전에 따라 소정 정도의 암모니아를 포함하는 가스가 분리부(300)는 가스에 포함된 암모니아를 다른 물질과 분리시키며, 암모니아를 제외한 나머지 가스 성분을 배출한다. 이때 배출되는 가스 성분에는 질소산화물(NOx)과 암모니아(NH3)가 없다.
분리부(300)에서 분리된 암모니아는 연소기(100)측으로 재투입되어 연료로 사용될 수 있다. 이러한 과정을 통해 절약되는 암모니아의 양은 실시예 또는 실제 설비에 따라 달라질 수 있으나, 순환 방식을 통해 암모니아를 재투입하지 않는 연소 시스템과 비교할 때, 원료로 사용되는 암모니아의 약 10%가량을 절약할 수 있다.
(실시예 1-2) 본 발명은 연소 시스템에 관한 것으로, (실시예 1-1)에 있어서, 연소기(100)와 분리부(300)는 배관으로 연결되고, 배관에 설치되어 연소기와 분리부(300) 사이의 개폐여부 및 개폐정도를 조절하는 밸브부(400), 분리부(300) 내부에 설치되어 제어에 따라 연소기(100)측으로 분리된 암모니아를 공급하는 암모니아 공급부,밸브부(400)와 암모니아 공급부를 제어하는 제어부 및 분리부(300) 내부에 저장된 암모니아의 양을 센싱하는 제1센서를 포함하고, 제어부는 제1센서에서 센싱되는 분리부(300) 내부의 암모니아의 양이 일정 기준치 이상이 되면 밸브부(400)와 암모니아 공급부를 제어하여 분리부(300)에서 연소기(100)측으로 암모니아를 공급한다.
분리부(300)에 저장되는 암모니아는 실시간으로 연소기(100)로 공급되는 것이 아닌, 일정 정도의 양이 저장될 때까지, 분리부(300)에 저장될 수 있다. 제어부는 이러한 분리부(300)에 저장되는 암모니아의 양을 측정하고, 측정된 양이 소정 기준치를 초과하면, 밸브부(400)와 암모니아 공급부를 제어하여 적정량의 암모니아가 연소기(100)측으로 공급되도록 할 수 있다. 이를 위해, 본 실시예는 분리부(300)에 저장된 암모니아의 양을 센싱하는 제1센서를 포함할 수 있다. 제1센서는 다양한 방식으로 분리부(300)에 저장된 암모니아의 양을 센싱할 수 있으며, 제1센서의 일예로, 제1센서는 전환부(200)와 분리부(300)를 연결하는 배관에 설치되어 분리부(300)측으로 공급되는 가스의 양을 센싱하는 제1유량계와 분리부(300)에서 배출되는 가스의 유량을 센싱하는 제2유량계를 포함하여, 제1유량계에서 센싱된 가스의 양에서 제2유량계에서 센싱된 가스의 양을 빼, 암모니아의 양을 센싱하는 방식이 있을 수 있다.
밸브부(400)는 배관을 개폐하는 일반적인 밸브를 포함하여 구현될 수 있으며, 암모니아 공급부는 분리부(300) 내부 또는 배관상에 설치되어, 암모니아를 연소기(100)측으로 공급시키는 일종의 펌프를 포함하여 구현될 수 있다.
(실시예 1-3) 본 발명은 연소 시스템에 관한 것으로, (실시예 1-2)에 있어서, 연소기(100)에 암모니아를 포함하는 원료를 공급하는 원료 공급부(500); 연소기(100)에 공기를 공급하는 공기 공급부(600); 상기 원료 공급부(500) 및 상기 공기 공급부(600)의 작동을 제어하는 제어부;를 포함한다.
원료 공급부(500)에서 공급하는 원료는, 상술한 암모니아를 제외하고 석탄 또는 천연가스와 같은 화석연료일 수 있다. 원료 공급부(500)는 암모니아와 석탄을 원료로 공급하거나, 암모니아와 천연가스를 원료로 공급할 수 있는데, 암모니아와 석탄/천연가스는 각각의 배관 또는 공급통로로 연소기(100)에 개별적으로 공급될 수 있으며, 공급량은 제어부에 의해 제어될 수 있다.
