WO2013180289A1 - 高耐電圧アルミナ質焼結体および高耐電圧用部材 - Google Patents

高耐電圧アルミナ質焼結体および高耐電圧用部材 Download PDF

Info

Publication number
WO2013180289A1
WO2013180289A1 PCT/JP2013/065247 JP2013065247W WO2013180289A1 WO 2013180289 A1 WO2013180289 A1 WO 2013180289A1 JP 2013065247 W JP2013065247 W JP 2013065247W WO 2013180289 A1 WO2013180289 A1 WO 2013180289A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
sintered body
high withstand
alumina sintered
withstand voltage
Prior art date
Application number
PCT/JP2013/065247
Other languages
English (en)
French (fr)
Inventor
諭史 豊田
竹之下 英博
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014518764A priority Critical patent/JP5918363B2/ja
Priority to US14/403,752 priority patent/US9548142B2/en
Priority to EP13796404.5A priority patent/EP2857373B1/en
Publication of WO2013180289A1 publication Critical patent/WO2013180289A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Definitions

  • the present invention relates to a high withstand voltage alumina sintered body used in a portion where high insulation with respect to an applied voltage is required, and a high withstand voltage member comprising an electrode in the high withstand voltage alumina sintered body About.
  • Various ceramics are applied to parts that require high insulation.
  • Patent Document 1 proposes using alumina ceramics as an insulating member in a high voltage bushing (soot tube) of an X-ray tube.
  • the voltage applied between the cathode and the anode instantaneously drops in a medical device such as a CT scan or an analysis device such as a transmission electron microscope (hereinafter referred to as an instantaneous voltage drop).
  • a medical device such as a CT scan or an analysis device such as a transmission electron microscope (hereinafter referred to as an instantaneous voltage drop).
  • an instantaneous voltage drop There is a problem that important medical data and analysis data are lost.
  • miniaturization is desired in medical equipment and analyzers.
  • it is essential to shorten the creepage distance, which is the distance between the cathode and anode, Therefore, it is necessary to reduce the possibility of creeping breakdown by reducing oxygen defects on the ceramic surface.
  • the present invention has been devised to satisfy the above requirements, and is provided with a high withstand voltage alumina sintered body that is less likely to cause creeping breakdown due to an applied voltage, and an electrode in the high withstand voltage alumina sintered body.
  • An object of the present invention is to provide a high withstand voltage member.
  • the high withstand voltage alumina sintered body of the present invention comprises an alumina sintered body having alumina as a main crystal, and has a peak intensity of around 5000 nm or less in a measurement using a cathodoluminescence method. To do.
  • the high withstand voltage member of the present invention is characterized in that an electrode is provided on the high withstand voltage alumina sintered body having the above-described configuration.
  • the allowable voltage leading to creepage breakdown can be increased, so that the occurrence of an instantaneous voltage drop is reduced and data loss due to the instantaneous voltage drop is reduced. Can do.
  • the high withstand voltage alumina sintered body of the present invention is provided with an electrode, and the allowable voltage leading to the creeping breakdown is large. Since it can be shortened, it is possible to reduce the size of equipment and devices to be mounted.
  • the high withstand voltage alumina sintered body of the present embodiment is composed of an alumina sintered body having alumina as a main crystal, and the peak intensity in the vicinity of a wavelength of 330 nm in the measurement using the cathodoluminescence method is 5000 or less. It is said.
  • the high withstand voltage alumina sintered body according to the present embodiment is used in a portion where high insulation is required inside a medical device such as a CT scan or an analyzer such as a transmission electron microscope.
  • the alumina sintered body in this embodiment means that alumina accounts for 50% by mass or more out of 100% by mass of all components constituting the sintered body.
  • the main crystal appears on the chart as the highest main peak in measurement by an X-ray diffractometer using Cu K ⁇ rays. What is necessary is just to collate with the JCPDS card data about identification of the obtained peak. From another point of view, the main crystal is a crystal that occupies 50% by area or more in the confirmation of the cross section of the sintered body with a scanning microscope (SEM or the like).
  • the high withstand voltage alumina sintered body of the present embodiment can increase the allowable voltage leading to creeping breakdown by having a peak intensity around a wavelength of 330 nm in the measurement using the cathodoluminescence method of 5000 or less. Therefore, the occurrence of an instantaneous voltage drop is reduced, and data loss due to the instantaneous voltage drop can be reduced.
  • the high voltage endurance alumina sintered body of this embodiment is a creeping dielectric breakdown in the high voltage endurance member comprising the high voltage endurance alumina sintered body and electrodes (cathode electrode and anode electrode). Since the allowable voltage is large, the creepage distance can be shortened as compared with the case where a sintered body having a small allowable voltage is used.
  • the cathodoluminescence method is a method for detecting light emitted when an electron beam is irradiated on the surface of a sample (in this embodiment, ceramics).
  • a sample in this embodiment, ceramics.
  • the results obtained by this measurement can be confirmed with a chart in which the horizontal axis indicates the wavelength of light and the vertical axis indicates the intensity of light.
  • the peak intensity around the wavelength of 330 nm in the measurement using the cathodoluminescence method was selected because this peak intensity is on the surface of the high withstand voltage alumina sintered body. This is because it represents the amount of oxygen defects (F + centers) that can capture one electron. Therefore, if the peak intensity in the vicinity of the wavelength of 330 nm is small, it indicates that there are few oxygen defects (F + center) on the surface, and oxygen defects (F + center) that cause the electrons emitted when voltage is applied to repeat the discharge. ) Is small, it is possible to suppress an increase in the flow of electrons, and thus the occurrence of an instantaneous voltage drop can be reduced.
  • a cathodoluminescence spectroscope SEM: Hitachi S-4300SE, spectroscope: Ehime Bussan HR-320
  • the conditions are room temperature (20 ) And measured at an acceleration voltage of 10 kv.
  • the allowable voltage level leading to creepage breakdown can be confirmed by the value of creepage breakdown voltage.
  • the creeping breakdown voltage is obtained by dividing the voltage (kV) when an instantaneous voltage drop occurs due to creeping breakdown by the creeping distance (mm).
  • the creeping breakdown voltage in the high withstand voltage alumina sintered body of the present embodiment is 5 kV / mm or more.
  • the peak intensity near the wavelength of 330 nm in the measurement using the cathodoluminescence method is less than 5000, the creeping breakdown voltage is less than 5 kV / mm.
  • a voltmeter may be used.
  • this creepage breakdown voltage is large means that the allowable voltage leading to creepage breakdown is large, leading to the shortening of the creepage distance, thereby reducing the size of equipment and devices to be mounted. Therefore, it is possible to improve accuracy and reduce weight.
  • the high withstand voltage alumina sintered body of the present embodiment preferably includes spinel that is an oxide crystal composed of an alkaline earth metal and aluminum, and the alumina and spinel preferably include a transition metal. That is, in the sintered body, spinel is present in addition to alumina which is the main crystal, and the transition metal is contained in alumina and spinel.
  • the alkaline earth metal is any one of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra), and the transition metal is scandium ( Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), yttrium (Y), etc. It consists of
  • the phrase “contains a transition metal” means that when mapping is performed using an energy dispersive X-ray analyzer (EPMA), when the transition metal is titanium, with respect to alumina, titanium and Al are present at locations where O and O exist.
  • EPMA energy dispersive X-ray analyzer
  • MgAl 2 O 4 refers to the case where titanium is confirmed at the locations where Al, Mg and O are present.
  • TEM transmission electron microscope
  • EDS attached energy dispersive X-ray spectrometer
  • the transition metal when the transition metal is contained in the alumina and the spinel, the reason is not clear, but the transition metal fills the oxygen defect existing in the alumina and the spinel. It is considered that oxygen defects are reduced. Therefore, the allowable voltage that reaches the dielectric breakdown voltage can be increased.
  • the transition metal is titanium and the alkaline earth metal is magnesium.
  • the transition metal is titanium and the alkaline earth metal is magnesium, the allowable voltage leading to the breakdown voltage can be increased. Although the reason for this is not clear, it is based on the result that the creepage breakdown voltage is highest in the confirmation of the combination of the above-mentioned alkaline earth metal and transition metal.
  • the high withstand voltage alumina sintered body of the present embodiment satisfying the above composition formula and having a peak intensity near a wavelength of 330 nm in the measurement using the cathodoluminescence method of 3000 or less has a creeping breakdown voltage of 10 kV. / Mm or more.
  • the Al 2 O 3, TiO 2, mol% ratio of each component of MgO contained in the high withstand voltage alumina sintered body was ground part of the high withstand voltage alumina sintered body, resulting After the powder is dissolved in a solution such as hydrochloric acid, it is measured using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPS-8100), and the obtained metal amounts of Al, Ti, and Mg are respectively measured. Convert to Al 2 O 3 , TiO 2 , MgO.
  • ICP Inductively Coupled Plasma
  • the molar ratio is calculated from the respective molecular weights, each molar ratio is used as the numerator, and the total molar ratio is used as the denominator. By multiplying by 100, the mol% ratio can be obtained.
  • the peak intensity around the wavelength of 420 nm in the measurement using the cathodoluminescence method was selected because this peak intensity is present on the surface of the high withstand voltage alumina sintered body and can capture two electrons. This is because it represents the amount of defects (F center). Therefore, when this peak intensity is small, it indicates that there are few oxygen defects (F center) on the surface.
  • the specific measuring apparatus and conditions in the cathodoluminescence method are the same as those described above.
  • the two electrons trapped in this oxygen defect are likely to be released when a voltage is applied, and are the beginning of creeping breakdown. Therefore, when the peak intensity near the wavelength of 420 nm in the measurement using the cathodoluminescence method is 160 or less, the number of electrons that start the creeping breakdown is reduced, so that it is difficult to cause the creeping breakdown. .
  • the difficulty of causing the creeping breakdown can be confirmed by the value of the initial creeping voltage.
  • This initial creeping voltage is, for example, the voltage at which electrons emitted by an applied voltage between the cathode and anode first reach the anode along the surface divided by the creeping distance.
  • the method is the same as the method for measuring the creeping breakdown voltage described above.
  • the voltage at the initial creeping voltage is smaller than the voltage leading to the voltage drop, which is creeping breakdown, satisfying the above composition formula, and the peak intensity near the wavelength of 420 nm in the measurement using the cathodoluminescence method. Is 160 or less, the high withstand voltage alumina sintered body of the present embodiment has an initial creeping voltage of 4 kV / mm or more.
  • the peak intensity near the wavelength of 330 nm in the measurement using the cathodoluminescence method is 3000 or less, and the peak intensity near the wavelength of 420 nm is 160 or less. Is preferred.
  • the surface of the high withstand voltage alumina sintered body has few oxygen defects (F + center) capable of capturing one electron and oxygen defects (F center) capable of capturing two electrons.
  • F + center oxygen defects
  • F center oxygen defects
  • the peak intensity near the wavelength of 330 nm is 850 or less, and the peak intensity near the wavelength of 420 nm is 100 or less.
  • the composition formula is expressed as ⁇ Al 2 O 3 ⁇ ⁇ TiO 2 ⁇ ⁇ MgO
  • the peak intensity near the wavelength of 330 nm in the measurement using the cathodoluminescence method is further reduced, and the creeping breakdown voltage value is further increased.
  • the peak intensity near the wavelength of 420 nm in the measurement using the cathodoluminescence method is further reduced, and the initial creeping arrival voltage shows a larger value.
  • the existence of oxygen defects (F + center, F center) is small, it is possible to suppress an increase in the flow of electrons and to release electrons that are the origin of creeping breakdown. Since it is suppressed, creepage breakdown can be further prevented.
  • the high withstand voltage alumina sintered body of the present embodiment preferably has a ratio ⁇ / ⁇ ratio ⁇ / ⁇ in the composition formula of 0.5 or more and 2.0 or less.
  • the value ⁇ / ⁇ of ⁇ and ⁇ is 0.5 or more and 2.0 or less, the value of the creeping breakdown voltage is high, and titanium and magnesium easily enter oxygen defects in the alumina crystal. Since oxygen defects (F + center, F center) can be reduced, the value of the creeping breakdown voltage and the initial creeping voltage reaches a larger value, and it is considered that the creeping breakdown can hardly occur.
  • the high withstand voltage alumina sintered body of the present embodiment includes at least one of Si and Ca oxides, and SiO 2 with respect to a total of 100 mass% of Al 2 O 3 , TiO 2 , and MgO.
  • CaO is preferably 5% by mass or less (excluding 0% by mass).
  • at least one of Si and Ca oxide acts as a sintering aid, and the firing temperature can be lowered and the density can be improved.
  • the density may be measured according to JIS R1634-1998.
  • an aluminum oxide powder having an average particle size of about 1 ⁇ m and a cumulative 80% particle size distribution with a particle size distribution of 1.75 ⁇ m or less is prepared as a primary material.
