WO2013183763A1 - 外筒が三分割された直動軸受 - Google Patents

外筒が三分割された直動軸受 Download PDF

Info

Publication number
WO2013183763A1
WO2013183763A1 PCT/JP2013/065840 JP2013065840W WO2013183763A1 WO 2013183763 A1 WO2013183763 A1 WO 2013183763A1 JP 2013065840 W JP2013065840 W JP 2013065840W WO 2013183763 A1 WO2013183763 A1 WO 2013183763A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cylinder
cylindrical
linear motion
sphere
cage
Prior art date
Application number
PCT/JP2013/065840
Other languages
English (en)
French (fr)
Inventor
恭樹 大川原
繁樹 進藤
Original Assignee
ヒーハイスト精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒーハイスト精工株式会社 filed Critical ヒーハイスト精工株式会社
Priority to JP2014520069A priority Critical patent/JP6254941B2/ja
Priority to KR1020147036118A priority patent/KR102009066B1/ko
Priority to CN201380029631.XA priority patent/CN104334898B/zh
Publication of WO2013183763A1 publication Critical patent/WO2013183763A1/ja
Priority to HK15104524.0A priority patent/HK1204036A1/xx

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/068Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track
    • F16C29/0683Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track the bearing body encircles a rail or rod of circular cross-section, i.e. the linear bearing is not suited to transmit torque
    • F16C29/0685Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track the bearing body encircles a rail or rod of circular cross-section, i.e. the linear bearing is not suited to transmit torque with balls
    • F16C29/0688Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track the bearing body encircles a rail or rod of circular cross-section, i.e. the linear bearing is not suited to transmit torque with balls whereby a sleeve surrounds the circulating balls and thicker part of the sleeve form the load bearing tracks

Definitions

  • the present invention relates to a linear motion bearing that enables axial movement of a shaft body at an unlimited distance, and relates to a linear motion bearing in which an outer cylinder is divided into three parts.
  • linear bearings have been used to smoothly support shaft bodies that move in the length direction in various mechanical devices.
  • the linear motion bearing is housed in each of the outer cylinder, a cylindrical spherical cage made of synthetic resin having a plurality of spherical circulation paths extending in the lengthwise direction, which are fitted inside the outer cylinder, and the spherical circulation paths. It consists of multiple spheres.
  • the sphere circulation path of the sphere holder described above includes a shaft body in which a plurality of accommodated spheres move in the sphere circulation path, and a part of the spheres are inserted inside the sphere holder.
  • the shaft body By rotating in a state in contact with the outer peripheral surface and the inner peripheral surface of the outer cylinder, the shaft body can be linearly moved without any distance limitation, and provided with open slits on both the inner peripheral side and the outer peripheral side.
  • a plurality of spheres circulate in the sphere circulation path to allow movement (linear movement) without limitation of the linear movement distance of the shaft body.
  • the outer cylinder is made of an outer cylinder body made of a rigid material, and A total of two cylindrical outer parts made of synthetic resin, each of which is provided at each of both end portions of the outer cylinder main body and in which an inner peripheral surface is formed with a concave portion that becomes a part of a wall surface of a spherical circulation path of the cylindrical spherical cage. It is known to be constructed from a cylinder end.
  • Patent Document 1 has a sleeve (outer cylinder main body), a cage (cylindrical sphere holder), and a number of sealed ball paths including balls (spheres) guided by the cage.
  • a ball bushing adapted to be loaded between a sleeve and a shaft surrounded by the sleeve at a portion of each ball, the cross-sectional shape of the sleeve is generally constant along its entire length
  • a ball bushing linear bearing
  • the sleeve can be easily processed by pulling out the sleeve, and the sleeve (ball It is described that it is very elastic because it does not come into contact with a cylindrical part (around the sleeve for mounting the bush).
  • the curved part of the ball path on both sides of the part receiving the load of the ball path is surrounded by separate members (a pair of rings arranged on both sides of the sleeve) with respect to the sleeve. And the embodiment provided in the both ends of the said sleeve is shown.
  • ⁇ A flange is formed at one end of the cage of the ball bush, and a groove is formed at the other end.
  • This ball bushing (linear motion bearing) has no limitation on the linear motion distance of the shaft body because the ball supporting the shaft body circulates and moves inside the ball path of the cage.
  • a linear motion bearing divided into a pair of arranged rings.
  • the outer cylinder is composed of a spline outer cylinder (outer cylinder main body) and a pair of end caps (cylindrical outer cylinder end portions) arranged at both ends thereof.
  • Three divided ball splines are disclosed.
  • FIG. 11 of this document discloses a structure in which end caps (ends of cylindrical outer cylinders) are welded to both ends of a cage of a ball spline.
  • JP 52-85661 A (FIGS. 1 and 2) JP-A-1-229160 (FIG. 11)
  • a sleeve (outer cylinder body) and a pair of rings (ends of cylindrical outer cylinder) are arranged around a cage (spherical cage). Since the sleeve is disposed around the linear groove of the cage constituting the sealed ball path, the sleeve has a relatively simple shape (a shape in which the cross-sectional shape hardly varies in the length direction). For this reason, it is described that the processing of the sleeve is easy.
  • each ring is closely fitted around the cage. That is, the shape of the outer periphery of the cage and the shape of the inner periphery of each ring are the same. For this reason, since each ring does not move in the circumferential direction with respect to the cage, the cage and the ring constituting the curved portion of the ball path are precisely positioned with respect to each other.
  • the outer peripheral edge of the cage is usually moved in the circumferential direction inside each ring (slight rotation). It has been set to a possible shape.
  • each ring can move (slightly rotate) in the circumferential direction with respect to the cage, it cannot be said that it is easy to fix (join) each other with the cage and each ring positioned precisely. If the cage and each ring are not accurately positioned, the ball may be sandwiched between the cage and each ring at a curved portion of the ball path and cannot be moved smoothly. For this reason, the smooth circulation movement of the sphere in the ball path is hindered, and thereby the smooth linear movement of the shaft body to be supported is likely to be hindered.
  • the structure which welded the end cap and the spherical body holder described in Patent Document 2 also includes the shape of the outer peripheral edge of the spherical body holder and the shape of the inner peripheral edge of each end cap (cylindrical outer cylinder end). It is not easy to make these exactly match. Further, if the shape of the outer peripheral edge of the spherical holder and the shape of the inner peripheral edge of the end cap are exactly matched, it is difficult to fit the end cap around the holder. Therefore, it is not easy to join the spherical holder and each end cap to each other in a precisely positioned state.
  • An object of the present invention is a linear motion bearing in which an outer cylinder is divided into three parts into an outer cylinder main body and a pair of cylindrical outer cylinder end portions arranged at both ends thereof without any limitation on the linear motion distance of the shaft body.
  • the present inventor has a configuration of a linear motion bearing in which an outer cylinder is composed of an outer cylinder main body and cylindrical outer cylinder end portions arranged at both ends thereof (the outer cylinder is divided into three parts). And the assembly method. As a result, each cylindrical outer cylinder end portion constituting the outer cylinder of the linear motion bearing and each end portion of the spherical body retainer are engaged with each other by engaging the convex portion and the concave portion formed on each of the opposing surfaces thereof.
  • each cylindrical outer cylinder end is fitted to each end of the spherical cage and pressed (if necessary, each cylindrical outer cylinder end It was found that the spherical holder can serve as a guide to allow easy and precise fitting of the convex portion and the concave portion.
  • the present invention includes an outer cylinder having a plurality of convex portions formed in an elongated shape along the axial direction on the inner peripheral surface, and a plurality of spherical circulation paths fitted inside the outer cylinder.
  • Cylindrical sphere cage made of synthetic resin, provided that each sphere circulation path is provided with open slits on both the inner peripheral side face and the outer peripheral side face, and a plurality of pieces accommodated in each of the sphere circulation paths
  • Each of the sphere circulation paths includes a plurality of spheres accommodated in the sphere circulation path, and some of the spheres pass through the open slits.
  • a total of two cylindrical outer cylinder ends made of synthetic resin, which are provided at each of both end portions of the main body and in which concave portions that are part of the wall surface of the spherical circulation path of the cylindrical spherical cage are formed on the inner peripheral surface Is a linear motion bearing composed of three parts, the outer cylinder is divided into three parts, Convex portions along the circumferential direction are provided in the vicinity of both ends of the cylindrical sphere retainer and in the opposing surface of each end of the cylindrical outer cylinder end, and the other is provided with a circumferential protrusion.
  • a concave portion is provided along the direction, and the cylindrical ball cage and each cylindrical outer cylinder end portion are joined to each other by engagement between the convex portions and the concave portions.
  • the concave portion is provided on the outer peripheral surface in the vicinity of both end portions of the cylindrical spherical cage, and the convex portion is provided on the inner peripheral surface of each cylindrical outer cylinder end portion.
  • the convex portion is provided on the inner peripheral surface of each cylindrical outer cylinder end portion.
  • it is.
  • the convex part along the circumferential direction provided in either one of the vicinity of both ends of the cylindrical sphere cage and each of the opposing surfaces of the cylindrical outer cylinder end is discontinuous in the circumferential direction or Any of continuous may be sufficient, and the recessed part along the circumferential direction provided in the other may also be either discontinuous or continuous in the circumferential direction.
  • the outer peripheral surface of the cylindrical sphere retainer is entirely the inner periphery of the outer cylinder main body except the portion where the open sleeve is provided. It is preferable to be configured so as to be in contact with the surface and thereby suppress the circumferential rotation of the cylindrical sphere cage.
  • the present invention is also a linear motion device including the linear motion bearing of the present invention described above and a shaft body inserted inside a cylindrical spherical cage of the linear motion bearing.
  • the linear motion bearing of the present invention has no limitation on the linear motion distance of the shaft body, and even if the outer cylinder is divided into three parts into an outer cylinder main body and a pair of cylindrical outer cylinder end portions arranged at both ends thereof, At the time of assembly, each cylindrical outer cylinder end part is connected to each of both end parts of the cylindrical sphere cage, through the engagement of the convex part provided on one of the two and the concave part provided on the other, And it can join in the state positioned precisely. For this reason, in the linear motion bearing of the present invention, since the sphere smoothly and stably circulates inside each sphere circulation path of the cage, the shaft body to be supported can smoothly move linearly. Its assembly is also easy.
  • FIG. 3 is a cross-sectional view of the linear motion bearing 10 cut along a cutting line III-III entered in FIG. 2.
  • FIG. 4 is a cross-sectional view of a linear motion bearing 10 cut along a cutting line IV-IV entered in FIG. 3.
  • FIG. 5 is a cross-sectional view of a cylindrical outer cylinder end portion 11b cut along the cutting line VV entered in FIG. 3;
  • FIG. 5 is a cross-sectional view of a cylindrical sphere holder 13 cut along a cutting line VV entered in FIG. 3. It is a disassembled perspective view which shows the other structural example of the linear motion bearing of this invention. It is a fragmentary sectional view along the axial direction of the linear motion bearing shown in FIG. It is sectional drawing of the surface perpendicular
  • a linear motion bearing 10 according to the first embodiment of the present invention shown in FIGS. 1 to 6 is a cylindrical tube made of a synthetic resin provided with an outer cylinder 11 and a plurality of spherical circulation paths 12 fitted inside the outer cylinder 11.
  • the spherical sphere holder 13 and a plurality of spheres 14 accommodated in each of the sphere circulation paths 12 are configured.
  • the spherical body circulation path 12 includes a shaft body linear motion support path 12a having open slits 15a and 15b on both the inner periphery side and the outer periphery side, and the sphere body 14 moved through the shaft body linear motion support path 12a. It comprises a spherical return path 12b for returning to the dynamic support path 12a, and a curved path 12c that connects the ends of the shaft linear motion support path 12a and the spherical return path 12b to each other.
  • the open slit 15 a of the shaft linear movement support path 12 a is provided on the inner peripheral side of the cylindrical sphere holder 13, and the open slit 15 b is provided on the outer peripheral side of the cylindrical sphere holder 13.
  • the shaft linear motion support path 12a is configured such that a plurality of spheres 14 accommodated in the sphere circulation path 12 move (circulate) in the circulation path 12, and a part of the spheres 14 are cylinders.
  • the outer cylinder 11 includes an outer cylinder main body 11a and cylindrical outer cylinder end portions 11b provided at both ends of the outer cylinder main body 11a.
  • the outer cylinder main body 11a is formed from a rigid material, and the cylindrical outer cylinder end 11b is formed from a synthetic resin.
  • the linear motion bearing 10 is a linear motion shaft house that does not limit the linear motion distance of the shaft body 30 to be supported, and the outer cylinder 11 is disposed outside the cylindrical main body 11a and both ends thereof. This is a linear motion bearing that is divided into a cylinder end 11b.
  • the linear motion bearing 10 of the first aspect is provided with discontinuous convex portions 21 in the vicinity of both ends of the cylindrical sphere cage 13 and one of the opposing surfaces of the cylindrical outer cylinder end portions 11b, and the other Is provided with a concave portion 22 which is discontinuous in the circumferential direction, and the cylindrical outer cylinder end portion 11b is joined to the cylindrical spherical cage 13 at a predetermined position by the engagement between the convex portion 21 and the concave portion 22.
  • each cylindrical outer cylinder end portion 11b is fitted and pressed to each end portion of the cylindrical sphere holder 13 (after that, if necessary, each With the simple operation of slightly rotating the cylindrical outer cylinder end portion 11b in the circumferential direction, the spherical holder 13 can serve as a guide, and the convex portion 21 and the concave portion 22 can be easily and precisely fitted together. It becomes possible. Therefore, the cylindrical outer cylinder end portion 11b can be joined to the cylindrical sphere holder 13 in a state where the cylindrical outer cylinder end portion 11b is easily and precisely positioned at a predetermined position. For this reason, in the linear motion bearing 10 of the present invention, the sphere 14 smoothly circulates and moves inside each sphere circulation path 12 of the cylindrical sphere holder 13, so that the shaft body 30 to be supported can move smoothly. It becomes possible.
  • the linear motion device 40 according to the first aspect of the present invention is constituted by the linear motion bearing 10 and the shaft body 30 inserted inside the cylindrical spherical cage 13 of the linear motion bearing 10.
  • the outer cylinder main body 11a is formed from a rigid material.
  • rigid materials include metallic materials and ceramic materials.
  • a metal material is preferably used as the rigid material.
  • Steel is usually used as the metal material.
  • a load is applied to the shaft body 30 via the spherical body 14 that rotates while being in contact with the outer peripheral surface of the shaft body 30 and the inner peripheral surface of the outer cylinder 11.
  • the outer cylinder main body 11a is usually fitted around a portion of the cylindrical sphere holder 13 where the shaft linear motion support path 12a and the sphere return path 12b are formed.
  • the shape of the cylindrical sphere holder 13 where the shaft linear motion support path 12a and the spherical return path 12b are formed is simpler than the shape of the part where the curved path 12c is formed. Therefore, since the outer cylinder main body 11a has a simpler shape as compared with the case where the outer cylinder is integrally formed, it can be easily manufactured by known machining or the like. In particular, as shown in FIGS.
  • the outer cylinder main body 11a should just be arrange
  • the length of the outer cylinder body 11a is preferably in the range of 50 to 100% of the length of the open slit 15a, more preferably in the range of 80 to 100%, and in the range of 90 to 100%. It is particularly preferable that
  • the cylindrical outer cylinder end part 11b is formed from a synthetic resin exhibiting high rigidity.
  • synthetic resins exhibiting high rigidity include polyacetal resins, polyphenylene sulfide (PPS) resins, polyamide resins, and polyether ether ketone (PEEK) resins.
  • the cylindrical outer cylinder end portion 11b is fitted around a portion protruding from each end portion of the outer cylinder main body 11a of the cylindrical sphere holder 13, usually around a portion where the curved path 12c of the sphere holder 13 is formed. Combined.
  • the cylindrical outer cylinder end portion 11b is made of a synthetic resin and can be easily manufactured by, for example, resin molding or machining.
  • the cylindrical outer cylinder end part 11b is provided with a flange 17 extending from the edge of the end opposite to the outer cylinder main body 11a to the inner peripheral side.
  • the attachment of the flange 17 further increases the mechanical strength of the cylindrical outer cylinder end portion 11b.
  • each end face of the cylindrical sphere holder 13 and each cylinder facing the end face are formed before the convex portion 21 and the concave portion 22 are fitted to each other.
  • a gap d is provided between each end face of the cylindrical sphere holder 13 and the surface of the flange 17 so that the surface of the flange 17 of the cylindrical outer cylinder end portion 11b does not contact each other.
  • the cylindrical sphere cage (generally called a retainer) 13 is formed from a synthetic resin.
  • a synthetic resin the same synthetic resin material as the synthetic resin material illustrated as a material of the cylindrical outer cylinder edge part 11b can be mentioned.
  • the cylindrical sphere holder 13 includes a plurality of sphere circulation paths 12 extending in the length direction (axial direction).
  • the plurality of spherical circulation paths 12 are arranged at intervals in the circumferential direction of the spherical holder 13.
  • the plurality of spherical circulation paths 12 are preferably disposed symmetrically with respect to the central axis of the spherical body holder 13.
  • the number of spherical circulation paths 12 is preferably in the range of 2 to 10 (particularly 3 to 6).
  • the spherical circuit 12 is composed of the shaft linear motion support path 12a, the spherical return path 12b, and the curved path 12c as described above.
  • the shaft body linear motion support path 12 a usually has a linear shape extending in the length direction of the cylindrical sphere holder 13. Thereby, the spherical body 14 comes to move smoothly inside the shaft body linear motion support path 12a. For this reason, the straight traveling property when the shaft body 30 moves linearly is improved.
  • the spherical return path 12b also usually has a linear shape extending in the length direction of the cylindrical spherical cage 13.
  • a groove formed on the outer peripheral surface of the sphere holder 13 is preferably used, and a linear groove extending in the length direction of the sphere holder 13 is particularly preferably used.
  • a hole formed in the spherical body holder 13, preferably a linear open groove extending in the length direction of the spherical body holder 13, can be used as the spherical body return path 12b.
  • the curved path 12c it is preferable to use a curved groove formed on the outer peripheral surface of the sphere holder 13 and connecting the ends of the shaft linear motion support path 12a and the sphere return path 12b to each other.
  • retainer can also be used as a curved path.
  • Sphere 14 is usually formed from a rigid material.
  • rigid materials include metallic materials and ceramic materials.
  • a metal material is preferably used as the rigid material.
  • Steel is usually used as the metal material.
  • convex portions that are discontinuous in the circumferential direction are provided in the vicinity of both end portions of the cylindrical sphere holder 13 and one of the opposing surfaces of the cylindrical outer cylinder end portions 11b.
  • the other is provided with a recess that is discontinuous in the circumferential direction.
  • the opposing surfaces of both ends of the cylindrical sphere holder 13 and the cylindrical outer cylinder end portions 11b are the outer peripheral surface in the vicinity of both ends of the sphere holder 13 and the inner peripheral surface of each cylindrical outer cylinder end portion 11b.
  • the convex portion is formed on one of the outer peripheral surface in the vicinity of both end portions of the spherical cage 13 and the inner peripheral surface of each outer cylinder end portion 11b, and the concave portion is formed on the other.
  • retainer 13 and the inner surface of each cylindrical outer cylinder edge part 11b which faces each end surface can also be used, for example.
  • a concave portion 22 is provided on the outer peripheral surface in the vicinity of both end portions of the cylindrical sphere holder 13, and a convex portion 21 is provided on the inner peripheral surface of each cylindrical outer cylinder end portion 11b.
  • the concave portion 22 is provided on the outer peripheral surface of the sphere holder 13, it is easier to fit the outer cylinder main body 11 a around the sphere holder 13 when the linear motion bearing 10 is assembled, compared to the case where the convex portion is provided. It becomes.
  • the above circumferentially discontinuous convex portion means a convex portion having a side surface intersecting with an arc extending along the circumferential direction of the cylindrical sphere cage (or the cylindrical outer cylinder end). Therefore, the convex portion may have a C-shape extending along the circumferential direction of the cylindrical sphere cage (or the cylindrical outer cylinder end portion), and may have the side surface. It may have an annular shape extending along the circumferential direction.
  • the circumferentially discontinuous concave portion means a concave portion having a side surface intersecting with an arc extending along the circumferential direction of the cylindrical sphere cage (or the cylindrical outer cylinder end portion). Therefore, the concave portion may have a C-shaped shape extending along the circumferential direction of the cylindrical sphere holder (or the cylindrical outer cylinder end portion), and if the concave portion has the side surface, You may have the cyclic
  • the side surface of the convex part 21 on the outer cylinder main body 11a side is gradually convex from the outer cylinder main body 11a side. It is preferable to incline so that the height of 21 becomes large. Thereby, the convex part 21 and the recessed part 22 can be easily fitted together.
  • the side surface of the convex portion opposite to the outer cylinder main body side gradually increases from the side opposite to the outer cylindrical main body side to the height of the convex portion. It is preferable to incline so that becomes large.
  • the concave portion is provided on the other side.
  • Protrusions or recesses provided on the outer circumferential surface of the cage 13 are provided in a region between the spherical circulation paths 12 adjacent to each other on the outer circumferential surface of the spherical cage 13 or in regions on both outer sides in the length direction thereof. Is preferred. Thereby, the said convex part and a recessed part can be formed in the spherical body holder 13 without reducing the mechanical strength of the spherical body holder 13 almost.
  • a plurality of convex portions and concave portions provided in the cylindrical sphere cage are provided at intervals from each other along the circumferential direction of the cage.
  • a plurality of convex portions and concave portions provided at the end portion of the cylindrical outer cylinder are provided at intervals from each other along the circumferential direction of the end portion of the cylindrical outer cylinder.
  • the number of convex portions and concave portions is preferably in the range of 2 to 10 (particularly 3 to 6) at each end (or each cylindrical outer tube end) of the spherical cage.
  • the linear motion bearing of the present invention has an excellent advantage that each cylindrical outer cylinder end portion 11b can be easily and precisely positioned with respect to the cylindrical sphere holder 13. Yes.
  • the cylindrical sphere holder 13 in which the cylindrical outer cylinder end portion 11b is joined to each of both end portions slightly moves in the circumferential direction inside the outer cylinder main body 11a (slightly). Rotation).
  • each cylindrical outer cylinder end portion 11b is placed in contact with both end surfaces of the outer cylinder main body 11a in a pressurized state.
  • it is.
  • the outer cylinder main body 11a In order to place the cylindrical outer cylinder ends 11b in contact with both end surfaces of the outer cylinder main body 11a in a pressurized state, the outer cylinder main body 11a is not fitted around the cylindrical spherical holder 13 and the sphere is held. In the state where the cylindrical outer cylinder end 11b is joined to each of both ends of the vessel 13, the interval between both cylindrical outer cylinder ends 11b is set to be shorter than the length of the outer cylinder main body 11a. Is preferred. The interval is preferably in the range of 97% or more and less than 100% of the length of the outer cylinder main body 11a, and is further set to an interval in the range of 98.0 to 99.9%. It is particularly preferable that the distance is set within the range of 99.0 to 99.9%.
  • the cylindrical outer cylinder end portions 11 b are respectively attached to the both ends of the spherical holder 13 without fitting the outer cylinder main body 11 a around the cylindrical spherical holder 13.
  • the interval between both cylindrical outer cylinder end portions 11b is set to an interval of 99.6% of the length of the outer cylinder main body 11a.
  • the linear motion bearing 10 can be assembled, for example, according to the following procedure. First, the cylindrical outer cylinder end portion 11b is fitted and pressed to one end portion of the cylindrical sphere holder 13, and then each cylindrical outer cylinder end portion 11b is slightly rotated in the circumferential direction if necessary. . Thereby, the convex part 21 of the outer cylinder end part 11b is fitted into the concave part 22 of one end part of the spherical body holder 13, and the convex part 21 and the concave part 22 are engaged with each other. When the convex portion 21 and the concave portion 22 are engaged with each other, the outer cylinder end portion 11b is joined to a predetermined position of one end portion of the spherical body holder 13 in a precisely positioned state.
  • the spherical holder 13 having the outer cylinder end portion 11b joined to one end portion is arranged vertically so that the outer cylinder end portion 11b is on the lower side, and then the outer cylinder is disposed around the spherical holder 13.
  • the main body 11a is fitted. Then, a plurality of spheres are accommodated in each sphere circulation path 12 of the cage 13 exposed from the upper end of the outer cylinder main body 11a.
  • each outer cylinder end 11b is slightly rotated in the circumferential direction if necessary.
  • the convex part 21 of the outer cylinder end part 11b is fitted in the concave part 22 of the other end part of the spherical body holder 13, and the convex part 21 and the concave part 22 are engaged with each other.
  • the outer cylinder end portion 11b is joined to a predetermined position of the other end portion of the spherical body holder 13 in a precisely positioned state. In this way, the linear motion bearing 10 of the present invention can be reliably and easily assembled.
  • FIG. 7 is a perspective view of a second embodiment corresponding to the perspective view of the linear motion bearing of the first embodiment shown in FIG.
  • the linear motion bearing according to the second aspect is the same as the circumferentially discontinuous convex part 21 shown in FIG. 2 of the first aspect. It differs from the linear motion bearing of the first aspect in that it is replaced with a concave portion 22a that is continuous with the portion 21a in the circumferential direction and that the outer peripheral shape of the retainer is slightly changed.
  • both the convex portion 21a and the concave portion 22a in the linear motion bearing of the second aspect are formed continuously (that is, in a ring shape) along the circumferential direction.
  • the above-mentioned “entire contact” means that a slight gap is formed between the outer peripheral surface of the cylindrical sphere holder and the inner peripheral surface of the outer cylinder main body other than the portion where the open sleeve is provided. It is not a definition of the meaning to exclude the configuration to be made, on the condition that the cylindrical sphere holder is sufficiently fixed by fitting to the outer cylinder main body, and its circumferential rotation is sufficiently suppressed in practice. Of course, a slight gap may be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

 外筒(11)、外筒の内側に嵌め合わされている、複数の球体循環路(12)を備えた合成樹脂製の筒状球体保持器(13)、そして球体循環路の各々に収容された複数の球体(14)を含み、上記外筒(11)が、剛性材料からなる外筒本体(11a)、そして外筒本体の両端部の各々に備えられ、内周面に、上記筒状球体保持器の球体循環路の一部の壁面となる凹部が形成された合成樹脂製の筒状外筒端部(11b)から構成されていて、上記の球体保持器の両端部のそれぞれの近傍そして各外筒端部の対向面の内のいずれか一方に周方向に沿う凸部(21)が設けられ、そして他方には周方向に沿う凹部(22)が設けられていて、これらの凸部と凹部との係合により、筒状球体保持器と筒状外筒端部との接合がなされる直動軸受は、組み立てが容易である。

Description

外筒が三分割された直動軸受
 本発明は、制限のない距離での軸体の軸方向の移動を可能にする直動軸受であって、外筒が三分割された直動軸受に関する。
 従来より、各種機械装置において長さ方向に移動する軸体を円滑に支持するために、直動軸受が用いられている。
 直動軸受は、外筒、外筒の内側に嵌め合わされている、複数の長さ方向に延びる球体循環路を備えた合成樹脂製の筒状球体保持器、そして球体循環路の各々に収容された複数の球体から構成されている。
 上記の球体保持器の球体循環路は、収容された複数の球体が球体循環路内を移動し、その内の一部の球体が球体保持器の内側に挿入される軸体を該軸体の外周面と外筒内周面とに接触した状態にて回転することにより、該軸体の距離制限のない直動を可能にする、内周側と外周側との双方に開放スリットを備えた軸体直動支持路、該軸体直動支持路内を移動した球体を出口から循環移動させ、改めて軸体直動支持路の反対側の入り口に戻すための球体帰還路、そして軸体直動支持路と球体帰還路のそれぞれの端部を互いに連結する湾曲路から構成されている。この球体循環路の内部を複数の球体が循環移動することにより、軸体の直動距離の制限がない移動(直動)が可能になる。
 このような直動軸受の外筒の全てを鋼材などの剛性の金属材料から製造するとすると、外筒の内部の加工が困難であることから、外筒を、剛性材料からなる外筒本体、そして該外筒本体の両端部の各々に備えられ、内周面に、筒状球体保持器の球体循環路の一部の壁面となる凹部が形成された合計二個の合成樹脂製の筒状外筒端部から構成することが知られている。
 このように、軸体の直動距離の制限がない、外筒が三分割された直動軸受は、下記の特許文献1、2に開示されている。
 特許文献1には、スリーブ(外筒本体)と、ケージ(筒状球体保持器)と、ケージに案内されているボール(球体)を備えた多数の密閉ボール路とを有し、ボール路がスリーブと各ボールの一部分でスリーブに囲われている軸との間で負荷を与えられるようにされているボールブッシュにおいて、スリーブの断面形がその全長に沿って概ね一定であり、またスリーブが、スリーブを囲む円に対して反対方向に凹んでいる縦方向の多数の輪郭を有し、その輪郭が負荷されたボールの凹形の内部レース溝を含むボールブッシュ(直動軸受)が開示されている。
 同文献には、上記ボールブッシュは、スリーブの断面形状が全長にわたって同じであるため、スリーブを引き抜きなどにより容易に加工することができ、そしてスリーブがボール路の負荷された部分にある座(ボールブッシュの取り付けのためスリーブの周囲に配置される円筒形の部品)と接触しないため、非常に弾性に富むと記載されている。
 同文献の第2図には、ボール路の負荷を受ける部分の両側にあるボール路の湾曲した部分が、スリーブに対して別々の部材(スリーブの両側に配置された一対のリング)で囲われ、かつ前記スリーブの両端に設けられた実施態様が示されている。
 上記のボールブッシュのケージの一方の端部にはフランジが、そして他方の端部には溝が形成されている。このケージの溝に固定リングを嵌め合わせると、スリーブとその両側の一対のリング(筒状外筒端部)とが、フランジと固定リングとによって挟まれる。これにより、スリーブの長さ方向へのケージの移動が抑制され、スリーブからケージが抜け出ないようにされている。
 このボールブッシュ(直動軸受)は、軸体を支持するボールが、ケージのボール路の内部を循環移動するため軸体の直動距離の制限がなく、そして外筒が、スリーブとその両側に配置された一対のリングとに三分割された直動軸受である。
 特許文献2にも、軸体の直動距離の制限がなく、外筒がスプライン用外筒(外筒本体)とその両端に配置された一対のエンドキャップ(筒状外筒端部)とに三分割されたボールスプライン(直動軸受)が開示されている。この文献の第11図には、ボールスプラインの保持器の両端の各々にエンドキャップ(筒状外筒端部)を溶着した構造が開示されている。
特開昭52-85661号公報(第1図及び第2図) 特開平1-229160号公報(第11図)
 特許文献1のボールブッシュでは、ケージ(球体保持器)の周囲にスリーブ(外筒本体)と一対のリング(筒状外筒端部)とが配置される。スリーブは、密閉ボール路を構成するケージの直線溝の周囲に配置されるため、比較的に簡単な形状(断面形状が長さ方向に殆ど変動しない形状)を有している。このため、スリーブの加工が容易であると説明されている。
 また、この文献のボールブッシュでは、ケージの周囲に各リングが緊密に嵌め合わされている。すなわち、ケージの外周縁の形状と各リングの内周縁の形状とが同一の形状にある。このため、ケージに対して各リングが周方向に移動することがないため、ボール路の湾曲した部分を構成するケージとリングとが互いに精密に位置決めされる。
 しかしながら、ボールブッシュを工業的に製造するに際して、製造する多数のボールブッシュのそれぞれについて、ケージの外周縁の形状と各リングの内周縁の形状とを厳密に一致させることは容易ではない。また、ケージの外周縁の形状と各リングの内周縁の形状とを厳密に一致させる構成とすると、ケージの周囲に各リングを嵌め合わせる作業は簡単ではなく、従って、ボールブッシュを組み立てる作業が繁雑になる。
 上記の理由から、ボールブッシュの容易な組み立てと、工業的に有利な製造を可能にするため、通常はケージの外周縁の形状を、各々のリングの内側にて周方向に移動(微回転)可能な形状に設定するようにされている。しかしながら、ケージに対して各リングが周方向に移動(微回転)可能であるため、ケージと各リングとを精密に位置決めした状態で互いに固定(接合)することは容易ということができない。ケージと各リングとを精密に位置決めしておかないと、ボール路の湾曲した部分において、ボールがケージと各リングとの間に挟まれて円滑に移動することができなくなることがある。このため、ボール路における球体の円滑な循環移動が妨げられ、これにより支持対象の軸体の円滑な直動が妨げられやすい。
 そして、特許文献2に記載されたエンドキャップと球体保持器とを溶着した構造もまた、球体保持器の外周縁の形状と各々のエンドキャップ(筒状外筒端部)の内周縁の形状とを厳密に一致させることは容易といえない。また、球体保持器の外周縁の形状とエンドキャップの内周縁の形状とを厳密に一致させると、保持器の周囲にエンドキャップを嵌め合わせることが難しくなる。従って、球体保持器と各エンドキャップとを精密に位置決めした状態で互いに接合することは容易ではない。
 本発明の課題は、軸体の直動距離の制限がない、外筒が外筒本体とその両端に配置された一対の筒状外筒端部とに三分割された直動軸受であって、その内部に収容される筒状球体保持器の両端部のそれぞれに各筒状外筒端部が精密に位置決めされた状態で接合することが可能で、このため支持対象の軸体の円滑な直動が可能となり、そして組み立ても容易となる直動軸受を提供することにある。
 本発明者は、上記の課題を解決するために、外筒を外筒本体とその両端に配置した筒状外筒端部とから構成した(外筒が三分割された)直動軸受の構成と組み立て方法とを研究した。その結果、直動軸受の外筒を構成する各筒状外筒端部と球体保持器の各端部とを、両者の対向面のそれぞれに形成した凸部と凹部とを係合させて互いに接合する構造を採用すると、直動軸受の組み立ての際に、各筒状外筒端部を球体保持器の各端部に嵌め合わせて押し付ける(その後に必要であれば各筒状外筒端部を周方向に僅かに微回転させる)ことにより、球体保持器がガイドとなって上記凸部と凹部との簡単で且つ精密な嵌め合わせが可能になることを見出した。
 従って、本発明は、軸方向に沿って長尺状に形成された凸状部を内周面に複数個備える外筒、外筒の内側に嵌め合わされている、複数の球体循環路を備えた合成樹脂製の筒状球体保持器、但し、各球体循環路には、その内周側面と外周側面の双方に開放スリットが備えられている、そして該球体循環路の各々に収容されている複数の球体を含む直動軸受であって、該球体循環路の各々は、収容されている複数の球体が球体循環路内を移動し、そしてその内の一部の球体が各開放スリットを介して、筒状球体保持器の内側に挿入される軸体の外周面と外筒内周面の凸状部とに接触した状態にて回転することにより、該軸体の距離制限のない直動を可能にする、軸体直動支持路、該軸体直動支持路内を回転移動した球体を軸体直動支持路に戻すための球体帰還路、そして軸体直動支持路と球体帰還路のそれぞれの端部を互いに連結する湾曲路から構成されていて、上記外筒は、剛性材料からなる外筒本体、そして該外筒本体の両端部の各々に備えられ、内周面に、上記筒状球体保持器の球体循環路の一部の壁面となる凹部が形成された合成樹脂製の合計二個の筒状外筒端部から構成されている、外筒が三分割された直動軸受であり、
 該筒状球体保持器の両端部のそれぞれの近傍そして筒状外筒端部のそれぞれの端部の対向面の内のいずれか一方に周方向に沿う凸部が設けられ、そして他方には周方向に沿う凹部が設けられていて、これらの凸部と凹部との係合により、筒状球体保持器と各筒状外筒端部との接合がなされている直動軸受にある。
 本発明の直動軸受においては、上記の筒状球体保持器の両端部近傍の外周面に上記凹部が設けられ、そして各筒状外筒端部の内周面に上記凸部が設けられていることが好ましい。
 なお、該筒状球体保持器の両端部のそれぞれの近傍そして筒状外筒端部のそれぞれの対向面の内のいずれか一方に設けられた周方向に沿う凸部は周方向に不連続もしくは連続のいずれであってもよく、そして他方に設けられた周方向に沿う凹部もまた周方向に不連続もしくは連続のいずれであってもよい。ただし、特に凸部と凹部の少なくとも一方が周方向に連続である場合には、筒状球体保持器の外周面が、開放スリーブが設けられている部位を除き全面的に外筒本体の内周面と接触し、これにより筒状球体保持器の周方向の回転が抑制されるように構成されていることが好ましい。
 本発明はまた、上記の本発明の直動軸受と、この直動軸受の筒状球体保持器の内側に挿入された軸体とを含む直動装置にもある。
 本発明の直動軸受は、軸体の直動距離の制限がなく、外筒が外筒本体とその両端に配置された一対の筒状外筒端部とに三分割されていても、その組み立ての際に、筒状球体保持器の両端部のそれぞれに各筒状外筒端部を、両者の一方に設けた凸部と他方に設けた凹部との係合を介して、確実に、かつ精密に位置決めした状態で接合することができる。このため、本発明の直動軸受は、保持器の各球体循環路の内部で球体が円滑かつ安定的に循環移動することから、支持対象の軸体が円滑に直動することができ、またその組み立ても容易である。
本発明の直動軸受の構成例を示す斜視図である。 図1の直動軸受10の分解斜視図である。 図2に記入した切断線III-III線に沿って切断した直動軸受10の断面図である。 図3に記入した切断線IV-IV線に沿って切断した直動軸受10の断面図である。但し、直動軸受10は、筒状球体保持器13の内側に軸体30を挿入した状態にて記入してある。 図3に記入した切断線V-V線に沿って切断した筒状外筒端部11bの断面図である。 図3に記入した切断線V-V線に沿って切断した筒状球体保持器13の断面図である。 本発明の直動軸受の他の構成例を示す分解斜視図である。 図7に示した直動軸受の軸方向に沿った部分断面図である。 図7に示した直動軸受の軸方向に垂直な面の断面図である。但し、直動軸受は、筒状球体保持器の内側に軸体を挿入した状態にて記入してある。
 先ず、本発明の直動軸受の代表的な実施態様を、添付の図面を参照しながら説明する。
 図1~図6に示す本発明の第一の態様の直動軸受10は、外筒11、外筒11の内側に嵌め合わされている、複数の球体循環路12を備えた合成樹脂製の筒状球体保持器13、そして球体循環路12の各々に収容された複数の球体14から構成されている。
 球体循環路12は、内周側と外周側との双方に開放スリット15a、15bを備えた軸体直動支持路12a、軸体直動支持路12aの内部を移動した球体14を軸体直動支持路12aに戻すための球体帰還路12b、そして軸体直動支持路12aと球体帰還路12bのそれぞれの端部を互いに連結する湾曲路12cから構成されている。
 軸体直動支持路12aの開放スリット15aは、筒状球体保持器13の内周側に備えられ、そして開放スリット15bは、筒状球体保持器13の外周側に備えられている。
 軸体直動支持路12aは、球体循環路12に収容された複数の球体14が循環路12の内部を移動(循環移動)し、そして複数の球体14の内の一部の球体が、筒状球体保持器13の内側に挿入される軸体30を軸体30の外周面と外筒11の内周面とに接触した状態にて回転することにより、軸体30の距離制限のない直動を可能にする。
 外筒11は、外筒本体11a、および外筒本体11aの両端部の各々に備えられた筒状外筒端部11bから構成されている。
 筒状外筒端部11bの内周面には、筒状球体保持器13の球体循環路12の一部(直動軸受10の場合には、球体循環路12の湾曲路12cに対応する部分)の壁面となる凹部16(図3参照)が形成されている。
 外筒本体11aは、剛性材料から形成され、そして筒状外筒端部11bは、合成樹脂から形成される。
 直動軸受10は、支持対象の軸体30の直動距離に制限を与えない直動軸家であって、外筒11が外筒本体11aとその両端部のそれぞれに配置された筒状外筒端部11bとに三分割されている直動軸受である。
 第一の態様の直動軸受10は、筒状球体保持器13の両端部近傍と各筒状外筒端部11bの対向面の内の一方に不連続な凸部21が設けられ、そして他方には周方向に不連続な凹部22が設けられていて、これらの凸部21と凹部22との係合により、筒状球体保持器13に対する筒状外筒端部11bの所定位置での接合がなされている。
 このような接合構造を採用すると、直動軸受10を組み立てる際に、各筒状外筒端部11bを筒状球体保持器13の各端部に嵌め合わせて押し付ける(その後に必要であれば各筒状外筒端部11bを周方向に僅かに微回転させる)という簡単な操作により、球体保持器13がガイドとなって、凸部21と凹部22とを簡単に且つ精密に嵌め合わせることが可能になる。従って、筒状球体保持器13に対して筒状外筒端部11bを所定位置に簡単に且つ精密に位置決めした状態で接合することができる。このため、本発明の直動軸受10では、筒状球体保持器13の各球体循環路12の内部で球体14が円滑に循環移動することから、支持対象の軸体30の円滑な直動が可能となる。
 上記の直動軸受10と、直動軸受10の筒状球体保持器13の内側に挿入された軸体30とから、本発明の第一の態様の直動装置40が構成される。
 以下では、本発明の第1の態様の直動軸受の構成と好ましい実施態様とについて、上記の直動軸受10を代表例として、詳細に説明する。
 外筒本体11aは、剛性材料から形成される。剛性材料の例としては、金属材料、そしてセラミック材料が挙げられる。剛性材料としては、金属材料を用いることが好ましい。金属材料としては通常、鋼が用いられる。
 外筒本体11aには、軸体30の外周面と外筒11の内周面とに接触した状態で回転する球体14を介して、軸体30に荷重が付与される。外筒本体11aを剛性材料から形成することにより、直動軸受10に十分な耐荷重性を付与することが可能となる。
 外筒本体11aは通常、筒状球体保持器13の軸体直動支持路12aと球体帰還路12bとが形成された部分の周囲に嵌め合わされる。筒状球体保持器13の軸体直動支持路12aと球体帰還路12bとが形成された部分の形状は、湾曲路12cが形成された部分の形状よりも簡単である。従って、外筒本体11aは、外筒を一体に形成する場合と比較して、より簡単な形状を有することから、公知の機械加工などによって容易に作製することができる。特に、図2~図4に示すように軸体直動支持路12aと球体帰還路12bとがそれぞれ直線状の形状に設定されていると、外筒本体11aの断面形状が全長にわたって殆ど変動することがない。このため、外筒本体11aを、例えば、引き抜き加工によって極めて容易に作製することができる。
 外筒本体11aは、軸体直動支持路12aの内周側の開放スリット15aの長さ方向の少なくとも一部分の周囲に配置されていればよい。外筒本体11aの長さは、開放スリット15aの長さの50~100%の範囲内にあることが好ましく、80~100%の範囲内にあることが更に好ましく、90~100%の範囲内にあることが特に好ましい。
 筒状外筒端部11bは、高い剛性を示す合成樹脂から形成される。そのような高い剛性を示す合成樹脂の例としては、ポリアセタール樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリアミド樹脂、およびポリエーテルエーテルケトン(PEEK)樹脂が挙げられる。
 筒状外筒端部11bは、筒状球体保持器13の外筒本体11aの各端部から突き出た部分の周囲、通常は球体保持器13の湾曲路12cが形成された部分の周囲に嵌め合わされる。筒状外筒端部11bは合成樹脂製であり、例えば、樹脂成型あるいは機械加工によって容易に作製することができる。
 筒状外筒端部11bは、外筒本体11aの側とは逆側の端部周縁から内周側に延びるフランジ17を備えていることが好ましい。このフランジ17の付設により筒状外筒端部11bの機械的強度がさらに高くなる。
 また、図3に示すように、直動軸受10では、上記の凸部21と凹部22とが互いに嵌め合わされる前に、筒状球体保持器13の各端面と、この端面に対向する各筒状外筒端部11bのフランジ17の表面とが互いに接触することのないよう、筒状球体保持器13の各端面と上記フランジ17の表面との間に間隙dが設けられている。
 筒状球体保持器(一般にリテーナとも呼ぶ)13は、合成樹脂から形成される。合成樹脂の例としては、筒状外筒端部11bの材料として例示した合成樹脂材料と同様の合成樹脂材料を挙げることができる。
 筒状球体保持器13は、長さ方向(軸方向)に延びる複数の球体循環路12を備えている。複数の球体循環路12は、該球体保持器13の周方向に互いに間隔をあけて配置されている。支持対象の軸体30を安定に支持するため、複数の球体循環路12は、球体保持器13の中心軸に対して対称に配置されていることが好ましい。球体循環路12の数は、2~10条(特に3~6条)の範囲内にあることが好ましい。
 球体循環路12は、前記のように軸体直動支持路12a、球体帰還路12b、および湾曲路12cから構成されている。
 軸体直動支持路12aは通常、筒状球体保持器13の長さ方向に延びる直線状の形状を有する。これにより、軸体直動支持路12aの内部で球体14が円滑に移動するようになる。このため、軸体30が直動する際の直進性が向上する。
 同様の理由により、球体帰還路12bもまた通常、筒状球体保持器13の長さ方向に延びる直線状の形状を有する。球体帰還路12bとしては、球体保持器13の外周面に形成した溝を用いることが好ましく、球体保持器13の長さ方向に延びる直線状の溝を用いることが特に好ましい。なお、球体帰還路12bとしては、球体保持器13の内部に形成した孔、好ましくは球体保持器13の長さ方向に延びる直線状の開放溝を用いることもできる。
 湾曲路12cとしては、球体保持器13の外周面に形成した、軸体直動支持路12aと球体帰還路12bのそれぞれの端部を互いに連結する湾曲溝を用いることが好ましい。なお、湾曲路として、筒状球体保持器の内部に形成した湾曲した開放溝を用いることもできる。
 球体14は通常、剛性材料から形成する。剛性材料の例としては、金属材料、そしてセラミック材料が挙げられる。剛性材料としては、金属材料を用いることが好ましい。金属材料としては通常、鋼が用いられる。
 直動軸受10では、前記のように筒状球体保持器13の両端部近傍と各筒状外筒端部11bの対向面の内の一方に周方向に不連続な凸部が設けられ、そして他方には周方向に不連続な凹部が設けられている。
 筒状球体保持器13の両端部近傍と各筒状外筒端部11bの対向面は、球体保持器13の両端部近傍の外周面と各筒状外筒端部11bの内周面とであることが好ましい。すなわち、球体保持器13の両端部近傍の外周面と各外筒端部11bの内周面の内の一方に上記凸部を形成し、他方に凹部を形成することが好ましい。なお、上記対向面として、例えば、筒状球体保持器13の両端面と各端面に向かい合う各筒状外筒端部11bの内側面とを用いることもできる。
 図3に示すように、筒状球体保持器13の両端部近傍の外周面に凹部22が設けられ、そして各筒状外筒端部11bの内周面に凸部21が設けられていることが好ましい。球体保持器13の外周面に凹部22を設けると、凸部を設ける場合と比較して、直動軸受10の組み立ての際に球体保持器13の周囲に外筒本体11aを嵌め合わせることが簡単となる。
 上記の周方向に不連続な凸部とは、筒状球体保持器(あるいは筒状外筒端部)の周方向に沿って延びる円弧に交差する側面を有する凸部を意味する。従って、上記の凸部は、筒状球体保持器(あるいは筒状外筒端部)の周方向に沿って延びるC字形の形状を有していてもよいし、上記側面を有していれば、周方向に沿って延びる環状の形状を有していてもよい。
 同様に、上記の周方向に不連続な凹部とは、筒状球体保持器(あるいは筒状外筒端部)の周方向に沿って延びる円弧に交差する側面を有する凹部を意味する。従って、上記の凹部は、筒状球体保持器(あるいは筒状外筒端部)の周方向に沿って延びるC字形の形状を有していてもよいし、上記側面を有していれば、周方向に沿って延びる環状の形状を有していてもよい。
 図3に示すように、筒状外筒端部11bの内周面に凸部21を設ける場合、凸部21の外筒本体11aの側の側面が、外筒本体11aの側から次第に凸部21の高さが大きくなるように傾斜していることが好ましい。これにより、凸部21と凹部22とを容易に嵌め合わせることができる。同様に、筒状球体保持器の外周面に凸部を設ける場合、凸部の外筒本体の側とは逆側の側面が、外筒本体の側とは逆側から次第に凸部の高さが大きくなるように傾斜していることが好ましい。
 前記のように筒状球体保持器13の両端部近傍の外周面と各筒状外筒端部11bの内周面の内の一方に上記凸部を設け、他方に上記凹部を設ける場合、球体保持器13の外周面に設ける凸部あるいは凹部は、球体保持器13の外周面の互いに隣接する球体循環路12の間の領域、あるいはその長さ方向の両外側の領域に備えられていることが好ましい。これにより、球体保持器13の機械的な強度を殆ど低下させることなく、上記凸部と凹部とを球体保持器13に形成することができる。
 筒状球体保持器に設ける凸部や凹部は、保持器の周方向に沿って互いに間隔をあけて複数個備えられていることが好ましい。同様に、筒状外筒端部に設ける凸部や凹部は、筒状外筒端部の周方向に沿って互いに間隔をあけて複数個備えられていることが好ましい。凸部と凹部との数は、球体保持器の各端部(あるいは各筒状外筒端部)にて、それぞれ2~10個(特に3~6個)の範囲内にあることが好ましい。
 前記のように、本発明の直動軸受は、筒状球体保持器13に対して各々の筒状外筒端部11bを簡単に且つ精密に位置決めすることができるという優れた利点を有している。
 ただし、このような構成を採用すると、両端部のそれぞれに筒状外筒端部11bが接合された筒状球体保持器13が、外筒本体11aの内部にて周方向に僅かに移動(微回転)する場合がある。
 従って、外筒本体11aの内部での筒状球体保持器13の微回転を抑制するため、外筒本体11aの両端面に各筒状外筒端部11bが加圧状態にて接触配置されていることが好ましい。
 外筒本体11aの両端面に各筒状外筒端部11bを加圧状態にて接触配置するためには、筒状球体保持器13の周囲に外筒本体11aを嵌め合わせることなく、球体保持器13の両端部のそれぞれに筒状外筒端部11bを接合した状態において、両方の筒状外筒端部11bの間隔が、外筒本体11aの長さよりも短い間隔に設定されていることが好ましい。上記の間隔は、外筒本体11aの長さの97%以上、100%未満の範囲内にあることが好ましく、98.0~99.9%の範囲内の間隔に設定されていることが更に好ましく、99.0~99.9%の範囲内の間隔に設定されていることが特に好ましい。
 例えば、図3に示す直動軸受10の場合、筒状球体保持器13の周囲に外筒本体11aを嵌め合わせることなく、球体保持器13の両端部のそれぞれに筒状外筒端部11bを接合した状態において、両方の筒状外筒端部11bの間隔が、外筒本体11aの長さの99.6%の間隔に設定されている。
 直動軸受10は、例えば、次のような手順に従って組み立てることができる。先ず、筒状球体保持器13の一方の端部に筒状外筒端部11bを嵌め合わせて押し付け、その後に必要であれば各筒状外筒端部11bを周方向に僅かに微回転させる。これにより、球体保持器13の一方の端部の凹部22に、外筒端部11bの凸部21が嵌め合わされ、上記凸部21と凹部22とが互いに係合する。上記の凸部21と凹部22とが互いに係合することにより、球体保持器13の一方の端部の所定位置に外筒端部11bが精密に位置決めされた状態にて接合される。
 次に、一方の端部に外筒端部11bを接合した球体保持器13を、外筒端部11bが下側となるように縦向きに配置したのち、球体保持器13の周囲に外筒本体11aを嵌め合わせる。そして、外筒本体11aの上側の端部から露出した保持器13の各球体循環路12に球体を複数収容する。
 最後に、筒状球体保持器13の他方の端部に筒状外筒端部11bを嵌め合わせて押し付け、その後に必要であれば各外筒端部11bを周方向に僅かに微回転させる。これにより、球体保持器13の他方の端部の凹部22に、外筒端部11bの凸部21が嵌め合わされ、上記凸部21と凹部22とが互いに係合する。上記の凸部21と凹部22とが互いに係合することにより、球体保持器13の他方の端部の所定位置に外筒端部11bが精密に位置決めされた状態にて接合される。このようにして、本発明の直動軸受10を確実かつ簡単に組み立てることができる。
 次に本発明の第二の態様の直動軸受の構成について、図7~図9を参照して説明する。
 図7は、図2に示した第一の態様の直動軸受の斜視図に相当する第二の態様の斜視図である。第二の態様の直動軸受は、第一の態様の図2で示した周方向に不連続の凸部21と同じく周方向に不連続の凹部22のいずれもが、周方向に連続の凸部21aと周方向に連続の凹部22aに置き替えられた点、そしてリテーナの外周形状に若干の変更が行われた点において、第一の態様の直動軸受と相違する。
 次に、先ず、第二の態様の直動軸受における周方向に連続の凸部21aと周方向に連続の凹部22aについて図7と図8とを参照して説明する。第二の態様の直動軸受における凸部21aと凹部22aは、図7と図8とから明らかなように、いずれも周方向に沿って連続(すなわち、リング状)に形成されている。このような構成とすることにより、一つの直動軸受を構成するために必要な二個用意される筒状外筒端部を同形とすることが可能となる。従って、筒状外筒端部の形成に用いる金型を一個とすることができ、工業的に有利となる。
 一方、第二の態様の直動軸受のように、凸部と凹部とを、いずれも周方向に沿って連続に形成すると、筒状外筒端部と筒状球体保持器(リテーナ)との周方向の精密な位置あわせが若干難しくなるとの問題があり、また筒状球体保持器の周方向の回転ずれの充分な抑制が難しくなる場合もある。このため、第二の態様の直動軸受では、図9に示されているように、筒状球体保持器の外周面を、開放スリーブが設けられている部位を除き全面的に外筒本体の内周面と接触するように構成することが望ましく、これにより筒状球体保持器の周方向の回転が高度に抑制される。なお、上記の「全面的に接触する」とは、筒状球体保持器の外周面と外筒本体の内周面との間に、開放スリーブが設けられている部位以外に僅かな隙間が形成される構成を排除する意味の規定ではなく、筒状球体保持器が外筒本体に嵌め合いにより充分に固定され、その周方向の回転が実用上において充分に抑制されているとの条件にて、僅かな隙間が形成されていてもよいことは勿論である。
 10 直動軸受
 11 外筒
 11a 外筒本体
 11b 筒状外筒端部
 12 球体循環路
 12a 軸体直動支持路
 12b 球体帰還路
 12c 湾曲路
 13 筒状球体保持器(リテーナ)
 14 球体
 15a、15b 開放スリット
 16 凹部
 17 フランジ
 21、21a 凸部
 22、22a 凹部
 30 軸体
 40 直動装置

Claims (6)

  1.  軸方向に沿って長尺状に形成された凸状部を内周面に複数個備える外筒、外筒の内側に嵌め合わされている、複数の球体循環路を備えた合成樹脂製の筒状球体保持器、但し、各球体循環路には、その内周側面と外周側面の双方に開放スリットが備えられている、そして該球体循環路の各々に収容されている複数の球体を含む直動軸受であって、該球体循環路の各々は、収容されている複数の球体が球体循環路内を移動し、そしてその内の一部の球体が各開放スリットを介して、筒状球体保持器の内側に挿入される軸体の外周面と外筒内周面の凸状部とに接触した状態にて回転することにより、該軸体の距離制限のない直動を可能にする、軸体直動支持路、該軸体直動支持路内を回転移動した球体を軸体直動支持路に戻すための球体帰還路、そして軸体直動支持路と球体帰還路のそれぞれの端部を互いに連結する湾曲路から構成されていて、上記外筒は、剛性材料からなる外筒本体、そして該外筒本体の両端部の各々に備えられ、内周面に、上記筒状球体保持器の球体循環路の一部の壁面となる凹部が形成された合成樹脂製の筒状外筒端部から構成されている、外筒が三分割された直動軸受であり、
     筒状球体保持器の両端部のそれぞれの近傍そして筒状外筒のそれぞれの端部の対向面の内のいずれか一方に周方向に沿う凸部が設けられ、そして他方に周方向に沿う凹部が設けられていて、これらの凸部と凹部との係合により、筒状球体保持器と筒状外筒端部との接合がなされている直動軸受。
  2.  該筒状球体保持器の両端部のそれぞれの近傍の外周面に上記凹部が設けられ、そして各筒状外筒のそれぞれの端部の内周面に上記凸部が設けられている請求項1に記載の直動軸受。
  3.  該筒状球体保持器の両端部のそれぞれの近傍そして筒状外筒のそれぞれの端部の対向面の内のいずれか一方に設けられた周方向に沿う凸部が周方向に不連続であって、そして他方に設けられた周方向に沿う凹部も周方向に不連続である請求項1に記載の直動軸受。
  4.  該筒状球体保持器の両端部のそれぞれの近傍そして筒状外筒のそれぞれの端部の対向面の内のいずれか一方に設けられた周方向に沿う凸部が周方向に連続であって、そして他方に設けられた周方向に沿う凹部も周方向に連続である請求項1に記載の直動軸受。
  5.  該筒状球体保持器の外周面が、開放スリーブが設けられている部位を除き全面的に外筒本体の内周面と接触し、この接触により筒状球体保持器の周方向の回転が抑制されている請求項4に記載の直動軸受。
  6.  請求項1に記載の直動軸受、そして該直動軸受の筒状球体保持器の内側に挿入された軸体を含む直動装置。
PCT/JP2013/065840 2012-06-07 2013-06-07 外筒が三分割された直動軸受 WO2013183763A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014520069A JP6254941B2 (ja) 2012-06-07 2013-06-07 外筒が三分割された直動軸受
KR1020147036118A KR102009066B1 (ko) 2012-06-07 2013-06-07 외통이 3 분할된 직동 베어링
CN201380029631.XA CN104334898B (zh) 2012-06-07 2013-06-07 外筒被分割成三部分的直线运动轴承
HK15104524.0A HK1204036A1 (en) 2012-06-07 2015-05-13 Linear motion bearing with outer cylinder divided in three parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-129608 2012-06-07
JP2012129608 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013183763A1 true WO2013183763A1 (ja) 2013-12-12

Family

ID=49712149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065840 WO2013183763A1 (ja) 2012-06-07 2013-06-07 外筒が三分割された直動軸受

Country Status (6)

Country Link
JP (1) JP6254941B2 (ja)
KR (1) KR102009066B1 (ja)
CN (1) CN104334898B (ja)
HK (1) HK1204036A1 (ja)
TW (1) TWI600841B (ja)
WO (1) WO2013183763A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100944A1 (zh) * 2013-12-31 2015-07-09 广州市昊志机电股份有限公司 一种滚珠花键副
US20160032966A1 (en) * 2014-08-04 2016-02-04 Nippon Thompson Co., Ltd. Linear ball bushing
JP2016082907A (ja) * 2014-10-24 2016-05-19 メガバス株式会社 釣り用ルアー
JP2016145625A (ja) * 2015-02-09 2016-08-12 ヒーハイスト精工株式会社 管内走行体及びそれを利用した電磁発電機、重心移動式ルアー、そしてスライドユニット
JP2016161090A (ja) * 2015-03-04 2016-09-05 日本トムソン株式会社 リニアブッシング

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165375B1 (ja) * 2017-02-24 2017-07-19 三菱重工環境・化学エンジニアリング株式会社 フレキシブル管の支持装置
CN108561434B (zh) * 2018-06-01 2020-04-14 宁波美亚特精密传动部件有限公司 直线运动轴承

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285661A (en) * 1975-12-31 1977-07-16 Skf Nova Ab Ball bush
JPH09291936A (ja) * 1996-04-25 1997-11-11 Takeuchi Seiko Kk リニアボールベアリング取付け用フランジ及びフランジ付リニアボールベアリングの作成方法
JPH09303394A (ja) * 1996-03-12 1997-11-25 Nippon Seiko Kk ボールねじ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557351C3 (de) * 1975-12-19 1982-09-23 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Kugelbüchse
DE3216440A1 (de) * 1982-05-03 1983-11-03 Skf Kugellagerfabriken Gmbh Kugellager fuer laengs- und drehbewegungen
JPH079260B2 (ja) 1988-03-05 1995-02-01 博 寺町 複合運動案内装置
US4952075A (en) * 1989-05-26 1990-08-28 Thomson Industries, Inc. Linear motion ball bearing assembly
JP2565587B2 (ja) * 1990-08-06 1996-12-18 竹内精工 株式会社 リニアモーシヨンボールベアリング及びその製造方法
JPH09250541A (ja) * 1996-01-11 1997-09-22 Thk Kk 送りねじ付き直線運動案内装置およびそのインナブロックの成形方法
JP3025491B1 (ja) * 1999-01-11 2000-03-27 日本ベアリング株式会社 軸受部材
DE19937278A1 (de) * 1999-08-06 2001-02-08 Schaeffler Waelzlager Ohg Linearwälzlager

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285661A (en) * 1975-12-31 1977-07-16 Skf Nova Ab Ball bush
JPH09303394A (ja) * 1996-03-12 1997-11-25 Nippon Seiko Kk ボールねじ
JPH09291936A (ja) * 1996-04-25 1997-11-11 Takeuchi Seiko Kk リニアボールベアリング取付け用フランジ及びフランジ付リニアボールベアリングの作成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100944A1 (zh) * 2013-12-31 2015-07-09 广州市昊志机电股份有限公司 一种滚珠花键副
US20160032966A1 (en) * 2014-08-04 2016-02-04 Nippon Thompson Co., Ltd. Linear ball bushing
JP2016035308A (ja) * 2014-08-04 2016-03-17 日本トムソン株式会社 リニアブッシング
JP2016082907A (ja) * 2014-10-24 2016-05-19 メガバス株式会社 釣り用ルアー
JP2016145625A (ja) * 2015-02-09 2016-08-12 ヒーハイスト精工株式会社 管内走行体及びそれを利用した電磁発電機、重心移動式ルアー、そしてスライドユニット
JP2016161090A (ja) * 2015-03-04 2016-09-05 日本トムソン株式会社 リニアブッシング

Also Published As

Publication number Publication date
KR20150013889A (ko) 2015-02-05
KR102009066B1 (ko) 2019-08-08
TW201405022A (zh) 2014-02-01
JPWO2013183763A1 (ja) 2016-02-01
CN104334898A (zh) 2015-02-04
JP6254941B2 (ja) 2017-12-27
TWI600841B (zh) 2017-10-01
CN104334898B (zh) 2017-06-23
HK1204036A1 (en) 2015-11-06

Similar Documents

Publication Publication Date Title
JP6254941B2 (ja) 外筒が三分割された直動軸受
WO2014136816A1 (ja) ころ軸受の保持器
US9683599B2 (en) Tapered roller bearing
JPWO2010005007A1 (ja) 円すいころ軸受用樹脂製保持器及び円すいころ軸受
US20170204901A1 (en) Ball bearing
WO2014098212A1 (ja) 転がり軸受
JP2007032679A (ja) 円すいころ軸受
JP4285286B2 (ja) 直動案内軸受装置
US9964149B2 (en) Cage for a ball bearing provided with a wire and added interposed parts
US10527096B2 (en) Rolling bearing
JP4454336B2 (ja) 直動軸受機構
JP2013155818A (ja) ハウジング付き直動軸受
KR20200112885A (ko) 볼 베어링 케이지 및 볼 베어링
JP2018135957A (ja) 円すいころ軸受
JP2009058072A (ja) 運動装置及びその製造方法
JP6708409B2 (ja) フランジ付き直動軸受
JP2008057639A (ja) グリース通過式保持器
JP6227327B2 (ja) リニアブッシング
JP2014156876A (ja) 転がり軸受用保持器、転がり軸受および転がり軸受の製造方法
JP6510557B2 (ja) ハウジング付き直動軸受複合体
JP2015031370A (ja) 転がり軸受用保持器
JP2016148424A (ja) 円すいころ軸受
JP2016142382A (ja) 分割保持器およびころ軸受
JP2016161090A5 (ja)
JP2016089958A (ja) 玉軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147036118

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13801302

Country of ref document: EP

Kind code of ref document: A1