공기 공급부(600)는 일종의 팬을 통해 구현될 수 있으며, 공기 공급부(600)와 연소기(100)는 배관을 통해 연결될 수 있다.
(실시예 1-4) 본 발명은 연소 시스템에 관한 것으로, (실시예 1-2)에 있어서, 전환부(200)에 물을 공급하는 물 공급부(700); 상기 물 공급부(700)를 제어하는 제어부;를 포함한다.
전환부(200)에서 전기분해를 통해 질소산화물을 암모니아로 변환시키는 과정에서 물이 발생하며, 필요에 따라 물이 필요할 수 있다. 물 공급부(700)는 전환부(200)에 물을 공급하는 역할을 한다. 물 공급부(700)는 물이 저장되는 물 저장조와 물 저장조 또는 물 저장조와 전환부(200) 사이를 연결하는 배관에 설치되는 물 공급수단을 포함할 수 있다. 물 공급수단은 일종의 펌프와 같은 장치로 구현될 수 있다.
(실시예 1-5) 본 발명은 연소 시스템에 관한 것으로, (실시예 1-4)에 있어서, 전환부(200)는, 연소기(100)의 배출단에 설치되어 연소기에서 발생하는 가스가 투과하는 제1전극판(210), 제1전극판(210)의 측면에 매치되며, 전환부(200)에서 공급되는 물과, 전환 과정에서 발생하는 물이 수용되는 물 수용부(230), 제1전극판(210)과 이격되어 배치되는 제2전극판(220) 및 제1전극판(210)과 제2전극판(220)에 소정의 전압을 인가하며, 제어부에 의해 제어되는 전원부를 포함하고, 제2전극판(220)은, 구리, 니켈 및 철 중 적어도 어느 하나로 제조된다.
제1전극판(210)은 가스가 투과되어야 하기 때문에, 다공성 재질로 형성될 수 있다. 제1전극판(210)에는 소정의 전압이 인가되어, 연소기(100)에서 발생하는 가스에 포함된 질소산화물(NOx)의 환원반응을 유도한다. 제1전극판(210)이 구리로 제조될 때, 제1전극판(210)에서 일어나는 환원반응의 화학식은 아래와 같다.
Figure PCTKR2022015948-appb-img-000001
Figure PCTKR2022015948-appb-img-000002
Figure PCTKR2022015948-appb-img-000003
즉, 본 실시예에서는 상기한 (1) ~ (3) 화학식이 제1전극판(210)의 표면에서 동시에 일어나면서, 제1전극판(210)의 표면 구리가 개질되고, 질소산화물(NOx)의 일산화질소가 아산화질소, 질소가스 및 암모니아로 전환된다. 이때 제1전극판(210)의 표면이 개질됨에 따라, 제1전극판(210)의 전기전도도가 개질 전보다 상승하게 됨과 동시에 아산화질소, 질소가스 및 암모니아의 전환 비율이 증가하는 효과가 있다. 제1전극판(210)은 그 재질이 구리가 아닌 니켈 또는 철이더라도, 동일한 반응을 통해 질소산화물(NOx)의 일산화질소가 아산화질소, 질소가스 및 암모니아로 전환되고, 제1전극판(210)의 표면이 개질되어, 제1전극판(210)이 구리일 때와 동일하게 전기전도도가 향상되고, 아산화질소, 질소가스 및 암모니아의 전환 비율이 증가한다.
본 발명에서는 제1전극판(210)에서만 질소산화물(NOx)의 환원반응을 유도하면 되므로, 제2전극판(220)은 어떠한 재질로 형성되든 도체로만 형성되면 무방할 수 있다.
전환부(200)를 구성하는 외곽은 하우징(240)으로 구성되며, 하우징(240)과 제1전극판(210) 사이에는 공간이 형성되어, 질소산화물(NOx)이 포함된 가스가 유입되는 통로로 사용될 수 있다. 제1전극판(210)의 표면에는 일종의 코팅층(211)이 형성되어, 물 수용부(230)의 물이 제1전극판(210)을 투과하지 못하게 하면서, 질소산화물(NOx)이 포함된 가스는 투과되도록 할 수 있다.