  • the cumulative particle size distribution of 80% in the particle size distribution of the aluminum oxide powder may be measured by a laser diffraction scattering method using, for example, a microtrack device (manufactured by Nikkiso MT3300EXII).
  • a predetermined amount of aluminum oxide powder is weighed, and 100% by mass of the aluminum oxide powder as the primary raw material, for example, 5% by mass or less of sintering aid and 1 to 1.5% by mass of PVA (polyvinyl alcohol), etc.
  • a binder, 100% by mass of solvent, and 0.1 to 0.5% by mass of a dispersant are placed in a stirrer and mixed and stirred to form a slurry, which is then granulated with a spray granulator (spray dryer). To obtain granules.
  • the obtained granule is molded into a predetermined shape by various molding methods such as a die press molding method and an isostatic press molding (rubber press) method, and after cutting as necessary, Bake in a firing furnace at a maximum temperature of 1400-1700 ° C in an air atmosphere. Then, when the temperature is lowered after being held at the maximum temperature for a predetermined time, it is exposed to a temperature range from the maximum temperature to 1000 ° C for a long time. By using an alumina primary raw material with few coarse particles and exposing it to a temperature range from the maximum temperature to 1000 ° C. for a long time, oxygen can be sufficiently supplied into the Al 2 O 3 crystal particles during firing. Oxygen defects can be reduced. And after baking, the high voltage endurance alumina sintered compact of this embodiment can be obtained by carrying out final finishing by grinding.
  • the alkaline earth metal is magnesium and the transition metal is titanium
  • the particle size ratio of the aluminum oxide powder to the magnesium hydroxide powder is 0.6 or less (for example, the aluminum oxide powder is 0.6 ⁇ m or less with respect to 1 ⁇ m of the magnesium hydroxide powder), and the aluminum oxide powder having a small particle size is used. This facilitates the activity of alumina and facilitates the formation of spinel.
  • a powder having a cumulative particle size of 80% in the particle size distribution is 1.75 times the average particle size or less.
  • the particle size ratio of the titanium oxide powder to the aluminum hydroxide powder is set to 0.6 or less (for example, the titanium oxide powder is 0.6 ⁇ m or less with respect to 1 ⁇ m of the aluminum hydroxide powder) so that it is easily contained in alumina and spinel.
  • the subsequent steps may be the same as in the first example described above.
  • Al is 80% by mass to 99.8% by mass in terms of Al 2 O 3
  • Ti is 0.1% by mass to 10% by mass in terms of TiO 2
  • Mg is 0.1% by mass to 10% by mass in terms of MgO, and What is necessary is just to weigh so that the sum total may become 100 mass%.
  • the particle size ratio of the magnesium hydroxide powder to the aluminum oxide powder used as the primary raw material and the titanium oxide powder to the aluminum oxide powder is in the range of 0.8 to 1.5 (for example, magnesium hydroxide powder with respect to 1 ⁇ m of aluminum oxide powder) And the titanium oxide powder is preferably 0.8 ⁇ m or more and 1.5 ⁇ m or less).
  • the rate of temperature increase up to the maximum temperature during firing is preferably 200 ° C./h or less.
  • Such a temperature rise rate is based on the result of earnest study, and by using such a temperature rise rate, the peak intensity near the wavelength of 330 nm in the measurement using the cathodoluminescence method is reduced. Can do.
  • the rate of temperature decrease from the highest temperature during firing to 800 ° C. is preferably 200 ° C./h or less.
  • Such a temperature decrease rate is based on the result of earnest study, and by setting such a temperature decrease rate, the peak intensity near the wavelength of 420 nm in the measurement using the cathodoluminescence method can be reduced. .
  • At least one of silicon oxide (SiO 2 ) and calcium carbonate (CaCO 3 ) may be added at the time of slurry preparation.
  • content it is preferable to set it as 5 mass% or less in total with respect to 100 mass% of total of aluminum oxide, titanium oxide, and aluminum hydroxide.
  • an aluminum oxide powder having an average particle size of about 1 ⁇ m and a cumulative particle size distribution of 80% in the value shown in Table 1 was prepared as a primary material. Then, the aluminum oxide powder is weighed, and 100% by mass of the weighed aluminum oxide powder, 3% by mass of sintering aid, 1% by mass of binder (PVA), 100% by mass of solvent, 0.2% by mass of The dispersant was placed in a stirrer and mixed and stirred to obtain a slurry. Thereafter, the slurry was granulated with a spray granulator (spray dryer) to obtain granules.
  • a spray granulator spray dryer
  • the obtained granule was filled in a mold and pressed, and then subjected to cutting to obtain a molded body having a predetermined shape.
  • the obtained molded body was put in a firing furnace and held at a maximum temperature of 1600 ° C. in an air atmosphere, and a sintered body was obtained with the temperature lowering condition from the maximum temperature as shown in Table 1. Then, the obtained sintered body was ground to obtain a plurality of disk-shaped samples each having an outer diameter of ⁇ 20 mm and a thickness of 5 mm.
  • each sample was measured by the cathodoluminescence method.
  • a cathodoluminescence spectrometer SEM: Hitachi, S-4300SE, spectrometer: HR-320, manufactured by Ehime Bussan Co., Ltd.
  • measurement was performed at room temperature (20 ° C.) and acceleration voltage: 10 kv.
  • a chart showing the result of light emitted when the sample surface was irradiated with an electron beam (the horizontal axis represents the wavelength of light and the vertical axis represents the light intensity) was obtained.
  • Table 1 shows the peak intensity around the wavelength of 330 nm.
  • sample No. with a cumulative particle size distribution of 80% in the particle size distribution is 2 ⁇ m. 1 to 3, without setting the temperature lowering condition from the maximum temperature, sample No. Nos. 4, 7, 10, 13, and 16 had peak intensities in the vicinity of a wavelength of 330 nm in the chart obtained by measurement using the cathodoluminescence method, exceeding 5000, and the creeping breakdown voltage reached was as low as less than 5 kV / mm.
  • a peak near a wavelength of 330 nm in a chart obtained by measurement using the cathodoluminescence method by setting the particle size of 80% cumulative in the particle size distribution to 1.75 ⁇ m or less and exposing to a temperature range from the highest temperature to 1000 ° C. for a long time. It was found that the strength could be 5000 or less.
  • an aluminum hydroxide powder having an average particle diameter of 1 ⁇ m and an aluminum oxide powder and a titanium oxide powder having a particle diameter ratio with respect to the aluminum hydroxide powder shown in Table 2 were prepared as primary materials.
  • the aluminum oxide powder a powder whose cumulative particle size of 80% in the particle size distribution is 1.75 times the average particle size is used.
  • Al 2 O 3 is 80 mol%
  • TiO 2 is 10 mol%
  • such MgO is 10 mol%
  • aluminum oxide powder and a primary raw material is weighed titanium oxide powder and magnesium hydroxide powder.
  • the obtained granule was filled in a mold and pressed, and then subjected to cutting to obtain a molded body having a predetermined shape.
  • the obtained molded body was put in a firing furnace and fired in an air atmosphere. Note that the firing conditions were the sample No. 1 of Example 1. It was the same as 6. Then, grinding was performed after firing, and a plurality of disk-shaped samples each having an outer diameter of ⁇ 20 mm and a thickness of 5 mm were obtained.
  • Sample No. Nos. 22, 23, and 26 have high creepage breakdown voltage values, and it has been found that the allowable voltage to creepage breakdown can be increased by including alumina and spinel and including titanium in the alumina and spinel. It was.
  • composition formula When the composition formula is expressed as ⁇ Al 2 O 3 ⁇ ⁇ TiO 2 ⁇ ⁇ MgO, the molar percentages ⁇ , ⁇ , and ⁇ are weighed so as to have the values shown in Table 4, and the heating conditions shown in Table 4 are used as firing conditions.
  • a sample was prepared as a velocity, and the peak intensity near the wavelength of 330 nm and the creeping breakdown voltage were compared in the measurement using the cathodoluminescence method. A method for manufacturing the sample is described below.
  • the obtained molded body was put in a firing furnace, heated in the air atmosphere at a heating rate shown in Table 4, and fired at a maximum temperature of 1600 ° C. Then, grinding was performed after firing, and a plurality of disk-shaped samples each having an outer diameter of ⁇ 20 mm and a thickness of 5 mm were obtained.
  • Example 2 measurement by the cathodoluminescence method was performed under the same conditions. Further, similarly to Example 1, metal electrodes were joined to the ends of both main surfaces of each sample by metallization, and creeping breakdown voltage was calculated, and shown in Table 4.
  • composition formula is expressed as ⁇ Al 2 O 3 ⁇ ⁇ TiO 2 ⁇ ⁇ MgO
  • the molar percentages ⁇ , ⁇ , and ⁇ are weighed so as to have the values shown in Table 5, and the temperature drop shown in Table 5 as firing conditions.
  • a sample was prepared as a velocity, and the peak intensity near the wavelength of 420 nm and the initial creeping voltage were compared in the measurement using the cathodoluminescence method. A method for manufacturing the sample is described below.
  • the difference from Example 4 is that the average particle size of titanium oxide is the value shown in Table 5 in terms of the ratio (particle size ratio) to the particle size of aluminum oxide, and the average particle size of magnesium hydroxide The diameter is 1 ⁇ m, and the cooling rate from the maximum temperature to 800 ° C. is the value shown in Table 5.
  • Example 5 measurement by the cathodoluminescence method was performed under the same conditions, and the peak intensity around 420 nm is shown in Table 5.
  • metal electrodes were metallized on the ends of both main surfaces of each sample, and the voltage applied was applied when gradually applying a high voltage in the same manner as when measuring the creeping dielectric breakdown voltage.
  • the initial creeping voltage is calculated by dividing the voltage when the electrons emitted by the first reaches the end point of the creeping distance along the surface by the creeping distance (sample thickness 5 mm), which is the distance between the metal electrodes.
  • the results are shown in Table 5.
  • the molar ratio of Al 2 O 3 , TiO 2 , and MgO was determined in the same manner as in Example 2, and the results are shown in Table 5.
  • the initial creeping arrival voltage is a value of 4 kV / mm or more, and the beginning of creeping breakdown when a voltage is applied.
  • composition of Al 2 O 3 , TiO 2 , and MgO was changed to the sample No. 38, 53, 62, Al 2 O 3 / MgO particle size ratio and Al 2 O 3 / TiO 2 particle size ratio are both 1.05, and the rate of temperature rise to the maximum temperature during firing is 100 ° C.
  • Sample A composition equivalent to sample No. 38
  • B composition equivalent to sample No. 38
  • C composition equivalent to sample No. 62
  • the samples A, B, and C were measured by the cathodoluminescence method as in the previous example. Further, the creeping breakdown voltage and the initial creeping voltage were measured.
  • the peak intensity around the wavelength of 330 nm was 80, the peak intensity around the wavelength of 420 nm was 45, the creeping breakdown voltage reached 17.8 kV / mm, and the initial creeping voltage reached 10.5 kV / mm.
  • the peak intensity around the wavelength of 330 nm was 250, the peak intensity around the wavelength of 420 nm was 72, the creeping breakdown voltage was 17.3 kV / mm, and the initial creeping voltage was 9.2 kV / mm.
  • the peak intensity near the wavelength of 330 nm was 2650
  • the peak intensity near the wavelength of 420 nm was 153
  • the creeping breakdown voltage was 10.6 kV / mm
  • the initial creeping voltage was 4.6 kV / mm.
  • samples having ⁇ / ⁇ values in the composition formula shown in Table 6 were prepared, and the peak intensity near the wavelength of 330 nm and the creeping breakdown voltage reached were compared in the measurement using the cathodoluminescence method.
  • a sample was prepared in the same manner as in Example 1 except that the particle size ratio of Al 2 O 3 / MgO was 1.05, the temperature elevation rate was 100 ° C./h, and the ⁇ / ⁇ values were varied.
  • Sample No. Nos. 120 to 124 have a small peak intensity near the wavelength of 330 nm in the measurement using the cathodoluminescence method and a large creepage breakdown voltage, and the value of ⁇ / ⁇ in the composition formula is 0.5 or more and 2.0 or less. It turned out to be preferable.
  • samples having ⁇ / ⁇ values in the composition formula shown in Table 7 were prepared, and the peak intensity near the wavelength of 420 nm and the creeping breakdown voltage in comparison using the cathodoluminescence method were compared.
  • Samples were prepared in the same manner as in Example 5 except that the particle size ratio of Al 2 O 3 / TiO 2 was 1.05, the temperature drop rate was 100 ° C./h, and the ⁇ / ⁇ values were varied.
  • Example 7 the measurement was performed in the same manner as in Example 5, and the results of obtaining the peak intensity and the initial creepage voltage near the wavelength of 420 nm are shown in Table 7. Further, the mol% ratio was calculated by the same method as in Example 2 and shown in Table 7. Sample No. Sample No. 127 81, sample no. Sample No. 129 No. 80, sample no. Sample No. 131 Same as 79.
  • Sample No. 127 to 131 have a small peak intensity near the wavelength of 420 nm in the measurement using the cathodoluminescence method and a large initial creepage voltage, and the ⁇ / ⁇ value in the composition formula is 0.5 or more and 2.0 or less. Was found to be preferable.
  • the content of silicon oxide and calcium oxide in each sample was measured using an ICP emission spectroscopic analyzer after pulverizing a part of the sample and dissolving the obtained powder in a solution such as hydrochloric acid.
  • the obtained metal amounts of Al, Ti, Mg, Si and Ca were converted into Al 2 O 3 , TiO 2 , MgO, SiO 2 and CaO, respectively.
  • the amounts of SiO 2 and CaO when the total of Al 2 O 3 , TiO 2 and MgO was 100% by mass were calculated and shown in Table 6.
  • the composition was similar to 38.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 【課題】 印加される電圧によって沿面絶縁破壊の起こりにくい高耐電圧アルミナ質焼結体およびこの高耐電圧アルミナ質焼結体に電極を備えてなる高耐電圧用部材を提供する。 【解決手段】 アルミナを主結晶とするアルミナ質焼結体からなり、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が5000以下であることにより、沿面絶縁破壊に至る許容電圧を大きくすることができるため、瞬時電圧降下の発生が少なくなり、瞬時電圧降下によるデータの欠落を少なくすることができる高耐電圧用部材である。

