WO2020204292A1 - 가스 팽창 발전 시스템 - Google Patents

가스 팽창 발전 시스템 Download PDF

Info

Publication number
WO2020204292A1
WO2020204292A1 PCT/KR2019/014229 KR2019014229W WO2020204292A1 WO 2020204292 A1 WO2020204292 A1 WO 2020204292A1 KR 2019014229 W KR2019014229 W KR 2019014229W WO 2020204292 A1 WO2020204292 A1 WO 2020204292A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
power generation
unit
gas
generation unit
Prior art date
Application number
PCT/KR2019/014229
Other languages
English (en)
French (fr)
Inventor
한준규
신봉근
Original Assignee
한화파워시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화파워시스템 주식회사 filed Critical 한화파워시스템 주식회사
Priority to EP19923679.5A priority Critical patent/EP3951141A4/en
Publication of WO2020204292A1 publication Critical patent/WO2020204292A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/068Distribution pipeline networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/407Combination of fuel cells with mechanical energy generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas expansion power generation system. Specifically, the present invention relates to a gas expansion power generation system that is installed in a facility supplying natural gas to reduce the pressure of natural gas while simultaneously generating electric power using energy generated during the depressurization.
  • LNG which is being stored in the storage tank at the LNG receiving base, is sending natural gas at a high pressure of 70 bar using a gas pipe network, and by forcibly reducing the high pressure of 70 bar at static pressure management offices nationwide, it is used as a demand source for power plants or city gas. It is supplied in 25bar and 8.5bar respectively.
  • Such a pre-heating device uses a part of the supplied natural gas as a heat source to raise the temperature of natural gas, thereby generating harmful substances such as Nox and Sox, and setting the supply amount of natural gas in consideration of pre-heating. There is a problem to be done.
  • An object of the present invention is to provide a gas expansion power generation system that generates electric power through expansion of natural gas while decompressing natural gas in a line supplied with natural gas.
  • an object of the present invention is to maximize energy efficiency and fuel cost reduction by linking a gas expansion power generation system with an SMR process and a fuel cell.
  • a gas expansion power generation system includes a heating unit that increases the temperature of natural gas; A flow rate control unit for adjusting the flow rate of the natural gas; And a power generation unit that expands the natural gas while reducing the pressure of the natural gas and generates power through energy generated when the natural gas is expanded, wherein the natural gas includes the heating unit and the flow control unit. And sequentially moving in the order of the power generation unit, and the heating unit receives a heat source from waste heat generated in a natural gas reforming process or waste heat generated in a power generation process through a fuel cell.
  • the heating unit may increase the temperature of the natural gas in consideration of a temperature that is lowered when the natural gas is depressurized in the power generation unit.
  • the flow rate control unit may adjust the flow rate of the natural gas so that the natural gas moves to the power generation unit in consideration of the capacity of the natural gas capable of reducing pressure in the power generation unit.
  • the flow rate control unit may adjust the flow rate of the natural gas so as to move the natural gas to a static pressure device connected in parallel with the power generation unit when the capacity of the natural gas capable of decompressing in the power generation unit is exceeded.
  • a part of the power generated by the power generation unit may be utilized in the natural gas reforming process.
  • hydrogen generated in the natural gas reforming process may be utilized in the power generation process through the fuel cell.
  • Part of the waste heat generated when the concentration of hydrogen is increased in the vapor transfer unit may be supplied to the power generation unit.
  • the remaining part of the waste heat generated when the concentration of hydrogen is increased in the vapor transfer unit may be supplied to the steam generation unit.
  • Some of the power generated by the power generation unit is stored in a grid, and the remaining partial power may be supplied to the steam generation unit so that the steam generation unit generates high-temperature steam.