(실시예 1-6) 본 발명은 연소 시스템에 관한 것으로, (실시예 1-5)에 있어서, 제1전극판(210)에는 음전압이 인가되고, 제2전극판(220)에는 양전압이 인가된다.
실시예 1-5에서 설명한 제1전극판(210)에서 환원반응이 일어나려면, 제1전극판(210)에 음전압이 인가되어야 한다. 만약 제1전극판(210)에 양전압이 인가되면 산화반응이 유도되어 암모니아가 발생하지 않거나, 제1전극판(210)에서 환원반응이 일어나더라도 그 양이 적어진다. 즉, 본 실시예에서 제1전극판(210)은 일종의 애노드(anode)라고 할 수 있다.
(실시예 1-7) 본 발명은 연소 시스템에 관한 것으로, (실시예 1-5)에 있어서, 제어부는, 제1전극판(210)과 제2전극판(220)의 전위차는 1.2~1.4V가 되도록 전원부를 제어한다.
제1전극판(210)과 제2전극판(220) 사이의 전위차에 따라, 일산화질소가 아산화질소, 질소가스 및 암모니아로 전환되는 비율이 다를 수 있다. 본 발명에서는 제1전극판(210)과 제2전극판(220) 사이의 전위차가 1.2~1.4V로 한정하여 전환 비율이 높은 전위차 범위를 제시하며, 본 실시예에서는 제1전극판(210)과 제2전극판(220)의 전위차를 1.3V로 한정하여, 일산화질소가 아산화질소, 질소가스 및 암모니아로 전환되는 비율을 극대화시킨다. 제1전극판(210)과 제2전극판(220)의 전위차에 따른 일산화질소의 변환율에 대해서는 도면에 도시되어 있다.
(실시예 2-1) 본 발명은 연소 시스템에 관한 것으로, 앞선 실시예들 중 어느 하나에 있어서, 연소기(100)에 서로 병렬로 연결되는 제1분리부(310) 및 제2분리부(320)를 포함한다.
연소기(100)와 제1분리부(310) 및 제2분리부(320)는 서로 병렬로 연결된다. 제1분리부(310) 및 제2분리부(320) 각각의 배출단과 연소기(100) 사이에는 제1밸브부(410) 및 제2밸브부(420)가 각각 설치된다. 본 실시예에서 제1분리부(310)와 제2분리부(320)가 연소기(100)에 병렬로 연결되는 이유는, 제1분리부(310) 및 제2분리부(320) 각각에 수용 가능한 암모니아의 양이 제한적이기 때문이며, 분리된 암모니아를 연소기(100)에 공급하면서 동시에 가스에서 암모니아를 분리하는 것이 용이하지 않기 때문이다. 즉, 본 실시예에서 제1분리부(310)와 제2분리부(320) 중 하나가 연소기(100)측으로 암모니아를 공급하고, 다른 하나는 가스를 저장 후 암모니아를 분리하는 동작을 수행할 수 있다. 이를 위해, 제1분리부(310) 및 제2분리부(320)의 유입단측에는, 가스의 공급을 선택적으로 하기 위한 절환 밸브(800)가 설치될 수 있다.
상기한 제1분리부(310), 제2분리부(320), 제1밸브부(410), 제2밸브부(420) 및 절환 밸브(800)의 제어는 제어부에서 수행될 수 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
100 : 연소기 200 : 전환부
211 : 코팅층 300 : 분리부
310 : 제1분리부 320 : 제2분리부
400 : 밸브부 410 : 제1밸브부
420 : 제2밸브부 500 : 원료 공급부
600 : 공기 공급부 700 : 물 공급부
800 : 절환 밸브

