WO2019225281A1 - Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production - Google Patents

Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production Download PDF

Info

Publication number
WO2019225281A1
WO2019225281A1 PCT/JP2019/017539 JP2019017539W WO2019225281A1 WO 2019225281 A1 WO2019225281 A1 WO 2019225281A1 JP 2019017539 W JP2019017539 W JP 2019017539W WO 2019225281 A1 WO2019225281 A1 WO 2019225281A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
martensitic stainless
stainless steel
oil well
Prior art date
Application number
PCT/JP2019/017539
Other languages
English (en)
Japanese (ja)
Inventor
まみ 遠藤
祐一 加茂
正雄 柚賀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/058,781 priority Critical patent/US20210198764A1/en
Priority to CN201980034873.5A priority patent/CN112166205A/zh
Priority to JP2019545821A priority patent/JP6680409B1/ja
Priority to MX2020012633A priority patent/MX2020012633A/es
Priority to EP19808238.0A priority patent/EP3767000A4/fr
Priority to BR112020023809-0A priority patent/BR112020023809B1/pt
Publication of WO2019225281A1 publication Critical patent/WO2019225281A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a martensitic stainless seamless steel pipe for oil well pipes used in oil wells and gas wells (hereinafter simply referred to as oil wells) for crude oil or natural gas and a method for producing the same, and in particular, when the yield stress YS is 758 MPa or more.
  • the present invention relates to a method for producing a martensitic stainless steel seamless pipe for oil well pipes having excellent resistance to sulfide stress corrosion cracking (SSC resistance) in an environment containing hydrogen sulfide (H 2 S).
  • 13% Cr martensitic stainless steel pipes are often used as oil well pipes for mining in environmental oil fields and gas fields containing carbon dioxide, chlorine ions, and the like.
  • development of oil fields, etc. in extremely severe corrosive environments containing hydrogen sulfide has been carried out on a global scale, so the demand for SSC resistance is increasing, and component systems with reduced C and increased Ni and Mo
  • the use of improved 13% Cr martensitic stainless steel pipes is also expanding.
  • Patent Document 1 13% Cr steel is used as the basic composition, C is significantly reduced compared to the prior art, Ni, Mo, and Cu are contained, Cr + 2Ni + 1.1Mo + 0.7Cu ⁇ 32.5 is satisfied, and Nb: 0.20% or less , V: One or two of 0.20% or less are included so as to satisfy the condition of Nb + V ⁇ 0.05%, yield stress: high strength of 965MPa or more, and Charpy at -40 °C It has high toughness with absorbed energy of 50J or more, and good corrosion resistance can be secured.
  • Patent Document 2 describes a 13% Cr martensitic stainless steel pipe of a component system containing an extremely low C content of 0.015% or less and Ti of 0.03% or more, and has a high strength of a yield stress of 95 ksi class, The HRC has a low hardness of less than 27 and has excellent SSC resistance.
  • Patent Document 3 describes martensitic stainless steel in which Ti / C having a correlation with a value obtained by subtracting yield stress from tensile stress satisfies 6.0 ⁇ Ti / C ⁇ 10.1. According to the described technique, the value obtained by subtracting the yield stress from the tensile stress is 20.7 MPa or more, and it is possible to suppress variation in hardness that reduces the SSC resistance.
  • the amount of Mo in the steel is specified by Mo ⁇ 2.3 ⁇ 0.89Si + 32.2C, and the metal structure is mainly tempered martensite, carbides precipitated during tempering, and Laves phase precipitated finely during tempering. And martensitic stainless steel composed of intermetallic compounds such as ⁇ phase and the like. According to the described technology, 0.2% proof stress can achieve a high strength of 860 MPa or more, and has excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance.
  • Patent Document 2 the resistance to sulfide stress corrosion cracking can be maintained under the condition that a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
  • a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
  • Patent Document 3 an atmosphere in which a 20% NaCl aqueous solution (H 2 S: 0.03 bar, CO 2 bal.) Is adjusted to pH: 4.5 is used.
  • Patent Document 4 a 25% NaCl aqueous solution (H 2 S: 0.03) is used. bar, CO 2 bal) is said to have resistance to sulfide stress corrosion cracking in an atmosphere adjusted to pH 4.0.
  • the resistance to sulfide stress corrosion cracking in atmospheres other than those described above has not been studied, and it is difficult to say that it has the resistance to sul
  • An object of the present invention is to provide a martensitic stainless seamless steel pipe for oil well pipes having a yield stress of 758 MPa or more and having excellent resistance to sulfide stress corrosion cracking, and a method for producing the same.
