WO2019225281A1 - Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production - Google Patents
Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production Download PDFInfo
- Publication number
- WO2019225281A1 WO2019225281A1 PCT/JP2019/017539 JP2019017539W WO2019225281A1 WO 2019225281 A1 WO2019225281 A1 WO 2019225281A1 JP 2019017539 W JP2019017539 W JP 2019017539W WO 2019225281 A1 WO2019225281 A1 WO 2019225281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel pipe
- martensitic stainless
- stainless steel
- oil well
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a martensitic stainless seamless steel pipe for oil well pipes used in oil wells and gas wells (hereinafter simply referred to as oil wells) for crude oil or natural gas and a method for producing the same, and in particular, when the yield stress YS is 758 MPa or more.
- the present invention relates to a method for producing a martensitic stainless steel seamless pipe for oil well pipes having excellent resistance to sulfide stress corrosion cracking (SSC resistance) in an environment containing hydrogen sulfide (H 2 S).
- 13% Cr martensitic stainless steel pipes are often used as oil well pipes for mining in environmental oil fields and gas fields containing carbon dioxide, chlorine ions, and the like.
- development of oil fields, etc. in extremely severe corrosive environments containing hydrogen sulfide has been carried out on a global scale, so the demand for SSC resistance is increasing, and component systems with reduced C and increased Ni and Mo
- the use of improved 13% Cr martensitic stainless steel pipes is also expanding.
- Patent Document 1 13% Cr steel is used as the basic composition, C is significantly reduced compared to the prior art, Ni, Mo, and Cu are contained, Cr + 2Ni + 1.1Mo + 0.7Cu ⁇ 32.5 is satisfied, and Nb: 0.20% or less , V: One or two of 0.20% or less are included so as to satisfy the condition of Nb + V ⁇ 0.05%, yield stress: high strength of 965MPa or more, and Charpy at -40 °C It has high toughness with absorbed energy of 50J or more, and good corrosion resistance can be secured.
- Patent Document 2 describes a 13% Cr martensitic stainless steel pipe of a component system containing an extremely low C content of 0.015% or less and Ti of 0.03% or more, and has a high strength of a yield stress of 95 ksi class, The HRC has a low hardness of less than 27 and has excellent SSC resistance.
- Patent Document 3 describes martensitic stainless steel in which Ti / C having a correlation with a value obtained by subtracting yield stress from tensile stress satisfies 6.0 ⁇ Ti / C ⁇ 10.1. According to the described technique, the value obtained by subtracting the yield stress from the tensile stress is 20.7 MPa or more, and it is possible to suppress variation in hardness that reduces the SSC resistance.
- the amount of Mo in the steel is specified by Mo ⁇ 2.3 ⁇ 0.89Si + 32.2C, and the metal structure is mainly tempered martensite, carbides precipitated during tempering, and Laves phase precipitated finely during tempering. And martensitic stainless steel composed of intermetallic compounds such as ⁇ phase and the like. According to the described technology, 0.2% proof stress can achieve a high strength of 860 MPa or more, and has excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance.
- Patent Document 2 the resistance to sulfide stress corrosion cracking can be maintained under the condition that a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
- a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
- Patent Document 3 an atmosphere in which a 20% NaCl aqueous solution (H 2 S: 0.03 bar, CO 2 bal.) Is adjusted to pH: 4.5 is used.
- Patent Document 4 a 25% NaCl aqueous solution (H 2 S: 0.03) is used. bar, CO 2 bal) is said to have resistance to sulfide stress corrosion cracking in an atmosphere adjusted to pH 4.0.
- the resistance to sulfide stress corrosion cracking in atmospheres other than those described above has not been studied, and it is difficult to say that it has the resistance to sul
- An object of the present invention is to provide a martensitic stainless seamless steel pipe for oil well pipes having a yield stress of 758 MPa or more and having excellent resistance to sulfide stress corrosion cracking, and a method for producing the same.
- excellent resistance to sulfide stress corrosion cracking refers to a test solution: 20 wt% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 0.1 bar, CO 2 bal), Na acetate + acetic acid
- the test piece is immersed in an aqueous solution adjusted to pH: 4.0, the immersion time is set to 720 hours, 90% of the yield stress is applied as the load stress, and the test piece after the test is cracked. The case where it does not occur shall be said.