Claims (9)

  1. 암모니아를 포함하는 연료를 공급받아 연소시키는 연소기(100);
    상기 연소기(100)에서 배출된 가스와 물을 공급받아 전기분해하여 상기 가스에 포함된 질소산화물을 암모니아로 환원해 배출하는 전환부(200); 및
    상기 전환부(200)에서 배출된 가스가 저장되고, 저장된 가스 중 암모니아를 분리하여 상기 연소기(100)로 공급하는 분리부(300);
    를 포함하는 암모니아를 원료로 활용하는 연소 시스템.
  2. 제1항에 있어서,
    상기 연소기(100)와 상기 분리부(300)는 배관으로 연결되고,
    상기 배관상에 설치되어 상기 연소기(100)와 상기 분리부(300) 사이의 개폐여부 및 개폐정도를 조절하는 밸브부(400);
    상기 분리부(300) 내부에 설치되어 제어에 따라 상기 연소기(100)측으로 분리된 암모니아를 공급하는 암모니아 공급부; 및
    상기 밸브부(400)와 상기 암모니아 공급부를 제어하는 제어부;
    를 포함하는 암모니아를 원료로 활용하는 연소 시스템.
  3. 제2항에 있어서,
    상기 분리부 내부에 저장된 암모니아의 양을 센싱하는 제1센서;
    를 포함하고,
    상기 제어부는, 상기 제1센서에서 센싱되는 상기 분리부(300) 내부의 암모니아의 양이 일정 기준치 이상이 되면, 상기 밸브부(400)와 상기 암모니아 공급부를 제어하여 상기 분리부(300)에서 상기 연소기(100)측으로 암모니아를 공급하는 암모니아를 원료로 활용하는 연소 시스템.
  4. 제2항에 있어서,
    상기 연소기(100)에 암모니아를 포함하는 원료를 공급하는 원료 공급부(500); 및
    상기 연소기(100)에 공기를 공급하는 공기 공급부(600);
    를 포함하고,
    상기 원료 공급부(500)와 상기 공기 공급부(600)는 상기 제어부에 의해 제어되는 암모니아를 원료로 활용하는 연소 시스템.
  5. 제2항에 있어서,
    상기 전환부(200)에 물을 공급하는 물 공급부(700);
    를 포함하고,
    상기 물 공급부(700)는 상기 제어부에 의해 제어되는 암모니아를 원료로 활용하는 연소 시스템.
  6. 제5항에 있어서,
    상기 전환부(200)는,
    상기 연소기(100)의 배출단에 설치되어 상기 연소기(100)에서 발생하는 가스가 투과하는 제1전극판(210);
    상기 제1전극판(210)의 측면에 매치되며, 상기 전환부(200)에서 공급되는 물과, 전환 과정에서 발생하는 물이 수용되는 물 수용부(230);
    상기 제1전극판(210)과 이격되어 배치되는 제2전극판(220); 및
    상기 제1전극판(210)과 상기 제2전극판(220)에 소정의 전압을 인가하며, 상기 제어부에 의해 제어되는 전원부;
    를 포함하는 암모니아를 원료로 활용하는 연소 시스템.
  7. 제6항에 있어서,
    상기 제1전극판(210)에는 음전압이 인가되고, 상기 제2전극판(220)에는 양전압이 인가되는 암모니아를 원료로 활용하는 연소 시스템.
  8. 제6항에 있어서,
    상기 제2전극판(220)은, 구리, 니켈 및 철 중 적어도 어느 하나로 제조되는 암모니아를 원료로 활용하는 연소 시스템.
  9. 제6항에 있어서,
    상기 제어부는,
    상기 제1전극판(210)과 상기 제2전극판(220)의 전위차는 1.2~1.4V가 되도록 상기 전원부를 제어하는 암모니아를 원료로 활용하는 연소 시스템.
PCT/KR2022/015948 2022-06-29 2022-10-19 암모니아를 원료로 활용하는 연소 시스템 WO2024005269A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0079915 2022-06-29
KR1020220079915A KR102456434B1 (ko) 2022-06-29 2022-06-29 암모니아를 원료로 활용하는 연소 시스템