  • excellent resistance to sulfide stress corrosion cracking refers to a test solution: 20 wt% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 0.1 bar, CO 2 bal), Na acetate + acetic acid
  • the test piece is immersed in an aqueous solution adjusted to pH: 4.0, the immersion time is set to 720 hours, 90% of the yield stress is applied as the load stress, and the test piece after the test is cracked. The case where it does not occur shall be said.
  • the inventors of the present invention have a 13% Cr stainless steel pipe as a basic composition, and are resistant to sulfide stress corrosion cracking in a corrosive environment containing CO 2 , Cl ⁇ and H 2 S (The effect of various alloying elements on SSC resistance was studied. As a result, each component is contained within the specified range, and C, Mn, Cr, Cu, Ni, Mo, N, Ti, and Nb and W as necessary are adjusted to satisfy the appropriate relational expression. By applying appropriate quenching and tempering treatment, the stress in the corrosive atmosphere containing CO 2 , Cl ⁇ , and H 2 S can be obtained in the vicinity of the yield stress. It was found that a martensitic stainless steel seamless steel pipe for oil well pipes having excellent SSC resistance in a loaded environment can be obtained.
  • the present invention has been completed by further studies based on the above findings. That is, the gist of the present invention is as follows. [1] By mass%, C: 0.010% or more, Si: 0.5% or less, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0.005% or less, Ni: 4.6 to 8.0%, Cr: 10.0 to 14.0 %, Mo: 1.0 to 2.7%, Al: 0.1% or less, V: 0.005 to 0.2%, N: 0.1% or less, Ti: 0.010 to 0.054%, Cu: 0.01 to 1.0%, Co: 0.01 to 1.0%
  • the following formulas (1) and (2) satisfy the following (3), the composition is composed of the remaining Fe and inevitable impurities, and has a yield stress of 758 MPa or more. Martensitic stainless steel seamless for oil well pipes Steel pipe.
  • the marten for oil country tubular goods according to [1] wherein the composition further includes one or two selected from Nb: 0.1% or less and W: 1.0% or less by mass%.
  • Site-based stainless steel seamless pipe [3]
  • the martensitic stainless steel seamless steel pipe for oil country tubular goods according to [1] or [2] which has a composition to be contained.
  • the present invention has excellent sulfide stress corrosion cracking resistance (SSC resistance) in a corrosive environment containing CO 2 , Cl ⁇ , and H 2 S, and has a yield stress YS of 758 MPa or more.
  • SSC resistance sulfide stress corrosion cracking resistance
  • a martensitic stainless steel seamless pipe for oil well pipes having strength can be obtained.
  • C 0.010% or more C has an effect of securing an effective Cr amount and ensuring corrosion resistance. For this reason, C was limited to 0.010% or more. On the other hand, when it contains excessively, hardness will become high and sulfide stress corrosion cracking sensitivity will increase. For this reason, it is desirable to contain 0.040% or less. Therefore, it is preferably 0.010 to 0.040%.
  • Si 0.5% or less Since Si acts as a deoxidizing agent, it is desirable to contain 0.05% or more. On the other hand, the content exceeding 0.5% lowers the carbon dioxide gas corrosion resistance and hot workability. For this reason, Si was limited to 0.5% or less. Preferably, it is 0.10% or more, preferably 0.30% or less from the viewpoint of securing stable strength.
  • Mn 0.05-0.50%
  • Mn is an element that improves hot workability and strength, and is contained in an amount of 0.05% or more in order to ensure the necessary strength.
  • MnS precipitates and the resistance to sulfide stress corrosion cracking is lowered. Therefore, Mn is limited to 0.05 to 0.50%. Preferably, it is 0.40% or less. Moreover, Preferably, it is 0.10% or more.
  • P 0.030% or less
  • P is an element that lowers both carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and is desirably reduced as much as possible in the present invention.
  • extreme reduction increases manufacturing costs.
  • P is limited to 0.030% or less as a range that does not cause an extreme deterioration in characteristics and can be industrially inexpensively implemented.
  • Preferably it is 0.015% or less.
  • S 0.005% or less Since S is an element that significantly reduces hot workability, it is desirable to reduce it as much as possible. By reducing the S content to 0.005% or less, pipe production in a normal process becomes possible, so S in the present invention is limited to 0.005% or less. In addition, Preferably it is 0.002% or less.
  • Ni 4.6-8.0%
  • Ni is an element that increases the strength of the steel by strengthening the protective film and improving the corrosion resistance and further solid solution. In order to acquire such an effect, the content of 4.6% or more is required. On the other hand, if the content exceeds 8.0%, the stability of the martensite phase decreases and the strength decreases. Therefore, Ni is limited to 4.6-8.0%. In addition, Preferably it is 5.0% or more, Preferably it is 7.5% or less.