Description

高耐電圧アルミナ質焼結体および高耐電圧用部材
 本発明は、印加される電圧に対して高い絶縁性が求められる部位に用いられる高耐電圧アルミナ質焼結体およびこの高耐電圧アルミナ質焼結体に電極を備えてなる高耐電圧用部材に関する。
 従来から、CTスキャン等の医療機器や透過型電子顕微鏡などの分析装置に用いられるカソード-アノード間に高い電圧が印加されるX線管のハウジングや、大型加速器の壁面部材および高電圧導入端子などの高い絶縁性の求められる部位に、各種セラミックスが適用されている。
 例えば、特許文献1には、X線管の高電圧ブッシング(碍管)における絶縁部材として、アルミナセラミックスを用いることが提案されている。
特開平8-106828号公報
 CTスキャン等の医療機器や透過型電子顕微鏡などの分析装置の内部において、高い絶縁性が求められる部位に用いられるセラミックスの表面に酸素欠陥が多く存在するときには、カソード-アノード間に電圧が印加された際に酸素欠陥から放出された電子が、カソード側からアノード側へ向かう間で、セラミックスの表面に存在する酸素欠陥で放電が繰り返されることによって電子の流れが大きくなって沿面絶縁破壊が起こる。
 そして、このような沿面絶縁破壊が起こると、CTスキャン等の医療機器や透過型電子顕微鏡などの分析装置において、カソード-アノード間に印加される電圧が瞬間的に降下(以降、瞬時電圧降下と記載する。)し、重要な医療データや分析データの欠落が起こるという問題があった。
 また、精度向上や軽量化の観点から、医療機器や分析装置等において小型化が望まれており、この小型化にはカソード-アノード間の距離である沿面距離を短くすることが不可欠であり、そのためにもセラミックス表面の酸素欠陥を少なくして沿面絶縁破壊が起こるおそれを少なくする必要がある。
 本発明は、上記要求を満たすべく案出されたものであり、印加される電圧によって沿面絶縁破壊の起こりにくい高耐電圧アルミナ質焼結体およびこの高耐電圧アルミナ質焼結体に電極を備えてなる高耐電圧用部材を提供することを目的とする。
 本発明の高耐電圧アルミナ質焼結体は、アルミナを主結晶とするアルミナ質焼結体からなり、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が5000以下であることを特徴とするものである。
 また、本発明の高耐電圧用部材は、上記構成の高耐電圧アルミナ質焼結体に電極を備えてなることを特徴とする。
 本発明の高耐電圧アルミナ質焼結体によれば、沿面絶縁破壊に至る許容電圧を大きくすることができるため、瞬時電圧降下の発生が少なくなり、瞬時電圧降下によるデータの欠落を少なくすることができる。
 また、本発明の高耐電圧用部材によれば、本発明の高耐電圧アルミナ質焼結体に電極を備えてなるものであり、沿面絶縁破壊に至る許容電圧が大きいことから、沿面距離を短くすることが可能となるため、搭載する機器や装置の小型化を図ることができる。
 以下、本実施形態の高耐電圧アルミナ質焼結体および高耐電圧用部材の一例について説明する。
 本実施形態の高耐電圧アルミナ質焼結体は、アルミナを主結晶とするアルミナ質焼結体からなり、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が5000以下であることを特徴としている。そして、本実施形態の高耐電圧アルミナ質焼結体は、CTスキャン等の医療機器や透過型電子顕微鏡などの分析装置の内部において、高い絶縁性が求められる部位に用いられるものである。
 なお、本実施形態におけるアルミナ質焼結体とは、焼結体を構成する全成分100質量%のうち、50質量%以上をアルミナが占めるものである。また、主結晶とは、CuのKα線を用いたX線回折装置による測定において最も高い主ピークとしてチャートに表れるものである。得られたピークの同定については、JCPDSカードデータと照合すればよい。また、別の視点によれば、主結晶とは、焼結体断面の走査型顕微鏡(SEM等での焼結体断面の確認において、50面積%以上を占める結晶のことである。
 そして、本実施形態の高耐電圧アルミナ質焼結体は、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が5000以下であることにより、沿面絶縁破壊に至る許容電圧を大きくすることができるため、瞬時電圧降下の発生が少なくなり、瞬時電圧降下によるデータの欠落を少なくすることができる。
 そのため、この高耐電圧アルミナ質焼結体に電極(カソード電極およびアノード電極)を備えてなる高耐電圧用部材は、本実施形態の高耐電圧アルミナ質焼結体が、沿面絶縁破壊に至る許容電圧が大きいため、許容電圧が小さい焼結体を用いたときよりも沿面距離を短くすることができることから、搭載する機器や装置の小型化を図ることができる。
 ここで、カソードルミネッセンス法とは、試料(本実施形態においてはセラミックス)の表面に電子線を照射した際に放出される光を検出する手法である。そして、この測定によって得られた結果は、横軸に光の波長、縦軸に光の強度をとったチャートで確認することができる。
 本実施形態の高耐電圧アルミナ質焼結体において、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度を選出したのは、このピーク強度が、高耐電圧アルミナ質焼結体の表面に存在する、電子1個を捕獲可能な酸素欠陥(F+センター)の量を表しているからである。そのため、この波長330nm付近のピーク強度が小さければ、表面における酸素欠陥(F+センター)が少ないことを指し、電圧が印加された際に放出された電子が放電を繰り返す要因となる酸素欠陥(F+センター)が少なければ、電子の流れが大きくなるのを抑制することができるため、瞬時電圧降下の発生を少なくすることができる。
 カソードルミネッセンス法における具体的な測定装置としては、例えば、カソードルミネッセンス分光装置(SEM:日立社製 S-4300SE、分光器:愛宕物産社製 HR-320)が挙げられ、条件としては、室温(20℃)で10kvの加速電圧で測定されるものである。
 また、沿面絶縁破壊に至る許容電圧の大きさは、沿面絶縁破壊到達電圧の値によって確認することができる。この沿面絶縁破壊到達電圧とは、沿面絶縁破壊により瞬時電圧降下が生じたときの電圧(kV)を沿面距離(mm)で除したものである。本実施形態の高耐電圧アルミナ質焼結体における沿面絶縁破壊到達電圧は5kV/mm以上である。なお、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が5000未満であるときには、この沿面絶縁破壊到達電圧は5kV/mm未満となることはいうまでもない。電圧の測定については、電圧計を用いればよい。
 そして、この沿面絶縁破壊到達電圧が大きいということは、沿面絶縁破壊に至る許容電圧が大きいということであり、沿面距離を短くすることができることに繋がり、これにより、搭載する機器や装置の小型化を図ることができ、精度向上や軽量化を図ることができる。
 また、本実施形態の高耐電圧アルミナ質焼結体は、アルカリ土類金属およびアルミニウムからなる酸化物の結晶であるスピネルを含み、アルミナおよびスピネルに遷移金属を含んでいることが好適である。すなわち、焼結体中に主結晶であるアルミナ以外にスピネルが存在し、アルミナおよびスピネルに遷移金属を含んでいるということである。
 ここで、アルカリ土類金属は、ベリリウム(Be),マグネシウム(Mg),カルシウム(Ca),ストロンチウム(Sr),バリウム(Ba)およびラジウム(Ra)のいずれかからなり、遷移金属は、スカンジウム(Sc),チタン(Ti),バナジウム(V),クロム(Cr),マンガン(Mn),鉄(Fe),コバルト(Co),ニッケル(Ni),銅(Cu),イットリウム(Y)等のいずれかからなる。
 また、「遷移金属を含んでいる」というのは、エネルギー分散型X線分析装置(EPMA)を用いたマッピングにおいて、遷移金属がチタンであるとき、アルミナについては、AlおよびOの存在箇所にチタンの存在が確認される、また、スピネルについては、例えばMgAlであれば、Al,MgおよびOの存在箇所にチタンが確認される場合をいう。また、透過型電子顕微鏡(TEM)で観察し、付設のエネルギー分散型X線分光器(EDS)を用いて、アルミナやスピネルにスポット(φ1nm)を当てた際、チタンが検出されるか否かでも確認することができる。なお、「遷移金属を含んでいる」とは、遷移金属の固溶も含むものである。
 そして、本実施形態の高耐電圧アルミナ質焼結体において、アルミナおよびスピネルに遷移金属を含んでいるときには、理由は明らかではないが、アルミナおよびスピネルに存在する酸素欠陥を遷移金属が埋めることとなり、酸素欠陥が少なくなるものと考えられる。そのため、絶縁破壊電圧に至る許容電圧を大きくすることができる。
 また、本実施形態の高耐電圧アルミナ質焼結体は、遷移金属がチタンであり、アルカリ土類金属がマグネシウムであることが好適である。
 遷移金属がチタンであり、アルカリ土類金属がマグネシウムであるときには、絶縁破壊電圧に至る許容電圧を大きくすることができる。この理由についても明らかではないが、上述したアルカリ土類金属及び遷移金属との組み合わせの確認において、最も沿面絶縁破壊電圧が高いという結果に基づくものである。
 また、本実施形態の高耐電圧アルミナ質焼結体は、組成式を、αAl・βTiO・γMgOと表したとき、モル%比率α,β,γが80≦α≦99.8,0.1≦β≦10,0.1≦γ≦10およびα+β+γ=100を満足してなり、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が3000以下であることが好適である。
 これにより、沿面絶縁破壊に至る許容電圧をさらに大きくすることができるため、瞬時電圧降下の発生がさらに少なくなり、瞬時電圧降下によるデータの欠落をさらに少なくすることができる。併せて、沿面距離をさらに短くすることが可能となることから、搭載する機器や装置をさらに小型化することができる。
