WO2010090404A2 - 연료전지 시스템 및 그 제어방법 - Google Patents

연료전지 시스템 및 그 제어방법 Download PDF

Info

Publication number
WO2010090404A2
WO2010090404A2 PCT/KR2010/000325 KR2010000325W WO2010090404A2 WO 2010090404 A2 WO2010090404 A2 WO 2010090404A2 KR 2010000325 W KR2010000325 W KR 2010000325W WO 2010090404 A2 WO2010090404 A2 WO 2010090404A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
temperature
fuel
oxidant gas
Prior art date
Application number
PCT/KR2010/000325
Other languages
English (en)
French (fr)
Other versions
WO2010090404A3 (ko
Inventor
조형목
김호석
홍병선
신미남
Original Assignee
(주)퓨얼셀 파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)퓨얼셀 파워 filed Critical (주)퓨얼셀 파워
Priority to CN201080007119.1A priority Critical patent/CN102308422B/zh
Publication of WO2010090404A2 publication Critical patent/WO2010090404A2/ko
Publication of WO2010090404A3 publication Critical patent/WO2010090404A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system using a polymer electrolyte fuel cell stack, and more particularly, to a fuel cell for stably producing electric power by smoothly humidifying fuel gas and / or oxidant gas supplied to a fuel cell stack. It relates to a system and a control method thereof.
  • the Proton Exchange Membrane Fuel Cell (PEMFC) system uses a polymer membrane with hydrogen ion exchange as an electrolyte and generates an electrochemical reaction using a fuel gas containing hydrogen and an oxidant gas containing oxygen. And generates heat.
  • PEMFC Proton Exchange Membrane Fuel Cell
  • the fuel gas and the oxidant gas are each humidified by the humidifier and then supplied to the fuel cell stack.
  • a bubbler-type humidifier supplies water by passing fuel gas and oxidant gas, respectively, through hot water generated by using a heater.
  • bubbler type humidifiers use energy to heat water, thus increasing the power consumption of the fuel cell system. In other words, the efficiency of the fuel cell system is reduced.
  • the membrane-type humidifier supplies water to the fuel gas and the oxidant gas by moving a separate gas containing water from each exit side of the fuel gas and the oxidant gas of the fuel cell stack via the water vapor transmission membrane.
  • Membrane humidifiers can reduce energy than bubbler humidifiers because they are humidified using heat and moisture discharged from the fuel cell stack.
  • One aspect of the present invention is to provide a fuel cell system and a method of controlling the same, which implements complete humidification of fuel gas and / or oxidant gas while minimizing the configuration of the humidifier without using additional energy.
  • Another aspect of the present invention is to provide a fuel cell system and a method of controlling the same, which recovers waste heat discharged from a fuel processing device and implements complete humidification of fuel gas and / or oxidant gas.
  • a fuel cell system includes a fuel processor for supplying a hydrogen-containing fuel gas, an oxidant gas supply device for supplying an oxygen-containing oxidant gas, and an electrochemical reaction using the fuel gas and the oxidant gas.
  • a fuel cell stack that generates a fuel cell stack, a cooling device that cools the heat generated by the fuel cell stack, a heat recovery device that recovers waste heat from the high temperature cooling water supplied from the cooling device and circulated through the fuel cell stack, and has a self pressure.
  • a steam generator for supplying direct water, generating steam by waste heat of the fuel processor, and supplying and humidifying the steam to at least one of the fuel gas and the oxidant gas supplied to the fuel cell stack.
  • a fuel cell system includes: a direct water reducer for adjusting a flow rate of the direct water supplied by adjusting the pressure of the direct water; and installed between the direct pressure reducer and the steam generator to provide steam for humidification. It may further include a proportional control valve for adjusting the amount.
  • the fuel cell system according to another embodiment of the present invention may further include a pure water generating device for generating pure water by converting the number of water supplied and installed between the direct water reducer and the proportional control valve.
  • the steam generator is installed in the fuel processor, and the fuel cell system according to another embodiment of the present invention, the fuel gas inlet of the fuel cell stack to inject the steam to the fuel gas supplied to the fuel cell stack. It may further include a spray nozzle installed on the side.
  • the fuel cell system according to another exemplary embodiment of the present invention may further include a humidifier installed between the oxidant gas supply device and the oxidant gas inlet of the fuel cell stack.
  • a fuel cell system includes a voltage detector configured to measure a voltage generated by the fuel cell stack over time, and a coolant temperature flowing into the fuel cell stack based on a voltage measured by the voltage detector. It may further include a control device for controlling the.
  • the fuel cell system according to another embodiment of the present invention may further include a power converter for measuring the generated power by converting the DC power generated in the control device and the fuel cell stack into AC power.
  • a fuel cell system includes a cooling water inlet temperature sensor measuring a cooling water inlet temperature of the fuel cell stack, a fuel gas inlet temperature sensor measuring a fuel gas inlet temperature of the fuel cell stack, and the fuel cell.
  • the oxidant gas inlet temperature sensor for measuring the oxidant gas inlet temperature of the stack may be further included.
  • the proportional control valve may control the amount of water vapor required for the humidification according to the detection signals of the cooling water inlet temperature sensor, the fuel gas inlet temperature sensor, and the oxidant gas inlet temperature sensor.
  • the steam generator is installed in the fuel processor, and the fuel cell system according to another embodiment of the present invention has an oxidant gas inlet side of the fuel cell stack to inject the water vapor into the oxidant gas supplied to the fuel cell stack. It may further include a spray nozzle installed in.
  • the power generation step of measuring the generated power generated in the fuel cell stack, the cooling water of the fuel cell stack according to the generated power measured in the generated power measurement step After maintaining the internal temperature of the fuel cell stack and maintaining the internal temperature of the fuel cell stack, the inlet temperature of each of the coolant, fuel gas and oxidant gas supplied to the fuel cell stack is measured, and the measured temperature is measured. If the value is greater than or equal to the set value, the humidification of the fuel cell stack may be stopped / reduced, and if the measured temperature value is less than the set value may include a humidification maintenance step of maintaining the humidification by opening the proportional control valve.
  • the generation power measurement step may include a generation power determination step of determining whether the measured generation power falls within a setting range, and repeating generation power measurement until satisfaction.
  • the internal temperature maintaining step of the fuel cell stack may include: a cooling water temperature measuring step of measuring a cooling water temperature at a cooling water inlet supplied to the fuel cell stack; and determining whether the cooling water temperature is within a set value range and connecting to a heat exchanger until it is satisfied. It may include a cooling water temperature determination step of repeating the cooling water temperature measurement while adjusting the flow rate of the heat exchange pump.
  • the humidification maintenance step is a voltage fluctuation measuring step for measuring a fluctuation range of the voltage generated in the fuel cell stack, and it is determined whether the voltage fluctuation width measured in the voltage fluctuation width measurement step falls within a set value range,
  • the method may further include a voltage fluctuation determining step of stopping the humidification by closing the control valve.
  • the humidification holding step is a gas temperature measuring step of measuring the temperature of the fuel gas and the oxidant gas supplied to each inlet of the fuel cell stack when the voltage fluctuation range is within the set value range, the fuel gas and the oxidant gas
