WO2013179667A1 - Tuyau sans soudure en acier inoxydable à haute résistance destiné à être utilisé comme tuyauterie de puits de pétrole et procédé de fabrication s'y rapportant - Google Patents

Tuyau sans soudure en acier inoxydable à haute résistance destiné à être utilisé comme tuyauterie de puits de pétrole et procédé de fabrication s'y rapportant Download PDF

Info

Publication number
WO2013179667A1
WO2013179667A1 PCT/JP2013/003411 JP2013003411W WO2013179667A1 WO 2013179667 A1 WO2013179667 A1 WO 2013179667A1 JP 2013003411 W JP2013003411 W JP 2013003411W WO 2013179667 A1 WO2013179667 A1 WO 2013179667A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
stainless steel
rolling
strength stainless
Prior art date
Application number
PCT/JP2013/003411
Other languages
English (en)
Japanese (ja)
Inventor
宮田 由紀夫
石黒 康英
和俊 石川
中橋 哲
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP13796392.2A priority Critical patent/EP2857530B1/fr
Priority to IN2395KON2014 priority patent/IN2014KN02395A/en
Priority to CA2872342A priority patent/CA2872342C/fr
Priority to BR112014029392-9A priority patent/BR112014029392B1/pt
Priority to RU2014153558/02A priority patent/RU2584100C1/ru
Priority to AU2013268908A priority patent/AU2013268908B2/en
Priority to ES13796392T priority patent/ES2708275T3/es
Priority to US14/403,731 priority patent/US20150101711A1/en
Priority to CN201380028317.XA priority patent/CN104379774B/zh
Publication of WO2013179667A1 publication Critical patent/WO2013179667A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a seamless steel pipe for oil wells (seamless steel for Oil Country Tubular Goods), and in particular, high strength stainless steel that combines excellent low-temperature toughness and excellent corrosion resistance (corrosion resistance). Regarding seamless pipes.
  • duplex stainless steel tubes have been used under such high temperature corrosive environment.
  • the duplex stainless steel pipe has a problem that it has a large amount of alloying elements and is inferior in hot workability, can only be produced by a special hot working method, and is expensive.
  • Patent Document 2 by mass, C: 0.001 to 0.05%, Si: 0.05 to 1%, Mn: 2% or less, Cr: 16 to 18%, Ni: 3.5 to 7%, Mo: 2% Super 4% or less, Cu: 1.5-4%, rare earth elements: 0.001-0.3%, sol.Al: 0.001-0.1%, Ca: 0.0001-0.3%, N: 0.05% or less, O: 0.05% or less Further, a steel pipe is obtained by hot working a billet containing one or more selected from the group consisting of Ti: 0.5% or less, Zr: 0.5% or less, Hf: 0.5% or less, and V: 0.5% or less.
  • JP 2005-336595 A Japanese Patent No. 4577457
  • Patent Document 2 has a problem that when the wall thickness exceeds 25.4 mm, the toughness is lowered and the desired high toughness and high strength cannot be combined. It was.
  • the present invention solves the problems of the prior art, and has a wall thickness of more than 25.4 mm, a yield strength of 110 ksi (758 MPa) or higher, and a Charpy impact test at a test temperature of ⁇ 10 ° C.
  • the purpose of the present invention is to provide a high-strength stainless steel seamless pipe for oil well pipes having a high toughness with an absorption energy vE- 10 of (Charpy impact test) of 40 J or more, and having excellent corrosion resistance, and a method for producing the same.
  • “excellent corrosion resistance” refers to a case where excellent CO 2 corrosion resistance is exhibited even in a corrosive environment containing CO 2 and Cl ⁇ at a high temperature of 230 ° C. or higher.
  • the present inventors first made extensive studies on various factors that affect toughness. As a result, in order to improve the toughness of the thick stainless steel pipe, it was first thought that it was necessary to refine the structure. In order to improve corrosion resistance, stainless steel with a composition containing 16 to 18% Cr and about 2 to 6% Ni will cause ferrite to crystallize during solidification and partially transform to austenite when cooled to room temperature. Some will do. However, since it does not disappear completely and remains, the crystal grain size can hardly be refined even by the subsequent heat treatment.
  • the present inventors have come up with the idea of adopting an interval GSI value (Grain Size Index) between each phase and between ferrite and austenite (martensite) as an index of structure refinement.
  • GSI value Gram Size Index
  • the toughness is improved in the stainless steel pipe having a composition containing 16 to 18% Cr and 2 to 6% Ni. I found it.
  • the gap GSI between the phases is narrowed by performing hot working in which the rolling reduction in a predetermined temperature range is a certain level or more. It was found that the toughness is remarkably improved.
  • a specimen for tissue observation was collected from the obtained steel pipe, polished, corroded with a vilella's reagent, and the structure was observed with an optical microscope (magnification: 400 times).
  • the GSI value was measured as an index of tissue refinement by image analysis on the obtained tissue photograph.
  • the GSI value was determined by measuring the number of ferrite-martensite grain boundaries per unit length (lines / mm) in the thickness direction using the obtained structure photograph.