 組成式を、αAl・βTiO・γMgOと表したとき、モル%比率α,β,γが80≦α≦99.8,0.1≦β≦10,0.1≦γ≦10およびα+β+γ=100としたのは、この組成式を満足するときに、高耐電圧アルミナ質焼結体の表面における酸素欠陥(F+センター)を少なくすることができたという知見に基づく。なお、酸素欠陥(F+センター)を少なくすることができる理由については明らかではないが、上述した組成式を満足する構成であることによって、アルミナ結晶中の酸素欠陥をチタンやマグネシウムが埋めていることによると考えられる。
 そして、上述した組成式を満足し、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が3000以下である本実施形態の高耐電圧アルミナ質焼結体は、沿面絶縁破壊到達電圧が10kV/mm以上となる。
 なお、高耐電圧アルミナ質焼結体に含まれるAl,TiO,MgOの各成分のモル%比率については、高耐電圧アルミナ質焼結体の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解した後、ICP(Inductively Coupled Plasma)発光分光分析装置(島津製作所製:ICPS-8100)を用いて測定し、得られたAl,Ti,Mgの金属量をそれぞれAl,TiO,MgOに換算する。そして、ここで求められたAl,TiO,MgOの値を用いて、それぞれの分子量からモル比を算出し、それぞれのモル比を分子に、モル比の合計を分母として、これを100倍することによりモル%比率を求めることができる。
 また、本実施形態のアルミナ質焼結体は、組成式を、αAl・βTiO・γMgOと表したとき、モル%比率α,β,γが80≦α≦99.8,0.1≦β≦10,0.1≦γ≦10およびα+β+γ=100を満足してなり、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度が160以下であることが好適である。これにより、電圧が印加された際の沿面絶縁破壊の発端となる電子の放出を抑制することができるため、沿面絶縁破壊が起こりにくく、瞬時電圧降下の発生がさらに少なくなり、瞬時電圧降下によるデータの欠落をさらに少なくすることができる。併せて、沿面距離を短くすることが可能となることから、搭載する機器や装置をさらに小型化を図ることができる。
 ここで、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度を選出したのは、このピーク強度が、高耐電圧アルミナ質焼結体の表面に存在する、電子2個を捕獲可能な酸素欠陥(Fセンター)の量を表しているからである。そのため、このピーク強度が小さいときには、表面における酸素欠陥(Fセンター)が少ないことを指す。なお、カソードルミネッセンス法における具体的な測定装置および条件は、上述したものと同様である。
 そして、この酸素欠陥(Fセンター)に捕獲されている2個の電子は、電圧が印加されたときに放出されやすいものであり、沿面絶縁破壊の発端となるものである。そのため、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度が160以下であることにより、沿面絶縁破壊の発端となる電子の数が少なくなることから、沿面絶縁破壊を起こしにくくすることができる。
 なお、この沿面絶縁破壊の起こしにくさは、初期沿面到達電圧の値によって確認することができる。この初期沿面到達電圧とは、例えばカソード-アノード間において、印加された電圧によって放出された電子が、表面を沿って最初にアノードに到達したときの電圧を沿面距離で除したものであり、測定方法としては、上述した沿面絶縁破壊到達電圧の測定方法と同様である。そして、初期沿面到達電圧における電圧は、沿面絶縁破壊である電圧降下に至った電圧よりも小さいものであり、上述した組成式を満足し、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度が160以下である本実施形態の高耐電圧アルミナ質焼結体は、初期沿面到達電圧が4kV/mm以上となる。
 また、本実施形態の高耐電圧アルミナ質焼結体によれば、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が3000以下であるとともに、波長420nm付近のピーク強度が160以下であることが好適である。これにより、高耐電圧アルミナ質焼結体における表面は、電子1個を捕獲可能な酸素欠陥(F+センター)および電子2個を捕獲可能な酸素欠陥(Fセンター)のいずれもが少ないということであり、電子の流れが大きくなることを抑制することができるとともに、沿面絶縁破壊の発端となる電子の放出自体が抑制されることから、沿面絶縁破壊をさらに起こりにくくすることができる。
 より好適なカソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度は850以下であり、波長420nm付近のピーク強度は100以下である。
 また、本実施形態の高耐電圧アルミナ質焼結体は、組成式を、αAl・βTiO・γMgOと表したとき、モル%比α,β,γが90≦α≦98.5,0.5≦β≦5,0.5≦γ≦5,α+β+γ=100を満足してなることが好適である。
 組成式を、αAl・βTiO・γMgOと表したとき、モル%比α,β,γが90≦α≦98.5,0.5≦β≦5,0.5≦γ≦5,α+β+γ=100を満足してなるときには、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度はさらに小さくなり、沿面絶縁破壊到達電圧の値はさらに大きい値を示す。また、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度はさらに小さくなり、初期沿面到達電圧はさらに大きい値を示す。そのため、酸素欠陥(F+センター、Fセンター)の存在量がいずれも少ないということであることから、電子の流れが大きくなることを抑制することができるとともに、沿面絶縁破壊の発端となる電子の放出自体が抑制されるため、沿面絶縁破壊さらに起こりにくくすることができる。
 また、本実施形態の高耐電圧アルミナ質焼結体は、組成式におけるβとγとの比率β/γの値が0.5以上2.0以下であることが好適である。βとγとの比率β/γの値が0.5以上2.0以下であるときには、沿面絶縁破壊電圧の値が高くなっており、アルミナ結晶中の酸素欠陥にチタンやマグネシウムが入りやすくなり、その結果、酸素欠陥(F+センター、Fセンター)を少なくすることができるため、沿面絶縁破壊到達電圧や初期沿面到達電圧の値はより大きな値となり、沿面絶縁破壊を起こりにくくすることができると考えられる。
 また、本実施形態の高耐電圧アルミナ質焼結体は、Si,Caの少なくともいずれかの酸化物を含み、Al,TiO,MgOの合計100質量%に対して、それぞれSiO,CaOに換算した値の合計が5質量%以下(0質量%を除く)であることが好ましい。これにより、Si,Caの少なくともいずれかの酸化物が、焼結助剤として作用し、焼成温度の低温化や密度向上を図ることができる。なお、密度については、JIS R1634-1998に準拠して測定すればよい。
 次に、本実施形態の高耐電圧アルミナ質焼結体の製造方法の一例について説明する。
 まず、第1の例は、平均粒径が1μm程度であり、粒度分布における累積80%の粒径が1.75μm以下の酸化アルミニウム粉末を1次原料として準備する。なお、この酸化アルミニウム粉末の粒度分布における累積80%の粒径は、例えばマイクロトラック装置(日機装製 MT3300EXII)を用いたレーザー回折散乱法により粒度分布を測定すればよい。
 そして、酸化アルミニウム粉末を所定量秤量し、1次原料である酸化アルミニウム粉末100質量%対し、例えば5質量%以下の焼結助剤と、1~1.5質量%のPVA(ポリビニールアルコール)などのバインダと、100質量%の溶媒と、0.1~0.5質量%の分散剤とを攪拌機内に入れて混合・攪拌してスラリーとした後、これを噴霧造粒装置(スプレードライヤー)にて造粒し、顆粒を得る。
 次に、得られた顆粒を用いて金型プレス成形法や静水圧プレス成形(ラバープレス)法などの各種成形方法により所定形状に成形し、必要に応じて切削加工を施した後、これを焼成炉にて大気雰囲気中1400~1700℃の最高温度で焼成する。そして、最高温度で所定時間保持した後の降温時に、最高温度から1000℃までの温度域に長時間曝す。粗大粒子の少ないアルミナ1次原料を用いることと、最高温度から1000℃までの温度域に長時間曝すことで、焼成時のAl結晶粒子内への酸素の供給が充分に行なわれ、酸素欠陥を低減することができる。そして、焼成後、研削加工により最終仕上げすることにより本実施形態の高耐電圧アルミナ質焼結体を得ることができる。
 次に、第2の例として、アルカリ土類金属がマグネシウムであり、遷移金属がチタンである場合について説明する。まず、酸化アルミニウム粉末と、水酸化マグネシウム粉末と、酸化チタン粉末とを所定量秤量したものを1次原料とする。なお、このとき、水酸化マグネシウム粉末に対する酸化アルミニウム粉末の粒径比率を0.6以下(例えば、水酸化マグネシウム粉末1μmに対し、酸化アルミニウム粉末を0.6μm以下)とし、粒径の小さい酸化アルミニウム粉末を用いることにより、アルミナの活性を促しスピネルを形成しやすくする。また、酸化アルミニウム粉末は、粒度分布における累積80%の粒径が平均粒径の1.75倍以下のものを用いる。
 また、水酸化アルミニウム粉末に対する酸化チタン粉末の粒径比率を0.6以下(例えば、水酸化アルミニウム粉末1μmに対し、酸化チタン粉末を0.6μm以下)とし、アルミナおよびスピネルに含まれやすくする。なお、その後の工程は、上述した第1の例と同様とすればよい。