  • Hydrogen produced in the natural gas reforming process may be supplied as a source by the fuel cell, and power produced in the fuel cell may be stored in the grid.
  • the natural gas is decompressed in a line supplied with natural gas and at the same time, power is generated through expansion of the natural gas. Accordingly, the present invention has the effect of generating power without a separate power generation facility.
  • the present invention links the gas expansion power generation system with the SMR process and the fuel cell. Accordingly, the present invention has the effect of maximizing energy efficiency and fuel cost reduction.
  • FIG. 1 is a block diagram of a gas expansion power generation system according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a process of moving natural gas in the gas expansion power generation system according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a process in which a gas expansion power generation system according to an embodiment of the present invention is linked to an SMR process and a fuel cell process.
  • heating unit 103 flow control unit
  • FIG. 1 is a block diagram of a gas expansion power generation system according to an embodiment of the present invention.
  • a gas expansion power generation system 100 includes a heating unit 101, a flow control unit 103, and a power generation unit 105.
  • the heating unit 101 increases the temperature of natural gas. Specifically, the heating unit 101 increases the temperature of the natural gas in consideration of the temperature that is lowered when the natural gas is depressurized in the power generation unit 105.
  • the heating unit 101 when the heating unit 101 is set to decrease the temperature of the natural gas by 70°C when the pressure is reduced in the power generation unit 105, the heating unit 101 increases the temperature of the natural gas by 70°C in advance to increase the power generation unit 105 ). That is, the heating unit 101 pre-heats the temperature of natural gas.
  • the conventional gas expansion power generation system has been used as a heat source to increase the temperature of the natural gas by burning some of the natural gas flowing into the heating unit 101. Accordingly, there is a problem in that harmful substances such as Nox and Sox are generated.
  • the gas expansion power generation system 100 connects the natural gas reforming process and the power generation process through the fuel cell, so that the heating unit 101 is configured to operate the natural gas reforming process and/or the fuel cell.
  • the heat source is supplied from the waste heat generated in the power generation process. Accordingly, the gas expansion power generation system 100 according to an exemplary embodiment of the present invention does not require combustion of a part of the natural gas flowing into the heating unit 101, thereby preventing harmful substances from being generated. A detailed description of this will be described later with reference to FIG. 3.
  • the flow rate control unit 103 controls the flow rate of the natural gas. Specifically, the flow rate control unit 103 adjusts the flow rate of the natural gas so that the natural gas moves to the power generation unit 105 in consideration of the capacity of the natural gas that can be reduced in the power generation unit 105.
  • the flow rate control unit 103 is to move the natural gas to the pressure regulator 10 connected in parallel with the power generation unit 105 when the capacity of the natural gas capable of depressurization in the power generation unit 105 is exceeded. Adjust the flow rate. A detailed description of the static pressure device 10 will be described later.
  • the power generation unit 105 expands the natural gas while reducing the pressure of the natural gas, and generates electric power through energy generated when the natural gas is expanded.
  • the gas expansion power generation system 100 is different from the general static pressure installed in the line through which the power generation unit 105 moves natural gas. It has the advantage of high usability by performing the function to generate.
  • FIG. 2 is a view for explaining a process of moving natural gas in the gas expansion power generation system according to an embodiment of the present invention.
  • natural gas (CH4) is introduced into the heating unit (101) to increase the temperature, and the natural gas (CH4) whose temperature is increased in the heating unit (101) is generated through the flow rate control unit (103). Move to section 105.