  • Charpy impact test pieces (10 mm thick) were taken from the obtained steel pipe in the longitudinal direction of the pipe, and the absorbed energy vE ⁇ 10 (J) was measured at a test temperature of ⁇ 10 ° C.
  • the obtained results are organized by the relationship between vE- 10 and GSI values, and are shown in FIG.
  • the present invention has been completed based on such knowledge and further investigation. That is, the gist of the present invention is as follows.
  • a method of manufacturing a seamless steel pipe in which a steel pipe material is heated, subjected to hot rolling including piercing and rolling to form a seamless steel pipe, and further the seamless steel pipe is cooled to room temperature at a cooling rate higher than air cooling,
  • the steel pipe material is mass%, C: 0.005 to 0.06%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 18.0%, Ni : 1.5 to 5.0%, V: 0.02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less, Mo: 1.0 to 3.5%, W: 3.0% or less, Cu: One or two or more selected from 3.5% or less are expressed by the following formula (1): Cr + 0.65Ni + 0.60Mo + 0.30W + 0.55Cu-20C ⁇ 19.5 (1) (Here, Cr, Ni, Mo, W, Cu, C: content of each element (mass%)) And
  • the yield strength high strength of 110 ksi (758 MPa) or higher, high toughness with absorbed energy vE- 10 of Charpy impact test of 40 J or higher, and further excellent corrosion resistance
  • Thickness High-strength, high-strength stainless steel seamless pipe exceeding 25.4mm can be manufactured easily and inexpensively, and it has a remarkable industrial effect.
  • the manufacturing method of the high strength stainless steel seamless pipe for oil wells of this invention is demonstrated.
  • a steel pipe material is heated and subjected to hot rolling including piercing and rolling to obtain a seamless steel pipe.
  • the reasons for limiting the composition of the steel pipe material used in the present invention are as follows. Hereinafter, unless otherwise specified, mass% in the composition is simply expressed as%.
  • Steel pipe materials used in the present invention are: C: 0.005 to 0.06%, Si: 0.05 to 0.5%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 18.0%, Ni : 1.5 to 5.0%, V: 0.02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less, Mo: 1.0 to 3.5%, W: 3.0% or less, Cu: One or two or more selected from 3.5% or less are expressed by the following formula (1): Cr + 0.65Ni + 0.60Mo + 0.30W + 0.55Cu-20C ⁇ 19.5 (1) (Here, Cr, Ni, Mo, W, Cu, C: content of each element (mass%)) And the following formula (2): Cr + Mo + 0.50W + 0.30Si-43.5C-0.4Mn-Ni-0.3Cu-9N ⁇ 11.5 (2) (Here, Cr, Mo, W, Si, C, Mn, Ni, Cu, N: content of
  • C is an element related to an increase in strength of martensitic stainless steel.
  • a content of 0.005% or more is required.
  • C is limited to the range of 0.005 to 0.06%.
  • the content is 0.01 to 0.04%.
  • Si 0.05-0.5%
  • Si is an element that acts as a deoxidizing agent, and is contained in an amount of 0.05% or more in the present invention. However, if the content exceeds 0.5%, the CO 2 corrosion resistance is lowered, and further hot workability is lowered. For these reasons, Si was limited to the range of 0.05 to 0.5%. The content is preferably 0.1 to 0.4%.
  • Mn 0.2-1.8% Mn is an element that increases the strength, and is contained in an amount of 0.2% or more in order to ensure the desired high strength in the present invention. On the other hand, if it exceeds 1.8%, the toughness is adversely affected. Therefore, Mn is limited to the range of 0.2 to 1.8%. The content is preferably 0.2 to 0.8%.
  • P 0.03% or less
  • P is an element that lowers the corrosion resistance, and is desirably reduced as much as possible in the present invention. However, it can be carried out at a relatively low cost, and is acceptable if it is about 0.03% or less as a range in which the corrosion resistance is not reduced. For this reason, P was limited to 0.03% or less. In addition, since an extreme reduction leads to a rise in manufacturing cost, it is desirable to make it 0.005% or more.
  • S 0.005% or less S is an element that significantly reduces hot workability, and it is desirable to reduce it as much as possible. However, if it is 0.005% or less, pipes can be manufactured in a normal process and acceptable. For this reason, S was limited to 0.005% or less. In addition, since an extreme reduction leads to a rise in manufacturing cost, it is desirable to make it 0.0005% or more.
  • Cr 15.5-18.0%
  • Cr is an element that forms a protective film and improves corrosion resistance, and contributes particularly to improvement of CO 2 corrosion resistance.
  • the content of 15.5% or more is required from the viewpoint of improving the corrosion resistance at high temperatures.
  • the content exceeds 18%, the hot workability is lowered and the strength is lowered.
  • Cr was limited to the range of 15.5 to 18.0%.
  • the content is preferably 16.0 to 17.5%, more preferably 16.5 to 17.0%.
  • Ni 1.5-5.0%
  • Ni is an element that has a function of strengthening the protective film and improving the corrosion resistance, and further increasing the strength of the steel by solid solution. Such an effect becomes remarkable when the content is 1.5% or more.