  • the humidification maintenance step after the closing / reducing step, the gas temperature re-measuring step of re-measuring the temperature of the fuel gas and the oxidant gas supplied to the fuel cell stack for a set time, and the temperature of the fuel gas and the oxidant gas And a re-measurement temperature range determination step of determining whether the re-measurement value is within a set value range, and when the temperature re-measurement value is within a set value range, the voltage fluctuation measuring step may be performed again.
  • the humidification maintaining step may humidify at least one of the fuel gas and the oxidant gas.
  • the fuel gas and / / by generating water vapor in the steam generator using a waste heat discharged from the fuel processing apparatus, and supplying direct water without using a separate water pump, and without additional power consumption
  • the complete humidification is implemented by spraying on the oxidant gas, it is possible to simplify the configuration of the fuel cell system and reduce the power consumption.
  • FIG. 1 is a configuration diagram schematically showing a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a control method of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 3 is a configuration diagram schematically illustrating a fuel cell system according to a second embodiment of the present invention.
  • the fuel cell system 100 includes a fuel cell including hydrogen in a fuel cell stack 10 and a fuel cell stack 10 generating electrical energy by an electrochemical reaction.
  • the direct current (DC) power generated from the fuel processing device 20 to supply the oxidant gas supply device 30 to supply the oxidant gas containing oxygen to the fuel cell stack 10 and the fuel cell stack 10 may be alternating ( AC) a power converter 40 for converting power and a control device 90 for controlling them.
  • the fuel cell stack 10 may be formed of a polymer electrolyte fuel cell (PEMFC) that uses a polymer membrane having hydrogen ion exchange characteristics as an electrolyte and generates electricity by causing an electrochemical reaction with hydrogen and oxygen.
  • PEMFC polymer electrolyte fuel cell
  • the fuel processor 20 reforms the fuel to supply fuel gas containing hydrogen to the fuel gas inlet of the fuel cell stack 10.
  • the oxidant gas supply device 30 may be formed by a compressor or a blower, and supplies air containing oxygen, that is, oxidant gas, to the oxidant gas inlet of the fuel cell stack 10.
  • the fuel cell system 100 of the first embodiment further includes components for smooth humidification of the fuel gas and / or the oxidant gas supplied to the fuel cell stack 10.
  • the fuel cell system 100 includes a cooling device 50, a heat recovery device 60, a steam generator 70, a direct pressure reducer 61, a proportional control valve 62, and a pure water generator 63. It further includes.
  • the fuel cell system 100 further includes a humidifier 31 and an oxidant gas inlet temperature sensor 32 installed between the oxidant gas supply device 30 and the oxidant gas inlet of the fuel cell stack 10.
  • the direct pressure reducer 61 connects a direct supply supply line (not shown) to one side of the pure water generating device 63.
  • the direct water reducer 61 is connected to an external direct water supply line to regulate the flow rate of the direct water by reducing the pressure of direct water supplied from the outside, that is, tap water.
  • direct water may be used for the fuel cell stack 10.
  • the direct pressure reducer 61 eliminates the need for a separate water supply device, that is, a water pump (not shown) when supplying moisture necessary for humidification of the fuel gas supplied to the fuel cell stack 10, thereby additional power. No consumption is generated.
  • the pure water generating device 63 converts the direct water supplied to the direct pressure reducer 61 into pure water.
  • proportional control valve 62 connects the steam generator 70 to the other side of the pure water generator 63.
  • Proportional control valve 62 is the direct water supplied from the heat recovery device 60 to the steam generator 70, more specifically, by controlling the amount of pure water, thereby adjusting the degree of humidification of the fuel gas, and also the supply of pure water To control or stop the humidification of the fuel gas.
  • the steam generator 70 is provided to use waste heat inside or on one side of the fuel processor 20, and is supplied via the proportional control valve 62 or the proportional control valve 62 and the pure water generator 63. By using direct water or pure water, the waste heat discharged to the outside from the fuel processing device 20 is recovered to generate steam. Since the steam generator 70 uses pure water by using the waste heat heated in the fuel processor 20, it is unnecessary to use separate energy for steam generation for humidification.
  • the fuel processing device 20 and the fuel cell stack 10 are connected to the fuel gas supply line 21 and the fuel gas discharge line 22 to supply fuel gas and discharge residual fuel gas between each other. do.
  • the control valves 23 and 24 are installed in each of the fuel gas supply line 21 and the fuel gas discharge line 22 to control the supply and discharge of fuel gas, respectively.
  • the fuel gas supply line 21 and the fuel gas discharge line 22 are connected to each other by a bypass line (25).
  • the control valve 26 installed in the bypass pipe 25 may bypass the supply and discharge of fuel gas between the fuel processing device 20 and the fuel cell stack 10.
  • the fuel gas inlet temperature sensor 27 is provided at the fuel gas inlet of the fuel cell stack 10 connected to the fuel gas supply line 21, and detects the temperature of the supplied fuel gas to control the detection signal 90. To apply.
  • the steam generator 70 is connected to the proportional control valve 62 to one side to receive pure water, to recover the waste heat of the fuel processing device 20 to generate steam, and to spray to the other side. It is connected to the nozzle 71 and sprays the generated steam. Since the injection nozzle 71 is installed in the fuel gas supply line 21, water vapor is injected into the fuel gas inlet of the fuel cell stack 10. That is, the steam humidifies the fuel gas.
  • the pure water generated in the pure water generating device 63 is supplied to the steam generator 70 through the proportional control valve 62, and the waste heat discharged from the fuel processing device 20 is recovered to be converted into water vapor.
  • the cooling device 50 supplies cooling water to the fuel cell stack 10 to cool the fuel cell stack 10.
  • the cooling device 50 is a cooling water tank 51 for storing the cooling water, a cooling water pump 52 connected to the cooling water tank 51 to supply the cooling water to the cooling water inlet of the fuel cell stack 10, and the fuel.
  • a cooling water inlet temperature sensor 53 is installed at the cooling water inlet of the battery stack 10 and detects the cooling water temperature at the cooling water inlet.
  • the cooling water pump 52 is driven in response to the detection of the cooling water inlet temperature sensor 53.
  • the coolant supplied to the coolant inlet of the fuel cell stack 10 by driving the coolant pump 52 cools the fuel cell stack 10, changes to a high temperature state, is discharged to the coolant outlet, and flows into the coolant tank 51 to be recirculated. do.
  • the high temperature coolant flowing into the coolant tank 51 from the fuel cell stack 10 is cooled while passing through the heat exchanger 55.
  • the heat exchanger 55 is connected to the heat recovery device 60 via the heat exchange pump 54.
  • the low temperature cooling water of the heat recovery device 60 is circulated and supplied to the heat exchanger 55 by driving the heat exchange pump 54 to recover waste heat of the high temperature cooling water that has cooled the fuel cell stack 10.
  • the heat exchange pump 54 and the heat exchanger 55 are operated in response to the detection of the cooling outlet temperature sensor 56 installed at the cooling outlet of the fuel cell stack 10 to recover the waste heat of the fuel cell stack 10.
  • the fuel cell system 100 further includes a voltage detector (80).
  • the voltage detector 80 measures the voltage generated by the fuel cell stack 10 over time and applies the detection signal to the control device 90. Therefore, the controller 90 may control the temperature of the coolant at the coolant inlet while maintaining the coolant flowing into the fuel cell stack 10 according to the voltage measured by the voltage detector 80 in the set temperature range.