- the inventors of the present invention have a 13% Cr stainless steel pipe as a basic composition, and are resistant to sulfide stress corrosion cracking in a corrosive environment containing CO 2 , Cl ⁇ and H 2 S (The effect of various alloying elements on SSC resistance was studied. As a result, each component is contained within the specified range, and C, Mn, Cr, Cu, Ni, Mo, N, Ti, and Nb and W as necessary are adjusted to satisfy the appropriate relational expression. By applying appropriate quenching and tempering treatment, the stress in the corrosive atmosphere containing CO 2 , Cl ⁇ , and H 2 S can be obtained in the vicinity of the yield stress. It was found that a martensitic stainless steel seamless steel pipe for oil well pipes having excellent SSC resistance in a loaded environment can be obtained.
- the present invention has been completed by further studies based on the above findings. That is, the gist of the present invention is as follows. [1] By mass%, C: 0.010% or more, Si: 0.5% or less, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0.005% or less, Ni: 4.6 to 8.0%, Cr: 10.0 to 14.0 %, Mo: 1.0 to 2.7%, Al: 0.1% or less, V: 0.005 to 0.2%, N: 0.1% or less, Ti: 0.010 to 0.054%, Cu: 0.01 to 1.0%, Co: 0.01 to 1.0%
- the following formulas (1) and (2) satisfy the following (3), the composition is composed of the remaining Fe and inevitable impurities, and has a yield stress of 758 MPa or more. Martensitic stainless steel seamless for oil well pipes Steel pipe.
- the marten for oil country tubular goods according to [1] wherein the composition further includes one or two selected from Nb: 0.1% or less and W: 1.0% or less by mass%.
- Site-based stainless steel seamless pipe [3]
- the martensitic stainless steel seamless steel pipe for oil country tubular goods according to [1] or [2] which has a composition to be contained.
- the present invention has excellent sulfide stress corrosion cracking resistance (SSC resistance) in a corrosive environment containing CO 2 , Cl ⁇ , and H 2 S, and has a yield stress YS of 758 MPa or more.
- SSC resistance sulfide stress corrosion cracking resistance
- a martensitic stainless steel seamless pipe for oil well pipes having strength can be obtained.
- C 0.010% or more C has an effect of securing an effective Cr amount and ensuring corrosion resistance. For this reason, C was limited to 0.010% or more. On the other hand, when it contains excessively, hardness will become high and sulfide stress corrosion cracking sensitivity will increase. For this reason, it is desirable to contain 0.040% or less. Therefore, it is preferably 0.010 to 0.040%.
- Si 0.5% or less Since Si acts as a deoxidizing agent, it is desirable to contain 0.05% or more. On the other hand, the content exceeding 0.5% lowers the carbon dioxide gas corrosion resistance and hot workability. For this reason, Si was limited to 0.5% or less. Preferably, it is 0.10% or more, preferably 0.30% or less from the viewpoint of securing stable strength.
- Mn 0.05-0.50%
- Mn is an element that improves hot workability and strength, and is contained in an amount of 0.05% or more in order to ensure the necessary strength.
- MnS precipitates and the resistance to sulfide stress corrosion cracking is lowered. Therefore, Mn is limited to 0.05 to 0.50%. Preferably, it is 0.40% or less. Moreover, Preferably, it is 0.10% or more.
- P 0.030% or less
- P is an element that lowers both carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and is desirably reduced as much as possible in the present invention.
- extreme reduction increases manufacturing costs.
- P is limited to 0.030% or less as a range that does not cause an extreme deterioration in characteristics and can be industrially inexpensively implemented.
- Preferably it is 0.015% or less.
- S 0.005% or less Since S is an element that significantly reduces hot workability, it is desirable to reduce it as much as possible. By reducing the S content to 0.005% or less, pipe production in a normal process becomes possible, so S in the present invention is limited to 0.005% or less. In addition, Preferably it is 0.002% or less.
- Ni 4.6-8.0%
- Ni is an element that increases the strength of the steel by strengthening the protective film and improving the corrosion resistance and further solid solution. In order to acquire such an effect, the content of 4.6% or more is required. On the other hand, if the content exceeds 8.0%, the stability of the martensite phase decreases and the strength decreases. Therefore, Ni is limited to 4.6-8.0%. In addition, Preferably it is 5.0% or more, Preferably it is 7.5% or less.