 次に、第3の例としては、まず、組成式を、αAl・βTiO・γMgOと表したとき、モル%比率α,β,γが80≦α≦99.8,0.1≦β≦10,0.1≦γ≦10およびα+β+γ=100とするには、1次原料として、平均粒径が1μm程度の酸化アルミニウム粉末、水酸化マグネシウム粉末、酸化チタン粉末を準備する。そして、AlをAl換算で80質量%以上99.8質量%以下、TiをTiO換算で0.1質量%以上10質量%以下、MgをMgO換算で0.1質量%以上10質量%以下、またそれぞれの合計が100質量%となるように秤量すればよい。
 このとき、1次原料として用いる酸化アルミニウム粉末に対する水酸化マグネシウム粉末、酸化アルミニウム粉末に対する酸化チタン粉末の粒径比率を0.8以上1.5以下の範囲内(例えば、酸化アルミニウム粉末1μmに対し、水酸化マグネシウム粉末および酸化チタン粉末が0.8μm以上1.5μm以下)とすることが好適である。この粒径比率の範囲内とすることにより、酸化チタンおよび水酸化マグネシウムが均一に分散しやすく、チタンおよびマグネシウムが固溶するなどしてアルミナへ含まれやすくなり、酸素欠陥を低減させることができる。
 また、焼成時の最高温度までの昇温速度は、200℃/h以下とすることが好ましい。このような昇温速度としたのは、鋭意検討した結果に基づくものであり、このような昇温速度とすることにより、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度を小さくすることができる。
 また、焼成時の最高温度から800℃までの降温速度は、200℃/h以下とすることが好ましい。このような降温速度としたのは、鋭意検討した結果に基づくものであり、このような降温速度とすることにより、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度を小さくすることができる。
 また、本実施形態の高耐電圧アルミナ質焼結体の密度をより向上させるには、酸化珪素(SiO)および炭酸カルシウム(CaCO)の少なくともいずれかをスラリー作製時に添加すればよい。なお、含有量としては、酸化アルミニウム、酸化チタン、水酸化アルミニウムの合計100質量%に対し、合計で5質量%以下とすることが好ましい。
 以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 粒度分布における累積80%の粒径が表1に示す値の酸化アルミニウム粉末を1次原料として用い、最高温度からの降温速度を表1に示す条件とした試料を作製し、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度および沿面絶縁破壊到達電圧の比較を行なった。試料の作製方法を以下に示す。
 まず、平均粒径が1μm程度であり、粒度分布における累積80%の粒径が表1に示す値の酸化アルミニウム粉末を1次原料として準備した。そして、酸化アルミニウム粉末を秤量し、秤量した酸化アルミニウム粉末100質量%対し、3質量%の焼結助剤と、1質量%のバインダ(PVA)と、100質量%の溶媒と、0.2質量%の分散剤とを攪拌機内に入れて混合・攪拌してスラリーとした。その後、このスラリーを噴霧造粒装置(スプレードライヤー)にて造粒し、顆粒を得た。
 次に、得られた顆粒を金型内に充填してプレスし、その後切削加工を施すことにより所定形状の成形体を得た。次に、得られた成形体を焼成炉に入れて大気雰囲気中1600℃の最高温度で保持し、最高温度からの降温条件を表1に示す条件として焼結体を得た。そして、得られた焼結体に研削加工を施すことにより、外径がφ20mm、厚みが5mmの円板形状の試料をそれぞれ複数個得た。
 次に、各試料について、カソードルミネッセンス法による測定を実施した。測定方法としては、カソードルミネッセンス分光装置(SEM:日立社製 S-4300SE、分光器:愛宕物産社製 HR-320)を用いて、室温(20℃)、加速電圧:10kvの条件で測定し、試料表面に電子線を照射した際に放出された光の結果を示すチャート(横軸が光の波長、縦軸が光の強度)を得た。そして、波長330nm付近におけるピーク強度を表1に示した。
 次に、各試料の両主面の端部に金属電極をメタライズした。よって、そして、予め電源端子から各金属電極に接続した配線を介して大容量電源(最大電圧120kV)により、徐々に高電圧を印加した。そして、電圧降下に至った電圧を金属電極間の距離である沿面距離、すなわち試料厚み(5mm)で除すことにより沿面絶縁破壊到達電圧を算出し、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1から、粒度分布における累積80%の粒径が2μmである試料No.1~3、最高温度からの降温条件を設定せず、自然冷却した試料No.4,7,10,13,16は、カソードルミネッセンス法を用いた測定により得られるチャートにおける波長330nm付近のピーク強度が5000を超え、沿面絶縁破壊到達電圧が5kV/mm未満と低かった。
 これに対し、試料No.5,6,8,9,11,12,14,15,17,18は、カソードルミネッセンス法を用いた測定により得られるチャートにおける波長330nm付近のピーク強度が5000以下であり、沿面絶縁破壊到達電圧が5kV/mm以上の値を示した。この結果、カソードルミネッセンス法を用いた測定により得られるチャートにおける波長330nm付近のピーク強度が5000以下であることにより、沿面絶縁破壊を起こりにくくできることがわかった。また、粒度分布における累積80%の粒径を1.75μm以下とし、最高温度から1000℃までの温度域に長時間曝すことにより、カソードルミネッセンス法を用いた測定により得られるチャートにおける波長330nm付近のピーク強度を5000以下とできることがわかった。
 まず、1次原料として、平均粒径が1μmの水酸化アルミニウム粉末と、水酸化アルミニウム粉末に対する粒径比率が表2に示す酸化アルミニウム粉末と酸化チタン粉末とを用意した。なお、酸化アルミニウム粉末は、平均粒径に対して粒度分布における累積80%の粒径が1.75倍であるものを用いた。そして、Alが80モル%、TiOが10モル%、MgOが10モル%となるように、酸化アルミニウム粉末、酸化チタン粉末および水酸化マグネシウム粉末を秤量して1次原料とした。
 そして、1次原料粉末の合計100質量%に対し、1質量%のPVA(ポリビニールアルコール)と、100質量%の溶媒と、0.2質量%の分散剤とを攪拌機内に入れて混合・攪拌してスラリーとした。その後、このスラリーを噴霧造粒装置(スプレードライヤー)にて造粒して顆粒を得た。
 そして、得られた顆粒を金型内に充填してプレスし、その後切削加工を施して所定形状の成形体を得た。次に、得られた成形体を焼成炉に入れて大気雰囲気中で焼成した。なお、焼成条件は実施例1の試料No.6と同様とした。そして、焼成後に研削加工を施し、外径がφ20mm、厚みが5mmの円板形状の試料をそれぞれ複数個得た。
 そして、実施例1と同様に、各試料の両主面の端部に金属電極をメタライズにより接合し、沿面絶縁破壊到達電圧を算出し、表2に示した。
 また、各試料の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解した後、ICP(Inductively Coupled Plasma)発光分光分析装置(島津製作所製:ICPS-8100)を用いて測定し、得られたAl,Ti,Mgの金属量をそれぞれAl,TiO,MgOに換算した。そして、ここで求めたAl,TiO,MgOの値を用いて、それぞれの分子量からモル比を算出し、それぞれのモル比を分子に、モル比の合計を分母として、これを100倍することによりモル%比率を求め、秤量時通りとなっていることを確認した。
Figure JPOXMLDOC01-appb-T000002
 表2から、試料No.22,23,26は、沿面絶縁破壊到達電圧の値が高く、アルミナとスピネルとを有し、アルミナとスピネルとにチタンを含んでいることにより、沿面絶縁破壊に至る許容電圧が大きくできることがわかった。
 次に、遷移金属およびアルカリ土類金属を表3に示すように種々変更した試料No.27~34を作製し、沿面絶縁破壊到達電圧の測定を行ない、得られた値の順位付けを行なった。なお、遷移金属源やアルカリ土類金属源となる粉末を異ならせたこと以外は、実施例2と同様の方法とした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、遷移金属がTi(チタン)であり、アルカリ土類金属がMg(マグネシウム)である組み合わせのときが、最も高い沿面絶縁破壊到達電圧の値が得られた。
 組成式を、αAl・βTiO・γMgOと表したとき、モル%比率α,β,γが表4に示す値となるように秤量するとともに、焼成条件として、表4に示す昇温速度として試料を作製し、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度および沿面絶縁破壊到達電圧の比較を行なった。試料の作製方法を以下に示す。
 まず、1次原料として、平均粒径が1μmの酸化アルミニウムと、平均粒径が1μmの酸化チタンと、酸化アルミニウムの粒径に対する比率(粒径比率)が表4に示す値となる平均粒径の水酸化マグネシウムとを準備した。その後、酸化アルミニウム、酸化チタンおよび水酸化マグネシウムを表4に示すモル%比率となるように秤量した。そして、実施例2と同様の方法により成形体まで作製した。
 そして、得られた成形体を焼成炉に入れて大気雰囲気中、表4に示す昇温速度で昇温し、1600℃の最高温度で焼成した。そして、焼成後に研削加工を施し、外径がφ20mm、厚みが5mmの円板形状の試料をそれぞれ複数個得た。
 そして、実施例1と同様の装置を用いて、同様の条件にてカソードルミネッセンス法による測定を実施した。また、実施例1と同様に、各試料の両主面の端部に金属電極をメタライズにより接合し、沿面絶縁破壊到達電圧を算出し、表4に示した。