  • the flow rate control unit 103 adjusts the flow rate so that the natural gas CH4 moves to the power generation unit 105 first, and the power generation unit 105 controls the pressure reduction and power generation of the natural gas CH4. Perform. Thereafter, as described above, when the flow rate control unit 103 exceeds the capacity of the natural gas CH4 capable of decompressing in the power generation unit 105, the natural gas CH4 is connected to the power generation unit 105 in parallel. Adjust the flow rate of natural gas (CH4) to move to 10).
  • the static pressure device 10 controls the degree of opening and closing of the plurality of valves 11, 12, and 13 to depressurize the natural gas CH4. Thereafter, the natural gas depressurized in each of the power generation unit 105 and the static pressure device 10 is supplied to the power plant 1 and/or the city gas 2 or the like.
  • FIG. 3 is a diagram for explaining a process in which a gas expansion power generation system according to an embodiment of the present invention is linked to an SMR process and a fuel cell process.
  • the Steam Methane Reforming (SMR) process is a process of reforming natural gas (CH4) to produce hydrogen (H2).
  • the desulfurization unit 301 extracts the sulfur component remaining in the natural gas CH4 through a desulfurization process of the natural gas CH4 decompressed in each of the power generation unit 105 and the static pressure device 10. Remove.
  • the vapor reforming unit 303 primarily produces hydrogen and CO by vapor reforming the natural gas from which the sulfur component has been removed in the desulfurization unit 301.
  • the vapor transition unit 305 increases the concentration of hydrogen through a vapor transition process.
  • the unreacted gas removal unit 307 removes unreacted CH4, CO, and CO2 through a PSA (Pressure Swing Adsoprtion) process to produce hydrogen (H2).
  • PSA Pressure Swing Adsoprtion
  • the steam transfer unit 305 is a steam transfer process. High-temperature steam is supplied using the first waste heat (Heat I) generated when the concentration of hydrogen is increased through the heat source.
  • the first waste heat (Heat I) is supplied to the heating unit 101 as well as the steam generating unit 309, and the heating unit 101 together with the second waste heat (Heat II) to be described later controls the temperature of the natural gas (CH4). It acts as a source of heat needed to raise it.
  • the fuel cell 400 is a device that generates electric power through a chemical reaction of hydrogen (H2) and oxygen (O2). At this time, heat is generated according to a chemical reaction between hydrogen (H2) and oxygen (O2), which is generally discarded heat, so it is defined as second waste heat (HeatII) in the present invention.
  • the second waste heat (Heat II) is supplied to the heating unit 101 as described above, and the heating unit 101 together with the first waste heat (Heat I) acts as a heat source required to increase the temperature of the natural gas (CH4).
  • the gas expansion power generation system 100 does not discard waste heat generated in the SMR process and the fuel cell 400 process, and uses natural gas as a heat source to reduce fuel cost and reduce energy consumption. There is an effect of maximizing the resulting efficiency.
  • the first power (Power I) of the power generated by the power generation unit 105 is stored in the grid 3, but the second power (Power II) is supplied to the steam generator 309 to generate steam.
  • the generation unit 309 generates high-temperature steam.
  • the gas expansion power generation system 100 also has an effect of reducing energy costs by utilizing the power generated by the power generation unit 105 in the SMR process.
  • hydrogen (H2) produced through the SMR process is supplied to a source of the fuel cell 400 so that the fuel cell 400 produces the third power (Power III).
  • the third power (Power III) produced by the fuel cell 400 is stored in the Grid (3).
  • the gas expansion power generation system 100 has the advantage of maximizing energy efficiency and maximizing cost reduction by performing heat supply or power supply complementarily in connection with the SMR process and the fuel cell process. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 가스 팽창 발전 시스템에 대한 것으로, 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템은 천연 가스의 온도를 상승시키는 히팅부; 상기 천연 가스의 유량을 조절하는 유량 조절부; 및 상기 천연 가스의 압력을 감압시킴과 동시에 상기 천연 가스를 팽창시키고, 상기 천연 가스의 팽창시 발생되는 에너지를 통해 전력을 생성하는 발전부를 포함하고, 상기 천연 가스는 상기 히팅부, 상기 유량 조절부 및 상기 발전부 순서로 순차적으로 이동하며, 상기 히팅부는 천연 가스 개질 공정에서 발생된 폐열 또는 연료 전지를 통한 전력 생성 과정에서 발생된 폐열로부터 열원을 공급받는다.