  • the voltage detector 80 may determine the initial determination of the humidification of the fuel cell stack 10 as the voltage fluctuation range. In addition, since the power converter 40 starts producing power in the fuel cell stack 10, the power converter 40 continuously measures the generated power to determine whether the generated power falls within a set value range.
  • the controller 90 receives the detection signal of the voltage detector 80 and controls the fuel cell stack 10 and the power converter 40 connected to the fuel cell stack 10.
  • the oxidant gas inlet detection sensor 32, the cooling water inlet temperature sensor 53, and the fuel gas inlet temperature sensor 27 are connected to the control device 90 to detect respective temperatures to provide a detection signal to the control device 90. Is authorized.
  • the control method of the fuel cell system includes a power generation power measurement step ST10 for measuring power generated in the fuel cell stack 10, and cooling water temperature of the fuel cell stack 10 according to power generation power.
  • Temperature holding step hereinafter referred to as "internal temperature holding step" (ST20) for maintaining the fuel cell stack in a set value range and a humidification holding step (ST30) for selectively supplying water vapor to fuel gas and / or oxidant gas. It includes.
  • the generation power measurement step ST10 is a generation power measurement step ST11 of continuously measuring the generation power in the power converter 40 after starting the production of the power in the fuel cell stack 10, and the measured generation power in the set range.
  • a generation power judging step ST12 for determining whether belonging to the control device 90 is included.
  • the generation power determination step ST12 repeats the generation power measurement step ST11 until the measured generation power falls within the set range.
  • the internal temperature maintenance step ST20 is performed according to the result of the power generation power measurement step ST10.
  • the internal temperature maintaining step ST20 maintains the coolant temperature of the fuel cell stack 10 in a predetermined value range to maintain the temperature inside the fuel cell stack 10 at a predetermined level.
  • the internal temperature maintenance step ST20 includes a coolant temperature measurement step ST21 for measuring the coolant temperature at the coolant inlet supplied to the fuel cell stack, and a coolant temperature determination step ST22 for determining whether the coolant temperature is within a set value range. Include.
  • the coolant temperature determination step ST22 repeats the coolant temperature measurement while adjusting the flow rate of the heat exchange pump 54 connected to the heat exchanger 55 until the coolant temperature falls within a set value range. After the temperature inside the fuel cell stack 10 is kept constant, the humidification maintaining step ST30 is performed.
  • the humidification maintenance step ST30 measures the inlet temperatures of the coolant, the fuel gas, and the oxidant gas supplied to the fuel cell stack 10, and stops the humidification of the fuel cell stack 10 when the measured temperature value is greater than or equal to a set value range. / Decrease, and if the measured temperature value is less than the set value range, the proportional control valve 62 is opened to maintain humidification.
  • the voltage fluctuation measuring step ST311 for measuring the fluctuation range of the voltage generated by the fuel cell stack 10 and the voltage fluctuation width measured in the voltage fluctuation measuring step ST311 are within the set value range.
  • the voltage fluctuation determining step ST312 closes the proportional control valve 62 until the measured voltage fluctuation range falls within the set value range, thereby stopping humidification.
  • the next step of the voltage fluctuation determining step ST312 is performed in the humidification holding step ST30.
  • the humidification maintaining step ST30 includes a gas temperature measuring step ST321 for measuring the temperature of the fuel gas and the oxidant gas supplied to each inlet of the fuel cell stack 10.
  • the gas temperature determining step ST322 determines whether the temperature measurement values of the fuel gas and the oxidant gas measured in the gas temperature measuring step ST321 are smaller than the set value.
  • the gas temperature determination step ST322 repeats the gas temperature measurement until the temperature measurement value is smaller than the set value.
  • the humidification holding step ST30 includes an opening step ST33 for opening the proportional control valve 62.
  • the proportional control valve 62 is opened to supply hot water, and the steam generated from the steam generator 70 is supplied to the fuel cell stack 10 to humidify the fuel gas or the oxidant gas.
  • the humidification maintenance step ST30 includes a closing / decreasing step ST34 for closing or proportionally decreasing the proportional control valve 62.
  • the closing / decreasing step ST34 when the temperature measurement value is equal to or greater than the set value, the humidification is stopped or reduced by closing or controlling the flow rate reduction control of the proportional control valve 62.
  • the humidification maintenance step (ST30) is a gas temperature re-measuring step (ST35) for re-measuring the temperature of the fuel gas and the oxidant gas supplied to the fuel cell stack 10 for a set time after the closing / reducing step (ST34), And a remeasurement temperature range determination step ST36 for determining whether the temperature remeasurement values of the fuel gas and the oxidant gas fall within a set value range.
  • the control device 90 When the temperature re-measurement value is within the set value range, the control device 90 performs the voltage fluctuation width measuring step ST31 again. Therefore, in the remeasurement temperature range determination step ST36, after the humidification stop and decrease control, the gas temperature is measured a plurality of times at a specific interval for a set time, and when the temperature remeasurement value satisfies the set value range, the voltage fluctuation range is measured again. (ST31) to determine the first humidification condition.
  • the humidification maintenance step ST30 is based on whether the value of the generation voltage fluctuation width continuously measured falls within a set value range on a primary basis, and based on the temperature measurement value of the gas measured at each inlet on a secondary basis.
  • the proportional control valve 62 By controlling the proportional control valve 62, the degree of humidification is controlled.
  • FIG. 3 is a configuration diagram schematically illustrating a fuel cell system according to a second embodiment of the present invention.
  • the second embodiment descriptions similar to those in the first embodiment will be omitted, and configurations different from those in the first embodiment will be described.
  • the first embodiment humidifies the oxidant gas through a separate humidifier 31 and at the same time injects water vapor generated by the steam generator 70 into the fuel gas, while the second embodiment does not humidify the fuel gas.
  • water vapor generated by the steam generator 70 is injected into the oxidant gas.
  • the injection nozzle 71 is installed at the oxidant gas inlet side of the fuel cell stack 10. That is, the injection nozzle 71 is installed between the oxidant gas supply device 30 and the fuel cell stack 10 to inject water vapor into the oxidant gas.
  • the fuel gas includes some water vapor in the fuel treatment process of the fuel processor 20.
  • the influence on the change in humidification is dominantly determined by the amount of humidification of the oxidant gas.
  • the second embodiment removes the humidifier 31 on the side of the oxidant gas supply device 30 of the first embodiment, receives pure water from the proportional control valve 62, and converts the water into steam generated by the steam generator 70. Humidify the oxidant gas.
  • the second embodiment simplifies the overall configuration of the fuel cell system 200 by removing the humidifier 31 compared to the first embodiment, and enables stable operation by adjusting the humidification amount for humidifying the oxidant gas.