- Cr 10.0-14.0%
- Cr is an element that improves the corrosion resistance by forming a protective film, and the content of 10.0% or more can ensure the corrosion resistance required for oil well pipes. On the other hand, if the content exceeds 14.0%, the formation of ferrite becomes easy, and the stability of the martensite phase cannot be secured. Therefore, Cr is limited to 10.0-14.0%. In addition, Preferably it is 11.0% or more, Preferably it is 13.5% or less.
- Mo 1.0-2.7%
- Mo is Cl - is an element which improves the resistance to pitting, in order to obtain the corrosion resistance necessary for severe corrosive environment, it is necessary to contain at least 1.0%.
- Mo is limited to 1.0-2.7%.
- it is 1.5% or more, Preferably it is 2.5% or less.
- Al 0.1% or less Since Al acts as a deoxidizer, the content of 0.01% or more is effective for obtaining such an effect. However, since the content exceeding 0.1% adversely affects toughness, Al in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.01% or more, Preferably it is 0.03% or less.
- V 0.005-0.2%
- V is required to be contained in an amount of 0.005% or more in order to improve the strength of steel by precipitation strengthening and further improve the resistance to sulfide stress corrosion cracking.
- the content exceeds 0.2%, the toughness decreases, so V in the present invention is limited to 0.005 to 0.2%.
- it is 0.01% or more, Preferably it is 0.1% or less.
- N 0.1% or less N has the effect of improving the pitting corrosion resistance and increasing the strength by dissolving in steel. However, if the content exceeds 0.1%, a large amount of various nitride inclusions are formed, and the pitting corrosion resistance is lowered. Therefore, N in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.010% or less.
- Ti 0.010-0.054% Ti fixes C and suppresses strength variation. In order to obtain such an effect, a content of 0.010% or more is required. On the other hand, if the content exceeds 0.054%, TiN having a thickness of 5 ⁇ m or more, which can be the starting point of pitting corrosion, is generated, and the resistance to sulfide stress corrosion cracking deteriorates. Therefore, Ti is limited to 0.010 to 0.054%. In addition, Preferably it is 0.015% or more, Preferably it is 0.050% or less.
- Cu 0.01 to 1.0%
- Cu is contained in an amount of 0.01% or more in order to strengthen the protective film and improve the resistance to sulfide stress corrosion cracking. However, if the content exceeds 1.0%, CuS is precipitated and the hot workability is lowered. Therefore, Cu is limited to 0.01 to 1.0%. In addition, Preferably it is 0.03% or more, Preferably it is 0.6% or less.
- Co 0.01-1.0%
- Co is an element that increases the Ms point and promotes ⁇ transformation, thereby reducing hardness and improving pitting corrosion resistance. In order to obtain such an effect, a content of 0.01% or more is required. On the other hand, excessive content may reduce toughness and further increase material costs. Also, the resistance to sulfide stress corrosion cracking is reduced. Therefore, Co in the present invention is limited to 0.01 to 1.0%. More preferably, it is 0.03% or more, preferably 0.6% or less.
- Equation (1) is an equation that correlates with the repassivation potential
- Equation (2) is an equation that correlates with the pitting corrosion potential.
- Formula (2) satisfies the range of (3) while containing C, Mn, Cr, Cu, Ni, Mo, W, N, and Ti so that the formula satisfies the range of (3).
- the inclusion of C, Mn, Cr, Cu, Ni, Mo, W, N, and Ti facilitates the regeneration of the passive film, and further, pitting corrosion that is the starting point of sulfide stress corrosion cracking.
- Nb can reduce the solid solution carbon and reduce the hardness by forming carbides.
- excessive content may reduce toughness.
- W is an element that improves pitting corrosion resistance.
- excessive content may reduce toughness and further increase material costs. Therefore, when it contains, it limits to Nb: 0.1% or less and W: 1.0% or less.
- Nb is 0.02% or more, and W is 0.1% or more.
- it contains one or more elements selected from Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less as a selection element as required. Can do.
- Ca, REM, Mg, and B are all elements that improve corrosion resistance through the form control of inclusions. In order to obtain such an effect, it is desirable to contain Ca: 0.0005% or more, REM: 0.0005% or more, Mg: 0.0005% or more, B: 0.0005% or more. On the other hand, when it contains more than Ca: 0.010%, REM: 0.010%, Mg: 0.010%, B: 0.010%, the toughness and carbon dioxide corrosion resistance are lowered. Therefore, when it contains, it limits to Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less.