  • the content exceeds 5.0%, the stability of the martensite phase decreases and the strength decreases. For this reason, Ni is limited to the range of 1.5 to 5.0%.
  • the content is preferably 3.0 to 4.5%.
  • V 0.02 to 0.2%
  • V contributes to an increase in strength by precipitation strengthening and has an effect of improving stress corrosion cracking resistance.
  • a content of 0.02% or more is required.
  • toughness will fall.
  • V is limited to the range of 0.02 to 0.2%.
  • the content is preferably 0.03 to 0.08%.
  • Al 0.002 to 0.05%
  • Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it needs to be contained in an amount of 0.002% or more.
  • alumina inclusions increase and ductility and toughness are lowered.
  • Al is limited to the range of 0.002 to 0.05%.
  • the content is 0.01 to 0.04%.
  • N 0.01-0.15%
  • N is an element that remarkably improves the pitting corrosion resistance.
  • N is required to be contained in an amount of 0.01% or more.
  • N is limited to a range of 0.01 to 0.15%. Note that the content is preferably 0.02 to 0.08%.
  • O 0.006% or less
  • O exists mainly as an oxide in steel and adversely affects ductility, toughness and the like. For this reason, it is desirable to reduce as much as possible. In particular, if it exceeds 0.006%, hot workability, toughness, and corrosion resistance are significantly reduced. For this reason, O was limited to 0.006% or less.
  • One or more selected from Mo: 1.0 to 3.5%, W: 3.0% or less, Cu: 3.5% or less Mo, W, and Cu are elements that improve corrosion resistance. Contains one or more.
  • Mo is, Cl - increases the resistance to pitting is an element contributing to the improvement of corrosion resistance, the content thereof needs to be 1.0% or more. On the other hand, if the content exceeds 3.5%, the strength decreases, the toughness also decreases, and the material cost increases. Therefore, when contained, Mo is limited to the range of 1.0 to 3.5%. Preferably, the content is 1.5 to 3.0%.
  • W is an element that contributes to improving corrosion resistance, and is preferably contained in an amount of 0.5% or more. However, if the content exceeds 3.0%, the toughness decreases and the material cost increases. For this reason, when it contained, W was limited to 3.0% or less of range. Preferably, the content is 0.5 to 2.5%.
  • Cu has the effect of strengthening the protective film and suppressing the penetration of hydrogen into the steel, contributing to the improvement of corrosion resistance.
  • it is desirable to contain 0.5% or more.
  • an excessive content exceeding 3.5% causes a decrease in hot workability.
  • the content is 0.5 to 2.5%.
  • Corrosion resistance (CO 2 corrosion resistance) is significantly improved. From the viewpoint of high temperature corrosion resistance, it is preferable to set the left side value of equation (1) to 20.0 or more.
  • the hot workability is improved and the martensitic stainless steel pipe is improved.
  • the hot workability necessary for pipe forming can be ensured.
  • the value on the left side of equation (2) is 12.5 or more.
  • the above composition is the basic composition, and in addition to these basic compositions, Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less Or 2 or more types and / or Ca: 0.01% or less can be contained.
  • Nb 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, B: 0.01% or less Nb, Ti, Zr, and B all have the strength of steel. It is an element that increases the resistance to stress corrosion cracking while increasing the amount, and can be selected as necessary and contained in one or more. In order to obtain such effects, it is desirable to contain Nb: 0.02% or more, Ti: 0.04% or more, Zr: 0.02% or more, and B: 0.001% or more. On the other hand, when Nb: 0.2%, Ti: 0.3%, Zr: 0.2%, and B: 0.01% are contained, the toughness decreases. For this reason, it is preferable to limit to Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, and B: 0.01% or less, respectively.
  • Ca 0.01% or less Ca is an element that spheroidizes sulfide inclusions and contributes to the morphology control function of sulfide, and can be contained as necessary.
  • the lattice strain of the matrix around the inclusions is reduced, and the hydrogen trapping ability of the inclusions is reduced.
  • a content exceeding 0.01% causes an increase in oxide inclusions, and the corrosion resistance is lowered. For this reason, when it contains, it is preferable to limit Ca to 0.01% or less.
  • the balance other than the above components is Fe and inevitable impurities.
  • the molten steel having a predetermined composition is made into a slab such as a billet by a conventional casting method such as a continuous casting method using a conventional melting method such as a steel converter. .
  • a billet or other steel slab may be formed by an ingot casting-blooming method.
  • a steel material having the above-described composition is heated and subjected to piercing rolling in the usual Mannesmann-plug mill method or Mannesmann-mandrel mill method.
  • the steel is subjected to hot rolling, and further cooled to room temperature at a cooling rate equal to or higher than that of air cooling to obtain a seamless steel pipe.