Publications (1)

Publication Number Publication Date
WO2024005269A1 true WO2024005269A1 (ko) 2024-01-04

Family

ID=83804686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015948 WO2024005269A1 (ko) 2022-06-29 2022-10-19 암모니아를 원료로 활용하는 연소 시스템

Country Status (2)

Country Link
KR (1) KR102456434B1 (ko)
WO (1) WO2024005269A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650719B1 (ko) 2023-07-21 2024-03-22 에스케이이노베이션 주식회사 암모니아 연료전지 차량 제어 장치 및 그 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190092645A1 (en) * 2016-03-03 2019-03-28 Jgc Corporation Ammonia production method
JP2019178840A (ja) * 2018-03-30 2019-10-17 株式会社Ihi 燃焼装置、ガスタービン及び発電装置
KR102179532B1 (ko) * 2019-02-01 2020-11-16 한국화학연구원 질소산화물 제거용 전기분해장치, 및 질소산화물 제거방법
KR102186440B1 (ko) * 2018-12-24 2020-12-04 한국에너지기술연구원 재순환 과정을 이용한 전기화학적 암모니아 합성방법
KR102250321B1 (ko) * 2018-06-29 2021-05-10 한국화학연구원 질소 산화물로부터 암모니아를 제조하는 전기화학 시스템 및 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166018B1 (ko) 2006-06-19 2012-07-19 삼성에스디아이 주식회사 대향전극의 표면개질방법 및 표면개질된 대향전극
JP5236405B2 (ja) 2008-09-12 2013-07-17 住友化学株式会社 透明電極膜の改質方法及び透明電極膜付基板の製造方法
KR101457098B1 (ko) 2013-11-05 2014-11-04 한국과학기술연구원 촉매, 이를 이용한 전극 및 해당 촉매를 이용한 건식 개질 방법
KR102297370B1 (ko) 2015-01-29 2021-09-01 한국전기연구원 통전에 의한 탄소재 전극 표면 개질방법, 표면개질된 탄소재 전극 및 표면개질된 탄소재 전극을 포함한 전기화학 커패시터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190092645A1 (en) * 2016-03-03 2019-03-28 Jgc Corporation Ammonia production method
JP2019178840A (ja) * 2018-03-30 2019-10-17 株式会社Ihi 燃焼装置、ガスタービン及び発電装置
KR102250321B1 (ko) * 2018-06-29 2021-05-10 한국화학연구원 질소 산화물로부터 암모니아를 제조하는 전기화학 시스템 및 제조방법
KR102186440B1 (ko) * 2018-12-24 2020-12-04 한국에너지기술연구원 재순환 과정을 이용한 전기화학적 암모니아 합성방법
KR102179532B1 (ko) * 2019-02-01 2020-11-16 한국화학연구원 질소산화물 제거용 전기분해장치, 및 질소산화물 제거방법

Also Published As

Publication number Publication date
KR102456434B1 (ko) 2022-10-19

Similar Documents

Publication Publication Date Title
CA1164041A (en) Fuel cell generator
WO2024005269A1 (ko) 암모니아를 원료로 활용하는 연소 시스템
CN108474565A (zh) 家用能源中心和用于操作家用能源中心的方法
WO2019209045A1 (ko) 연료전지 시스템
BR9911496A (pt) Sistema de recuperação de massa e calor para uma usina de energia de célula de combustìvel, e, processo para operação de uma usina de energia de célula de combustìvel
WO2014051268A1 (ko) 삼방밸브 또는 믹싱밸브를 이용한 배열회수시스템의 급탕온도 제어구조 및 온수탱크 열교환기를 이용한 배열회수시스템의 급탕온도 제어구조
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
WO2016167461A1 (ko) 수증기 발생 장치 및 이를 포함하는 연료전지 시스템
WO2010090404A2 (ko) 연료전지 시스템 및 그 제어방법
EP1484814A3 (en) Combined cycle fuel cell power system
WO2022145618A1 (ko) 연료 개질 시스템 및 연료 개질 방법
WO2013183853A1 (ko) 연료전지 시스템
CN101989665A (zh) 自循环燃料电池控制系统及其方法
WO2024034845A1 (ko) 능동적 유량제어가 가능한 가스분리 시스템
WO2017003089A1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2020204292A1 (ko) 가스 팽창 발전 시스템
WO2022211334A1 (ko) 수소 생성 장치
WO2012015113A1 (ko) 평관형 고체산화물 셀 스택
WO2014109554A1 (ko) 화석 연료를 대체할 수 있는 산소-수소 혼합가스를 발생시키는, 자동차를 포함한 기계 장치용 산소-수소 혼합가스 발생장치 및 발생시스템
WO2014084540A1 (ko) 온도보상 구조를 갖는 탈질시스템 및 그 방법
WO2010079922A2 (ko) 연료극 가스 가열 겸용 연료전지용 증기 발생기
CN211667845U (zh) 一种环保高效型燃气锅炉
WO2011040714A2 (ko) 소형 열병합 발전 시스템의 운전방법
WO2021080260A1 (ko) 하이브리드 발전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949560

Country of ref document: EP

Kind code of ref document: A1