Description

가스 팽창 발전 시스템
본 발명은 가스 팽창 발전 시스템에 대한 것이다. 구체적으로, 본 발명은 천연 가스를 공급하는 설비에 장착되어 천연 가스의 압력을 감압시키면서 동시에 감압시 발생되는 에너지를 이용하여 전력을 생산하는 가스 팽창 발전 시스템에 대한 것이다.
액화천연가스(LNG) 인수기지의 저장탱크에 저장중인 LNG는 가스배관망을 이용해 70bar의 고압으로 천연 가스를 송출하고 있으며 전국의 정압 관리소에서 70bar의 고압을 강제로 감압시켜 발전소나 도시가스의 수요처로 각각 25bar 와 8.5bar로 공급하고 있다.
이때, 정압 관리소에는 천연 가스를 감압시키는 경우에 발전소나 도시가스의 수요처에서 천연 가스의 온도가 강하되는 것을 방지하기 위해 천연 가스의 감압 전 온도를 상승시켜주는 pre-heating 장치를 부가하는 것이 일반적이다.
이와 같은 pre-heating 장치는 공급되는 천연 가스의 일부를 열원으로 사용하여 천연 가스의 온도를 상승시키는 바, Nox, Sox 등의 유해 물질이 발생하며, 천연 가스의 공급량을 pre-heating을 고려하여 설정해야 되는 문제점이 있다.
한편, 천연 가스의 압력을 감압시키면서 천연 가스의 부피를 팽창시키면 별도의 차압 에너지가 발생될 수 있고, 이를 활용하면 천연 가스의 감압과 동시에 전력을 생산하는 시스템을 구현할 수 있다.
따라서, 천연 가스의 pre-heating을 별도의 열원을 사용하면서, 감압시 발생되는 전력을 활용할 수 있는 발명의 등장이 요구된다.
본 발명은 천연 가스가 공급되는 라인에서 천연 가스를 감압 시킴과 동시에 천연 가스의 팽창을 통해 전력을 생산하는 가스 팽창 발전 시스템을 제공하는 데 목적이 있다.
또한, 본 발명은 가스 팽창 발전 시스템을 SMR 공정 및 연료 전지와 연계하여 에너지 효율 및 연료비 절감을 극대화하는 데 목적이 있다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 가스 팽창 발전 시스템은 천연 가스의 온도를 상승시키는 히팅부; 상기 천연 가스의 유량을 조절하는 유량 조절부; 및 상기 천연 가스의 압력을 감압시킴과 동시에 상기 천연 가스를 팽창시키고, 상기 천연 가스의 팽창시 발생되는 에너지를 통해 전력을 생성하는 발전부를 포함하고, 상기 천연 가스는 상기 히팅부, 상기 유량 조절부 및 상기 발전부 순서로 순차적으로 이동하며, 상기 히팅부는 천연 가스 개질 공정에서 발생된 폐열 또는 연료 전지를 통한 전력 생성 과정에서 발생된 폐열로부터 열원을 공급받는다.
일 실시예에 있어서, 상기 히팅부는 상기 천연 가스의 온도를 상기 발전부에서 상기 천연 가스의 감압시 강하되는 온도를 고려하여 상승시킬 수 있다.
일 실시예에 있어서, 상기 유량 조절부는 상기 발전부에서 감압 가능한 천연 가스의 용량을 고려하여 상기 천연 가스가 상기 발전부로 이동하도록 상기 천연 가스의 유량을 조절할 수 있다.
일 실시예에 있어서, 상기 유량 조절부는 상기 발전부에서 감압 가능한 천연 가스의 용량을 초과할 경우에 상기 천연 가스를 상기 발전부와 병렬로 연결된 정압기로 이동하도록 상기 천연 가스의 유량을 조절할 수 있다.
일 실시예에 있어서, 상기 발전부에서 발생된 전력의 일부가 상기 천연 가스 개질 공정에서 활용될 수 있다.
일 실시예에 있어서, 상기 천연 가스 개질 공정에서 발생되는 수소는 상기 연료 전지를 통한 전력 생성 과정에서 활용될 수 있다.
상기 천연 가스 개질 공정은,
정압기에서 감압된 천연 가스를 탈황부에서 탈황하고, 증기 재형성부에서 탈황된 천연가스를 1차적으로 수소와 CO로 증기를 재형성하며, 증기 전이부에서 수증기 전이 공정을 통해 수소의 농도를 증가시키고, 미반응 기체 제거부에서 미반응된 CH4, CO, CO2를 제거하여 수소를 생산하는 공정을 가지되,
상기 증기 전이부에서 수소의 농도를 증가시킬 때 발생되는 폐열의 일부가 상기 발전부로 공급될 수 있다.
상기 증기 재형성부에서 1차적으로 수소와 CO를 생산할 때, 상기 증기 재형성부로 고온의 증기를 공급하는 증기 생성부가 구비되며,
상기 증기 전이부에서 수소의 농도를 증가시킬 때 발생되는 폐열의 나머지 일부는 상기 증기 생성부로 공급될 수 있다.
상기 발전부에서 발생된 전력 중 일부 전력은 그리드에 저장되고, 상기 나머지 일부 전력은 상기 증기 생성부가 고온의 증기를 생성하도록 상기 증기 생성부로 공급될 수 있다.
상기 천연 가스 개질 공정에서 생산된 수소는 상기 연로 전지이 소스로 공급되며, 상기 연료 전지에서 생산된 전력은 상기 그리드로 저장될 수 있다.
본 발명은 천연 가스가 공급되는 라인에서 천연 가스를 감압 시킴과 동시에 천연 가스의 팽창을 통해 전력을 생산한다. 이에 따라, 본 발명은 별도의 발전 설비 없이도 전력을 생산해내는 효과가 있다.
또한, 본 발명은 가스 팽창 발전 시스템을 SMR 공정 및 연료 전지와 연계한다. 이에 따라, 본 발명은 에너지 효율 및 연료비 절감을 극대화하는 효과가 있다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템의 블록도이다.
도 2는 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템에서 천연 가스가 이동하는 과정을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템이 SMR 공정 및 연료 전지 공정과 연계되는 과정을 설명하기 위한 도면이다.
*부호의 설명
1 : 발전소
2 : 도시가스
3 : Grid
10 : 정압기 11,12,13 : 밸브
100 : 가스 팽창 발전 시스템
101 : 히팅부 103 : 유량 조절부
105 : 발전부
301 : 탈황부 303 : 증기 재형성부
305 : 증기 전이부 307 : 미반응 기체 제거부
309 : 증기 생성부
400 : 연료 전지
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예의 구성을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템의 블록도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템(100)은 히팅부(101), 유량 조절부(103) 및 발전부(105)를 포함한다.
히팅부(101)는 천연 가스의 온도를 상승시킨다. 구체적으로, 히팅부(101)는 상기 천연 가스의 온도를 발전부(105)에서 상기 천연 가스의 감압시 강하되는 온도를 고려하여 상승시킨다.
예를 들어, 히팅부(101)는 발전부(105)에서 감압시 상기 천연 가스의 온도가 70°C 강하되도록 설정되어 있는 경우, 미리 상기 천연 가스의 온도를 70°C 상승시켜 발전부(105)로 이동하도록 한다. 즉, 히팅부(101)는 천연 가스의 온도를 프리 히팅(pre-heating)한다.
이때, 종래의 가스 팽창 발전 시스템은 히팅부(101)로 유입되는 천연 가스 중 일부를 연소하여 천연 가스의 온도를 상승시키는 열원으로 사용하였다. 이에 따라, Nox, Sox 등의 유해 물질이 발생되는 등의 문제점이 있다.
그러나, 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템(100)은 천연 가스 개질 공정 및 연료 전지를 통한 전력 생성 공정을 연계함으로써, 히팅부(101)는 천연 가스 개질 공정 및/또는 연료 전지를 통한 전력 생성 공정에서 발생된 폐열로부터 열원을 공급받는다. 따라서, 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템(100)은 히팅부(101)로 유입되는 천연 가스의 일부를 연소할 필요가 없어 유해 물질 등이 발생되지 않는 이점이 있다. 이에 대한 구체적인 설명은 도 3을 참조하여 후술한다.
유량 조절부(103)는 상기 천연 가스의 유량을 조절한다. 구체적으로, 유량 조절부(103)는 발전부(105)에서 감압 가능한 천연 가스의 용량을 고려하여 상기 천연 가스가 발전부(105)로 이동하도록 천연 가스의 유량을 조절한다.
한편, 유량 조절부(103)는 발전부(105)에서 감압 가능한 천연 가스의 용량을 초과할 경우에 상기 천연 가스를 발전부(105)와 병렬로 연결된 정압기(10)로 이동하도록 상기 천연 가스의 유량을 조절한다. 정압기(10)에 대한 구체적인 설명은 후술한다.
발전부(105)는 상기 천연 가스의 압력을 감압시킴과 동시에 상기 천연 가스를 팽창시키고, 상기 천연 가스의 팽창시 발생되는 에너지를 통해 전력을 생성한다.
즉, 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템(100)은 발전부(105)가 천연 가스를 이동시키는 라인에 설치된 일반적인 정압기와 달리 천연 가스의 감압과 동시에 천연 가스의 팽창을 통해 전력을 생성하는 기능을 수행하여 활용성이 높은 이점이 있다.
도 2는 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템에서 천연 가스가 이동하는 과정을 설명하기 위한 도면이다.
도 2를 참조하면, 천연 가스(CH4)는 히팅부(101)로 유입되어 온도가 상승되고, 히팅부(101)에서 온도가 상승된 천연 가스(CH4)는 유량 조절부(103)를 통해 발전부(105)로 이동한다. 이때, 상술한 바와 같이 유량 조절부(103)는 천연 가스(CH4)가 발전부(105)로 먼저 이동하도록 유량을 조절하고, 발전부(105)에서는 천연 가스(CH4)의 감압 및 전력 생산을 수행한다. 이후, 상술한 바와 같이 유량 조절부(103)는 발전부(105)에서 감압 가능한 천연 가스(CH4)의 용량을 초과할 경우에 천연 가스(CH4)를 발전부(105)와 병렬로 연결된 정압기(10)로 이동하도록 천연 가스(CH4)의 유량을 조절한다. 이후, 정압기(10)에서는 복수의 밸브(11, 12, 13)의 개폐 정도를 조절하여 천연 가스(CH4)의 감압을 수행한다. 이후, 발전부(105) 및 정압기(10) 각각에서 감압된 천연 가스는 발전소(1) 및/또는 도시 가스(2) 등으로 공급된다.
도 3은 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템이 SMR 공정 및 연료 전지 공정과 연계되는 과정을 설명하기 위한 도면이다.
SMR(Steam Methane Reforming) 공정은 천연 가스(CH4)를 개질하여 수소(H2)를 생산해내는 공정이다. 구체적으로, 도 3을 참조하면, 탈황부(301)는 발전부(105) 및 정압기(10) 각각에서 감압된 천연 가스(CH4)를 탈황 과정을 거쳐 천연 가스(CH4)에 잔존해 있는 황성분을 제거한다. 이후, 증기 재형성부(303)는 탈황부(301)에서 황성분이 제거된 천연 가스를 증기 재형성하여 1차적으로 수소와 CO를 생산한다. 이후, 증기 전이부(305)는 수증기 전이 공정을 통해 수소의 농도를 증가시킨다. 이후, 미반응 기체 제거부(307)는 PSA(Pressure Swing Adsoprtion) 공정을 거쳐 미반응된 CH4, CO, CO2를 제거하여 수소(H2)를 생산한다.
이때, 증기 재형성부(303)가 1차적으로 수소와 CO를 생산할 때 증기 생성부(309)를 통해 고온의 증기를 공급받는데, 증기 생성부(309)는 증기 전이부(305)가 수증기 전이 공정을 통해 수소의 농도를 증가시킬 때 발생되는 제1 폐열(HeatⅠ)을 열원으로 하여 고온의 증기를 공급한다.
또한, 제1 폐열(HeatⅠ)은 증기 생성부(309) 뿐만 아니라 히팅부(101)로 공급되고, 후술할 제2 폐열(HeatⅡ)과 함께 히팅부(101)가 천연 가스(CH4)의 온도를 상승시키는 데 필요한 열원으로 작용한다.
연료 전지(400)는 수소(H2)와 산소(O2)의 화학반응 통해 전력을 생산해내는 장치이다. 이때, 수소(H2)와 산소(O2)의 화학반응에 따라 열이 발생되고, 이는 일반적으로 버려지는 열이므로 본 발명에서는 제2 폐열(HeatⅡ)로 정의한다.
제2 폐열(HeatⅡ)은 상술한 바와 같이 히팅부(101)로 공급되어 제1 폐열(HeatⅠ)과 함께 히팅부(101)가 천연 가스(CH4)의 온도를 상승시키는 데 필요한 열원으로 작용한다.
즉, 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템(100)은 SMR 공정 및 연료 전지(400) 공정에 발생되는 폐열을 버리지 않고, 천연 가스를 히팅하는 열원으로 사용함으로써 연료비 절감 및 에너지 재사용으로 인한 효율을 극대화하는 효과가 있다.
또한, 도 3을 참조하면, 발전부(105)에서 발생된 전력 중 제1 전력(PowerⅠ)은 Grid(3)에 저장되나, 제2 전력(PowerⅡ)은 증기 생성부(309)로 공급되어 증기 생성부(309)가 고온의 증기를 생성하도록 한다.
즉, 본 발명의 일 실시예에 따른 가스 팽창 발전 시스템(100)은 발전부(105)에서 생산된 전력을 SMR 공정에 활용함으로써 에너지 비용을 절감시키는 효과도 있다.
또한, 도 3을 참조하면, SMR 공정을 통해 생산된 수소(H2)는 연료 전지(400)의 소스(Source)로 공급되어, 연료 전지(400)가 제3 전력(PowerⅢ)을 생산하도록 한다. 이때, 연료 전지(400)에서 생산된 제3 전력(PowerⅢ)은 Grid(3)에 저장된다.
본 발명의 일 실시예에 따른 가스 팽창 발전 시스템(100)은 SMR 공정 및 연료 전지 공정과 연계되어 열 공급 또는 전력 공급을 상호 보완적으로 수행하여 에너지 효율 극대화 및 비용 절감 극대화 효과를 갖게 되는 이점이 있다.
본 발명의 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 천연 가스의 온도를 상승시키는 히팅부;
    상기 천연 가스의 유량을 조절하는 유량 조절부; 및
    상기 천연 가스의 압력을 감압시킴과 동시에 상기 천연 가스를 팽창시키고, 상기 천연 가스의 팽창시 발생되는 에너지를 통해 전력을 생성하는 발전부를 포함하고,
    상기 천연 가스는 상기 히팅부, 상기 유량 조절부 및 상기 발전부 순서로 순차적으로 이동하며,
    상기 히팅부는 천연 가스 개질 공정에서 발생된 폐열 또는 연료 전지를 통한 전력 생성 과정에서 발생된 폐열로부터 열원을 공급받는 가스 팽창 발전 시스템.
  2. 제1항에 있어서,
    상기 히팅부는 상기 천연 가스의 온도를 상기 발전부에서 상기 천연 가스의 감압시 강하되는 온도를 고려하여 상승시키는 가스 팽창 발전 시스템.
  3. 제1항에 있어서,
    상기 유량 조절부는 상기 발전부에서 감압 가능한 천연 가스의 용량을 고려하여 상기 천연 가스가 상기 발전부로 이동하도록 상기 천연 가스의 유량을 조절하는 가스 팽창 발전 시스템.
  4. 제3항에 있어서,
    상기 유량 조절부는 상기 발전부에서 감압 가능한 천연 가스의 용량을 초과할 경우에 상기 천연 가스를 상기 발전부와 병렬로 연결된 정압기로 이동하도록 상기 천연 가스의 유량을 조절하는 가스 팽창 발전 시스템.
  5. 제1항에 있어서,
    상기 발전부에서 발생된 전력의 일부가 상기 천연 가스 개질 공정에서 활용되는 가스 팽창 발전 시스템.
  6. 제1항에 있어서,
    상기 천연 가스 개질 공정에서 발생되는 수소는 상기 연료 전지를 통한 전력 생성 과정에서 활용되는 가스 팽창 발전 시스템.
  7. 제1항에 있어서, 상기 천연 가스 개질 공정은,
    정압기에서 감압된 천연 가스를 탈황부에서 탈황하고, 증기 재형성부에서 탈황된 천연가스를 1차적으로 수소와 CO로 증기를 재형성하며, 증기 전이부에서 수증기 전이 공정을 통해 수소의 농도를 증가시키고, 미반응 기체 제거부에서 미반응된 CH4, CO, CO2를 제거하여 수소를 생산하는 공정을 가지되,
    상기 증기 전이부에서 수소의 농도를 증가시킬 때 발생되는 폐열의 일부가 상기 발전부로 공급되는 가스 팽창 발전 시스템.
  8. 제7항에 있어서,
    상기 증기 재형성부에서 1차적으로 수소와 CO를 생산할 때, 상기 증기 재형성부로 고온의 증기를 공급하는 증기 생성부가 구비되며,
    상기 증기 전이부에서 수소의 농도를 증가시킬 때 발생되는 폐열의 나머지 일부는 상기 증기 생성부로 공급되는 가스 팽창 발전 시스템.
  9. 제8항에 있어서,
    상기 발전부에서 발생된 전력 중 일부 전력은 그리드에 저장되고, 상기 나머지 일부 전력은 상기 증기 생성부가 고온의 증기를 생성하도록 상기 증기 생성부로 공급되는 가스 팽창 발전 시스템.
  10. 제8항에 있어서,
    상기 천연 가스 개질 공정에서 생산된 수소는 상기 연로 전지이 소스로 공급되며, 상기 연료 전지에서 생산된 전력은 상기 그리드로 저장되는 가스 팽창 발전 시스템.
PCT/KR2019/014229 2019-04-04 2019-10-28 가스 팽창 발전 시스템 WO2020204292A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19923679.5A EP3951141A4 (en) 2019-04-04 2019-10-28 GAS EXPANSION POWER GENERATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0039448 2019-04-04
KR1020190039448A KR102662302B1 (ko) 2019-04-04 2019-04-04 가스 팽창 발전 시스템

Publications (1)

Publication Number Publication Date
WO2020204292A1 true WO2020204292A1 (ko) 2020-10-08

Family

ID=72667309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014229 WO2020204292A1 (ko) 2019-04-04 2019-10-28 가스 팽창 발전 시스템

Country Status (3)

Country Link
EP (1) EP3951141A4 (ko)
KR (1) KR102662302B1 (ko)
WO (1) WO2020204292A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102290387B1 (ko) * 2020-11-19 2021-08-19 한국가스공사 복합발전 시스템 및 복합발전 시스템의 복합예열 방법
KR102536782B1 (ko) * 2021-08-13 2023-05-26 한국해양과학기술원 액화 수소 기화 시의 부피 팽창에 의한 가압력을 이용한 발전 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217800A (ja) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd エネルギー回収装置付き都市ガス整圧装置
KR20110047905A (ko) * 2009-10-31 2011-05-09 유한회사 이지엠에너지홀딩스 연료전지―터보팽창기 통합에너지 회수시스템을 통한 천연가스 정압시설의 에너지 회수 장치 및 에너지 회수 방법
US20130328310A1 (en) * 2012-06-06 2013-12-12 Timothy Dyer Systems and Methods for Combined Flow Control and Electricity Generation
KR20140100454A (ko) * 2014-06-26 2014-08-14 대우조선해양 주식회사 선박용 연료전지 복합발전시스템
KR20170076913A (ko) * 2015-12-24 2017-07-05 현대중공업 주식회사 선박

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193211A (ja) * 1984-10-12 1986-05-12 Hitachi Ltd 冷熱発電設備の制御装置
JP4786162B2 (ja) * 2004-10-21 2011-10-05 東芝燃料電池システム株式会社 液体燃料改質システムと方法
US8080344B2 (en) * 2006-05-16 2011-12-20 Fuelcell Energy, Inc. Fuel cell hybrid power generation system
US9470452B2 (en) * 2006-07-27 2016-10-18 Cosmodyne, LLC Imported LNG treatment
US20140000275A1 (en) * 2012-06-29 2014-01-02 Icr Turbine Engine Corporation Lng fuel handling for a gas turbine engine
EP3625498B1 (en) * 2017-05-18 2022-11-16 Rolls-Royce North American Technologies, Inc. Two-phase thermal pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217800A (ja) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd エネルギー回収装置付き都市ガス整圧装置
KR20110047905A (ko) * 2009-10-31 2011-05-09 유한회사 이지엠에너지홀딩스 연료전지―터보팽창기 통합에너지 회수시스템을 통한 천연가스 정압시설의 에너지 회수 장치 및 에너지 회수 방법
US20130328310A1 (en) * 2012-06-06 2013-12-12 Timothy Dyer Systems and Methods for Combined Flow Control and Electricity Generation
KR20140100454A (ko) * 2014-06-26 2014-08-14 대우조선해양 주식회사 선박용 연료전지 복합발전시스템
KR20170076913A (ko) * 2015-12-24 2017-07-05 현대중공업 주식회사 선박

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951141A4 *

Also Published As

Publication number Publication date
EP3951141A4 (en) 2023-01-11
KR20200117402A (ko) 2020-10-14
KR102662302B1 (ko) 2024-04-29
EP3951141A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020204292A1 (ko) 가스 팽창 발전 시스템
US7043923B2 (en) Fluid heating and gas turbine integration method
US5397656A (en) Differential pressure controlling method and apparatus for plate reformer of fuel cell power generation system
NO20073069L (no) Fremgangsmate og apparat for a produsere og regulere elektrisk kraft
CA2094129A1 (en) Process and installation for the combined generation of electrical and mechanical energy
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
WO2021075802A1 (ko) 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2020085668A1 (ko) 직화식 초임계 이산화탄소 발전 시스템 및 방법
WO2016140536A1 (ko) 연료전지 시스템
WO2013183853A1 (ko) 연료전지 시스템
WO2024005269A1 (ko) 암모니아를 원료로 활용하는 연소 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
JPS62190660A (ja) 燃料電池発電プラントの休止方法
JP2017183155A (ja) 燃料電池システム
Krumdieck et al. Solid oxide fuel cell architecture and system design for secure power on an unstable grid
JPS61218073A (ja) 燃料電池装置
JP3331576B2 (ja) 燃料電池発電設備
WO2020262776A1 (ko) 연료처리장치 및 그 연료처리장치를 이용하는 가상발전시스템
CN113476996B (zh) 一种燃气高效利用双膜重整器系统及其控制方法
JP2000243423A (ja) 燃料電池のパージ方法
JP2003040603A (ja) 水素発生装置
WO2021080260A1 (ko) 하이브리드 발전 시스템
KR20190105840A (ko) 효율이 향상된 수소스테이션 장치
EP4336605A2 (en) Recirculated solid oxide electrolyzer cell system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923679

Country of ref document: EP

Effective date: 20211104