 また、実施例2に記載した方法でモル%比率を求め、結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表4から、組成式をαAl・βTiO・γMgOと表したとき、モル%比率α,β,γが80≦α≦99.8,0.1≦β≦10,0.1≦γ≦10およびα+β+γ=100を満足し、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が3000以下である試料No.36~41,44~48,52~62,66~69,73~76は、沿面絶縁破壊到達電圧が10kV/mm以上の値を示しており、沿面絶縁破壊に至る許容電圧が大きいことから、瞬時電圧降下が発生するおそれは少なく、瞬時電圧降下によるデータの欠落が少なくなることがわかった。また、沿面距離を短くすることが可能となることから、CTスキャン等の医療機器や透過型電子顕微鏡などの分析装置を小型化できることがわかった。
 また、試料No.65~70の結果より、Al/Mg(OH)の粒径比率が0.8以上1.5以下であることが好ましいことがわかった。さらに、試料No.38,71~76の結果より、昇温速度が200℃/h以下であることが好ましいことがわかった。なお、試料No.38,75,76の結果より、100℃/h以下では波長330nm付近のピーク強度および沿面絶縁破壊到達電圧の変化は見られないことから、作製コストや作製時間を考慮すれば、昇温速度を100~200℃/hの範囲内とすることが好ましいことがわかった。
 次に、組成式をαAl・βTiO・γMgOと表したとき、モル%比率α,β,γが表5に示す値となるように秤量するとともに、焼成条件として表5に示す降温速度として試料を作製し、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度および初期沿面到達電圧の比較を行なった。試料の作製方法を以下に示す。
 なお、作製方法において、実施例4と異なるのは、酸化チタンの平均粒径が、酸化アルミニウムの粒径に対する比率(粒径比率)で表5に示す値であること、水酸化マグネシウムの平均粒径が1μmであること、最高温度から800℃までの降温速度が表5に示す値ということである。
 そして、実施例1と同様の装置を用いて、同様の条件にてカソードルミネッセンス法による測定を実施し、420nm付近におけるピーク強度を表5に示した。また、実施例1と同様に、各試料の両主面の端部に金属電極をメタライズし、沿面絶縁破壊到達電圧の測定時と同様に、徐々に高電圧を印加した際、印加された電圧によって放出された電子が、表面を沿って最初に沿面距離の終点に達したときの電圧を金属電極間の距離である沿面距離(試料厚み5mm)で除すことにより初期沿面到達電圧を算出し、表5に示した。また、実施例2と同様の方法で、Al,TiO,MgOのモル%比率を求め、結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 表5から、組成式をαAl・βTiO・γMgOと表したとき、モル%比率α,β,γが80≦α≦99.8,0.1≦β≦10,0.1≦γ≦10およびα+β+γ=100を満足し、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度が160以下である試料No.78~83,86~90,94~104,108~111,115~118は、初期沿面到達電圧が4kV/mm以上の値を示しており、電圧が印加された際の沿面絶縁破壊の発端となる電子の放出を抑制することができることから、沿面絶縁破壊が起こりにくく、瞬時電圧降下の発生が少ないため、瞬時電圧降下によるデータの欠落を少なくするできることがわかった。また、沿面距離を短くすることが可能となることから、CTスキャン等の医療機器や透過型電子顕微鏡などの分析装置を小型化できることがわかった。
 また、試料No.107~112の結果より、Al/TiOの粒径比率が0.8以上1.5以下であることが好ましいことがわかった。さらに、試料No.80,113~118の結果より、降温速度が200℃/h以下であることが好ましいことがわかった。なお、試料No.80,117,118の結果より、100℃/h以下では波長420nm付近のピーク強度および初期沿面到達電圧の変化は見られないことから、作製コストや作製時間を考慮すれば、降温速度を100~200℃/hの範囲内とすることが好ましいことがわかった。
 次に、Al,TiO,MgOの組成が、実施例4の試料No.38,53,62と同様であり、Al/MgOの粒径比率およびAl/TiOの粒径比率をいずれも1.05、焼成時の最高温度までの昇温速度を100℃/h、最高温度から800℃までの降温速度を100℃/hとしたこと以外は実施例4と同様の作製方法により、試料A(組成は試料No.38に相当),B(組成は試料No.53に相当),C(組成は試料No.62に相当)を作製した。
 そして、試料A,B,Cについて、前実施例と同様にカソードルミネッセンス法により測定した。また、沿面絶縁破壊到達電圧および初期沿面到達電圧を測定した。
 その結果、試料Aについては、波長330nm付近のピーク強度が80、波長420nm付近のピーク強度が45、沿面絶縁破壊到達電圧が17.8kV/mm、初期沿面到達電圧が10.5kV/mmであった。また、試料Bについては、波長330nm付近のピーク強度が250、波長420nm付近のピーク強度が72、沿面絶縁破壊到達電圧が17.3kV/mm、初期沿面到達電圧が9.2kV/mmであった。また、試料Cについては、波長330nm付近のピーク強度が2650、波長420nm付近のピーク強度が153、沿面絶縁破壊到達電圧が10.6kV/mm、初期沿面到達電圧が4.6kV/mmであった。
 この結果より、粒径比率や焼成条件の調整によって、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度および波長420nm付近のピーク強度ともに小さくすることができるため、電子の流れが大きくなることを抑制することができるとともに、沿面絶縁破壊の発端となる電子の放出自体が抑制されることから、沿面絶縁破壊をさらに起こりにくくすることができることがわかった。
 次に、組成式におけるβ/γの値が表6に示す値となる試料を作製し、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度および沿面絶縁破壊到達電圧の比較を行なった。Al/MgOの粒径比率は1.05とし、昇温速度は100℃/hとし、β/γの値を異ならせたこと以外は、実施例1と同様の方法により試料を作製した。
 そして、実施例1と同様の方法により測定を行ない、波長330nm付近におけるピーク強度、沿面絶縁破壊到達電圧の得られた結果を表6に示した。また、実施例2と同様の方法により、モル%比率を算出し、表6に示した。なお、試料No.120は試料No.39と同じであり、試料No.122は試料No.38と同じであり、試料No.124は試料No.37と同じである。
Figure JPOXMLDOC01-appb-T000006
 表6から、試料No.120~124は、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が小さく、沿面絶縁破壊到達電圧が大きな値を示しており、組成式におけるβ/γの値を0.5以上2.0以下とすることが好ましいことがわかった。
 次に、組成式におけるβ/γの値が表7に示す値となる試料を作製し、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度および沿面絶縁破壊到達電圧の比較を行なった。Al/TiOの粒径比率は1.05とし、降温速度は100℃/hとし、β/γの値を異ならせたこと以外は、実施例5と同様の方法により試料を作製した。
 そして、実施例5と同様の方法により測定を行ない、波長420nm付近におけるピーク強度、初期沿面到達電圧の得られた結果を表7に示した。また、実施例2と同様の方法により、モル%比率を算出し、表7に示した。なお、試料No.127は試料No.81と同じであり、試料No.129は試料No.80と同じであり、試料No.131は試料No.79と同じである。
Figure JPOXMLDOC01-appb-T000007
 表7から、試料No.127~131は、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度が小さく、初期沿面到達電圧が大きな値を示しており、組成式におけるβ/γの値を0.5以上2.0以下とすることが好ましいことがわかった。
 次に、Al,TiO,MgOの組成を、実施例4の試料No.38と同様とし、秤量時に酸化アルミニウム、酸化チタン、水酸化アルミニウムの合計100質量%に対し、表8に示す量のSiOおよびCaOとなるように、酸化珪素の粉末および炭酸カルシウムの粉末を用いて秤量し、スラリー作製時に1次原料とともに攪拌機内に入れて、その後については、実施例4と同様の方法で試料を成形し、最高温度を表8に示す温度として焼成して試料No.133~1145を得た。そして、得られた試料について、JIS R1634-1998に準拠して密度を測定し、結果を表8に示した。なお、試料No.133における1600℃の密度測定結果は、実施例4の試料No.38の密度測定結果である。
 また、各試料の酸化珪素および酸化カルシウムの含有量については、試料の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解した後、ICP発光分光分析装置を用いて測定し、得られたAl,Ti,Mg,SiおよびCaの金属量をそれぞれAl,TiO,MgO,SiOおよびCaOに換算した。そして、Al,TiO,MgOの合計を100質量%としたときのSiO量およびCaO量を算出し表6に示した。Al,TiO,MgOについては、実施例2の試料No.38と同様の組成となっていた。
Figure JPOXMLDOC01-appb-T000008
 表8から、Si,Caの少なくともいずれかの酸化物を含み、組成式の成分100質量%に対して、それぞれSiO,CaOに換算した値の合計が5質量%以下であることにより、焼結助剤としての作用により最高温度の低温化が図れるとともに、密度の向上が図れることがわかった。