  • the wall thickness of the seamless steel pipe shall be more than 25.4mm. Needless to say, in order to secure such a thick seamless steel pipe, the size of the starting steel material is adjusted to an appropriate range.
  • Heating temperature of steel material 1100-1300 °C If the heating temperature of the steel material is less than 1100 ° C., the heating temperature is too low and the deformation resistance becomes high, and the load on the rolling mill becomes excessive, making it difficult to perform hot rolling. On the other hand, when the temperature is higher than 1300 ° C., the crystal becomes coarse and the toughness decreases, the amount of scale loss increases, and the yield decreases.
  • the heating temperature of the steel material is preferably set to 1100 to 1300 ° C. More preferably, it is 1200 to 1280 ° C.
  • the steel material heated to the above heating temperature is subjected to hot rolling including piercing rolling.
  • hot rolling it is usual to go through piercer mill (piercer mill), piercing mill, elongator mill, plug mill, realer mill, or even sizing mill.
  • piercer mill piercer mill
  • piercing mill elongator mill
  • plug mill plug mill
  • realer mill realer mill
  • even sizing mill Even sizing mill.
  • the Mannesmann-plug mill method or the piercing mill for performing piercing rolling, followed by the mandrel mill (reducer mill) and the normal mannesman-mandrel mill hot rolling, which are sequentially passed through, can be applied.
  • the hot rolling including the above-described piercing and rolling is a rolling in which the total rolling reduction in the temperature range of 1100 to 900 ° C. is 30% or more.
  • the rolling reduction in this temperature range is adjusted narrowly, and the refinement of the structure and, consequently, the improvement of toughness can be achieved.
  • the rolling reduction is adjusted in a temperature range other than the range of 1100 to 900 ° C., if the rolling reduction in the range of 1100 to 900 ° C. is outside the above-described appropriate range, the refinement of the structure in the present invention cannot be achieved.
  • the structure refinement referred to in the present invention that is, the number GSI of ferrite-austenite (martensite) grain boundaries per unit length in the thickness direction should be 120 or more. It becomes difficult. For this reason, it was decided to adjust the rolling reduction in the range of 1100 to 900 ° C. to 30% or more. Thereby, the interval between the grain boundaries of ferrite-austenite (martensite) can be reduced to a predetermined value or less, and refinement of the structure can be achieved even in a thick-walled steel pipe, thereby improving toughness.
  • the upper limit of the rolling reduction in this temperature range is not particularly limited.
  • the seamless steel pipe that has been subjected to hot rolling as described above is then cooled to room temperature at a cooling rate equal to or higher than that of air cooling. If it is a steel pipe of the composition range of this invention, it can be set as the structure
  • the cooled seamless steel pipe is then subjected to a heat treatment comprising a quenching and tempering treatment.
  • the quenching treatment is performed by quenching with water after heating to a quenching heating temperature of 850 ° C. or higher and 1000 ° C. or lower. If the quenching heating temperature is less than 850 ° C., the transformation to martensite is not sufficient, and the desired high strength cannot be secured. In addition, an intermetallic compound is formed, which may reduce toughness and corrosion resistance. On the other hand, at a high temperature exceeding 1000 ° C., the ratio of martensite to be generated becomes high and the strength becomes too high. Therefore, the quenching heating temperature is preferably limited to the range of 850 to 1000 ° C.
  • the holding time for quenching heating is not particularly limited. However, 10 to 30 min is preferable from the viewpoint of productivity. A more preferable heating temperature is 920 to 980 ° C.
  • the tempering temperature is heated to 400 to 700 ° C., and then cooled at a cooling rate higher than air cooling.
  • the tempering temperature is less than 400 ° C.
  • the tempering temperature is preferably limited to a temperature in the range of 400 to 700 ° C.
  • the holding time for tempering heating is not particularly limited. However, 20 to 60 min is preferable from the viewpoint of productivity.
  • a more preferable tempering temperature is 550 to 650 ° C.
  • the seamless steel pipe obtained by the manufacturing method described above is composed of a martensite phase as a main phase and a ferrite phase having a volume ratio of 10 to 60% and a 0 to 10% austenite phase as a second phase. Become. And a structure having a GSI value defined as the number of ferrite-martensite grain boundaries existing per unit length of the line segment drawn in the thickness direction is 120 or more at the thickness center, thickness: 25.4 High-strength stainless steel seamless pipe for oil wells with a thickness of more than mm.
  • the martensite phase is the main phase
  • the volume ratio is 10 to 60% ferrite phase
  • 0 to 10% austenite phase is the second phase.
  • the volume fraction of the ferrite phase is less than 10%
  • the hot workability decreases.
  • the ferrite phase exceeds 60%
  • the strength and toughness decrease.
  • an austenite phase of 10% or less is conceivable, but from the viewpoint of securing the strength, it is preferably as small as possible, including 0%. If the austenite phase exceeds 10%, the desired high strength cannot be secured.
  • the steel pipe of the present invention is defined as the number of ferrite-martensite grain boundaries existing per unit length of the line segment composed of the martensite phase and ferrite phase, or further retained austenite phase, and drawn in the thickness direction. Have a GSI value of 120 or more at the thickness center. If the GSI value is less than 120, the structure cannot be refined and the desired toughness cannot be stably secured.
  • the GSI value (lines / mm) was determined by corroding the ferrite in the thickness direction using a structural photograph obtained by corroding with Virella etchant and observing with an optical microscope (magnification: 100 to 1000 times). This is a value obtained by measuring the number of martensite grain boundaries (lines / mm).
  • the present invention will be further described based on examples.
  • billets (diameter 260 mm: steel material) were formed by a continuous casting method.
  • the obtained steel material is heated to the temperature shown in Table 2, and then the normal Mannesmann-plug mill type hot rolling through a piercer mill, an elongator mill, a plug mill, a reeler mill, or a sizing mill in sequence is performed at 1100-900.
  • the rolling reduction in the temperature range of ° C. was performed so as to satisfy the conditions shown in Table 2, and a seamless steel pipe (outer diameter 168.3 to 297 mm ⁇ ⁇ thickness 26 to 34 mm) was obtained.
  • the obtained seamless steel pipe was further quenched and tempered under the conditions shown in Table 2.
  • Test pieces were collected from the obtained steel pipes and examined for structure observation, tensile properties, toughness, and corrosion resistance.
  • the survey method was as follows.
  • (1) Microstructure observation A specimen for microstructural observation is taken from the thickness center of the obtained steel pipe, the cross section in the thickness direction is polished, corroded with villera etchant, and optical microscope (magnification: The tissue was observed at 100 to 1000 times. From the obtained structure photograph, the type of structure was determined, and the fraction (volume ratio) of the ferrite phase was calculated using image analysis.
  • the austenite ( ⁇ ) phase was measured using an X-ray diffraction method.
  • I ⁇ Integral intensity of ⁇
  • I ⁇ integrated intensity of ⁇
  • R ⁇ Crystallographic theoretical calculation value of ⁇
  • R ⁇ Conversion was performed using a crystallographic theoretical calculation value of ⁇ .
  • the fraction of the martensite phase was calculated as the remainder other than these phases.
  • tissue observation was corroded with the Virella etching liquid, and was observed with the optical microscope (magnification: 400 times). From the obtained structure photograph, the number of ferrite-martensite grain boundaries (lines / mm) was measured in the thickness direction, and the GSI value was calculated.
  • (2) Tensile properties Strip specimen specified by API standard distance from the center of the thickness of the obtained steel pipe in accordance with the API standard so that the tensile direction is the pipe axis direction length 50.8 mm) was collected. Tensile tests were performed in accordance with API standards, and tensile properties (yield strength YS, tensile strength TS, elongation El) were measured.
  • a corrosion test piece (size: 3 mm thickness x 25 mm width x 50 mm length) was sampled from the thickness center of the obtained steel pipe and subjected to a corrosion test.
  • the corrosion test was performed by dipping the corrosion test piece in a 20% NaCl aqueous solution (liquid temperature: 230 ° C., saturated with 3.0 MPa of CO 2 gas) held in the autoclave, and dipping period: 14 days. After the test, the weight was measured, and the corrosion rate calculated from the weight loss of the test piece was obtained.
  • the corrosion test piece after the test was observed with a magnifying glass having a magnification of 50 times, and the presence or absence of pitting corrosion was observed. Pitting corrosion was observed when pitting corrosion with a diameter of 0.2 mm or more was observed.
  • All of the examples of the present invention have high strength of 758 MPa (110 ksi) or more and high toughness of vE ⁇ 10 (J): 40 J or more, despite being a thick steel pipe.
  • CO 2 at high temperatures - even in a severe environment containing, corrosion weight loss in less than 0.127 mm / y, and has a steel pipe having a good corrosion resistance of no occurrence of pitting.
  • the comparative example which does not fall within the scope of the present invention does not ensure the desired high strength, or the GSI is less than 120 and vE ⁇ 10 (J): less than 40 J and high toughness is not stably obtained. Or the corrosion resistance is reduced when the corrosion weight loss exceeds 0.127 mm / y.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

L'invention porte sur un tuyau sans soudure en acier inoxydable à haute résistance destiné à être utilisé comme tuyauterie de puits de pétrole qui a une épaisseur de paroi dépassant 25,4 mm, qui a un nominal supérieur ou égal à 110 ksi (758 MPa), qui présente une valeur de vE-10 supérieure ou égale à 40 J et qui présente une excellente résistance à la corrosion dans un environnement corrosif à haute température. Le tuyau sans soudure en acier est obtenu par chauffage et laminage à chaud d'un matériau en acier dont la composition comprend, en termes de % en masse, 0,005 à 0,06 % de C, 0,05 à 0,5 % de Si, 0,2 à 1,8 % de Mn, 15,5 à 18,0 % de Cr, 1,5 à 5,0 % de Ni, 0,02 à 0,2 % de V, 0,002 à 0,05 % d'Al, 0,01 à 0,15 % de N, et 0,006 % ou moins de O et comprend de plus 1,0 à 3,5 % de Mo et/ou 3,0 % ou moins de W et/ou 3,5 % ou moins de Cu afin de satisfaire aux relations [Cr + 0,65Ni + 0,60Mo + 0,30W + 0,55Cu - 20C ≧ 19,5] et [Cr + Mo + 0,50W + 0,30Si - 43,5C - 0,4Mn - Ni - 0,3Cu - 9N ≧ 11,5]. A cet égard, le laminage à chaud est effectué afin d'atteindre un taux de réduction par laminage total supérieur ou égal à 30 % dans la plage de température comprise entre 1 100 et 900°C. Une fois le laminage à chaud terminé, un refroidissement est effectué à une vitesse de refroidissement supérieure à celle du refroidissement à l'air et un traitement de durcissement-trempe est effectué.
PCT/JP2013/003411 2012-05-31 2013-05-30 Tuyau sans soudure en acier inoxydable à haute résistance destiné à être utilisé comme tuyauterie de puits de pétrole et procédé de fabrication s'y rapportant WO2013179667A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP13796392.2A EP2857530B1 (fr) 2012-05-31 2013-05-30 Procédé de fabrication d'un tuyau sans soudure en acier inoxydable à haute résistance destiné à être utilisé comme tuyauterie de puits de pétrole
IN2395KON2014 IN2014KN02395A (fr) 2012-05-31 2013-05-30
CA2872342A CA2872342C (fr) 2012-05-31 2013-05-30 Tuyau sans soudure en acier inoxydable a haute resistance destine a etre utilise comme tuyauterie de puits de petrole et procede de fabrication s'y rapportant
BR112014029392-9A BR112014029392B1 (pt) 2012-05-31 2013-05-30 Tubo de aço inoxidável sem costura de alta resistência para materiais tubulares de campos petrolíferos e método para produção do mesmo
RU2014153558/02A RU2584100C1 (ru) 2012-05-31 2013-05-30 Высокопрочная бесшовная труба из нержавеющей стали нефтепромыслового сортамента и способ её изготовления
AU2013268908A AU2013268908B2 (en) 2012-05-31 2013-05-30 High-strength seamless stainless steel tube for oil country tubular goods and method for manufacturing the same
ES13796392T ES2708275T3 (es) 2012-05-31 2013-05-30 Procedimiento para la fabricación de tubos sin soldadura de acero inoxidable de alta resistencia para utilizarse en tuberías de pozos petrolíferos
US14/403,731 US20150101711A1 (en) 2012-05-31 2013-05-30 High-strength seamless stainless steel tube for oil country tubular goods and method of manufacturing the same
CN201380028317.XA CN104379774B (zh) 2012-05-31 2013-05-30 油井管用高强度不锈钢无缝管及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-125126 2012-05-31
JP2012125126A JP5488643B2 (ja) 2012-05-31 2012-05-31 油井管用高強度ステンレス鋼継目無管およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013179667A1 true WO2013179667A1 (fr) 2013-12-05

Family

ID=49672883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003411 WO2013179667A1 (fr) 2012-05-31 2013-05-30 Tuyau sans soudure en acier inoxydable à haute résistance destiné à être utilisé comme tuyauterie de puits de pétrole et procédé de fabrication s'y rapportant

Country Status (11)

Country Link
US (1) US20150101711A1 (fr)
EP (1) EP2857530B1 (fr)
JP (1) JP5488643B2 (fr)
CN (1) CN104379774B (fr)
AU (1) AU2013268908B2 (fr)
BR (1) BR112014029392B1 (fr)
CA (1) CA2872342C (fr)
ES (1) ES2708275T3 (fr)
IN (1) IN2014KN02395A (fr)
RU (1) RU2584100C1 (fr)
WO (1) WO2013179667A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966525A (zh) * 2014-05-21 2014-08-06 攀钢集团江油长城特殊钢有限公司 一种高铬高钼铁素体不锈钢无缝管材及其制造方法
WO2016132403A1 (fr) * 2015-02-20 2016-08-25 Jfeスチール株式会社 Tube d'acier haute résistance sans soudure à paroi épaisse et son procédé de production
WO2017010036A1 (fr) * 2015-07-10 2017-01-19 Jfeスチール株式会社 Tube sans soudure en acier inoxydable à résistance élevée et son procédé de fabrication
JP6156609B1 (ja) * 2016-02-08 2017-07-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2017138050A1 (fr) * 2016-02-08 2017-08-17 Jfeスチール株式会社 Tube sans soudure en acier inoxydable à haute résistance pour puits de pétrole et procédé pour le fabriquer
EP3246418A4 (fr) * 2015-01-15 2017-11-22 JFE Steel Corporation Tube d'acier inoxydable sans soudure pour puits de pétrole, et son procédé de fabrication
US10378079B2 (en) 2015-08-04 2019-08-13 Nippon Steel Corporation Stainless steel and stainless steel product for oil well
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967066B2 (ja) 2012-12-21 2016-08-10 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
KR101554787B1 (ko) 2013-12-24 2015-09-21 주식회사 포스코 내식성 및 열가공성이 우수한 슈퍼 듀플렉스 스테인리스강
CN105463562A (zh) * 2014-09-05 2016-04-06 上海金保莱不锈钢有限公司 一种耐负离子腐蚀的无缝不锈钢管的制造方法
JP6315076B2 (ja) * 2014-11-18 2018-04-25 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
WO2016079920A1 (fr) * 2014-11-19 2016-05-26 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable à haute résistance pour des puits de pétrole
WO2016084298A1 (fr) 2014-11-27 2016-06-02 Jfeスチール株式会社 Ensemble de dispositifs permettant de fabriquer un tuyau, ou un tube, en acier sans soudure et procédé de fabrication de tuyau ou de tube sans soudure en acier inoxydable duplex à l'aide de ce dernier
JP6202010B2 (ja) * 2015-01-16 2017-09-27 Jfeスチール株式会社 高強度2相ステンレス継目無鋼管の製造方法
JP6206423B2 (ja) * 2015-01-22 2017-10-04 Jfeスチール株式会社 低温靭性に優れた高強度ステンレス厚鋼板およびその製造方法
JP6292142B2 (ja) * 2015-02-06 2018-03-14 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
JP6341125B2 (ja) * 2015-03-17 2018-06-13 Jfeスチール株式会社 2相ステンレス継目無鋼管の製造方法
JP6341181B2 (ja) * 2015-03-25 2018-06-13 Jfeスチール株式会社 二相ステンレス継目無鋼管の製造方法
JP6686320B2 (ja) * 2015-08-05 2020-04-22 日本製鉄株式会社 ステンレス鋼管の製造方法
JP6515340B2 (ja) * 2015-08-18 2019-05-22 日本製鉄株式会社 油井管
JP6409827B2 (ja) * 2015-08-18 2018-10-24 Jfeスチール株式会社 油井用継目無ステンレス鋼管の製造方法
JP6604093B2 (ja) * 2015-09-01 2019-11-13 日本製鉄株式会社 油井管
CN106399865A (zh) * 2016-11-17 2017-02-15 无锡明盛纺织机械有限公司 一种循环流化床锅炉用耐高温抗磨蚀材料
US11306369B2 (en) * 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
JP6787483B2 (ja) * 2017-03-28 2020-11-18 日本製鉄株式会社 マルテンサイトステンレス鋼材
CN107433428A (zh) * 2017-08-22 2017-12-05 苏州双金实业有限公司 一种易操作不锈钢钢管的加工方法
EP3822381A4 (fr) * 2018-07-09 2022-01-26 Nippon Steel Corporation Tube en acier sans soudure et son procédé de fabrication
CN116121664A (zh) * 2022-12-13 2023-05-16 钢铁研究总院有限公司 一种高耐蚀高韧性经济型钢及其制备方法
CN116145051A (zh) * 2022-12-13 2023-05-23 钢铁研究总院有限公司 一种高耐蚀经济型油井管钢及其制备方法
CN116732297B (zh) * 2023-08-16 2023-10-20 中北大学 一种含铌高强双相钢及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042793A1 (fr) * 2003-10-31 2005-05-12 Jfe Steel Corporation Tuyau en acier inoxydable haute resistance pour une canalisation presentant une excellente resistance a la corrosion, et procede de production associe
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2010050519A1 (fr) * 2008-10-30 2010-05-06 住友金属工業株式会社 Tuyau en acier inoxydable à haute limite élastique présentant une résistance élevée à la corrosion fissurante en présence d'hydrogène sulfuré et une résistance à la corrosion en présence de dioxyde de carbone à haute température
JP4577457B2 (ja) 2008-03-28 2010-11-10 住友金属工業株式会社 油井管に用いられるステンレス鋼
WO2010134498A1 (fr) * 2009-05-18 2010-11-25 住友金属工業株式会社 Acier inoxydable pour puits de pétrole, tuyau en acier inoxydable pour puits de pétrole et procédé de production d'un acier inoxydable pour puits de pétrole
WO2011136175A1 (fr) * 2010-04-28 2011-11-03 住友金属工業株式会社 Acier inoxydable haute résistance pour puits de pétrole et tube d'acier inoxydable haute résistance pour puits de pétrole

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe
JP4462005B2 (ja) * 2003-10-31 2010-05-12 Jfeスチール株式会社 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
CN100497705C (zh) * 2003-10-31 2009-06-10 杰富意钢铁株式会社 耐腐蚀性优良的管线管用高强度不锈钢管及其制造方法
JP4792778B2 (ja) * 2005-03-29 2011-10-12 住友金属工業株式会社 ラインパイプ用厚肉継目無鋼管の製造方法
CN1840731A (zh) * 2005-03-31 2006-10-04 住友金属工业株式会社 机械结构部件用无缝钢管的制造方法
JP4635764B2 (ja) * 2005-07-25 2011-02-23 住友金属工業株式会社 継目無鋼管の製造方法
EP2389181A1 (fr) * 2009-01-26 2011-11-30 NeuroSearch A/S Nouveaux dérivés d'indolyl-oxadiazolyl-diazabicyclononane et leur utilisation médicale et diagnostique
JP4748283B2 (ja) * 2009-08-21 2011-08-17 住友金属工業株式会社 厚肉継目無鋼管の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
WO2005042793A1 (fr) * 2003-10-31 2005-05-12 Jfe Steel Corporation Tuyau en acier inoxydable haute resistance pour une canalisation presentant une excellente resistance a la corrosion, et procede de production associe
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP4577457B2 (ja) 2008-03-28 2010-11-10 住友金属工業株式会社 油井管に用いられるステンレス鋼
WO2010050519A1 (fr) * 2008-10-30 2010-05-06 住友金属工業株式会社 Tuyau en acier inoxydable à haute limite élastique présentant une résistance élevée à la corrosion fissurante en présence d'hydrogène sulfuré et une résistance à la corrosion en présence de dioxyde de carbone à haute température
WO2010134498A1 (fr) * 2009-05-18 2010-11-25 住友金属工業株式会社 Acier inoxydable pour puits de pétrole, tuyau en acier inoxydable pour puits de pétrole et procédé de production d'un acier inoxydable pour puits de pétrole
WO2011136175A1 (fr) * 2010-04-28 2011-11-03 住友金属工業株式会社 Acier inoxydable haute résistance pour puits de pétrole et tube d'acier inoxydable haute résistance pour puits de pétrole

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857530A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966525A (zh) * 2014-05-21 2014-08-06 攀钢集团江油长城特殊钢有限公司 一种高铬高钼铁素体不锈钢无缝管材及其制造方法
US20170369963A1 (en) * 2015-01-15 2017-12-28 Jfe Steel Corporation Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same
US11193179B2 (en) * 2015-01-15 2021-12-07 Jfe Steel Corporation Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same
EP3246418A4 (fr) * 2015-01-15 2017-11-22 JFE Steel Corporation Tube d'acier inoxydable sans soudure pour puits de pétrole, et son procédé de fabrication
WO2016132403A1 (fr) * 2015-02-20 2016-08-25 Jfeスチール株式会社 Tube d'acier haute résistance sans soudure à paroi épaisse et son procédé de production
JP6037031B1 (ja) * 2015-02-20 2016-11-30 Jfeスチール株式会社 高強度継目無厚肉鋼管およびその製造方法
US10837073B2 (en) 2015-02-20 2020-11-17 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same
US20180023158A1 (en) * 2015-02-20 2018-01-25 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same
CN107250405A (zh) * 2015-02-20 2017-10-13 杰富意钢铁株式会社 高强度无缝厚壁钢管及其制造方法
EP3260564A4 (fr) * 2015-02-20 2017-12-27 JFE Steel Corporation Tube d'acier haute résistance sans soudure à paroi épaisse et son procédé de production
WO2017010036A1 (fr) * 2015-07-10 2017-01-19 Jfeスチール株式会社 Tube sans soudure en acier inoxydable à résistance élevée et son procédé de fabrication
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
JPWO2017010036A1 (ja) * 2015-07-10 2017-07-13 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
US10378079B2 (en) 2015-08-04 2019-08-13 Nippon Steel Corporation Stainless steel and stainless steel product for oil well
WO2017138050A1 (fr) * 2016-02-08 2017-08-17 Jfeスチール株式会社 Tube sans soudure en acier inoxydable à haute résistance pour puits de pétrole et procédé pour le fabriquer
US11085095B2 (en) 2016-02-08 2021-08-10 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe
JP6156609B1 (ja) * 2016-02-08 2017-07-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same

Also Published As

Publication number Publication date
BR112014029392B1 (pt) 2019-09-24
ES2708275T3 (es) 2019-04-09
JP5488643B2 (ja) 2014-05-14
CN104379774B (zh) 2017-04-26
RU2584100C1 (ru) 2016-05-20
JP2013249516A (ja) 2013-12-12
AU2013268908B2 (en) 2016-01-28
BR112014029392A2 (pt) 2017-06-27
CN104379774A (zh) 2015-02-25
US20150101711A1 (en) 2015-04-16
IN2014KN02395A (fr) 2015-05-01
CA2872342C (fr) 2018-07-17
EP2857530A1 (fr) 2015-04-08
CA2872342A1 (fr) 2013-12-05
EP2857530B1 (fr) 2018-12-12
EP2857530A4 (fr) 2015-11-04
AU2013268908A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5488643B2 (ja) 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP6399259B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP5967066B2 (ja) 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP6227664B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP5861786B2 (ja) 油井用ステンレス継目無鋼管およびその製造方法
JP5924256B2 (ja) 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
JP5348354B1 (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
JP6358411B1 (ja) 二相ステンレス鋼およびその製造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
WO2011136175A1 (fr) Acier inoxydable haute résistance pour puits de pétrole et tube d'acier inoxydable haute résistance pour puits de pétrole
JP6409827B2 (ja) 油井用継目無ステンレス鋼管の製造方法
WO2018079111A1 (fr) Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et procédé de production de tuyau sans soudure
JP6229794B2 (ja) 油井用継目無ステンレス鋼管およびその製造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
JP6540920B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6672620B2 (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
JP4470617B2 (ja) 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP7279863B2 (ja) ステンレス鋼管およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2872342

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013268908

Country of ref document: AU

Date of ref document: 20130530

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013796392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14403731

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014153558

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014029392

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014029392

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141125