Abstract

본 발명의 일 실시예에 따른 연료전지 시스템은, 수소 함유 연료가스를 공급하는 연료처리장치, 산소 함유 산화제가스를 공급하는 산화제가스 공급장치, 상기 연료가스와 상기 산화제가스를 사용하여 전기화학반응을 일으키는 연료전지스택, 상기 연료전지스택에서 발생된 열을 냉각하는 냉각장치, 상기 냉각장치에서 공급되어 상기 연료전지스택을 순환하여 배출되는 고온의 냉각수로부터 폐열을 회수하는 열회수장치, 및 자체 압력을 가지는 직수를 공급하여, 상기 연료처리장치의 폐열로 수증기를 생성하고, 상기 수증기를 상기 연료전지스택에 공급되는 상기 연료가스 및 상기 산화제가스 중 적어도 하나에 공급하여 가습하는 수증기발생장치를 포함한다.

Description

연료전지 시스템 및 그 제어방법
본 발명은 고분자 전해질 연료전지스택을 사용하는 연료전지 시스템에 관한 것으로서, 보다 상세하게는 연료전지스택에 공급되는 연료가스 및/또는 산화제가스의 가습을 원활하게 하여, 전력을 안정적으로 생산하는 연료전지 시스템 및 그 제어방법에 관한 것이다.
고분자 전해질 연료전지(PEMFC: Proton Exchange Membrane Fuel Cell) 시스템은 수소이온 교환특성을 갖는 고분자막을 전해질로 사용하며, 수소를 함유한 연료가스와 산소를 함유한 산화제가스를 사용하여 전기화학반응을 일으켜 전기 및 열을 발생시킨다.
연료가스 및 산화제가스는 각각 가습장치에 의하여 가습된 후, 연료전지스택으로 공급된다. 가습장치는, 예를 들면, 버블러(Bubbler)형 가습장치는 히터를 사용하여 생성된 온수에 연료가스 및 산화제가스를 각각 통과시킴으로써 수분을 공급한다. 그러나 버블러형 가습장치는 물을 가열하기 위하여 에너지를 사용하므로 연료전지 시스템의 소비전력을 증가시킨다. 즉 연료전지 시스템의 효율이 저하된다.
다른 예를 들면, 막형 가습장치는 연료전지스택의 연료가스 및 산화제가스 각 출구 측에서부터 수분을 포함하는 별도의 가스를 수증기 투과막으로 경유 이동시키므로 연료가스 및 산화제가스에 수분을 공급한다. 막형 가습장치는 연료전지스택으로부터 배출되는 열과 수분을 이용하여 가습하기 때문에 버블러형 가습장치보다 에너지를 저감시킬 수 있다. 그러나 막형 가습장치는 연료전지스택으로 공급되는 연료가스 및 산화제가스를 완전가습상태로 만들기 어려우며, 완전가습상태를 위해서 투과막의 면적을 증가시켜야 한다. 즉 연료전지 시스템 내에서, 가습장치의 규모가 커진다.
본 발명의 일 측면은 추가 에너지를 사용하지 않고, 가습장치의 구성을 최소화하면서, 연료가스 및/또는 산화제가스의 완전가습을 구현하는 연료전지 시스템 및 그 제어방법을 제공하는 것이다.
본 발명의 다른 일 측면은 연료처리장치 내에서 방출되는 폐열을 회수하여 연료가스 및/또는 산화제가스의 완전가습을 구현하는 연료전지 시스템 및 그 제어방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 연료전지 시스템은, 수소 함유 연료가스를 공급하는 연료처리장치, 산소 함유 산화제가스를 공급하는 산화제가스 공급장치, 상기 연료가스와 상기 산화제가스를 사용하여 전기화학반응을 일으키는 연료전지스택, 상기 연료전지스택에서 발생된 열을 냉각하는 냉각장치, 상기 냉각장치에서 공급되어 상기 연료전지스택을 순환하여 배출되는 고온의 냉각수로부터 폐열을 회수하는 열회수장치, 및 자체 압력을 가지는 직수를 공급하여, 상기 연료처리장치의 폐열로 수증기를 생성하고, 상기 수증기를 상기 연료전지스택에 공급되는 상기 연료가스 및 상기 산화제가스 중 적어도 하나에 공급하여 가습하는 수증기발생장치를 포함한다.
본 발명의 다른 실시예에 따른 연료전지 시스템은, 상기 직수의 압력을 조절하여 공급되는 상기 직수의 유량을 조절하는 직수감압기와, 상기 직수감압기와 상기 수증기발생장치 사이에 설치되어 가습에 필요한 수증기의 양을 조절하는 비례제어밸브를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 시스템은, 상기 직수감압기와 상기 비례제어밸브 사이에 설치되어 공급되는 상기 직수를 변환시켜 순수를 생성하는 순수생성장치를 더 포함할 수 있다.
상기 수증기발생장치는 상기 연료처리장치 내에 설치되며, 본 발명의 다른 실시예에 따른 연료전지 시스템은, 상기 연료전지스택으로 공급되는 상기 연료가스에 상기 수증기를 분사하도록 상기 연료전지스택의 연료가스입구 측에 설치되는 분사노즐을 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 시스템은 상기 산화제가스 공급장치와 상기 연료전지스택의 산화제가스 입구 사이에 설치되는 가습장치를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 시스템은 상기 연료전지스택에서 발생되는 전압을 시간의 경과에 따라 측정하는 전압검지부, 및 상기 전압검지부에서 측정되는 전압에 따라 상기 연료전지스택으로 유입되는 냉각수온도를 제어하는 제어장치를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 시스템은, 상기 제어장치와 상기 연료전지스택에서 발생된 직류전력을 교류전력으로 변환하여 발전전력을 측정하는 전력변환기를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 시스템은 상기 연료전지스택의 냉각수입구온도를 측정하는 냉각수입구온도센서, 상기 연료전지스택의 연료가스입구온도를 측정하는 연료가스입구온도센서, 및 상기 연료전지스택의 산화제가스입구온도를 측정하는 산화제가스입구온도센서를 더 포함할 수 있다. 상기 비례제어밸브는 상기 냉각수입구온도센서, 상기 연료가스입구온도센서 및 상기 산화제가스입구온도센서의 감지신호에 따라 상기 가습에 필요한 수증기의 양을 제어할 수 있다.
상기 수증기발생장치는 상기 연료처리장치 내에 설치되며, 본 발명의 다른 실시예에 따른 연료전지 시스템은 상기 연료전지스택으로 공급되는 상기 산화제가스에 상기 수증기를 분사하도록 상기 연료전지스택의 산화제가스입구 측에 설치되는 분사노즐을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 연료전지 시스템 제어방법은, 연료전지스택에서 발생되는 발전전력을 측정하는 발전전력측정단계, 상기 발전전력측정단계에서 측정된 발전전력에 따라 상기 연료전지스택의 냉각수를 설정된 값으로 유지시키는 연료전지스택 내부온도유지단계, 및 상기 연료전지스택 내부온도유지단계 이후, 상기 연료전지스택으로 공급되는 냉각수, 연료가스 및 산화제가스 각 입구온도를 측정하고, 측정된 각 측정온도 값이 설정 값 이상이면 상기 연료전지스택의 가습을 정지/감소하고, 측정온도 값이 설정 값 미만이면 비례제어밸브를 개방하여 가습을 수행 유지하는 가습유지단계를 포함할 수 있다.
상기 발전전력측정단계는, 측정된 상기 발전전력이 설정 범위에 속하는가를 판단하며, 만족 시까지 발전전력 측정을 반복하는 발전전력판단단계를 포함할 수 있다.
상기 연료전지스택 내부온도유지단계는, 상기 연료전지스택에 공급되는 냉각수입구에서 냉각수온도를 측정하는 냉각수온도측정단계, 및 상기 냉각수온도가 설정 값 범위에 속하는가를 판단하며, 만족 시까지 열교환기에 연결되는 열교환펌프의 유량을 조절하면서 상기 냉각수온도측정을 반복하는 냉각수온도판단단계를 포함할 수 있다.
상기 가습유지단계는, 상기 연료전지스택에서 발생된 전압의 변동폭을 측정하는 전압변동폭측정단계, 및 상기 전압변동폭측정단계에서 측정된 전압변동폭이 설정 값 범위에 속하는가를 판단하며, 만족 시까지 상기 비례제어밸브를 폐쇄하여 가습을 정지하는 전압변동폭 판단단계를 더 포함할 수 있다.