  • Cr 10.0-14.0%
  • Cr is an element that improves the corrosion resistance by forming a protective film, and the content of 10.0% or more can ensure the corrosion resistance required for oil well pipes. On the other hand, if the content exceeds 14.0%, the formation of ferrite becomes easy, and the stability of the martensite phase cannot be secured. Therefore, Cr is limited to 10.0-14.0%. In addition, Preferably it is 11.0% or more, Preferably it is 13.5% or less.
  • Mo 1.0-2.7%
  • Mo is Cl - is an element which improves the resistance to pitting, in order to obtain the corrosion resistance necessary for severe corrosive environment, it is necessary to contain at least 1.0%.
  • Mo is limited to 1.0-2.7%.
  • it is 1.5% or more, Preferably it is 2.5% or less.
  • Al 0.1% or less Since Al acts as a deoxidizer, the content of 0.01% or more is effective for obtaining such an effect. However, since the content exceeding 0.1% adversely affects toughness, Al in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.01% or more, Preferably it is 0.03% or less.
  • V 0.005-0.2%
  • V is required to be contained in an amount of 0.005% or more in order to improve the strength of steel by precipitation strengthening and further improve the resistance to sulfide stress corrosion cracking.
  • the content exceeds 0.2%, the toughness decreases, so V in the present invention is limited to 0.005 to 0.2%.
  • it is 0.01% or more, Preferably it is 0.1% or less.
  • N 0.1% or less N has the effect of improving the pitting corrosion resistance and increasing the strength by dissolving in steel. However, if the content exceeds 0.1%, a large amount of various nitride inclusions are formed, and the pitting corrosion resistance is lowered. Therefore, N in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.010% or less.
  • Ti 0.010-0.054% Ti fixes C and suppresses strength variation. In order to obtain such an effect, a content of 0.010% or more is required. On the other hand, if the content exceeds 0.054%, TiN having a thickness of 5 ⁇ m or more, which can be the starting point of pitting corrosion, is generated, and the resistance to sulfide stress corrosion cracking deteriorates. Therefore, Ti is limited to 0.010 to 0.054%. In addition, Preferably it is 0.015% or more, Preferably it is 0.050% or less.
  • Cu 0.01 to 1.0%
  • Cu is contained in an amount of 0.01% or more in order to strengthen the protective film and improve the resistance to sulfide stress corrosion cracking. However, if the content exceeds 1.0%, CuS is precipitated and the hot workability is lowered. Therefore, Cu is limited to 0.01 to 1.0%. In addition, Preferably it is 0.03% or more, Preferably it is 0.6% or less.
  • Co 0.01-1.0%
  • Co is an element that increases the Ms point and promotes ⁇ transformation, thereby reducing hardness and improving pitting corrosion resistance. In order to obtain such an effect, a content of 0.01% or more is required. On the other hand, excessive content may reduce toughness and further increase material costs. Also, the resistance to sulfide stress corrosion cracking is reduced. Therefore, Co in the present invention is limited to 0.01 to 1.0%. More preferably, it is 0.03% or more, preferably 0.6% or less.
  • Equation (1) is an equation that correlates with the repassivation potential
  • Equation (2) is an equation that correlates with the pitting corrosion potential.
  • Formula (2) satisfies the range of (3) while containing C, Mn, Cr, Cu, Ni, Mo, W, N, and Ti so that the formula satisfies the range of (3).
  • the inclusion of C, Mn, Cr, Cu, Ni, Mo, W, N, and Ti facilitates the regeneration of the passive film, and further, pitting corrosion that is the starting point of sulfide stress corrosion cracking.
  • Nb can reduce the solid solution carbon and reduce the hardness by forming carbides.
  • excessive content may reduce toughness.
  • W is an element that improves pitting corrosion resistance.
  • excessive content may reduce toughness and further increase material costs. Therefore, when it contains, it limits to Nb: 0.1% or less and W: 1.0% or less.
  • Nb is 0.02% or more, and W is 0.1% or more.
  • it contains one or more elements selected from Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less as a selection element as required. Can do.
  • Ca, REM, Mg, and B are all elements that improve corrosion resistance through the form control of inclusions. In order to obtain such an effect, it is desirable to contain Ca: 0.0005% or more, REM: 0.0005% or more, Mg: 0.0005% or more, B: 0.0005% or more. On the other hand, when it contains more than Ca: 0.010%, REM: 0.010%, Mg: 0.010%, B: 0.010%, the toughness and carbon dioxide corrosion resistance are lowered. Therefore, when it contains, it limits to Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less.
  • the remainder other than the above component composition is composed of Fe and inevitable impurities.
  • the steel pipe of the present invention has a structure containing a tempered martensite phase as a main phase and a volume ratio of a residual austenite phase of 30% or less and a ferrite phase of 5% or less.
  • the “main phase” means a phase occupying 70% or more by volume ratio.
  • the preferable manufacturing method of the stainless steel seamless steel pipe for oil country tubular goods of this invention is demonstrated.
  • the steel pipe raw material which has said composition is used, the manufacturing method of the stainless steel seamless steel pipe which is a steel pipe raw material does not need to specifically limit, All the manufacturing methods of a well-known seamless pipe are applicable.
  • the molten steel having the above composition is melted by a melting method such as a converter and used as a steel pipe material such as a billet by a method such as a continuous casting method or an ingot-bundling rolling method. Subsequently, these steel pipe materials are heated, and are hot-worked and piped in a pipe making process of Mannesmann-plug mill method or Mannesmann-Mandrel mill method, which is a well-known pipe making method, and has the above composition. Steel-free pipe.
  • the treatment after the steel pipe material is made into a steel pipe in this way is not particularly limited, but preferably a quenching treatment in which the steel pipe is heated to the Ac 3 transformation point or higher and then cooled to a cooling stop temperature of 100 ° C. or lower. Then, a tempering treatment in which tempering is performed at a temperature below the Ac 1 transformation point is performed.
  • the steel pipe is further reheated to a temperature not lower than the Ac 3 transformation point, preferably maintained for 5 min or longer, and then cooled to a cooling stop temperature of 100 ° C. or lower.
  • a cooling stop temperature 100 ° C. or lower.
  • cooling is performed by air cooling (cooling rate 0.05 ° C / s or more and 20 ° C / s or less) or water cooling (cooling rate 5 ° C / s or more and 100 ° C / s or less). It is not limited.
  • the tempering process is a process of heating below the Ac 1 transformation point, preferably holding for 10 min or more, and air cooling.
  • the tempering temperature is limited to the Ac 1 transformation point or lower. Preferably, it is 565 to 600 ° C.
  • a four-master test that gives a temperature history of heating and cooling to the test piece and detects the transformation point from minute displacements of expansion and contraction. Can be measured.
  • Molten steel with the components shown in Table 1 is melted in a converter, then cast into billets (steel pipe material) by a continuous casting method, and then piped, air-cooled or water-cooled by hot working using a model seamless rolling mill. 83.8mm x 12.7mm wall seamless steel pipe.
  • a test material was cut out from the obtained seamless steel pipe and subjected to quenching and tempering treatment under the conditions shown in Table 2.
  • a specimen for microstructure observation was collected from the test material subjected to quenching and tempering treatment, polished, and then the amount of retained austenite ( ⁇ ) was measured by an X-ray diffraction method.
  • I ⁇ Integral intensity
  • R ⁇ Calculated crystallographic theoretical value of R ⁇ : ⁇
  • I ⁇ Integral intensity of ⁇ R ⁇ : Calculated using crystallographic theoretical calculated value of ⁇ .
  • Mo—K ⁇ ray was used, and the acceleration voltage was set to 50 kV.
  • API arc-shaped tensile test specimens are collected from test materials that have been quenched and tempered, and subjected to tensile tests in accordance with the provisions of API-5CT.
  • Tensile properties yield stress YS, tensile stress TS
  • a test piece of 4 mm ⁇ ⁇ 10 mm was taken from the test material subjected to quenching treatment and measured by a formaster test. Specifically, the test piece was heated to 500 ° C. at 5 ° C./s, further heated to 920 ° C.
  • the SSC test was performed according to NACE TM0177 Method A.
  • the test environment was adjusted to pH 4.0 by adding 0.82 g / L Na acetate + acetic acid to 20 wt% NaCl aqueous solution (liquid temperature: 25 ° C, H 2 S: 0.1 bar, CO 2 bal) as the test solution.
  • the test was carried out with an immersion time of 720 hours and a load stress of 90% of the yield stress. The case where a crack did not occur in the test piece after the test was regarded as acceptable, and the case where the crack occurred was regarded as unacceptable.
  • All of the examples of the present invention have a high strength of yield stress of 758 MPa or more and martensite stainless steel seamless steel pipe having excellent SSC resistance without cracking even when stress is applied in an environment containing H 2 S. It has become. On the other hand, in a comparative example outside the scope of the present invention, desired high strength or excellent SSC resistance cannot be ensured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

La présente invention a pour objet : un tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole ayant une limite d'élasticité d'au moins 758 MPa et une excellente résistance à la fissuration par corrosion sous contrainte de sulfure ; et son procédé de production. Le tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole a une composition contenant, en % en masse : au moins 0,010 % de C ; pas plus de 0,5 % de Si ; 0,05 à 0,50 % de Mn ; pas plus de 0,030 % de P ; pas plus de 0,005 % de S ; 4,6 à 8,0 % de Ni ; 10,0 à 14,0 % de Cr ; 1,0 à 2,7 % de Mo ; pas plus de 0,1 % d'Al ; 0,005 à 0,2 % de V ; pas plus de 0,1 % de N ; 0,010 à 0,054 % de Ti ; 0,01 à 1,0 % de Cu ; et 0,01 à 1,0 % de Co ; C, Mn, Cr, Cu, Ni, Mo, W, N et Ti satisfaisant des expressions relationnelles prédéterminées et le reste étant constitué de Fe et des inévitables impuretés.
PCT/JP2019/017539 2018-05-25 2019-04-25 Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production WO2019225281A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/058,781 US20210198764A1 (en) 2018-05-25 2019-04-25 Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
CN201980034873.5A CN112166205A (zh) 2018-05-25 2019-04-25 油井管用马氏体系不锈钢无缝钢管及其制造方法
JP2019545821A JP6680409B1 (ja) 2018-05-25 2019-04-25 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
MX2020012633A MX2020012633A (es) 2018-05-25 2019-04-25 Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo.
EP19808238.0A EP3767000A4 (fr) 2018-05-25 2019-04-25 Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production
BR112020023809-0A BR112020023809B1 (pt) 2018-05-25 2019-04-25 Tubo de aço inoxidável martensítico sem costura para produtos tubulares da indústria petrolífera, e método para fabricar o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100107 2018-05-25
JP2018100107 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225281A1 true WO2019225281A1 (fr) 2019-11-28

Family

ID=68616383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017539 WO2019225281A1 (fr) 2018-05-25 2019-04-25 Tuyau sans soudure en acier inoxydable martensitique pour tuyaux de puits de pétrole et son procédé de production

Country Status (7)

Country Link
US (1) US20210198764A1 (fr)
EP (1) EP3767000A4 (fr)
JP (1) JP6680409B1 (fr)
CN (1) CN112166205A (fr)
AR (1) AR115169A1 (fr)
MX (1) MX2020012633A (fr)
WO (1) WO2019225281A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850405A (zh) * 2020-07-24 2020-10-30 湖州合创金属材料有限公司 一种微合金化抗尘化腐蚀不锈钢及其制造方法
WO2021131445A1 (fr) * 2019-12-24 2021-07-01 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable à haute résistance pour puits de pétrole
JPWO2021199368A1 (fr) * 2020-04-01 2021-10-07
WO2022075405A1 (fr) * 2020-10-08 2022-04-14 日本製鉄株式会社 Matériau d'acier inoxydable à base de martensite
JP7226675B1 (ja) * 2021-09-29 2023-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2023053743A1 (fr) * 2021-09-29 2023-04-06 Jfeスチール株式会社 Tube sans soudure en acier inoxydable à haute résistance pour puits de pétrole et son procédé de fabrication
RU2797277C1 (ru) * 2020-04-01 2023-06-01 Ниппон Стил Корпорейшн Стальной материал
EP4079875A4 (fr) * 2020-05-18 2023-06-14 JFE Steel Corporation Tube sans soudure en acier inoxydable pour puits de pétrole et son procédé de fabrication
WO2024070784A1 (fr) * 2022-09-29 2024-04-04 Jfeスチール株式会社 Poudre d'acier inoxydable, élément en acier inoxydable et procédé de fabrication d'élément en acier inoxydable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160300A (ja) * 1998-11-27 2000-06-13 Nkk Corp 高耐食性を有する655Nmm−2級低C高Cr合金油井管およびその製造方法
JP2001032047A (ja) * 1999-07-19 2001-02-06 Nkk Corp 高耐食性を有する862N/mm2級低C高Cr合金油井管およびその製造方法
WO2004057050A1 (fr) 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
WO2008023702A1 (fr) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
JP2010242163A (ja) 2009-04-06 2010-10-28 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
WO2017168874A1 (fr) * 2016-03-29 2017-10-05 Jfeスチール株式会社 Tuyau en acier inoxydable sans soudure à haute résistance pour puits de pétrole
WO2018079111A1 (fr) * 2016-10-25 2018-05-03 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et procédé de production de tuyau sans soudure
WO2019065115A1 (fr) * 2017-09-29 2019-04-04 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable à base de martensite pour tubage de puits de pétrole, et procédé de fabrication de celui-ci

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154145A (zh) * 1994-07-18 1997-07-09 新日本制铁株式会社 耐腐蚀性及焊接性优良的钢材及钢管的制造方法
WO2000070112A1 (fr) * 1999-05-18 2000-11-23 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique pour tube en acier sans soudure
JP3852248B2 (ja) * 1999-07-15 2006-11-29 Jfeスチール株式会社 耐応力腐食割れ性に優れたマルテンサイト系ステンレス鋼の製造方法
JP3800150B2 (ja) * 2002-08-29 2006-07-26 Jfeスチール株式会社 製造性に優れるマルテンサイト系ステンレス熱延鋼帯
AR045073A1 (es) * 2003-07-22 2005-10-12 Sumitomo Chemical Co Acero inoxidable martensitico
JP5092204B2 (ja) * 2005-04-28 2012-12-05 Jfeスチール株式会社 拡管性に優れる油井用ステンレス鋼管
CN1891398A (zh) * 2005-07-05 2007-01-10 住友金属工业株式会社 马氏体不锈钢无缝钢管的制造方法
JP5011770B2 (ja) * 2006-03-22 2012-08-29 住友金属工業株式会社 マルテンサイト系ステンレス鋼管の製造方法
JP5145793B2 (ja) * 2007-06-29 2013-02-20 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
CA2795326C (fr) * 2010-04-28 2016-05-17 Sumitomo Metal Industries, Ltd. Acier inoxydable haute resistance pour puits de petrole et tube d'acier inoxydable haute resistance pour puits de petrole
CN105734453B (zh) * 2016-03-23 2018-01-26 宝山钢铁股份有限公司 耐硫化氢应力腐蚀开裂的马氏体不锈钢油套管用钢、油套管及其制造方法
CA3024694A1 (fr) * 2016-05-20 2017-11-23 Nippon Steel & Sumitomo Metal Corporation Barre d'acier pour element de fond de trou et element de fond de trou
MX2021005256A (es) * 2018-11-05 2021-06-18 Jfe Steel Corp Tubos de acero inoxidable martensitico sin costuras para productos tubulares para petroliferos y metodo para fabricar los mismos.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160300A (ja) * 1998-11-27 2000-06-13 Nkk Corp 高耐食性を有する655Nmm−2級低C高Cr合金油井管およびその製造方法
JP2001032047A (ja) * 1999-07-19 2001-02-06 Nkk Corp 高耐食性を有する862N/mm2級低C高Cr合金油井管およびその製造方法
WO2004057050A1 (fr) 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique a haute resistance presentant une excellente resistance a la corrosion du gaz carbonique et a la fissuration par corrosion sous contrainte due au sulfure
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
WO2008023702A1 (fr) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
JP2010242163A (ja) 2009-04-06 2010-10-28 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
WO2017168874A1 (fr) * 2016-03-29 2017-10-05 Jfeスチール株式会社 Tuyau en acier inoxydable sans soudure à haute résistance pour puits de pétrole
WO2018079111A1 (fr) * 2016-10-25 2018-05-03 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable martensitique pour tuyau de puits de pétrole et procédé de production de tuyau sans soudure
WO2019065115A1 (fr) * 2017-09-29 2019-04-04 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable à base de martensite pour tubage de puits de pétrole, et procédé de fabrication de celui-ci

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767000A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043591A4 (fr) * 2019-12-24 2022-10-12 JFE Steel Corporation Tuyau sans soudure en acier inoxydable à haute résistance pour puits de pétrole
WO2021131445A1 (fr) * 2019-12-24 2021-07-01 Jfeスチール株式会社 Tuyau sans soudure en acier inoxydable à haute résistance pour puits de pétrole
CN114829647A (zh) * 2019-12-24 2022-07-29 杰富意钢铁株式会社 油井用高强度不锈钢无缝钢管
JP6950851B1 (ja) * 2019-12-24 2021-10-13 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管
RU2797277C1 (ru) * 2020-04-01 2023-06-01 Ниппон Стил Корпорейшн Стальной материал
JPWO2021199368A1 (fr) * 2020-04-01 2021-10-07
WO2021199368A1 (fr) * 2020-04-01 2021-10-07 日本製鉄株式会社 Matériau en acier
JP7364962B2 (ja) 2020-04-01 2023-10-19 日本製鉄株式会社 鋼材
EP4079875A4 (fr) * 2020-05-18 2023-06-14 JFE Steel Corporation Tube sans soudure en acier inoxydable pour puits de pétrole et son procédé de fabrication
CN111850405A (zh) * 2020-07-24 2020-10-30 湖州合创金属材料有限公司 一种微合金化抗尘化腐蚀不锈钢及其制造方法
JPWO2022075405A1 (fr) * 2020-10-08 2022-04-14
JP7173404B2 (ja) 2020-10-08 2022-11-16 日本製鉄株式会社 マルテンサイト系ステンレス鋼材
WO2022075405A1 (fr) * 2020-10-08 2022-04-14 日本製鉄株式会社 Matériau d'acier inoxydable à base de martensite
WO2023053743A1 (fr) * 2021-09-29 2023-04-06 Jfeスチール株式会社 Tube sans soudure en acier inoxydable à haute résistance pour puits de pétrole et son procédé de fabrication
JP7226675B1 (ja) * 2021-09-29 2023-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2024070784A1 (fr) * 2022-09-29 2024-04-04 Jfeスチール株式会社 Poudre d'acier inoxydable, élément en acier inoxydable et procédé de fabrication d'élément en acier inoxydable

Also Published As

Publication number Publication date
AR115169A1 (es) 2020-12-02
CN112166205A (zh) 2021-01-01
MX2020012633A (es) 2021-01-29
JP6680409B1 (ja) 2020-04-15
EP3767000A1 (fr) 2021-01-20
JPWO2019225281A1 (ja) 2020-05-28
EP3767000A4 (fr) 2021-03-03
US20210198764A1 (en) 2021-07-01
BR112020023809A2 (pt) 2021-02-23

Similar Documents

Publication Publication Date Title
JP6315159B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6540922B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6680409B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP5861786B2 (ja) 油井用ステンレス継目無鋼管およびその製造方法
JP4893196B2 (ja) 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP5145793B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP5640762B2 (ja) 油井用高強度マルテンサイト系ステンレス継目無鋼管
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
JP6540920B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JPWO2004001082A1 (ja) 油井用ステンレス鋼管およびその製造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
JP5582307B2 (ja) 油井用高強度マルテンサイト系ステンレス継目無鋼管
JP6743992B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP2007332442A (ja) 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
JP5499575B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JPWO2019065114A1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP2010209402A (ja) 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP6680408B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP4470617B2 (ja) 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP4289109B2 (ja) 耐食性に優れた油井用高強度ステンレス鋼管
JP7207557B2 (ja) 油井管用ステンレス継目無鋼管およびその製造方法
WO2023145346A1 (fr) Tuyau en acier inoxydable sans soudure à haute résistance pour puits de pétrole

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019545821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019808238

Country of ref document: EP

Effective date: 20201013

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023809

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020023809

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201123