Claims (9)

  1. アルミナを主結晶とするアルミナ質焼結体からなり、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が5000以下であることを特徴とする高耐電圧アルミナ質焼結体。
  2. アルカリ土類金属およびアルミニウムからなる酸化物の結晶であるスピネルを含み、前記アルミナおよび前記スピネルに遷移金属を含んでいることを特徴とする請求項1に記載の高耐電圧アルミナ質焼結体。
  3. 前記遷移金属がチタンであり、前記アルカリ土類金属がマグネシウムであることを特徴とする請求項2に記載の高耐電圧アルミナ質焼結体。
  4. 組成式を、αAl・βTiO・γMgOと表したとき、モル%比率α,β,γが下記を満足してなり、カソードルミネッセンス法を用いた測定における波長330nm付近のピーク強度が3000以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の高耐電圧アルミナ質焼結体。
    80≦α≦99.8
    0.1≦β≦10
    0.1≦γ≦10
    α+β+γ=100
  5. 組成式を、αAl・βTiO・γMgOと表したとき、モル%比率α,β,γが下記を満足してなり、カソードルミネッセンス法を用いた測定における波長420nm付近のピーク強度が160以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の高耐電圧アルミナ質焼結体。
    80≦α≦99.8
    0.1≦β≦10
    0.1≦γ≦10
    α+β+γ=100
  6. 前記組成式におけるモル%比率α,β,γが下記を満足してなることを特徴とする請求項4または請求項5に記載の高耐電圧アルミナ質焼結体。
    90≦α≦98.5
    0.5≦β≦5
    0.5≦γ≦5
    α+β+γ=100
  7. 前記組成式におけるβとγとの比率β/γの値が0.5以上2.0以下であることを特徴とする請求項4乃至請求項6のいずれかに記載の高耐電圧アルミナ質焼結体。
  8. Si,Caの少なくともいずれかの酸化物を含み、前記組成式の成分100質量%に対して、それぞれSiO,CaOに換算した値の合計が5質量%以下(0質量%を除く)であることを特徴とする請求項4乃至請求項6のいずれかに記載の高耐電圧アルミナ質焼結体。
  9. 請求項1乃至請求項8のいずれかに記載の高耐電圧アルミナ質焼結体に電極を備えてなることを特徴とする高耐電圧用部材。
PCT/JP2013/065247 2012-05-31 2013-05-31 高耐電圧アルミナ質焼結体および高耐電圧用部材 WO2013180289A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014518764A JP5918363B2 (ja) 2012-05-31 2013-05-31 高耐電圧アルミナ質焼結体および高耐電圧用部材
US14/403,752 US9548142B2 (en) 2012-05-31 2013-05-31 High-withstanding-voltage alumina sintered compact and high-withstanding-voltage member
EP13796404.5A EP2857373B1 (en) 2012-05-31 2013-05-31 High-withstanding-voltage alumina sintered compact and high-withstanding-voltage member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-124474 2012-05-31
JP2012124474 2012-05-31
JP2012-214491 2012-09-27
JP2012214491 2012-09-27