- the remainder other than the above component composition is composed of Fe and inevitable impurities.
- the steel pipe of the present invention has a structure containing a tempered martensite phase as a main phase and a volume ratio of a residual austenite phase of 30% or less and a ferrite phase of 5% or less.
- the “main phase” means a phase occupying 70% or more by volume ratio.
- the preferable manufacturing method of the stainless steel seamless steel pipe for oil country tubular goods of this invention is demonstrated.
- the steel pipe raw material which has said composition is used, the manufacturing method of the stainless steel seamless steel pipe which is a steel pipe raw material does not need to specifically limit, All the manufacturing methods of a well-known seamless pipe are applicable.
- the molten steel having the above composition is melted by a melting method such as a converter and used as a steel pipe material such as a billet by a method such as a continuous casting method or an ingot-bundling rolling method. Subsequently, these steel pipe materials are heated, and are hot-worked and piped in a pipe making process of Mannesmann-plug mill method or Mannesmann-Mandrel mill method, which is a well-known pipe making method, and has the above composition. Steel-free pipe.
- the treatment after the steel pipe material is made into a steel pipe in this way is not particularly limited, but preferably a quenching treatment in which the steel pipe is heated to the Ac 3 transformation point or higher and then cooled to a cooling stop temperature of 100 ° C. or lower. Then, a tempering treatment in which tempering is performed at a temperature below the Ac 1 transformation point is performed.
- the steel pipe is further reheated to a temperature not lower than the Ac 3 transformation point, preferably maintained for 5 min or longer, and then cooled to a cooling stop temperature of 100 ° C. or lower.
- a cooling stop temperature 100 ° C. or lower.
- cooling is performed by air cooling (cooling rate 0.05 ° C / s or more and 20 ° C / s or less) or water cooling (cooling rate 5 ° C / s or more and 100 ° C / s or less). It is not limited.
- the tempering process is a process of heating below the Ac 1 transformation point, preferably holding for 10 min or more, and air cooling.
- the tempering temperature is limited to the Ac 1 transformation point or lower. Preferably, it is 565 to 600 ° C.
- a four-master test that gives a temperature history of heating and cooling to the test piece and detects the transformation point from minute displacements of expansion and contraction. Can be measured.
- Molten steel with the components shown in Table 1 is melted in a converter, then cast into billets (steel pipe material) by a continuous casting method, and then piped, air-cooled or water-cooled by hot working using a model seamless rolling mill. 83.8mm x 12.7mm wall seamless steel pipe.
- a test material was cut out from the obtained seamless steel pipe and subjected to quenching and tempering treatment under the conditions shown in Table 2.
- a specimen for microstructure observation was collected from the test material subjected to quenching and tempering treatment, polished, and then the amount of retained austenite ( ⁇ ) was measured by an X-ray diffraction method.
- I ⁇ Integral intensity
- R ⁇ Calculated crystallographic theoretical value of R ⁇ : ⁇
- I ⁇ Integral intensity of ⁇ R ⁇ : Calculated using crystallographic theoretical calculated value of ⁇ .
- Mo—K ⁇ ray was used, and the acceleration voltage was set to 50 kV.
- API arc-shaped tensile test specimens are collected from test materials that have been quenched and tempered, and subjected to tensile tests in accordance with the provisions of API-5CT.
- Tensile properties yield stress YS, tensile stress TS
- a test piece of 4 mm ⁇ ⁇ 10 mm was taken from the test material subjected to quenching treatment and measured by a formaster test. Specifically, the test piece was heated to 500 ° C. at 5 ° C./s, further heated to 920 ° C.
- the SSC test was performed according to NACE TM0177 Method A.
- the test environment was adjusted to pH 4.0 by adding 0.82 g / L Na acetate + acetic acid to 20 wt% NaCl aqueous solution (liquid temperature: 25 ° C, H 2 S: 0.1 bar, CO 2 bal) as the test solution.
- the test was carried out with an immersion time of 720 hours and a load stress of 90% of the yield stress. The case where a crack did not occur in the test piece after the test was regarded as acceptable, and the case where the crack occurred was regarded as unacceptable.
- All of the examples of the present invention have a high strength of yield stress of 758 MPa or more and martensite stainless steel seamless steel pipe having excellent SSC resistance without cracking even when stress is applied in an environment containing H 2 S. It has become. On the other hand, in a comparative example outside the scope of the present invention, desired high strength or excellent SSC resistance cannot be ensured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/058,781 US20210198764A1 (en) | 2018-05-25 | 2019-04-25 | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
CN201980034873.5A CN112166205A (zh) | 2018-05-25 | 2019-04-25 | 油井管用马氏体系不锈钢无缝钢管及其制造方法 |
JP2019545821A JP6680409B1 (ja) | 2018-05-25 | 2019-04-25 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
MX2020012633A MX2020012633A (es) | 2018-05-25 | 2019-04-25 | Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo. |
EP19808238.0A EP3767000A4 (fr) | 2018-05-25 | 2019-04-25 | Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production |
BR112020023809-0A BR112020023809B1 (pt) | 2018-05-25 | 2019-04-25 | Tubo de aço inoxidável martensítico sem costura para produtos tubulares da indústria petrolífera, e método para fabricar o mesmo |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-100107 | 2018-05-25 | ||
JP2018100107 | 2018-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225281A1 true WO2019225281A1 (fr) | 2019-11-28 |
Family
ID=68616383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017539 WO2019225281A1 (fr) | 2018-05-25 | 2019-04-25 | Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210198764A1 (fr) |
EP (1) | EP3767000A4 (fr) |
JP (1) | JP6680409B1 (fr) |
CN (1) | CN112166205A (fr) |
AR (1) | AR115169A1 (fr) |
MX (1) | MX2020012633A (fr) |
WO (1) | WO2019225281A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111850405A (zh) * | 2020-07-24 | 2020-10-30 | 湖州合创金属材料有限公司 | 一种微合金化抗尘化腐蚀不锈钢及其制造方法 |
WO2021131445A1 (fr) * | 2019-12-24 | 2021-07-01 | Jfeスチール株式会社 | Tuyau sans soudure en acier inoxydable à haute résistance pour puits de pétrole |
JPWO2021199368A1 (fr) * | 2020-04-01 | 2021-10-07 | ||
WO2022075405A1 (fr) * | 2020-10-08 | 2022-04-14 | 日本製鉄株式会社 | Matériau d'acier inoxydable à base de martensite |
JP7226675B1 (ja) * | 2021-09-29 | 2023-02-21 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
WO2023053743A1 (fr) * | 2021-09-29 | 2023-04-06 | Jfeスチール株式会社 | Tube sans soudure en acier inoxydable à haute résistance pour puits de pétrole et son procédé de fabrication |
RU2797277C1 (ru) * | 2020-04-01 | 2023-06-01 | Ниппон Стил Корпорейшн | Стальной материал |
EP4079875A4 (fr) * | 2020-05-18 | 2023-06-14 | JFE Steel Corporation | Tube sans soudure en acier inoxydable pour puits de pétrole et son procédé de fabrication |
WO2024070784A1 (fr) * | 2022-09-29 | 2024-04-04 | Jfeスチール株式会社 | Poudre d'acier inoxydable, élément en acier inoxydable et procédé de fabrication d'élément en acier inoxydable |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000160300A (ja) * | 1998-11-27 | 2000-06-13 | Nkk Corp | 高耐食性を有する655Nmm−2級低C高Cr合金油井管およびその製造方法 |
JP2001032047A (ja) * | 1999-07-19 | 2001-02-06 | Nkk Corp | 高耐食性を有する862N/mm2級低C高Cr合金油井管およびその製造方法 |
WO2004057050A1 (fr) | 2002-12-20 | 2004-07-08 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure |
JP2007332442A (ja) | 2006-06-16 | 2007-12-27 | Jfe Steel Kk | 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法 |
WO2008023702A1 (fr) | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique |
JP2010242163A (ja) | 2009-04-06 | 2010-10-28 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法 |
WO2017168874A1 (fr) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | Tuyau en acier inoxydable sans soudure à haute résistance pour puits de pétrole |
WO2018079111A1 (fr) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et procédé de production de tuyau sans soudure |
WO2019065115A1 (fr) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | Tuyau sans soudure en acier inoxydable à base de martensite pour tubage de puits de pétrole, et procédé de fabrication de celui-ci |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1154145A (zh) * | 1994-07-18 | 1997-07-09 | 新日本制铁株式会社 | 耐腐蚀性及焊接性优良的钢材及钢管的制造方法 |
WO2000070112A1 (fr) * | 1999-05-18 | 2000-11-23 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique pour tube en acier sans soudure |
JP3852248B2 (ja) * | 1999-07-15 | 2006-11-29 | Jfeスチール株式会社 | 耐応力腐食割れ性に優れたマルテンサイト系ステンレス鋼の製造方法 |
JP3800150B2 (ja) * | 2002-08-29 | 2006-07-26 | Jfeスチール株式会社 | 製造性に優れるマルテンサイト系ステンレス熱延鋼帯 |
AR045073A1 (es) * | 2003-07-22 | 2005-10-12 | Sumitomo Chemical Co | Acero inoxidable martensitico |
JP5092204B2 (ja) * | 2005-04-28 | 2012-12-05 | Jfeスチール株式会社 | 拡管性に優れる油井用ステンレス鋼管 |
CN1891398A (zh) * | 2005-07-05 | 2007-01-10 | 住友金属工业株式会社 | 马氏体不锈钢无缝钢管的制造方法 |
JP5011770B2 (ja) * | 2006-03-22 | 2012-08-29 | 住友金属工業株式会社 | マルテンサイト系ステンレス鋼管の製造方法 |
JP5145793B2 (ja) * | 2007-06-29 | 2013-02-20 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
CA2795326C (fr) * | 2010-04-28 | 2016-05-17 | Sumitomo Metal Industries, Ltd. | Acier inoxydable haute resistance pour puits de petrole et tube d'acier inoxydable haute resistance pour puits de petrole |
CN105734453B (zh) * | 2016-03-23 | 2018-01-26 | 宝山钢铁股份有限公司 | 耐硫化氢应力腐蚀开裂的马氏体不锈钢油套管用钢、油套管及其制造方法 |
CA3024694A1 (fr) * | 2016-05-20 | 2017-11-23 | Nippon Steel & Sumitomo Metal Corporation | Barre d'acier pour element de fond de trou et element de fond de trou |
MX2021005256A (es) * | 2018-11-05 | 2021-06-18 | Jfe Steel Corp | Tubos de acero inoxidable martensitico sin costuras para productos tubulares para petroliferos y metodo para fabricar los mismos. |
-
2019
- 2019-04-25 WO PCT/JP2019/017539 patent/WO2019225281A1/fr unknown
- 2019-04-25 JP JP2019545821A patent/JP6680409B1/ja active Active
- 2019-04-25 US US17/058,781 patent/US20210198764A1/en active Pending
- 2019-04-25 EP EP19808238.0A patent/EP3767000A4/fr active Pending
- 2019-04-25 MX MX2020012633A patent/MX2020012633A/es unknown
- 2019-04-25 CN CN201980034873.5A patent/CN112166205A/zh active Pending
- 2019-05-24 AR ARP190101392A patent/AR115169A1/es active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000160300A (ja) * | 1998-11-27 | 2000-06-13 | Nkk Corp | 高耐食性を有する655Nmm−2級低C高Cr合金油井管およびその製造方法 |
JP2001032047A (ja) * | 1999-07-19 | 2001-02-06 | Nkk Corp | 高耐食性を有する862N/mm2級低C高Cr合金油井管およびその製造方法 |
WO2004057050A1 (fr) | 2002-12-20 | 2004-07-08 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure |
JP2007332442A (ja) | 2006-06-16 | 2007-12-27 | Jfe Steel Kk | 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法 |
WO2008023702A1 (fr) | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique |
JP2010242163A (ja) | 2009-04-06 | 2010-10-28 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法 |
WO2017168874A1 (fr) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | Tuyau en acier inoxydable sans soudure à haute résistance pour puits de pétrole |
WO2018079111A1 (fr) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et procédé de production de tuyau sans soudure |
WO2019065115A1 (fr) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | Tuyau sans soudure en acier inoxydable à base de martensite pour tubage de puits de pétrole, et procédé de fabrication de celui-ci |
Non-Patent Citations (1)
Title |
---|
See also references of EP3767000A4 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4043591A4 (fr) * | 2019-12-24 | 2022-10-12 | JFE Steel Corporation | Tuyau sans soudure en acier inoxydable à haute résistance pour puits de pétrole |
WO2021131445A1 (fr) * | 2019-12-24 | 2021-07-01 | Jfeスチール株式会社 | Tuyau sans soudure en acier inoxydable à haute résistance pour puits de pétrole |
CN114829647A (zh) * | 2019-12-24 | 2022-07-29 | 杰富意钢铁株式会社 | 油井用高强度不锈钢无缝钢管 |
JP6950851B1 (ja) * | 2019-12-24 | 2021-10-13 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
RU2797277C1 (ru) * | 2020-04-01 | 2023-06-01 | Ниппон Стил Корпорейшн | Стальной материал |
JPWO2021199368A1 (fr) * | 2020-04-01 | 2021-10-07 | ||
WO2021199368A1 (fr) * | 2020-04-01 | 2021-10-07 | 日本製鉄株式会社 | Matériau en acier |
JP7364962B2 (ja) | 2020-04-01 | 2023-10-19 | 日本製鉄株式会社 | 鋼材 |
EP4079875A4 (fr) * | 2020-05-18 | 2023-06-14 | JFE Steel Corporation | Tube sans soudure en acier inoxydable pour puits de pétrole et son procédé de fabrication |
CN111850405A (zh) * | 2020-07-24 | 2020-10-30 | 湖州合创金属材料有限公司 | 一种微合金化抗尘化腐蚀不锈钢及其制造方法 |
JPWO2022075405A1 (fr) * | 2020-10-08 | 2022-04-14 | ||
JP7173404B2 (ja) | 2020-10-08 | 2022-11-16 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
WO2022075405A1 (fr) * | 2020-10-08 | 2022-04-14 | 日本製鉄株式会社 | Matériau d'acier inoxydable à base de martensite |
WO2023053743A1 (fr) * | 2021-09-29 | 2023-04-06 | Jfeスチール株式会社 | Tube sans soudure en acier inoxydable à haute résistance pour puits de pétrole et son procédé de fabrication |
JP7226675B1 (ja) * | 2021-09-29 | 2023-02-21 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
WO2024070784A1 (fr) * | 2022-09-29 | 2024-04-04 | Jfeスチール株式会社 | Poudre d'acier inoxydable, élément en acier inoxydable et procédé de fabrication d'élément en acier inoxydable |
Also Published As
Publication number | Publication date |
---|---|
AR115169A1 (es) | 2020-12-02 |
CN112166205A (zh) | 2021-01-01 |
MX2020012633A (es) | 2021-01-29 |
JP6680409B1 (ja) | 2020-04-15 |
EP3767000A1 (fr) | 2021-01-20 |
JPWO2019225281A1 (ja) | 2020-05-28 |
EP3767000A4 (fr) | 2021-03-03 |
US20210198764A1 (en) | 2021-07-01 |
BR112020023809A2 (pt) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6315159B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6540922B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6680409B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5861786B2 (ja) | 油井用ステンレス継目無鋼管およびその製造方法 | |
JP4893196B2 (ja) | 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管 | |
JP5145793B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5640762B2 (ja) | 油井用高強度マルテンサイト系ステンレス継目無鋼管 | |
JP6369662B1 (ja) | 二相ステンレス鋼およびその製造方法 | |
JP6540920B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JPWO2004001082A1 (ja) | 油井用ステンレス鋼管およびその製造方法 | |
JP6237873B2 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JP5582307B2 (ja) | 油井用高強度マルテンサイト系ステンレス継目無鋼管 | |
JP6743992B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP2007332442A (ja) | 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法 | |
JP5499575B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JPWO2019065114A1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP2010209402A (ja) | 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管 | |
JP6680408B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP4470617B2 (ja) | 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管 | |
JP4289109B2 (ja) | 耐食性に優れた油井用高強度ステンレス鋼管 | |
JP7207557B2 (ja) | 油井管用ステンレス継目無鋼管およびその製造方法 | |
WO2023145346A1 (fr) | Tuyau en acier inoxydable sans soudure à haute résistance pour puits de pétrole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019545821 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19808238 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019808238 Country of ref document: EP Effective date: 20201013 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020023809 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020023809 Country of ref document: BR Kind code of ref document: A2 Effective date: 20201123 |