상기 가습유지단계는, 상기 전압변동폭이 설정 값 범위에 속하는 경우, 상기 연료전지스택의 각 입구로 공급되는 연료가스 및 산화제가스의 온도를 각각 측정하는 가스온도측정단계, 상기 연료가스 및 상기 산화제가스의 온도측정 값이 설정 값보다 작은가를 판단하는 가스온도판단단계, 상기 온도측정 값이 상기 설정 값보다 작으면 가습하기 위하여 상기 비례제어밸브를 개방하는 개방단계, 및 상기 온도측정 값이 상기 설정 값 이상이면 가습을 정지/감소하기 위하여 상기 비례제어밸브를 폐쇄 또는 유량 감소하는 폐쇄/감소단계를 포함할 수 있다.
상기 가습유지단계는, 상기 폐쇄/감소단계 이후, 설정 시간 동안 상기 연료전지스택으로 공급되는 연료가스 및 산화제가스의 온도를 재측정하는 가스온도재측정단계, 및 상기 연료가스 및 상기 산화제가스의 온도재측정 값이 설정 값 범위에 속하는가를 판단하는 재측정온도 범위판단단계를 포함하며, 상기 온도재측정 값이 설정 값 범위에 속하는 경우, 다시 전압변동폭 측정단계를 수행할 수 있다.
상기 가습유지단계는 상기 연료가스 및 상기 산화제가스 중 적어도 하나를 가습할 수 있다.
본 발명의 일 실시예에 따르면, 별도의 물펌프를 사용하지 않으며, 또한 추가 소비전력 없이 직수를 공급하고, 연료처리장치 내에서 방출되는 폐열을 이용하는 수증기발생장치에서 수증기를 발생시켜 연료가스 및/또는 산화제가스에 분사하여 완전가습을 구현하므로 연료전지 시스템의 구성을 단순하게 하고 또한 소비전력을 줄이는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 연료전지 시스템을 개략적으로 나타내는 구성도이다.
도 2 본 발명의 제1 실시예에 따른 연료전지 시스템의 제어방법을 나타내는 순서도이다.
도 3 본 발명의 제2 실시예에 따른 연료전지 시스템을 개략적으로 나타내는 구성도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
도 1은 본 발명의 제1 실시예에 따른 연료전지 시스템을 개략적으로 나타내는 구성도이다. 도 1을 참조하면, 제1 실시예에 따른 연료전지 시스템(100)은, 전기화학반응으로 전기 에너지를 발생시키는 연료전지스택(10), 연료전지스택(10)에 수소를 포함하는 연료가스를 공급하는 연료처리장치(20), 연료전지스택(10)에 산소를 포함하는 산화제가스를 공급하는 산화제가스 공급장치(30), 연료전지스택(10)에서 발생되는 직류(DC) 전력을 교류(AC) 전력으로 변환하는 전력변환기(40) 및 이들을 제어하는 제어장치(90)를 포함한다.
일례를 들면, 연료전지스택(10)은 수소이온 교환특성을 가지는 고분자막을 전해질로 사용하며, 수소와 산소로 전기화학반응을 일으켜 전기를 발생시키는 고분자 전해질 연료전지(PEMFC)로 형성될 수 있다.
연료처리장치(20)는 연료를 개질하여 수소를 포함하는 연료가스를 연료전지스택(10)의 연료가스입구로 공급한다. 산화제가스 공급장치(30)는 콤프레서 또는 송풍기로 형성될 수 있으며, 산소를 포함하는 공기, 즉 산화제가스를 연료전지스택(10)의 산화제가스입구로 공급한다.
제1 실시예의 연료전지 시스템(100)은 연료전지스택(10)에 공급되는 연료가스 및/또는 산화제가스의 원활한 가습을 위한 구성들을 더 포함한다. 예를 들면, 연료전지 시스템(100)은 냉각장치(50)와 열회수장치(60)와 수증기발생장치(70), 직수감압기(61), 비례제어밸브(62) 및 순수생성장치(63)를 더 포함한다. 또한, 연료전지 시스템(100)은 산화제가스 공급장치(30)와 연료전지스택(10)의 산화제가스입구 사이에 설치되는 가습장치(31)와 산화제가스입구 온도센서(32)를 더 포함한다.
직수감압기(61)는 직수 공급라인(미도시)을 순수생성장치(63)의 일측에 연결한다. 직수감압기(61)는 외부의 직수 공급라인에 연결되어 외부에서 공급되는 직수, 즉 수돗물의 압력을 감압하여 직수의 유량을 조절한다. 이로써 연료전지스택(10)에 직수가 사용될 수 있다. 직수감압기(61)는 연료전지스택(10)에 공급되는 연료가스의 가습에 필요한 수분을 공급할 때, 별도의 물 공급장치, 즉 물펌프(미도시)를 불필요하게 하고, 이로 인하여, 추가적인 전력소비가 발생되지 않는다. 순수생성장치(63)는 직수감압기(61)로 공급되는 직수를 순수로 변환한다.
또한, 비례제어밸브(62)는 수증기발생장치(70)를 순수생성장치(63)의 다른 일측에 연결한다. 비례제어밸브(62)는 열회수장치(60)에서 수증기발생장치(70)로 공급되는 직수, 보다 구체적으로 설명하면, 순수의 양을 제어함으로써, 연료가스의 가습 정도를 조절하며, 또한 순수의 공급을 단속하여 연료가스의 가습을 수행 또는 정지시킨다.
수증기발생장치(70)는 연료처리장치(20)의 내부 또는 일측에서 폐열을 이용할 수 있도록 구비되어, 비례제어밸브(62) 또는 비례제어밸브(62)와 순수생성장치(63)를 경유하여 공급되는 직수 또는 순수를 이용하여, 연료처리장치(20)에서 외부로 방출되는 폐열을 회수하여 수증기를 발생시킨다. 수증기발생장치(70)는 연료처리장치(20)에서 가열된 폐열을 이용하여 순수를 사용하므로 가습을 위한 수증기 발생에 별도의 에너지 사용을 불필요하게 한다.
한편, 연료처리장치(20)와 연료전지스택(10)은 연료가스 공급관로(21) 및 연료가스 배출관로(22)로 연결되어, 서로의 사이에서 연료가스를 공급하고 또한 잔여 연료가스를 배출한다.
제어밸브들(23, 24)은 연료가스 공급관로(21) 및 연료가스 배출관로(22) 각각에 설치되어, 연료가스의 공급 및 배출을 각각 단속한다. 또한 연료가스 공급관로(21) 및 연료가스 배출관로(22)는 바이패스 관로(25)로 서로 연결된다. 바이패스 관로(25)에 설치되는 제어밸브(26)는 연료처리장치(20)와 연료전지스택(10) 사이에서 연료가스의 공급 및 배출을 바이패스 시킬 수 있다.
연료가스입구 온도센서(27)는 연료가스 공급관로(21)로 연결되는 연료전지스택(10)의 연료가스입구에 구비되며, 공급되는 연료가스의 온도를 감지하여 감지신호를 제어장치(90)에 인가한다.
또한, 수증기발생장치(70)는 상기한 바와 같이, 일측으로 비례제어밸브(62)에 연결되어 순수를 공급받고, 연료처리장치(20)의 폐열을 회수하여 수증기를 발생시키며, 다른 일측으로 분사노즐(71)에 연결되어 발생된 수증기를 분사한다. 분사노즐(71)은 연료가스 공급관로(21)에 설치되므로 연료전지스택(10)의 연료가스입구에 수증기를 분사한다. 즉 수증기는 연료가스를 가습한다.
즉, 순수생성장치(63)에서 생성된 순수는 비례제어밸브(62)를 통하여 수증기발생장치(70)로 공급되고, 연료처리장치(20)에서 방출되는 폐열을 회수하여 수증기로 변한다.
냉각장치(50)는 냉각수를 연료전지스택(10)으로 공급하여 연료전지스택(10)을 냉각한다. 예를 들면, 냉각장치(50)는 냉각수를 저장하는 냉각수탱크(51), 냉각수탱크(51)에 연결되어 냉각수를 연료전지스택(10)의 냉각수입구로 공급하는 냉각수펌프(52), 및 연료전지스택(10)의 냉각수입구에 설치되어 냉각수입구에서 냉각수온도를 감지하는 냉각수입구 온도센서(53)를 포함한다.
냉각수입구 온도센서(53)의 감지에 따라 냉각수펌프(52)가 구동된다. 냉각수펌프(52)의 구동으로 연료전지스택(10)의 냉각수입구로 공급된 냉각수는 연료전지스택(10)을 냉각하고 고온 상태로 변화되어 냉각수출구로 배출되어 냉각수탱크(51)로 유입되어 재순환된다.
연료전지스택(10)에서 냉각수탱크(51)로 유입되는 고온의 냉각수는 열교환기(55)를 경유하면서 냉각된다. 또한 열교환기(55)는 열교환펌프(54)를 개재하여 열회수장치(60)에 연결된다. 열교환펌프(54)의 구동으로 열회수장치(60)의 저온 냉각수를 열교환기(55)로 순환 공급하여, 연료전지스택(10)을 냉각한 고온 냉각수의 폐열을 회수한다. 열교환펌프(54)및 열교환기(55)는 연료전지스택(10)의 냉각수출구에 설치되는 냉각수출구 온도센서(56)의 감지에 따라 작동되어, 연료전지스택(10)의 폐열을 회수한다.
한편, 연료전지 시스템(100)은 전압검지부(80)를 더 포함한다. 전압검지부(80)는 연료전지스택(10)에서 발생되는 전압을 시간의 경과에 따라 측정하여 그 감지신호를 제어장치(90)에 인가한다. 따라서 제어장치(90)는 전압검지부(80)에서 측정된 전압에 따라 연료전지스택(10)으로 유입되는 냉각수를 설정된 온도 범위로 유지시키면서 냉각수입구에서 냉각수의 온도를 제어할 수 있다.
전압검지부(80)는 연료전지스택(10)의 가습 수행에 대한 최초 판단을 전압 변동폭으로 결정할 수 있게 한다. 또한, 전력변환기(40)는 연료전지스택(10)에서 전력 생산을 시작한 이후, 발전전력을 지속적으로 측정하여 발전전력이 설정 값 범위에 속하는지를 판단하게 한다.
제어장치(90)는 전압검지부(80)의 감지신호를 받아서, 연료전지스택(10) 및 연료전지스택(10)에 연결되는 전력변환기(40)를 제어한다. 산화제가스입구 감지센서(32), 냉각수입구 온도센서(53) 및 연료가스입구 온도센서(27)는 제어장치(90)에 연결되어, 각각의 온도를 감지하여 제어장치(90)에 감지신호를 인가한다.
도 2는 본 발명의 제1 실시예에 따른 연료전지 시스템의 제어방법을 나타내는 순서도이다. 도 1 및 도 2를 참조하면, 연료전지 시스템의 제어방법은 연료전지스택(10)에서 발전되는 전력을 측정하는 발전전력측정단계(ST10), 발전전력에 따라 연료전지스택(10)의 냉각수온도를 설정 값 범위로 유지하는 연료전지스택 내부온도유지단계(이하, "내부온도유지단계"라 한다)(ST20) 및 연료가스 및/또는 산화제가스에 선택적으로 수증기를 공급하는 가습유지단계(ST30)를 포함한다.
발전전력측정단계(ST10)는 연료전지스택(10)에서 전력 생산을 시작 후에 발전전력을 전력변환기(40)에서 지속적으로 측정하는 발전전력 측정단계(ST11)와, 측정된 발전전력이 설정 범위에 속하는가를 제어장치(90)에서 판단하는 발전전력판단단계(ST12)를 포함한다. 발전전력판단단계(ST12)는 측정된 발전전력이 설정 범위에 속할 때까지 발전전력 측정단계(ST11)를 반복한다. 발전전력측정단계(ST10)의 결과에 따라 내부온도유지단계(ST20)가 진행된다.
내부온도유지단계(ST20)는 연료전지스택(10)의 냉각수온도를 설정된 값 범위로 유지시켜 연료전지스택(10) 내부의 온도를 일정 수준으로 유지시킨다. 내부온도유지단계(ST20)는 연료전지스택에 공급되는 냉각수입구에서 냉각수온도를 측정하는 냉각수온도측정단계(ST21)와, 냉각수온도가 설정 값 범위에 속하는가를 판단하는 냉각수온도판단단계(ST22)를 포함한다.
냉각수온도판단단계(ST22)는 냉각수온도가 설정 값 범위에 속할 때까지, 열교환기(55)에 연결된 열교환펌프(54)의 유량을 조절하면서 냉각수온도측정을 반복한다. 연료전지스택(10) 내부의 온도가 일정하게 유지된 후, 가습유지단계(ST30)가 진행된다.
가습유지단계(ST30)는 연료전지스택(10)으로 공급되는 냉각수, 연료가스 및 산화제가스 각 입구온도를 측정하고, 각 측정온도 값이 설정 값 범위 이상이면 연료전지스택(10)의 가습을 정지/감소하고, 측정온도 값이 설정 값 범위 미만이면 비례제어밸브(62)를 개방하여 가습을 수행 유지한다.
먼저, 가습유지단계(ST30)는 연료전지스택(10)에서 발생된 전압의 변동폭을 측정하는 전압변동폭측정단계(ST311)와, 전압변동폭측정단계(ST311)에서 측정된 전압변동폭이 설정 값 범위에 속하는 가를 판단하는 전압변동폭 판단단계(ST312)를 포함한다. 또한 전압변동폭 판단단계(ST312)는 측정된 전압변동폭이 설정 값 범위에 속할 때까지 비례제어밸브(62)를 폐쇄하여 가습을 정지한다. 측정한 전압변동폭이 설정 값 범위에 속하는 경우, 가습유지단계(ST30)에서 전압변동폭 판단단계(ST312)의 다음 단계가 진행된다.
측정한 전압변동폭이 설정 값 범위에 속하는 경우, 가습유지단계(ST30)는 연료전지스택(10)의 각 입구로 공급되는 연료가스 및 산화제가스의 온도를 각각 측정하는 가스온도측정단계(ST321)와, 가스온도측정단계(ST321)에서 측정한 연료가스 및 산화제가스의 온도측정 값이 설정 값보다 작은가를 판단하는 가스온도판단단계(ST322)를 포함한다. 또한 가스온도판단단계(ST322)는 온도측정 값이 설정 값보다 작을 때까지 가스온도측정을 반복한다.
온도측정 값이 설정 값보다 작은 경우, 가습유지단계(ST30)는 비례제어밸브(62)를 개방하는 개방단계(ST33)를 포함한다. 개방단계(ST33)는 비례제어밸브(62)를 개방하여 온수를 공급하고 수증기발생장치(70)에서 발생되는 수증기를 연료전지스택(10)으로 공급하여 연료가스 또는 산화제가스를 가습한다.
온도측정 값이 설정 값 이상인 경우, 가습유지단계(ST30)는 비례제어밸브(62)를 폐쇄 또는 유량 감소 제어하는 폐쇄/감소단계(ST34)를 포함한다. 폐쇄/감소단계(ST34)는 온도측정 값이 상기 설정 값 이상이면, 비례제어밸브(62)를 폐쇄 제어 또는 유량 감소 제어함으로써 가습을 정지 또는 감소한다.
또한, 가습유지단계(ST30)는 폐쇄/감소단계(ST34) 이후, 설정 시간 동안 연료전지스택(10)으로 공급되는 연료가스 및 산화제가스의 온도를 재측정하는 가스온도재측정단계(ST35), 및 연료가스 및 산화제가스의 온도재측정 값이 설정 값 범위에 속하는 가를 판단하는 재측정온도 범위판단단계(ST36)를 포함한다.
온도재측정 값이 설정 값 범위에 속하는 경우, 제어장치(90)는 다시 전압변동폭측정단계(ST31)를 수행한다. 따라서 재측정온도 범위판단단계(ST36)는 가습 정지 및 감소 제어 후, 가스온도를 설정 시간 동안 특정 간격을 가지고 복수회 측정하여 온도재측정 값이 설정 값 범위에 만족하게 되면, 다시 전압변동폭을 측정하여(ST31) 최초의 가습조건을 판단하게 한다.
이와 같이, 가습유지단계(ST30)는 지속적으로 측정한 발전 전압변동폭의 시간 경과에 따른 값이 설정 값 범위에 속하는 지를 1차 근거로 하고, 각 입구에서 측정된 가스의 온도측정 값을 2차 근거로 하여, 비례제어밸브(62)를 제어함으로써, 가습의 정도를 제어한다.
도 3은 본 발명의 제2 실시예에 따른 연료전지 시스템을 개략적으로 나타내는 구성도이다. 제2 실시예에서 제1 실시예의 구성과 유사 내지 동일한 구성에 대한 설명을 생략하고 제1 실시예의 구성과 다른 구성에 대하여 설명한다.
제1 실시예는 별도의 가습장치(31)를 통하여 산화제가스를 가습하고, 동시에수증기발생장치(70)에서 발생된 수증기를 연료가스에 분사하는데 비하여, 제2 실시예는 연료가스를 가습하지 않고, 수증기발생장치(70)에서 발생된 수증기를 산화제가스에 분사하여 산화제가스를 가습한다.
이를 위하여, 분사노즐(71)은 연료전지스택(10)의 산화제가스입구 측에 설치된다. 즉 분사노즐(71)은 산화제가스 공급장치(30)와 연료전지스택(10) 사이에 설치되어 산화제가스에 수증기를 분사한다.
연료가스는 연료처리장치(20)의 연료처리 과정에서 일부 수증기를 포함한다. 그리고 연료전지스택(10)의 운전시, 가습의 변화에 대한 영향은 산화제가스의 가습량에 의해 지배적으로 좌우된다.
제2 실시예는 제1 실시예의 산화제가스 공급장치(30) 측의 가습장치(31)를 제거하고, 비례제어밸브(62)로부터 순수를 공급받아 수증기발생장치(70)에 의해 생성된 수증기로 산화제가스를 가습한다.
따라서 제2 실시예는 제1 실시예에 비하여 가습장치(31)를 제거함으로써 연료전지 시스템(200)의 전체 구성을 간소화 하고, 산화제가스를 가습하는 가습량의 조절을 통하여 안정적인 운전을 가능하게 한다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (16)

  1. 수소 함유 연료가스를 공급하는 연료처리장치;
    산소 함유 산화제가스를 공급하는 산화제가스 공급장치;
    상기 연료가스와 상기 산화제가스를 사용하여 전기화학반응을 일으키는 연료전지스택;
    상기 연료전지스택에서 발생된 열을 냉각하는 냉각장치;
    상기 냉각장치에서 공급되어 상기 연료전지스택을 순환하여 배출되는 고온의 냉각수로부터 폐열을 회수하는 열회수장치; 및
    자체압력을 가지는 직수를 공급하여, 상기 연료처리장치의 폐열로 수증기를 생성하고, 상기 수증기를 상기 연료전지스택에 공급되는 상기 연료가스 및 상기 산화제가스 중 적어도 하나에 공급하여 가습하는 수증기발생장치를 포함하는 연료전지 시스템.
  2. 제1 항에 있어서,
    상기 직수의 압력을 조절하여 공급되는 상기 직수의 유량을 조절하는 직수감압기와
    상기 직수감압기와 상기 수증기발생장치 사이에 설치되어 가습에 필요한 수증기의 양을 조절하는 비례제어밸브를 더 포함하는 연료전지 시스템.
  3. 제2 항에 있어서,
    상기 직수감압기와 상기 비례제어밸브 사이에 설치되어 공급되는 상기 직수를 변환시켜 순수를 생성하는 순수생성장치를 더 포함하는 연료전지 시스템.
  4. 제2 항에 있어서,
    상기 수증기발생장치는 상기 연료처리장치 내에 설치되며,
    상기 연료전지스택으로 공급되는 상기 연료가스에 상기 수증기를 분사하도록 상기 연료전지스택의 연료가스입구 측에 설치되는 분사노즐을 더 포함하는 연료전지 시스템.
  5. 제4 항에 있어서,
    상기 산화제가스 공급장치와 상기 연료전지스택의 산화제가스 입구 사이에 설치되는 가습장치를 더 포함하는 연료전지 시스템.
  6. 제4 항에 있어서,
    상기 연료전지스택에서 발생되는 전압을 시간의 경과에 따라 측정하는 전압검지부, 및
    상기 전압검지부에서 측정되는 전압에 따라 상기 연료전지스택으로 유입되는 냉각수온도를 제어하는 제어장치를 더 포함하는 연료전지 시스템.
  7. 제6 항에 있어서,
    상기 제어장치와 상기 연료전지스택에서 발생된 직류전력을 교류전력으로 변환하여 발전전력을 측정하는 전력변환기를 더 포함하는 연료전지 시스템.
  8. 제6 항에 있어서,
    상기 연료전지스택의 냉각수입구온도를 측정하는 냉각수입구온도센서,
    상기 연료전지스택의 연료가스입구온도를 측정하는 연료가스입구온도센서, 및
    상기 연료전지스택의 산화제가스입구온도를 측정하는 산화제가스입구온도센서를 더 포함하며,
    상기 비례제어밸브는,
    상기 냉각수입구온도센서, 상기 연료가스입구온도센서 및 상기 산화제가스입구온도센서의 감지신호에 따라 상기 가습에 필요한 수증기의 양을 제어하는 연료전지 시스템.
  9. 제2 항에 있어서,
    상기 수증기발생장치는 상기 연료처리장치 내에 설치되며,
    상기 연료전지스택으로 공급되는 상기 산화제가스에 상기 수증기를 분사하도록 상기 연료전지스택의 산화제가스입구 측에 설치되는 분사노즐을 더 포함하는 연료전지 시스템.
  10. 연료전지스택에서 발생되는 발전전력을 측정하는 발전전력측정단계;
    상기 발전전력측정단계에서 측정된 발전전력에 따라 상기 연료전지스택의 냉각수를 설정된 값으로 유지시키는 연료전지스택 내부온도유지단계; 및
    상기 연료전지스택 내부온도유지단계 이후, 상기 연료전지스택으로 공급되는 냉각수, 연료가스 및 산화제가스 각 입구온도를 측정하고, 측정된 각 측정온도 값이 설정 값 이상이면 상기 연료전지스택의 가습을 정지/감소하고, 측정온도 값이 설정 값 미만이면 비례제어밸브를 개방하여 가습을 수행 유지하는 가습유지단계를 포함하는 연료전지 시스템 제어방법.
  11. 제10 항에 있어서,
    상기 발전전력측정단계는,
    측정된 상기 발전전력이 설정 범위에 속하는가를 판단하며, 만족 시까지 발전전력 측정을 반복하는 발전전력판단단계를 포함하는 연료전지 시스템 제어방법.
  12. 제10 항에 있어서,
    상기 연료전지스택 내부온도유지단계는,
    상기 연료전지스택에 공급되는 냉각수입구에서 냉각수온도를 측정하는 냉각수온도측정단계, 및
    상기 냉각수온도가 설정 값 범위에 속하는가를 판단하며, 만족 시까지 열교환기에 연결되는 열교환펌프의 유량을 조절하면서 상기 냉각수온도측정을 반복하는 냉각수온도판단단계를 포함하는 연료전지 시스템 제어방법.
  13. 제10 항에 있어서,
    상기 가습유지단계는,
    상기 연료전지스택에서 발생된 전압의 변동폭을 측정하는 전압변동폭측정단계, 및
    상기 전압변동폭측정단계에서 측정된 전압변동폭이 설정 값 범위에 속하는 가를 판단하며, 만족 시까지 상기 비례제어밸브를 폐쇄하여 가습을 정지하는 전압변동폭 판단단계를 더 포함하는 연료전지 시스템 제어방법.
  14. 제13 항에 있어서,
    상기 가습유지단계는,
    상기 전압변동폭이 설정 값 범위에 속하는 경우, 상기 연료전지스택의 각 입구로 공급되는 연료가스 및 산화제가스의 온도를 각각 측정하는 가스온도측정단계,
    상기 연료가스 및 상기 산화제가스의 온도측정 값이 설정 값보다 작은가를 판단하는 가스온도판단단계,
    상기 온도측정 값이 상기 설정 값보다 작으면 가습하기 위하여 상기 비례제어밸브를 개방하는 개방단계, 및
    상기 온도측정 값이 상기 설정 값 이상이면 가습을 정지/감소하기 위하여 상기 비례제어밸브를 폐쇄 또는 유량 감소하는 폐쇄/감소단계를 포함하는 연료전지 시스템 제어방법.
  15. 제14 항에 있어서,
    상기 가습유지단계는,
    상기 폐쇄/감소단계 이후, 설정 시간 동안 상기 연료전지스택으로 공급되는 연료가스 및 산화제가스의 온도를 재측정하는 가스온도재측정단계, 및
    상기 연료가스 및 상기 산화제가스의 온도재측정 값이 설정 값 범위에 속하는 가를 판단하는 재측정온도 범위판단단계를 포함하며,
    상기 온도재측정 값이 설정 값 범위에 속하는 경우, 다시 전압변동폭 측정단계를 수행하는 연료전지 시스템 제어방법.
  16. 제10 항에 있어서,
    상기 가습유지단계는,
    상기 연료가스 및 상기 산화제가스 중 적어도 하나를 가습하는 연료전지 시스템 제어방법.
PCT/KR2010/000325 2009-02-09 2010-01-18 연료전지 시스템 및 그 제어방법 WO2010090404A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080007119.1A CN102308422B (zh) 2009-02-09 2010-01-18 燃料电池系统及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090010292A KR100999589B1 (ko) 2009-02-09 2009-02-09 연료전지 시스템 및 그 제어방법
KR10-2009-0010292 2009-02-09

Publications (2)

Publication Number Publication Date
WO2010090404A2 true WO2010090404A2 (ko) 2010-08-12
WO2010090404A3 WO2010090404A3 (ko) 2010-10-28

Family

ID=42542478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000325 WO2010090404A2 (ko) 2009-02-09 2010-01-18 연료전지 시스템 및 그 제어방법

Country Status (3)

Country Link
KR (1) KR100999589B1 (ko)
CN (1) CN102308422B (ko)
WO (1) WO2010090404A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115050997A (zh) * 2022-08-16 2022-09-13 武汉海亿新能源科技有限公司 一种燃料电池系统自加湿装置及其控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315764B1 (ko) * 2011-02-23 2013-10-10 현대자동차주식회사 연료전지용 수소 공급 시스템의 고장 진단 방법
KR101592657B1 (ko) * 2013-12-30 2016-02-12 현대자동차주식회사 연료전지 차량의 스택 냉각수 조절용 밸브
JP6332120B2 (ja) * 2015-04-10 2018-05-30 トヨタ自動車株式会社 燃料電池システム及びその制御方法
CN105070928B (zh) * 2015-07-08 2017-10-20 广东合即得能源科技有限公司 一种燃料电池供氧系统及供氧方法
CN109256576A (zh) * 2018-08-13 2019-01-22 浙江润涞科技服务有限公司 一种环保型氢燃料电池系统
JP7102358B2 (ja) * 2019-01-08 2022-07-19 株式会社東芝 燃料電池システム、及び燃料電池システムの制御方法
CN110600770B (zh) * 2019-08-26 2021-02-19 广东国鸿氢能科技有限公司 一种燃料电池加湿器测试系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294262A (ja) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd 燃料電池発電装置
KR20030073679A (ko) * 2002-03-12 2003-09-19 주식회사 엘지이아이 연료전지 시스템의 냉각수 재활용 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275101A (ja) * 1992-03-27 1993-10-22 Fuji Electric Co Ltd 固体高分子電解質型燃料電池システム
JPH07130388A (ja) * 1993-11-02 1995-05-19 Toshiba Corp 燃料電池発電プラント
JPH10330101A (ja) * 1997-05-27 1998-12-15 Sanyo Electric Co Ltd 水素製造装置及び水素製造方法
CN1612398A (zh) * 2003-10-30 2005-05-04 乐金电子(天津)电器有限公司 燃料电池系统的供水装置
EP1544933A3 (en) * 2003-12-17 2007-12-19 Matsushita Electric Industrial Co., Ltd. Fuel cell system, operating method thereof, program and recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294262A (ja) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd 燃料電池発電装置
KR20030073679A (ko) * 2002-03-12 2003-09-19 주식회사 엘지이아이 연료전지 시스템의 냉각수 재활용 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115050997A (zh) * 2022-08-16 2022-09-13 武汉海亿新能源科技有限公司 一种燃料电池系统自加湿装置及其控制方法

Also Published As

Publication number Publication date
WO2010090404A3 (ko) 2010-10-28
CN102308422A (zh) 2012-01-04
KR100999589B1 (ko) 2010-12-08
CN102308422B (zh) 2014-06-04
KR20100091020A (ko) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2010090404A2 (ko) 연료전지 시스템 및 그 제어방법
JP3681467B2 (ja) 燃料電池発電装置およびその運転方法
US6913847B2 (en) Fuel cell system having a hydrogen sensor
CN102621499B (zh) 用于测试燃料电池堆的装置
WO2010090403A2 (ko) 연료전지 시스템
CN114156502A (zh) 一种燃料电池热电联供系统
CN101523652A (zh) 燃料电池系统
WO2007044971A1 (en) System and method of controlling fuel cell shutdown
CN111766519A (zh) 一种燃料电池单电池测试台及测试方法
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
CN102405548A (zh) 包括紧凑歧管体的备用燃料电池发电机及管理其操作的方法
JP2011192419A (ja) 燃料電池システム及びその診断方法
JP2001143732A (ja) 固体高分子型燃料電池発電システム及びその運転方法
WO2013095058A2 (ko) 연료전지 시스템의 기체연료 공급장치 및 이를 포함하는 연료전지 시스템
JP5361125B2 (ja) 燃料電池装置
CN209592196U (zh) 一种适用于燃料电池电化学测试的简易增湿装置
CN109799457B (zh) 一种燃料电池水管理监测系统及其工作方法
JPH02825B2 (ko)
WO2024005269A1 (ko) 암모니아를 원료로 활용하는 연소 시스템
KR101817276B1 (ko) 연료전지의 열 회수 장치 및 방법
CN111584899B (zh) 一种风冷燃料电池电堆的控制系统
JPS61277171A (ja) 燃料電池発電システム
WO2015130095A1 (ko) 고체산화물 연료전지 시스템에서 비상 정지 또는 정전 시 스텍 보호 방법
CN212301791U (zh) 一种燃料电池单电池测试台
JP3280164B2 (ja) 燃料電池発電装置の蒸気凝縮水循環装置とその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007119.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738688

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738688

Country of ref document: EP

Kind code of ref document: A2