Publications (1)

Publication Number Publication Date
WO2013180289A1 true WO2013180289A1 (ja) 2013-12-05

Family

ID=49673472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065247 WO2013180289A1 (ja) 2012-05-31 2013-05-31 高耐電圧アルミナ質焼結体および高耐電圧用部材

Country Status (4)

Country Link
US (1) US9548142B2 (ja)
EP (1) EP2857373B1 (ja)
JP (1) JP5918363B2 (ja)
WO (1) WO2013180289A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144897A (ja) * 2013-01-30 2014-08-14 Kyocera Corp アルミナ質焼結体およびこれを用いた耐電圧部材
JPWO2020036097A1 (ja) * 2018-08-13 2021-08-10 京セラ株式会社 セラミック焼結体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072462A (ja) * 1999-06-29 2001-03-21 Hitachi Metals Ltd アルミナ磁器組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103090A (ja) * 1983-11-07 1985-06-07 京セラ株式会社 高アルミナ含有焼結体及びその製造方法
JP2857639B2 (ja) * 1988-02-19 1999-02-17 日本特殊陶業株式会社 点火プラグ用高アルミナ質絶縁碍子
JP3504985B2 (ja) 1994-09-30 2004-03-08 理学電機株式会社 X線管の高電圧ブッシング
FR2731700B1 (fr) * 1995-03-17 1997-06-13 Desmarquest Ceramiques Tech Ceramique a fritter a base d'alumine, procede de fabrication et pieces de frottement ainsi obtenues
US5658838A (en) * 1995-03-17 1997-08-19 Norton Desmarquest Fine Ceramics Alumina-based ceramic for sintering, method of manufacture and sliding parts obtained thereby
JP4368975B2 (ja) * 1998-08-06 2009-11-18 日本特殊陶業株式会社 高耐電圧性アルミナ基焼結体およびその製造方法
EP1065190A3 (en) 1999-06-29 2001-05-16 Hitachi Metals, Ltd. Alumina ceramic composition
US20110097582A1 (en) * 2008-01-21 2011-04-28 Sumitomo Chemical Company, Limited Aluminum magnesium titanate-alumina composite ceramics
JP5222819B2 (ja) * 2009-09-30 2013-06-26 日立アプライアンス株式会社 ドラム式洗濯乾燥機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072462A (ja) * 1999-06-29 2001-03-21 Hitachi Metals Ltd アルミナ磁器組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HIDEHARU MATSUSHIMA ET AL.: "Cathodoluminescence and Surface Flashover Properties of Aluminas in Vacuum", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN HODEN KENKYUKAI SHIRYO, vol. ED-99, no. 175-18, 18 November 1999 (1999-11-18), pages 37 - 42, XP008175243 *
HIDEHARU MATSUSHIMA ET AL.: "Cathodoluminescence and Vacuum Surface Flashover Properties of Alumina Processed by Diamond Turning Treatment", JOURNAL OF THE VACUUM SOCIETY OF JAPAN, vol. 44, no. 3, 20 March 2001 (2001-03-20), pages 367, XP008175223 *
See also references of EP2857373A4 *
TAKAYUKI SATO ET AL.: "Relation between Treatments for Alumina and Secondary Electron Emission Coefficients or Cathodoluminescence Spectra", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN HODEN KENKYUKAI SHIRYO, vol. ED-98, no. 199-20, 17 November 1998 (1998-11-17), pages 19 - 24, XP008175245 *
TOMOKI HAYAKAWA ET AL.: "Measurements of secondary electron emission characteristic of various types of alumina", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN HODEN KENKYUKAI SHIRYO, vol. ED-12, no. 29-37, 9 March 2012 (2012-03-09), pages 59 - 64, XP008175244 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144897A (ja) * 2013-01-30 2014-08-14 Kyocera Corp アルミナ質焼結体およびこれを用いた耐電圧部材
JPWO2020036097A1 (ja) * 2018-08-13 2021-08-10 京セラ株式会社 セラミック焼結体
JP7170729B2 (ja) 2018-08-13 2022-11-14 京セラ株式会社 セラミック焼結体

Also Published As

Publication number Publication date
EP2857373A4 (en) 2016-04-06
JP5918363B2 (ja) 2016-05-18
EP2857373B1 (en) 2020-08-12
US20150136452A1 (en) 2015-05-21
US9548142B2 (en) 2017-01-17
JPWO2013180289A1 (ja) 2016-01-21
EP2857373A1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
EP2375438B1 (en) Tungsten electrode material and method of manufacturing said material
US8482187B2 (en) Spark plug and process for producing spark plug
CN102474079B (zh) 火花塞
WO2014050433A1 (ja) フェライト焼結磁石及びその製造方法
JP2008143726A (ja) 多結晶透明y2o3セラミックス及びその製造方法
JP5918363B2 (ja) 高耐電圧アルミナ質焼結体および高耐電圧用部材
JP2013163614A (ja) 誘電体粉末及びこれを用いた積層セラミックコンデンサ並びに電子部品
Salim et al. The local structure of phosphor material, Sr2MgSi2O7 and Sr2MgSi2O7: Eu2+ by infrared spectroscopy
JP2015163569A (ja) アルミナ質焼結体および半導体製造装置用部材ならびに液晶パネル製造装置用部材
JP2016176007A (ja) Yag蛍光体用複合粒子、yag蛍光体及びその製造方法
JP6039495B2 (ja) アルミナ質焼結体およびこれを用いた耐電圧部材
JP6181520B2 (ja) アルミナ質焼結体および耐電圧部材ならびにマイクロ波透過窓
US20140302320A1 (en) Dielectric ceramic composition, dielectric ceramic, electronic device, and communication device
JP6730546B1 (ja) MnCoZn系フェライトおよびその製造方法
JP2015125896A (ja) アルミナ質焼結体およびこれを備える静電偏向器
JP6151522B2 (ja) アルミナ質焼結体およびこれを用いた耐電圧部材
WO2020158334A1 (ja) MnCoZn系フェライトおよびその製造方法
JPWO2020158335A1 (ja) MnZn系フェライトおよびその製造方法
JP2014141353A (ja) 導電性マイエナイト化合物を含む部材の製造方法
CN114315335B (zh) 铁氧体烧结体和线圈部件
JP6725774B2 (ja) 光波長変換部材及び発光装置
US20230257307A1 (en) Ceramic structure and electrostatic deflector
EP3832360A1 (en) Light wavelength conversion member and light-emitting device
JP2002037670A (ja) 窒化アルミニウム焼結体とその製造方法
US8545982B2 (en) Hexagonal type barium titanate powder, producing method thereof, dielectric ceramic composition and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518764

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013796404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14403752

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE