WO2013176062A1 - チップオンボード型のパッケージ基板を有する発光装置及びその製造方法 - Google Patents

チップオンボード型のパッケージ基板を有する発光装置及びその製造方法 Download PDF

Info

Publication number
WO2013176062A1
WO2013176062A1 PCT/JP2013/063860 JP2013063860W WO2013176062A1 WO 2013176062 A1 WO2013176062 A1 WO 2013176062A1 JP 2013063860 W JP2013063860 W JP 2013063860W WO 2013176062 A1 WO2013176062 A1 WO 2013176062A1
Authority
WO
WIPO (PCT)
Prior art keywords
led element
light emitting
package substrate
emitting device
chip
Prior art date
Application number
PCT/JP2013/063860
Other languages
English (en)
French (fr)
Inventor
今井勇次
Original Assignee
株式会社ドゥエルアソシエイツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ドゥエルアソシエイツ filed Critical 株式会社ドゥエルアソシエイツ
Priority to KR1020147032453A priority Critical patent/KR20150022771A/ko
Priority to CN201380026677.6A priority patent/CN104335367A/zh
Priority to JP2014516784A priority patent/JP6267635B2/ja
Priority to US14/402,842 priority patent/US9293662B2/en
Publication of WO2013176062A1 publication Critical patent/WO2013176062A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/12Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the geometrical disposition of the light-generating elements, e.g. arranging light-generating elements in differing patterns or densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a light emitting device having a chip-on-board type package substrate and a manufacturing method thereof.
  • Chip-on-board is a technology for directly mounting a chip such as a light emitting element on a circuit pattern of a large package substrate without once forming a small package.
  • a white light emitting device it is common to include a yellow phosphor in a sealing resin for sealing the LED element after mounting the blue LED element.
  • the combination of the blue LED element and the yellow phosphor has a problem of low color rendering. Therefore, when white color rendering is required, a method of including a green phosphor or a red phosphor in a sealing resin in addition to a yellow phosphor is employed. However, in a method in which color rendering properties are supplemented with various phosphors using one type of LED element as a light source, loss at the time of wavelength conversion in each phosphor is large, and a reduction in light amount cannot be avoided.
  • a light emitting device described in Patent Document 1 has been proposed as a light emitting device capable of maintaining a high color rendering property and changing a color temperature without using a red phosphor having a particularly large loss.
  • the light emitting device includes a device substrate, a first color temperature light emitting unit group and a second color temperature light emitting unit group arranged in a predetermined arrangement pattern on the device substrate, and each light emitting unit group independently.
  • a power supply and a circuit pattern for supplying current and a controller for controlling a ratio of current supplied from the power supply to each light emitting unit group are provided.
  • the light emitting unit group of the first color temperature includes a plurality of blue light emitting type LED chips, and a first phosphor layer that seals the LED chips and includes the first phosphor.
  • the light emitting unit group having the second color temperature has a color temperature lower than the first color temperature, and includes an LED chip, a first phosphor layer that seals the LED chip, and a first fluorescence.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to provide a chip-on-board type light emitting device without providing a special circuit pattern or performing current control.
  • An object of the present invention is to provide a light-emitting device having a chip-on-board type package substrate and a method for manufacturing the same, which can improve color rendering without excessively reducing the amount of light emission.
  • the present invention provides a chip-on-board type light emitting device in which a plurality of LED elements are directly mounted on a package substrate, and a plurality of mounting portions formed on the package substrate and mounted with the plurality of LED elements. And each of the LED elements mounted on the circuit pattern includes a plurality of types of LED elements having different emission wavelengths and temperature characteristics,
  • a chip-on-board type light-emitting device configured to have an average color rendering index (Ra) at a use temperature higher than that at room temperature as a whole using the temperature characteristics of a plurality of types of LED elements is provided.
  • each LED element emits light by applying a current to the anode electrode and the cathode electrode of the circuit pattern.
  • each LED element itself generates heat, the temperature rises, and the amount of light emitted from each LED element changes. This change in the amount of light depends on the temperature characteristics of each type of LED element. As described above, although the amount of light of each type of LED element changes, the overall apparatus is configured so that the average color rendering index (Ra) at the use temperature is larger than that at the normal temperature, so that relatively high color rendering properties are achieved. Is realized.
  • Each LED element may be either a face-up type or a flip chip type.
  • the plurality of types of LED elements may include a blue LED element, a green LED element, and a red LED element.
  • the blue LED element has a power attenuation rate of 8 to 20% from normal temperature to use temperature, and the green LED element has power from normal temperature to use temperature.
  • the attenuation factor may be 10 to 40%, and the red LED element may have a power attenuation factor of 10 to 60% from normal temperature to use temperature.
  • the chip-on-board type light emitting device may include a yellow phosphor that emits yellow light when excited by the blue LED element.
  • the amount of light in the yellow region is covered by the yellow phosphor.
  • the plurality of types of LED elements include a blue LED element and a red LED element, and emit green light when excited by the blue LED element or the red LED element.
  • a phosphor and a yellow phosphor that emits yellow light when excited by the blue LED element or the red LED element may be included.
  • a plurality of LED elements are flip-chip mounted on the package substrate, and each LED element is electrically connected to the package substrate.
  • the growth substrate is removed in a removal process, and the semiconductor light emitting portion remains on the package substrate. In this way, since only the semiconductor layer remains on the package substrate, the optical and thermal performances are not deteriorated due to the growth substrate. Further, since the growth substrate is removed after mounting the LED element, a thin semiconductor layer can be formed on the package substrate.
  • An object of the present invention is to provide a chip-on-board type light-emitting device and its manufacture.
  • FIG. 1 is a schematic side view of a light emitting device showing an embodiment of the present invention.
  • FIG. 2 is a plan view of the package substrate.
  • FIG. 3 is a cross-sectional view of the package substrate.
  • FIG. 4 is a graph illustrating an example of an emission spectrum of the light emitting device.
  • FIG. 5 is a table showing the relationship between the temperature of the light emitting device and the average color rendering index (Ra), where (a) includes a yellow phosphor in addition to a blue LED element, a green LED element, and a red LED element. ) Indicates a substance not containing a yellow phosphor.
  • FIG. 6 is a plan view of a package substrate showing a second embodiment of the present invention.
  • FIG. 1 is a schematic side view of a light emitting device showing an embodiment of the present invention.
  • FIG. 2 is a plan view of the package substrate.
  • FIG. 3 is a cross-sectional view of the package substrate.
  • FIG. 4 is
  • FIG. 7A (a) is a schematic overall cross-sectional view of the blue LED element mounted on the package substrate body before removing the growth substrate
  • FIG. 7A (b) is a schematic enlarged cross-sectional view of the blue LED element before removing the growth substrate.
  • FIG. 7B (c) is a schematic overall cross-sectional view of the green LED element mounted on the package substrate body before the growth substrate is removed
  • FIG. 7B (d) is a schematic enlarged cross-sectional view of the red LED element before the growth substrate is removed.
  • FIG. 8 is an explanatory view showing a state in which the blue LED element is set above the mounting position of the package substrate body.
  • FIG. 9 is an explanatory view showing a state in which the blue LED element is mounted on the package substrate body.
  • FIG. 10 is an explanatory view showing a state in which the growth substrate of the blue LED element is irradiated with a laser.
  • FIG. 11 is a schematic explanatory diagram of a laser irradiation apparatus.
  • FIG. 12 is an explanatory view showing a state where the growth substrate of the blue LED element is removed.
  • FIG. 13 is a cross-sectional view of the package substrate.
  • FIG. 14 is an explanatory view showing a state in which the growth substrate is separated by chemical etching, showing a modification.
  • FIG. 15 is an explanatory view showing a state where the growth substrate of the blue LED element is removed, showing a modification.
  • FIG. 1 to 5 show a first embodiment of the present invention
  • FIG. 1 is a schematic side view of a light emitting device.
  • the light emitting device 7 includes a glass housing 2 and a terminal portion 4 formed on the lower side of the housing 2 and electrically connected to an external power source.
  • a package substrate 1 is accommodated therein.
  • the package substrate 1 extends from the terminal portion 4, is supported by a support portion 5 made of an inorganic material, and is electrically connected to the terminal portion 4 by an internal conductor 6.
  • FIG. 2 is a plan view of the package substrate.
  • the package substrate 1 is a chip-on-board type in which a plurality of LED elements 30, 40, 50 are directly mounted on the package substrate body 10.
  • the light emitting device 7 includes a package substrate body 10, a circuit pattern 20 formed on the package substrate body 10, and a plurality of LED elements 30, 40, and 50 mounted on the package substrate body 10.
  • the light emitting device 7 includes a sealing resin 70 (see FIG. 3) that seals the LED elements 30, 40, 50 on the package substrate body 10.
  • Package substrate 50 is directly connected to internal conductor 6.
  • the material of the package substrate main body 10 is arbitrary, for example, AlN, Si, Cu, Al 2 O 3 , SiC, or the like is used. It is also possible to use a synthetic resin such as glass epoxy for the package substrate body 10.
  • the package substrate body 10 is formed in a square shape, and the LED elements 30, 40, 50 are arranged in alignment in the vertical direction and the horizontal direction.
  • the circuit pattern 20 has a pair of anode electrode 21 and cathode electrode 22, and supplies power to the LED elements 30, 40 and 50.
  • the circuit pattern 20 includes a plurality of mounting portions 30, 40, and 50 on which the LED elements are mounted.
  • Each of the LED elements 30, 40, and 50 is arranged in series. It has the parallel connection part 24 which connects the both ends of the serial connection part 23, and the anode electrode 21 or the cathode electrode 22.
  • FIG. In this embodiment, five series connection parts 23 in which five LED elements 30, 40, 50 are arranged are connected by a parallel connection part 24, and a total of 25 LED elements 30 in five rows in the vertical and horizontal directions. , 40, 50 are used.
  • three types of LED elements that is, a blue LED element 30, a green LED element 40, and a red LED element 50 are used, and a plurality of types of LED elements are integrally and electrically controlled.
  • the blue LED element 30, the green LED element 40, and the red LED element 50 have different temperature characteristics as well as the emission wavelength.
  • three blue LED elements 30, one green LED element 40, and one red LED element 50 are mounted.
  • the blue LED element 30 and the green LED element 40 have, for example, an InGaN light emitting layer, and the red LED element 50 has, for example, a GaAs light emitting layer.
  • the peak wavelength of the blue LED element 30 can be 450 nm
  • the peak wavelength of the green LED element 40 can be 525 nm
  • the peak wavelength of the red LED element 50 can be 630 nm.
  • each LED element 30, 40, 50 is a face-up type, and is electrically connected to the series connection portion 23 of the circuit pattern 20 by a wire 60.
  • the blue LED element 30 has a power attenuation rate from the normal temperature to the use temperature larger than that of the green LED element 40 and the red LED element 50.
  • the attenuation factor of the light amount can be 15% for the blue LED element 30, 10% for the green LED element 40, and 10% for the red LED element 50.
  • FIG. 3 is a cross-sectional view of the package substrate.
  • the LED elements 30, 40, 50 on the package substrate body 10 are sealed with a sealing resin 70.
  • the sealing resin 70 can be an epoxy resin, a silicone resin, or the like.
  • the sealing resin 70 contains a phosphor 71 that emits yellow light when excited by blue light emitted from the blue LED element 30.
  • YAG Yttrium Aluminum Garnet
  • silicate or the like can be used as the phosphor 71 that emits yellow light when excited by blue light.
  • each LED element 30, 40, 50 and the yellow phosphor 71 has a desired wavelength. Light is emitted, and white light is emitted from the light emitting device 7.
  • each LED element 30, 40, 50 When each LED element 30, 40, 50 emits light, each LED element 30, 40, 50 itself generates heat and the temperature rises, and the amount of light emitted from each LED element 30, 40, 50 changes. This change in the amount of light depends on the temperature characteristics of each type of LED elements 30, 40 and 50.
  • the light emitting device 7 of the present embodiment is configured such that the average color rendering index (Ra) at the use temperature is larger than the normal temperature as the whole device, although the light amount of each type of LED element 30, 40, 50 changes. Therefore, a relatively high color rendering property is realized. As a result, even in the chip-on-board type package substrate 1, it is possible to improve the color rendering without excessively reducing the light emission amount without providing a special circuit pattern or performing current control.
  • FIG. 4 is a graph showing an example of the emission spectrum of the light-emitting device, where the vertical axis represents the emission intensity and the horizontal axis represents the wavelength.
  • the emission spectrum at room temperature is a broken line, and the emission spectrum at operating temperature is a solid line.
  • the peak wavelength of the blue LED element 30 is 450 nm
  • the peak wavelength of the green LED element 40 is 525 nm
  • the peak wavelength of the red LED element 50 is 630 nm
  • the peak wavelength of the yellow phosphor 71 is 590 nm.
  • the light emitting device 7 was used.
  • FIG. 5 is a table showing the relationship between the temperature of the light emitting device and the average color rendering index (Ra), wherein (a) includes a yellow phosphor in addition to a blue LED element, a green LED element, and a red LED element. (B) shows what does not contain yellow fluorescent substance.
  • the light emitting device 7 of the present embodiment is configured such that the average color rendering index (Ra) increases as the light emitting components of the blue LED element 30, the green LED element 40, and the red LED element 50 decay.
  • the Ra at room temperature (20 ° C.) is 82
  • the Ra at 50 ° C. is 92
  • the Ra at operating temperature (80 ° C.) is 98. And was able to.
  • the yellow phosphor 71 is not included, as shown in FIG. 5B, the Ra at room temperature (20 ° C.) is 78, the Ra at 50 ° C. is 90, and the Ra at operating temperature (80 ° C.) is 95. there were. In this way, Ra can be increased as the temperature of the light emitting device 7 increases regardless of the presence or absence of the yellow phosphor 71.
  • the thing using three types of LED elements of blue, green, and red was shown, it cannot be overemphasized that this invention is applicable even if it is two types of LED elements.
  • the power attenuation rate of the blue LED element is higher than that of the green and red LED elements, the power attenuation rate of the green or red LED element may be higher than the others. In short, it is sufficient if the color rendering property is enhanced by utilizing the difference in temperature characteristics.
  • the detailed configuration of the light emitting device 7 can be changed as appropriate.
  • the power attenuation factor of each LED element can be arbitrarily changed, for example, the power attenuation factor of the blue LED element 30 is 8 to 20%, the power attenuation factor of the green LED element 40 is 10 to 40%, and the red LED The power attenuation factor of the element 50 can be in the range of 10 to 60%.
  • the phosphor 71 may be an up-conversion phosphor that emits yellow light when excited by red light emitted from the red LED element 50. Furthermore, the phosphor 71 can be configured by mixing a phosphor excited by red light and a phosphor excited by blue light.
  • the inventor of the present application provides a green phosphor that emits green light when excited by the blue LED element 30 without providing the green LED element 40, and a blue LED element 30 having an attenuation rate of 8 to 12%.
  • the combination of the red LED element 50 having a rate of 30 to 40% and the phosphor 71 that emits yellow light when excited by the blue light emitted from the blue LED element 30 can also effectively improve the Ra at the use temperature than at normal temperature. I found out that it can be bigger.
  • the phosphor 71 was adjusted so that the attenuation rate in the vicinity of 550 nm was 8 to 12%, Ra at room temperature (25 ° C.) was 92 and Ra at operating temperature (80 ° C.) was 96.
  • the attenuation factor of the phosphor can be adjusted mainly by the concentration in the sealing resin.
  • the luminous intensity of the blue LED element 30 is set to 100 mcd or more and 500 mcd or less and the luminous intensity of the red LED element 50 is set to 3000 mcd or more, even if the red LED is attenuated, Ra may not be lowered. it can.
  • the ratio of the emission intensity at the peak wavelength of the blue LED element 30 and the red LED element 50 is 1: 4 to 1: 6 at room temperature (25 ° C.) and 1: 2.5 to 1 at the use temperature (80 ° C.). : Preferably 3.5.
  • the light emission intensity near 550 nm caused by the phosphor needs to be between the light emission intensities at the peak wavelengths of the blue LED element 30 and the red LED element 50 both at room temperature and at the use temperature.
  • FIG. 6 to 12 show a second embodiment of the present invention
  • FIG. 6 is a plan view of the package substrate.
  • the package substrate 101 of the light emitting device 7 includes a package substrate body 10, a circuit pattern 120 formed on the package substrate body 10, and a plurality of LED elements mounted on the package substrate body 10. 130, 140, 150.
  • the light emitting device 7 includes a sealing resin 70 (see FIG. 13) that seals the LED elements 130, 140, and 150 on the package substrate body 10.
  • the circuit pattern 120 has a pair of an anode electrode 121 and a cathode electrode 122, and supplies power to the LED elements 130, 140, and 150.
  • the circuit pattern 120 includes a series connection portion 123 in which a plurality of LED elements 130, 140, and 150 are arranged in series, and a parallel connection portion that connects both ends of each series connection portion 123 to the anode electrode 121 or the cathode electrode 122. 124.
  • five series connection parts 123 in which five LED elements 130, 140, 150 are arranged are connected by a parallel connection part 124, and a total of 25 LED elements 130 are provided in five rows in the vertical and horizontal directions. 140, 150 are used.
  • each LED element 130, 140, 150 when each LED element 130, 140, 150 emits light, each LED element 130, 140, 150 itself generates heat and the temperature rises, and the amount of light emitted from each LED element 130, 140, 150 changes. To do. This change in the amount of light depends on the temperature characteristics of each type of LED element 130, 140, 150.
  • the light emitting device 7 of the present embodiment is configured such that the average color rendering index (Ra) at the use temperature is larger than the normal temperature as the whole device, although the light amount of each type of the LED elements 130, 140, 150 changes. Therefore, a relatively high color rendering property is realized.
  • FIG. 7A is a schematic overall cross-sectional view of the blue LED element mounted on the package substrate body before removing the growth substrate.
  • this blue LED element 130 is of a flip chip type, and a semiconductor light emitting portion 132 made of a group III nitride semiconductor layer is formed on the surface of the growth substrate 131.
  • the growth substrate 131 is made of, for example, sapphire.
  • a p-side electrode 138 and an n-side electrode 139 are formed on the semiconductor light emitting unit 132 as described later.
  • FIG. 7A (b) is a schematic enlarged cross-sectional view of the blue LED element before the growth substrate is removed.
  • a part of the growth substrate 131 is omitted for illustration.
  • the semiconductor light emitting unit 132 has a buffer layer 133, an n-type GaN layer 134, an active layer 135, a light guide layer 136, and a p-type GaN layer 137 in this order from the growth substrate 131 side. ing.
  • a p-side electrode 138 is formed on the p-type GaN layer 137, and an n-side electrode 139 is formed on the n-type GaN layer 134.
  • the buffer layer 133 is formed on the growth substrate 131 and is made of, for example, AlN. Note that the buffer layer 133 may be made of GaN.
  • the n-type GaN layer 134 as the first conductivity type layer is formed on the buffer layer 133 and is made of n-GaN.
  • the active layer 135 as a light emitting layer is formed on the n-type GaN layer 134, is made of GalnN, and emits blue light by injection of electrons and holes. Note that the active layer 135 may have a multiple quantum well structure.
  • the light guide layer 136 is formed on the active layer 135 and is made of p-AIGaN.
  • a p-type GaN layer 137 as a second conductivity type layer is formed on the light guide layer 136 and is made of p-GaN.
  • the n-type GaN layer 134 to the p-type GaN layer 137 are formed by epitaxial growth of a group III nitride semiconductor.
  • the thickness of each layer is, for example, 40 nm for the buffer layer 133, 5 ⁇ m for the n-type GaN layer 134, 2.5 nm for the active layer 135, 20 nm for the light guide layer 136, and 200 nm for the p-type GaN layer 137.
  • the thickness of the light emitting portion 132 can be set to 5262.5 nm.
  • the active layer includes the first conductivity type layer, the active layer, and the second conductivity type layer.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the p-side electrode 138 is formed on the p-type GaN layer 137 and is made of a material such as Au.
  • the p-side electrode 138 is formed by a vacuum deposition method, a sputtering method, a CVD (Chemical Vapor Deposition) method, or the like.
  • the n-side electrode 139 is formed on the exposed n-type GaN layer 134 by etching the n-type GaN layer 134 from the p-type GaN layer 137.
  • the n-side electrode 139 is made of, for example, W / Al / Au, and is formed by a vacuum deposition method, a sputtering method, a CVD (Chemical Vapor Deposition) method, or the like.
  • FIG. 7B (c) is a schematic overall cross-sectional view of the green LED element mounted on the package substrate body before the growth substrate is removed.
  • the green LED element 140 is of a flip chip type, and a semiconductor light emitting unit 142 made of a group III nitride semiconductor layer is formed on the surface of the growth substrate 141.
  • the growth substrate 141 is made of, for example, sapphire.
  • a p-side electrode 148 and an n-side electrode 149 are formed as will be described later.
  • the detailed element configuration of the green LED element 140 will not be described in detail.
  • FIG. 7B (d) is a schematic enlarged cross-sectional view of the red LED element before the growth substrate is removed.
  • the red LED element 150 is of a flip chip type, and a semiconductor light emitting unit 152 made of a GaAs-based semiconductor layer is formed on the surface of the growth substrate 151.
  • the growth substrate 151 is made of, for example, GaAs.
  • a p-side electrode 158 and an n-side electrode 159 are formed on the semiconductor light emitting unit 152, as will be described later.
  • the detailed element configuration of the red LED element 150 will not be described in detail.
  • the manufacturing method of the light emitting device of the present embodiment includes growth substrates 131, 141, 151, semiconductor light emitting portions 132, 142, 152 on the growth substrates 131, 141, 151, and electrodes on the semiconductor light emitting portions 132, 142, 152.
  • 138, 139, 148, 149, 158, and 159 are selected from the plurality of independent flip-chip type LED elements 130, 140, and 150, and the LED elements 130, 140, and 150 that satisfy the desired performance are selected.
  • the LED element 130, 140, 150 selected in the selecting process and the LED elements 130, 140, 150 selected in the selecting process are separately attached to each of the LED elements 130, 140, 150 without being bonded to the other substrates of the growth substrates 131, 141, 151. And a mounting step of mounting directly on the package substrate main body 10.
  • the manufacturing method of the light-emitting device of this embodiment is the LED element 130,140 in the state in which each LED element 130,140 was directly mounted in the package substrate main body 10 about the blue LED element 130 and the green LED element 140.
  • Each figure illustrates the blue LED element 130 as an example, but the same processing is performed for the green LED element 140 and the red LED element 150 as well.
  • the LED elements 130, 140, and 150 that satisfy the desired performance suitable for the use of the light emitting device are selected.
  • the expected performance means whether or not the LED elements 130, 140, and 150 are turned on when energized if the quality variation of the manufactured light emitting device does not matter. If the quality variation becomes a problem, it means whether the forward voltage, light quantity, color tone, etc. of the LED elements 130, 140, 150 are within a predetermined design range. That is, at least the defective LED elements 130, 140, 150 that do not light up are removed at this stage.
  • FIG. 8 is an explanatory view showing a state in which the blue LED element is set above the mounting position of the package substrate body.
  • solder 190 made of Au—Sn is vapor-deposited in advance on the connection portion of the package substrate body 10 with the blue LED element 130. Note that a material other than Au—Sn can be used as the solder 190.
  • FIG. 9 is an explanatory view showing a state in which the blue LED element is mounted on the package substrate body.
  • the p-side electrode 138 and the n-side electrode 139 are bonded to the solder 190 in a predetermined atmosphere under a predetermined temperature condition and a predetermined load condition.
  • the predetermined atmosphere may be, for example, an inert atmosphere such as nitrogen in addition to a forming gas in which nitrogen and hydrogen are mixed.
  • the forming gas one having 5% hydrogen and 95% nitrogen can be used.
  • the load applied to each LED element 130,140,150 is set to 5 to 50 g weight, for example.
  • the temperature condition is arbitrary, in order to melt the solder 190, it is necessary to heat it to a temperature equal to or higher than the eutectic temperature or melting point of the material constituting the solder 190 (for example, a temperature of 250 ° C. or higher and 400 ° C. or lower).
  • the solder 190 is Au—Sn solder with 80% Au and 20% Sn, it is necessary to heat the eutectic temperature to about 280 ° C. or more.
  • the solder 190 is made of, for example, SnAgCu, since the melting point of SnAgCu is about 220 ° C., it is necessary to heat to at least about 220 ° C. or more.
  • the solder 190 is melted and solidified to fix the LED elements 130, 140, and 150 to the package substrate body 10.
  • FIG. 10 is an explanatory view showing a state in which the growth substrate of the blue LED element is irradiated with a laser.
  • each LED element 130, 140 is irradiated with a laser beam from above the package substrate body 10.
  • the spot diameter of the laser beam is formed larger than the planar view area of the LED elements 130 and 140, and the entire LED elements 130 and 140 can be irradiated without scanning the laser beam.
  • the laser beam has a light intensity distribution in the radial direction of the spot, the energy of the beam irradiated to the LED elements 130 and 140 can be made more uniform as it is larger than the LED elements 130 and 140.
  • each of the LED elements 130 and 140 is a flip chip type, the growth substrates 131 and 141 are positioned on the upper side, and the energy of the laser beam is applied to the interface between the growth substrates 131 and 141 and the semiconductor light emitting units 132 and 142.
  • the growth substrates 131 and 141 are separated from the semiconductor light emitting portions 132 and 142.
  • the positions of the LED elements 130 and 140 are determined by being recognized by a CCD camera or the like. This is possible because each LED element 130, 140 is mounted, and can be recognized by the CCD camera when the semiconductor light emitting units 132, 142 are connected by a wafer-like substrate or submount. I can't. If a scribe line is formed on a wafer so that it can be recognized by a CCD camera, the growth substrate is cracked or distorted. Further, in the present embodiment, since it is not necessary to consider the warpage of the wafer as in the case of irradiating the laser beam in the state of the wafer, the focus of the laser beam is accurately adjusted to the growth substrates 131 and 141 and the semiconductor light emitting unit 132. , 142 can be matched.
  • FIG. 11 is a schematic explanatory diagram of a laser irradiation apparatus.
  • a laser irradiation apparatus 200 is a laser oscillator 210 that oscillates a laser beam, a mirror 220 that changes the direction of the oscillated laser beam, an optical lens 230 that focuses the laser beam, and a laser beam irradiation target.
  • a stage 240 for supporting the work object, that is, the package substrate main body 10 is provided.
  • the laser irradiation apparatus 200 includes a housing 250 that maintains the laser beam path in a vacuum state.
  • the laser oscillator 210 can be an excimer laser such as KrF or ArF.
  • the beam emitted from the laser oscillator 210 is reflected by the mirror 220 and its direction is changed.
  • a plurality of mirrors 220 are provided to change the direction of the laser beam.
  • the optical lens 230 is positioned above the stage 240 and focuses the laser beam incident on the package substrate body 10.
  • the stage 240 is moved in the x direction and / or the y direction by a moving means (not shown), and the package substrate body 10 placed thereon is moved.
  • the laser beam is irradiated through the growth substrates 131 and 141 and is absorbed mainly at the interface between the growth substrates 131 and 141 and the semiconductor light emitting units 132 and 142.
  • the laser beam is irradiated with a spot diameter larger than that of the LED elements 130 and 140 in plan view.
  • the spot diameter can be set to, for example, 1 mm or more and 10 mm or less.
  • FIG. 12 is an explanatory view showing a state where the growth substrate of the blue LED element is removed.
  • the red LED element 150 only the semiconductor light emitting unit 152 can be left on the package substrate body 10 by removing the growth substrate 151 by etching. Note that it is not always necessary to remove all the growth substrate 151, and it may be thinned to a necessary thickness.
  • the growth substrate 151 of the red LED element 150 is GaAs
  • GaAs can be thinned to an arbitrary thickness by etching with sulfuric acid.
  • FIG. 13 is a cross-sectional view of the package substrate.
  • the semiconductor light emitting unit 132 on the package substrate body 10 is sealed with a sealing resin 70.
  • the sealing resin 70 can be an epoxy resin, a silicone resin, or the like.
  • the sealing resin 70 contains a phosphor 71 that emits yellow light when excited by blue light emitted from each semiconductor light emitting unit 132.
  • YAG Yttrium Aluminum Garnet
  • silicate or the like can be used as the phosphor 71 that emits yellow light.
  • the completed package substrate 1 is attached to the support portion 5 and connected to the terminal portion 4 and the internal conductor 6. Then, the light emitting device 7 is completed by assembling the housing 2 to the terminal portion 4.
  • the plurality of LED elements 130, 140, 150 are flip-chip mounted on the package substrate body 10 in the mounting process, and the LED elements 130, 140 are mounted. , 150 are electrically connected to the package substrate body 10.
  • the growth substrate 131 is removed in the removal step, and the semiconductor light emitting portions 132, 142, and 152 remain on the package substrate body 10.
  • the semiconductor light emitting portions 132, 142, and 152 could not be disposed on the package substrate body 10 unless the semiconductor layer is thick enough to be handled (for example, 50 ⁇ m).
  • the semiconductor light emitting portions 132, 142, and 152 can be formed on the package substrate body 10 by lift-off and etching of the growth substrates 131, 141, and 151.
  • the semiconductor light emitting portions 132, 142, and 152 remain on the package substrate body 10, the optical and thermal performances are not deteriorated due to the growth substrates 131, 141, and 151. Further, since the growth substrates 131, 141, and 151 are removed after the LED elements 130, 140, and 150 are mounted, as is clear from the package substrate 1 shown in FIG.
  • the semiconductor light emitting portions 132, 142, and 152 can be formed on the package substrate body 10.
  • the LED elements 130, 140, and 150 that satisfy the desired performance in the sorting step can be sorted and used, and the yield can be improved. That is, there is no possibility that an element having an initial failure is included unlike a conventional device in which a plurality of semiconductor element structures are formed on a growth substrate and pasted to a submount or an AlN substrate all at once. Further, it is not necessary to attach the support substrate or the like to another substrate, and it is not necessary to peel the support substrate or the like on the package substrate.
  • each LED element 130 and 140 can be irradiated with a beam uniformly.
  • the occurrence of distribution in the separation of the growth substrates 131 and 141 can be accurately suppressed, and the yield can be reliably improved.
  • laser lift-off is performed in units of wafers in which a plurality of LED elements are adjacent to each other. Even if an attempt is made to irradiate a laser in units of elements, the adjacent LED elements are also affected. Therefore, laser lift-off is performed in units of elements. It is not possible. However, as in this embodiment, once each LED element is cut out from the wafer, laser irradiation in a completely independent state for each LED element becomes possible.
  • the growth substrates 131, 141, 151 are not present on the semiconductor light emitting units 132, 142, 152, or are extremely thin, so that the semiconductor light emitting units 132, 142, 152 are made thin.
  • the heat generated from the semiconductor light emitting units 132, 142, and 152 can be quickly dissipated to the package substrate body 10 side. That is, heat transfer from the semiconductor light emitting units 132, 142, 152 to the sealing resin 70, the phosphor 71, etc. through the growth substrates 131, 141, 151 is reduced to suppress deterioration of the sealing resin 70, the phosphor 71, etc. be able to.
  • the growth substrates 131 and 141 are not present, so that the semiconductor light emitting units 132 and 142 and the growth substrate 131 are not present.
  • 141 does not reflect light at the interface, and the light extraction efficiency from the semiconductor light emitting portions 132, 142 is improved.
  • the light emission efficiency could be improved by about 10 to 30% as compared with the one having the growth substrates 131 and 141.
  • the blue LED element 130 and the green LED element 140 are shown in which the growth substrate 131, 141 is removed by irradiating the interface between the semiconductor light emitting units 132, 142 and the growth substrate 131, 141.
  • the growth substrates 131 and 141 may be removed by etching.
  • the growth substrates 131 and 141 can be removed by etching the growth substrates 131 and 141 themselves or by etching a sacrificial layer formed between the growth substrates 131 and 141 and the active layer.
  • the growth substrates 131 and 141 can be separated by etching using the buffer layer 133 as a sacrificial layer.
  • the buffer layer 133 is gradually chemically etched inward from the exposed side surface.
  • the semiconductor light emitting unit 132 from which the buffer layer 133 and the growth substrate 131 are removed can be formed on the package substrate body 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】チップオンボード型の発光装置であっても、特殊な回路パターンを設けたり電流制御を行ったりすることなく、発光量を過度に減殺せずに演色性を向上させることのできる発光装置及びその製造を提供する。 【解決手段】複数のLED素子が直接的にパッケージ基板に実装されるチップオンボード型の発光装置であって、前記パッケージ基板上に形成され、前記複数のLED素子が実装される複数の実装部と、一対のアノード電極及びカソード電極と、を有する回路パターンを有し、前記回路パターンに実装される各LED素子には、発光波長及び温度特性が互いに異なる複数種類のLED素子が含まれ、前記複数種類のLED素子の温度特性を利用して、装置全体として常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成される。

Description

チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
 本発明は、チップオンボード型のパッケージ基板を有する発光装置及びその製造方法に関する。
 近年、LED素子を用いた発光装置として、チップオンボード(COB)型の発光装置が注目されている。チップオンボードとは、発光素子等のチップを一旦小型のパッケージとすることなく、大型のパッケージ基板の回路パターンにチップを直接実装する技術である。白色の発光装置とする場合、青色のLED素子を実装した後、LED素子を封止する封止樹脂に黄色蛍光体を含ませるものが一般的である。
 ここで、青色LED素子と黄色蛍光体の組み合わせでは、演色性が低いという問題点がある。そこで、白色に演色性が要求される場合には、黄色蛍光体の他に、緑色蛍光体や赤色蛍光体を封止樹脂に含ませる方法が採られる。しかしながら、一種類のLED素子を発光源として各種蛍光体で演色性を補う方法では、各蛍光体での波長変換の際の損失が大きく、光量の低下は免れ得ない。
 特に損失の大きい赤色蛍光体を使用することなく、高い演色性を維持するとともに、色温度を変化させることが可能な発光装置として、特許文献1に記載のものが提案されている。この発光装置は、装置基板と、装置基板上に所定の配列パターンで配置された第1の色温度の発光部群及び第2の色温度の発光部群と、各発光部群に独立して電流を供給する電源及び回路パターンと、電源から各発光部群に供給される電流の比率を制御するコントローラとを備えている。
 ここで、第1の色温度の発光部群は、青色発光タイプの複数のLEDチップと、これらLEDチップを封止し第1の蛍光体を含む第1の蛍光体層とを有する。また、第2の色温度の発光部群は、第1の色温度よりも低い色温度であって、LEDチップと、これらLEDチップを封止する第1の蛍光体層と、第1の蛍光体層上に配置され第2の蛍光体を含む第2の蛍光体層とを有する。
特開2008-218485号公報
 しかしながら、特許文献1に記載の発光装置では、各発光部群に独立して電流が供給されるように電源及び回路パターンを別個に設けなければならないし、各発光部群に供給される電流の比率を制御するコントローラを備えなければならず、実用性に乏しい。
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、チップオンボード型の発光装置であっても、特殊な回路パターンを設けたり電流制御を行ったりすることなく、発光量を過度に減殺せずに演色性を向上させることのできるチップオンボード型のパッケージ基板を有する発光装置及びその製造方法を提供することにある。
 本発明では、複数のLED素子が直接的にパッケージ基板に実装されるチップオンボード型の発光装置であって、前記パッケージ基板上に形成され、前記複数のLED素子が実装される複数の実装部と、一対のアノード電極及びカソード電極と、を有する回路パターンを有し、前記回路パターンに実装される各LED素子には、発光波長及び温度特性が互いに異なる複数種類のLED素子が含まれ、前記複数種類のLED素子の温度特性を利用して、装置全体として常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成されるチップオンボード型の発光装置が提供される。
 このチップオンボード型の発光装置によれば、回路パターンのアノード電極とカソード電極に電流を印加することにより各LED素子が発光する。各LED素子が発光すると、各LED素子自体が発熱して温度が上昇し、各LED素子から発せられる光量が変化する。この光量の変化は、各種類のLED素子の温度特性に依存する。このように、各種類のLED素子の光量が変化するものの、装置全体としては常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成されているので、比較的高い演色性が実現される。
 尚、各LED素子は、フェイスアップ型とフリップチップ型のどちらであってもよい。
 上記チップオンボード型の発光装置において、前記複数種類のLED素子は、青色LED素子と、緑色LED素子と、赤色LED素子と、を含んでいてもよい。
 このチップオンボード型の発光装置によれば、青色光、緑色光及び赤色光が各LED素子から発せられ、これらの温度特性の違いを利用することにより、常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成される。
 上記チップオンボード型の発光装置において、前記青色LED素子は、常温時から使用温度時へのパワー減衰率が8~20%であり、前記緑色LED素子は、常温時から使用温度時へのパワー減衰率が10~40%であり、前記赤色LED素子は、常温時から使用温度時へのパワー減衰率が10~60%であってもよい。
 上記チップオンボード型の発光装置において、前記青色LED素子により励起されると黄色光を発する黄色蛍光体を含んでもよい。
 このチップオンボード型の発光装置によれば、黄色領域の光量は黄色蛍光体によりカバーされる。
 上記チップオンボード型の発光装置において、前記複数種類のLED素子は、青色LED素子と、赤色LED素子と、を含み、前記青色LED素子または前記赤色LED素子により励起されると緑色光を発する緑色蛍光体と、前記青色LED素子または前記赤色LED素子により励起されると黄色光を発する黄色蛍光体と、を含んでもよい。
 上記チップオンボード型の発光装置を製造するにあたり、
 成長基板と、前記成長基板上の半導体発光部と、前記半導体発光部上の電極と、を有する複数のフリップチップ型のLED素子をパッケージ基板に実装する実装工程と、
 前記成長基板に前記各LED素子が実装された状態で前記成長基板を除去する除去工程と、を含むチップオンボード型の発光装置の製造方法が提供される。
 この発光装置の製造方法によれば、実装工程にて、複数のLED素子がパッケージ基板にフリップチップ実装され、各LED素子がパッケージ基板に電気的に接続される。次いで、除去工程にて成長基板が除去され、半導体発光部がパッケージ基板上に残留する。
 このように、パッケージ基板上に半導体層のみが残るため、成長基板に起因して光学的、熱的等な性能が悪化することはない。また、LED素子を実装した後に成長基板を除去するようにしたので、薄型の半導体層をパッケージ基板上に形成することができる。
 本発明によれば、チップオンボード型の発光装置であっても、特殊な回路パターンを設けたり電流制御を行ったりすることなく、発光量を過度に減殺せずに演色性を向上させることのできるチップオンボード型の発光装置及びその製造を提供することにある。
図1は、本発明の一実施形態を示す発光装置の概略側面図である。 図2は、パッケージ基板の平面図である。 図3は、パッケージ基板の断面図である。 図4は、発光装置の発光スペクトルの一例を示すグラフである。 図5は発光装置の温度と平均演色評価数(Ra)の関係を示す表であり、(a)は青色LED素子、緑色LED素子及び赤色LED素子に加えて黄色蛍光体を含むもの、(b)は黄色蛍光体を含まないものを示す。 図6は、本発明の第2の実施形態を示すパッケージ基板の平面図である。 図7A(a)はパッケージ基板本体に実装される青色LED素子の成長基板除去前の模式全体断面図であり、図7A(b)は成長基板除去前の青色LED素子の模式拡大断面図である。 図7B(c)はパッケージ基板本体に実装される緑色LED素子の成長基板除去前の模式全体断面図であり、図7B(d)は成長基板除去前の赤色LED素子の模式拡大断面図である。 図8は、青色LED素子をパッケージ基板本体の実装位置上方にセットした状態を示した説明図である。 図9は、青色LED素子をパッケージ基板本体に実装した状態を示す説明図である。 図10は、青色LED素子の成長基板にレーザを照射している状態を示す説明図である。 図11は、レーザ照射装置の概略説明図である。 図12は、青色LED素子の成長基板が除去された状態を示す説明図である。 図13は、パッケージ基板の断面図である。 図14は、変形例を示し、化学エッチングで成長基板を分離している状態を示す説明図である。 図15は、変形例を示し、青色LED素子の成長基板が除去された状態を示す説明図である。
 図1から図5は本発明の第1の実施形態を示し、図1は発光装置の概略側面図である。
 図1に示すように、この発光装置7は、ガラスの筐体2と、筐体2の下側に形成され外部電源と電気的に接続される端子部4と、を有し、筐体2内にパッケージ基板1が収容されている。パッケージ基板1は、端子部4から延び無機材料からなる支持部5により支持され、内部導線6により端子部4と電気的に接続されている。
 図2はパッケージ基板の平面図である。
 図2に示すように、パッケージ基板1は、複数のLED素子30,40,50が直接的にパッケージ基板本体10に実装されるチップオンボード型である。発光装置7は、パッケージ基板本体10と、パッケージ基板本体10上に形成された回路パターン20と、パッケージ基板本体10上に実装された複数のLED素子30,40,50と、を備えている。また、発光装置7は、パッケージ基板本体10上で各LED素子30,40,50を封止する封止樹脂70(図3参照)を備えている。パッケージ基板50は、内部導線6と直接的に接続される。
 パッケージ基板本体10の材質は任意であるが、例えば、AlN、Si、Cu、Al、SiC等が用いられる。尚、パッケージ基板本体10に、例えばガラスエポキシ等の合成樹脂を用いることも可能である。本実施形態においては、パッケージ基板本体10は正方形状に形成され、各LED素子30,40,50は縦方向及び横方向に整列して配置される。
 回路パターン20は、一対のアノード電極21及びカソード電極22を有し、各LED素子30,40,50へ電力を供給する。また、回路パターン20は、各LED素子が実装される複数の実装部30,40,50を有し、各LED素子30,40,50が複数素子直列に並べられた直列接続部23と、各直列接続部23の両端とアノード電極21又はカソード電極22を接続する並列接続部24と、を有する。本実施形態においては、5つのLED素子30,40,50が並べられた5つの直列接続部23が並列接続部24により接続され、縦方向及び横方向に5列ずつ計25個のLED素子30,40,50が使用される。
 本実施形態においては、青色LED素子30と、緑色LED素子40と、赤色LED素子50の3種類のLED素子が使用され、複数種類のLED素子が一体的に電気的に制御される。青色LED素子30と、緑色LED素子40と、赤色LED素子50と、は発光波長のみならず、温度特性も互いに異なっている。各直列接続部23には、3つの青色LED素子30と、1つの緑色LED素子40と、1つの赤色LED素子50が実装される。
 青色LED素子30及び緑色LED素子40は、例えばInGaN系の発光層を有し、赤色LED素子50は、例えばGaAs系の発光層を有する。例えば、青色LED素子30のピーク波長を450nm、緑色LED素子40のピーク波長を525nm、赤色LED素子50のピーク波長を630nmとすることができる。本実施形態においては、各LED素子30,40,50はフェイスアップ型であり、それぞれワイヤ60により回路パターン20の直列接続部23と電気的に接続される。
 また、本実施形態においては、青色LED素子30は、常温時から使用温度時のパワー減衰率が、緑色LED素子40及び赤色LED素子50よりも大きくなっている。例えば、常温を20℃、使用温度を80℃とした場合、光量の減衰率を青色LED素子30で15%、緑色LED素子40で10%、赤色LED素子50で10%とすることができる。
 図3は、パッケージ基板の断面図である。
 図3に示すように、パッケージ基板本体10上の各LED素子30,40,50は、封止樹脂70で封止される。封止樹脂70は、エポキシ系、シリコーン系等の透明樹脂とすることができる。また、封止樹脂70には、青色LED素子30から発せられる青色光により励起されると黄色光を発する蛍光体71が含有されている。青色光により励起されて黄色光を発する蛍光体71としては、YAG(Yttrium Aluminum Garnet)系、ケイ酸塩系等のものを用いることができる。
 以上のように構成された発光装置7では、回路パターン20のアノード電極21及びカソード電極22に電流を印加することにより、各LED素子30,40,50及び黄色蛍光体71から所期の波長の光が発せられて、発光装置7から白色光が発せられる。
 各LED素子30,40,50が発光すると、各LED素子30,40,50自体が発熱して温度が上昇し、各LED素子30,40,50から発せられる光量が変化する。この光量の変化は、各種類のLED素子30,40,50の温度特性に依存する。本実施形態の発光装置7は、各種類のLED素子30,40,50の光量が変化するものの、装置全体としては常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成されているので、比較的高い演色性が実現される。これにより、チップオンボード型のパッケージ基板1であっても、特殊な回路パターンを設けたり電流制御を行ったりすることなく、発光量を過度に減殺せずに演色性を向上させることができる。
 図4は、発光装置の発光スペクトルの一例を示すグラフであり、縦軸は発光強度、横軸は波長である。常温での発光スペクトルが破線、使用温度での発光スペクトルが実線である。尚、図4のデータを取得するにあたり、青色LED素子30のピーク波長が450nm、緑色LED素子40のピーク波長が525nm、赤色LED素子50のピーク波長が630nm、黄色蛍光体71のピーク波長が590nmの発光装置7を用いた。尚、青色LED素子と、緑色蛍光体、黄色蛍光体及び赤色蛍光体を用いた従来例の発光装置の発光スペクトルを一点鎖線で示している。また、図5は発光装置の温度と平均演色評価数(Ra)の関係を示す表であり、(a)は青色LED素子、緑色LED素子及び赤色LED素子に加えて黄色蛍光体を含むもの、(b)は黄色蛍光体を含まないものを示す。
 温度の上昇に伴い、各LED素子30,40,50及び黄色蛍光体71の光量が低下するため、図4に示すように、発光装置7の使用を開始すると全体として光量が低下する。しかし、本実施形態の発光装置7は、青色LED素子30、緑色LED素子40及び赤色LED素子50の各発光成分が減衰すると、平均演色評価数(Ra)が大きくなるよう構成される。
 具体的には、黄色蛍光体71を含む場合、図5(a)に示すように、常温(20℃)のRaは82、50℃のRaは92、使用温度(80℃)のRaは98とすることができた。尚、黄色蛍光体71を含まない場合は、図5(b)に示すように、常温(20℃)のRaは78、50℃のRaは90、使用温度(80℃)のRaは95であった。このように、黄色蛍光体71の有無にかかわらず、発光装置7の温度上昇とともにRaを大きくすることができる。
 尚、前記実施形態においては、青色、緑色及び赤色の3種類のLED素子を用いたものを示したが、2種類のLED素子であっても本発明を適用可能なことはいうまでもない。また、青色のLED素子のパワー減衰率が、緑色及び赤色のLED素子よりも高いものを示したが、緑色又は赤色のLED素子のパワー減衰率が他よりも高い構成としてもよい。要は、温度特性の違いを利用して、演色性が高くなるように構成されていればよい。また、発光装置7の細部構成なども適宜に変更が可能である。
 さらに、各LED素子のパワー減衰率は任意に変更することができ、例えば、青色LED素子30のパワー減衰率を8~20%、緑色LED素子40のパワー減衰率を10~40%、赤色LED素子50のパワー減衰率を10~60%の範囲とすることができる。
 また、蛍光体71を、赤色LED素子50から発せられる赤色光により励起されると黄色光を発するアップコンバージョン蛍光体とすることもできる。さらには、蛍光体71を、赤色光により励起される蛍光体と、青色光により励起される蛍光体とを混合させて構成することもできる。
 ここで、本願発明者は、緑色LED素子40を設けずに青色LED素子30により励起されると緑色光を発する緑色蛍光体を設け、減衰率が8~12%の青色LED素子30と、減衰率30~40%の赤色LED素子50と、青色LED素子30から発せられる青色光により励起され黄色光を発する蛍光体71と、の組み合わせによっても、常温時よりも使用温度時のRaを効率よく大きくすることができることを見出した。550nm付近の減衰率が8~12%となるよう蛍光体71を調整したところ、常温(25℃)のRaを92、使用温度(80℃)のRaを96とすることができた。ここで、蛍光体の減衰率は、主として封止樹脂中の濃度により調整可能である。このような構成とする場合は、青色LED素子30の光度を100mcd以上500mcd以下とし、赤色LED素子50の光度を3000mcd以上とすると、赤色LEDが減衰したとしてもRaが下がらない状態とすることができる。また、青色LED素子30と赤色LED素子50のピーク波長における発光強度の比率は、常温(25℃)で1:4~1:6とし、使用温度(80℃)で1:2.5~1:3.5とすることが好ましい。尚、蛍光体に起因する550nm付近の発光強度は、常温時も使用温度時も青色LED素子30と赤色LED素子50のピーク波長における発光強度の間とする必要がある。
 図6から図12は本発明の第2の実施形態を示し、図6はパッケージ基板の平面図である。
 図6に示すように、この発光装置7のパッケージ基板101は、パッケージ基板本体10と、パッケージ基板本体10上に形成された回路パターン120と、パッケージ基板本体10上に実装された複数のLED素子130,140,150と、を備えている。また、発光装置7は、パッケージ基板本体10上で各LED素子130,140,150を封止する封止樹脂70(図13参照)を備えている。
 回路パターン120は、一対のアノード電極121及びカソード電極122を有し、各LED素子130,140,150へ電力を供給する。また、回路パターン120は、各LED素子130,140,150が複数素子直列に並べられた直列接続部123と、各直列接続部123の両端とアノード電極121又はカソード電極122を接続する並列接続部124と、を有する。本実施形態においては、5つのLED素子130,140,150が並べられた5つの直列接続部123が並列接続部124により接続され、縦方向及び横方向に5列ずつ計25個のLED素子130,140,150が使用される。
 本実施形態においても、各LED素子130,140,150が発光すると、各LED素子130,140,150自体が発熱して温度が上昇し、各LED素子130,140,150から発せられる光量が変化する。この光量の変化は、各種類のLED素子130,140,150の温度特性に依存する。本実施形態の発光装置7は、各種類のLED素子130,140,150の光量が変化するものの、装置全体としては常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成されているので、比較的高い演色性が実現される。
 図7A(a)はパッケージ基板本体に実装される青色LED素子の成長基板除去前の模式全体断面図である。
 図7A(a)に示すように、この青色LED素子130は、フリップチップ型であり、成長基板131の表面上に、III族窒化物半導体層からなる半導体発光部132が形成されたものである。成長基板131は、例えばサファイアからなる。また、半導体発光部132上には、後述するように、p側電極138及びn側電極139が形成される。
 図7A(b)は成長基板除去前の青色LED素子の模式拡大断面図である。図7A(b)においては、説明のため、成長基板131の一部を省略して図示している。
 図7A(b)に示すように、半導体発光部132は、バッファ層133、n型GaN層134、活性層135、光ガイド層136、p型GaN層137を成長基板131側からこの順に有している。p型GaN層137上にはp側電極138が形成されるとともに、n型GaN層134上にはn側電極139が形成されている。
 バッファ層133は、成長基板131上に形成され、例えばAlNで構成されている。尚、バッファ層133をGaNで構成してもよい。第1導電型層としてのn型GaN層134は、バッファ層133上に形成され、n-GaNで構成されている。発光層としての活性層135は、n型GaN層134上に形成され、GalnNで構成され、電子及び正孔の注入により青色光を発する。尚、活性層135を多重量子井戸構造とすることもできる。
 光ガイド層136は、活性層135上に形成され、p―AIGaNで構成されている。第2導電型層としてのp型GaN層137は、光ガイド層136上に形成され、p-GaNで構成されている。n型GaN層134からp型GaN層137までは、III族窒化物半導体のエピタキシャル成長により形成される。ここで、各層の厚さは、例えば、バッファ層133を40nm、n型GaN層134を5μm、活性層135を2.5nm、光ガイド層136を20nm、p型GaN層137を200nmとし、半導体発光部132の厚さを5262.5nmとすることができる。尚、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電流が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。
 p側電極138は、p型GaN層137上に形成され、例えばAu等の材料からなる。本実施形態においては、p側電極138は、真空蒸着法、スパッタリング法、CVD(Chemical Vapor Deposition)法等により形成される。n側電極139は、p型GaN層137からn型GaN層134をエッチングして、露出したn型GaN層134上に形成される。n側電極139は、例えばW/Al/Auから構成され、真空蒸着法、スパッタリング法、CVD(Chemical Vapor Deposition)法等により形成される。
 図7B(c)はパッケージ基板本体に実装される緑色LED素子の成長基板除去前の模式全体断面図である。
 図7B(c)に示すように、この緑色LED素子140は、フリップチップ型であり、成長基板141の表面上に、III族窒化物半導体層からなる半導体発光部142が形成されたものである。成長基板141は、例えばサファイアからなる。また、半導体発光部142上には、後述するように、p側電極148及びn側電極149が形成される。尚、ここでは、緑色LED素子140の詳細な素子構成については詳述しない。
 図7B(d)は成長基板除去前の赤色LED素子の模式拡大断面図である。
 図7B(d)に示すように、この赤色LED素子150は、フリップチップ型であり、成長基板151の表面上に、GaAs系半導体層からなる半導体発光部152が形成されたものである。成長基板151は、例えばGaAsからなる。また、半導体発光部152上には、後述するように、p側電極158及びn側電極159が形成される。尚、ここでは、赤色LED素子150の詳細な素子構成については詳述しない。
 以下、図8から図12を参照して、発光装置の製造方法について説明する。本実施形態の発光装置の製造方法は、成長基板131,141,151と、成長基板131,141,151上の半導体発光部132,142,152と、半導体発光部132,142,152上の電極138,139,148,149,158,159と、をそれぞれ有する互いに独立した複数のフリップチップ型のLED素子130,140,150から、所期の性能を満たすLED素子130,140,150を選別する選別工程と、選別工程にて選別された複数のLED素子130,140,150を、成長基板131,141,151の他の基板に接合することなく、各LED素子130,140,150ごとに別個にパッケージ基板本体10に直接的に実装する実装工程と、を含んでいる。また、本実施形態の発光装置の製造方法は、青色LED素子130及び緑色LED素子140について、パッケージ基板本体10に各LED素子130,140が直接的に実装された状態で、LED素子130,140よりも大きなスポット径のレーザを走査させることなく、各LED素子130,140ごとに素子全体にレーザを均一に照射し、成長基板131,141の全部分を剥離する剥離工程と、パッケージ基板本体10上の成長基板131,141の残骸を、ガスを吹き付けることにより一括して退去させる退去工程と、を含んでいる。尚、各図は青色LED素子130を例に説明しているが、緑色LED素子140及び赤色LED素子150においても同様の処理がなされる。
 まず、発光装置の使用に適した、所期の性能を満たすLED素子130,140,150の選別を行う。ここで所期の性能とは、製造される発光装置の品質のばらつきが問題とならないのであれば、LED素子130,140,150が通電時に点灯するかしないかということになるし、発光装置の品質のばらつきが問題となるのであれば、LED素子130,140,150の順方向電圧、光量、色調等が所定の設計範囲内であるかないかということになる。すなわち、少なくとも点灯しないような不良のLED素子130,140,150はこの段階で除かれる。
 図8は、青色LED素子をパッケージ基板本体の実装位置上方にセットした状態を示した説明図である。
 図8に示すように、パッケージ基板本体10における青色LED素子130との接続部位には、予めAu-Snからなるはんだ190が蒸着されている。尚、はんだ190としてAu-Sn以外の材料を用いることもできる。
 図9は、青色LED素子をパッケージ基板本体に実装した状態を示す説明図である。
 次いで、図9に示すように、所定の雰囲気下、所定の温度条件、所定の荷重条件にて、p側電極138及びn側電極139をはんだ190に接合させる。所定の雰囲気は、例えば、窒素及び水素を混合したフォーミングガスの他、窒素等の不活性雰囲気とすることができる。例えば、フォーミングガスとして、水素5%、窒素95%のものを用いることができる。また、各LED素子130,140,150に加えられる荷重は、例えば5g重以上50g重以下に設定される。温度条件は任意であるが、はんだ190を溶融させるためには、はんだ190を構成する材料の共晶温度又は融点以上の温度(例えば、250℃以上400℃以下の温度)に加熱する必要がある。例えば、はんだ190がAu80%、Sn20%のAu-Snはんだである場合、共晶温度である約280℃以上に加熱する必要ある。また、はんだ190を例えばSnAgCuで構成した場合、SnAgCuの融点が約220℃であるので、少なくとも約220℃以上に加熱する必要ある。このように、はんだ190を溶融固化してパッケージ基板本体10に各LED素子130,140,150を固定する。
 図10は、青色LED素子の成長基板にレーザを照射している状態を示す説明図である。
 次いで、図10に示すように、パッケージ基板本体10の上方から各LED素子130,140にレーザビームを照射する。レーザビームのスポット径は、各LED素子130,140の平面視面積より大きく形成され、レーザビームを走査することなく、各LED素子130,140全体にビームを照射することができる。ここで、レーザビームはスポットの径方向について光の強度分布があることから、LED素子130,140より大きいほど、LED素子130,140に照射されるビームのエネルギーをより均一にすることができる。各LED素子130,140はフリップチップ型であることから、成長基板131,141が上側に位置しており、レーザビームのエネルギーが成長基板131,141と半導体発光部132,142の界面に与えられ、成長基板131,141が半導体発光部132,142から分離する。
 ここで、各LED素子130,140の位置は、CCDカメラ等で認識して配置することで定まっている。これは、各LED素子130,140ごとに実装されていることから可能となっており、ウェハ状の基板やサブマウントにより半導体発光部132,142が連結された状態では、CCDカメラで認識することはできない。仮にCCDカメラで認識可能なようにウェハにスクライブラインを形成すると、成長基板にひび割れが生じたりひずみが生じてしまう。また、本実施形態においては、ウェハの状態でレーザビームを照射する場合のようにウェハの反り等を考慮する必要がないので、レーザビームの焦点を的確に成長基板131,141と半導体発光部132,142の界面に合わせることができる。
 ここで、図11を参照してレーザ照射方法について説明する。図11は、レーザ照射装置の概略説明図である。
 図11に示すように、レーザ照射装置200は、レーザビームを発振するレーザ発振器210、発振されたレーザビームの方向を変えるミラー220、レーザビームをフォーカシングする光学レンズ230及びレーザビームの照射対象である作業対象物、即ちパッケージ基板本体10を支持するためのステージ240を有する。また、レーザ照射装置200は、レーザビームの経路を真空状態に維持するハウジング250を有している。
 レーザ発振器210は、KrF、ArF等のエキシマレーザとすることができる。レーザ発振器210で放出されたビームは、ミラー220で反射されて方向が変更される。ミラー220は、レーザビームの方向を変更するために複数設けられる。また、光学レンズ230は、ステージ240の上方に位置し、パッケージ基板本体10に入射されるレーザビームをフォーカシングする。
 ステージ240は、図示しない移動手段によりx方向及び/又はy方向に移動し、その上に載置されたパッケージ基板本体10を移動する。レーザビームは、成長基板131,141を通して照射され、主に成長基板131,141と半導体発光部132,142の間の界面で吸収される。レーザビームは、平面視にて各LED素子130,140より大きなスポット径で照射される。ここで、スポット径は、例えば1mm以上10mm以下とすることができる。
 図12は、青色LED素子の成長基板が除去された状態を示す説明図である。
 レーザ照射装置により成長基板131,141の全部分を剥離することにより、図12に示すように、半導体発光部132,142のみをパッケージ基板本体10上に残すことができる。尚、剥離された成長基板131,141の残骸は、パッケージ基板本体10上にガスを吹き付けることにより、パッケージ基板本体10上から退去させることができる。すなわち、全ての成長基板131,141を剥離させた後に、各成長基板131,141の残骸を一括して退去させればよい。
 また、赤色LED素子150に関しては、エッチングにより成長基板151を除去することにより、半導体発光部152のみをパッケージ基板本体10上に残すことができる。尚、必ずしも成長基板151を全て除去する必要はなく、必要な厚さまで薄くすればよい。赤色LED素子150の成長基板151がGaAsである場合は、硫酸系によるエッチングで、GaAsを任意の厚さまで薄くすることができる。
 図13は、パッケージ基板の断面図である。
 次いで、図13に示すように、パッケージ基板本体10上の半導体発光部132を封止樹脂70で封止する。封止樹脂70は、エポキシ系、シリコーン系等の透明樹脂とすることができる。また、封止樹脂70には、各半導体発光部132から発せられる青色光により励起されると黄色光を発する蛍光体71が含有されている。黄色光を発する蛍光体71としては、YAG(Yttrium Aluminum Garnet)系、ケイ酸塩系等のものを用いることができる。
 完成したパッケージ基板1は支持部5に取り付けられ、端子部4と内部導線6により接続される。この後、端子部4に筐体2を組み付けることにより、発光装置7が完成する。
 以上説明したように、本実施形態の発光装置の製造方法によれば、実装工程にて、複数のLED素子130,140,150がパッケージ基板本体10にフリップチップ実装され、各LED素子130,140,150がパッケージ基板本体10に電気的に接続される。次いで、除去工程にて成長基板131が除去され、半導体発光部132,142,152がパッケージ基板本体10上に残留する。従来、半導体層をハンドリング可能な程度(例えば、50μm)まで厚くしない限り、パッケージ基板本体10に半導体発光部132,142,152のみを配置することができなかったが、パッケージ基板本体10上での成長基板131,141,151のリフトオフやエッチングにより、パッケージ基板本体10上への半導体発光部132,142,152の形成が可能となった。
 このように、パッケージ基板本体10上に半導体発光部132,142,152のみが残るため、成長基板131,141,151に起因して光学的、熱的等な性能が悪化することはない。また、各LED素子130,140,150を実装した後に成長基板131,141,151を除去するようにしたので、図3に示すパッケージ基板1と比べても明らかなように、図12に示す薄型の半導体発光部132,142,152をパッケージ基板本体10上に形成することができる。
 また、選別工程で予め所期の性能を満たすLED素子130,140,150を選別して使用することができ、歩留まりを向上させることができる。すなわち、成長基板上に複数の半導体素子構造を形成したまま、一括してサブマウントやAlN基板に貼り付けるような従来のもののように、初期不良の素子が含まれてしまうようなことはない。また、支持基板等の他の基板への貼り付けは必要はないし、支持基板等をパッケージ基板上で剥がす必要もない。
 また、リフトオフの際、分離した各LED素子130,140ごとにレーザを照射すればよく、素子が分離されない状態でウェハ全体をラインスキャンしたり素子に対応するスクライブラインの領域ごとにレーザを照射する従来の方法と比べて、成長基板131,141の剥離に分布が生じることを抑制することができ、これによっても歩留まりを向上させることができる。特に、本実施形態においては、LED素子130,140よりも大きなスポット径のレーザにより成長基板131,141を除去していることから、各LED素子130,140に均一にビームを照射することができ、成長基板131,141の剥離に分布が生じることを的確に抑制することができ、歩留まりを確実に向上させることができる。通常、レーザリフトオフは、複数のLED素子が隣接した状態のウェハ単位で行われ、素子単位でレーザを照射しようとしても、隣接するLED素子にも影響が及ぶことから、素子単位でレーザリフトオフをすることはできない。しかしながら、本実施形態のように、一旦ウェハから各LED素子を切り出すことにより、各LED素子ごとに完全に独立した状態でのレーザ照射が可能となる。
 また、本実施形態の発光装置によれば、半導体発光部132,142,152上に成長基板131,141,151が存在しない、若しくは極めて薄いことから、半導体発光部132,142,152を薄型とすることができ、半導体発光部132,142,152から発する熱をパッケージ基板本体10側へ速やかに放散させることができる。すなわち、半導体発光部132,142,152から成長基板131,141,151を通じて封止樹脂70、蛍光体71等への伝熱を減じて、封止樹脂70、蛍光体71等の劣化を抑制することができる。
 また、成長基板131,141と半導体発光部132,142の材質が異なる青色LED素子130及び緑色LED素子140において、成長基板131,141が存在しないことにより、半導体発光部132,142と成長基板131,141との界面で光が反射することがなくなり、半導体発光部132,142からの光取りだし効率が向上する。本実施形態の発光装置を実際に製作したところ、成長基板131,141を有するものと比較して、発光効率を10~30%程度向上させることができた。
 尚、前記実施形態においては、青色LED素子130及び緑色LED素子140について、レーザを半導体発光部132,142と成長基板131,141の界面に照射して成長基板131,141を除去するものを示したが、例えば、エッチングにより成長基板131,141を除去するようにしてもよい。この場合、成長基板131,141自体をエッチングするか、成長基板131,141と活性層の間に形成された犠牲層をエッチングすることで、成長基板131,141を除去することができる。例えば、第2の実施形態の青色LED素子130の場合、バッファ層133を犠牲層としてエッチングすることにより、成長基板131,141を分離することが可能である。図14に示すように、バッファ層133は、露出されている側面から、内方向に向かって次第に化学エッチングされることとなる。これにより、図15に示すように、バッファ層133及び成長基板131が除去された半導体発光部132をパッケージ基板本体10上に形成することができる。
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 1  パッケージ本体
 7  発光装置
 10  パッケージ基板本体
 20  回路パターン
 21  アノード電極
 22  カソード電極
 23  直列接続部
 24  並列接続部
 30  青色LED素子
 40  緑色LED素子
 50  赤色LED素子
 60  ワイヤ
 70  封止樹脂
 71  黄色蛍光体
 101 発光装置
 120 回路パターン
 121 アノード電極
 122 カソード電極
 123 直列接続部
 124 並列接続部
 130 青色LED素子
 131 成長基板
 132 半導体発光部
 133 バッファ層
 134 n型GaN層
 135 活性層
 136 光ガイド層
 137 p型GaN層
 138 p側電極
 139 n側電極
 140 緑色LED素子
 141 成長基板
 142 半導体発光部
 150 赤色LED素子
 151 成長基板
 152 半導体発光部
 190 はんだ

Claims (6)

  1.  複数のLED素子が直接的に実装されるチップオンボード型のパッケージ基板を有する発光装置であって、
     前記パッケージ基板上に形成され、前記複数のLED素子が実装される複数の実装部と、一対のアノード電極及びカソード電極と、を有する回路パターンを有し、
     前記回路パターンに実装される各LED素子には、発光波長及び温度特性が互いに異なる複数種類のLED素子が含まれ、
     前記複数種類のLED素子の温度特性を利用して、装置全体として常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成されるチップオンボード型のパッケージ基板を有する発光装置。
  2.  前記複数種類のLED素子は、青色LED素子と、緑色LED素子と、赤色LED素子と、を含む請求項1に記載のチップオンボード型のパッケージ基板を有する発光装置。
  3.  前記青色LED素子は、常温時から使用温度時へのパワー減衰率が8~20%であり、
     前記緑色LED素子は、常温時から使用温度時へのパワー減衰率が10~40%であり、
     前記赤色LED素子は、常温時から使用温度時へのパワー減衰率が10~60%である請求項2に記載のチップオンボード型のパッケージ基板を有する発光装置。
  4.  前記青色LED素子により励起されると黄色光を発する黄色蛍光体を含む請求項3に記載のチップオンボード型のパッケージ基板を有する発光装置。
  5.  前記複数種類のLED素子は、青色LED素子と、赤色LED素子と、を含み、
     前記青色LED素子または前記赤色LED素子により励起されると緑色光を発する緑色蛍光体と、
     前記青色LED素子または前記赤色LED素子により励起されると黄色光を発する黄色蛍光体と、を含む請求項1に記載のチップオンボード型のパッケージ基板を有する発光装置。
  6.  請求項1から5のいずれか1項に記載のチップオンボード型のパッケージ基板を有する発光装置の製造するにあたり、
     成長基板と、前記成長基板上の半導体発光部と、前記半導体発光部上の電極と、を有する複数のフリップチップ型のLED素子をパッケージ基板に実装する実装工程と、
     前記成長基板に前記各LED素子が実装された状態で前記成長基板を除去する除去工程と、を含むチップオンボード型の発光装置の製造方法。
PCT/JP2013/063860 2012-05-21 2013-05-17 チップオンボード型のパッケージ基板を有する発光装置及びその製造方法 WO2013176062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147032453A KR20150022771A (ko) 2012-05-21 2013-05-17 칩 온 보드형의 패키지 기판을 갖는 발광 장치 및 그 제조 방법
CN201380026677.6A CN104335367A (zh) 2012-05-21 2013-05-17 具有板上芯片封装型的封装基板的发光装置及其制造方法
JP2014516784A JP6267635B2 (ja) 2012-05-21 2013-05-17 チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
US14/402,842 US9293662B2 (en) 2012-05-21 2013-05-17 Light emitting device comprising chip-on-board package substrate and method for manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-115918 2012-05-21
JP2012115918 2012-05-21

Publications (1)

Publication Number Publication Date
WO2013176062A1 true WO2013176062A1 (ja) 2013-11-28

Family

ID=49623755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063860 WO2013176062A1 (ja) 2012-05-21 2013-05-17 チップオンボード型のパッケージ基板を有する発光装置及びその製造方法

Country Status (5)

Country Link
US (1) US9293662B2 (ja)
JP (1) JP6267635B2 (ja)
KR (1) KR20150022771A (ja)
CN (1) CN104335367A (ja)
WO (1) WO2013176062A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176948A (ja) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 発光装置、照明用光源、および照明装置
JP2016072269A (ja) * 2014-09-26 2016-05-09 日亜化学工業株式会社 発光装置及び発光装置用基板
WO2016104022A1 (ja) * 2014-12-25 2016-06-30 株式会社Nano Wave 小型空気浄化装置
WO2016104023A1 (ja) * 2014-12-25 2016-06-30 株式会社Nano Wave 発光装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890488B (zh) * 2012-07-25 2018-02-16 松下知识产权经营株式会社 发光模块
JP6230392B2 (ja) * 2013-11-29 2017-11-15 シチズン電子株式会社 発光装置
JP2019511838A (ja) 2016-04-04 2019-04-25 グロ アーベーGlo Ab ダイ移送用のバックプレーン通過レーザ照射
TWI723207B (zh) 2016-08-18 2021-04-01 新世紀光電股份有限公司 微型發光二極體及其製造方法
CN107768487A (zh) * 2016-08-18 2018-03-06 新世纪光电股份有限公司 巨量转移电子元件的方法
TWD191816S (zh) 2017-12-12 2018-07-21 新世紀光電股份有限公司 發光二極體晶片
US10707190B2 (en) 2018-04-10 2020-07-07 Glo Ab LED backplane having planar bonding surfaces and method of making thereof
TWD202085S (zh) * 2018-09-04 2020-01-11 晶元光電股份有限公司 發光裝置
DK3915360T3 (da) * 2019-01-24 2024-04-29 Dainippon Printing Co Ltd Led-belysningsenhed til dyre- og plantevækst, led-belysningsmodul til dyre- og plantevækst, hylde til et dyre- og plantevækstsstativ, dyre- og plantevækstsstativ, dyre- og plantevækstsfabrik
JP7051732B2 (ja) * 2019-02-01 2022-04-11 大日本印刷株式会社 動植物育成用のled照明モジュール、動植物の育成棚、及び動植物育成工場

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209504A (ja) * 1996-10-28 1998-08-07 General Electric Co <Ge> 一般照明システム
JP2001352104A (ja) * 2000-06-08 2001-12-21 Hitachi Cable Ltd 発光ダイオード
JP2005340748A (ja) * 2003-09-18 2005-12-08 Nichia Chem Ind Ltd 発光装置
JP2007067000A (ja) * 2005-08-29 2007-03-15 Mitsubishi Rayon Co Ltd 発光ダイオードモジュール
JP2007517404A (ja) * 2003-12-24 2007-06-28 ゲルコアー リミテッド ライアビリティ カンパニー 窒化物フリップチップからのサファイヤのレーザ・リフトオフ
JP2009260319A (ja) * 2008-03-26 2009-11-05 Toshiba Lighting & Technology Corp 照明装置
JP2011216868A (ja) * 2010-03-16 2011-10-27 Toshiba Lighting & Technology Corp 発光装置及び照明装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892193B2 (ja) * 2005-03-01 2012-03-07 Dowaホールディングス株式会社 蛍光体混合物および発光装置
JP4341693B2 (ja) * 2007-05-16 2009-10-07 ウシオ電機株式会社 Led素子およびその製造方法
US7655954B2 (en) * 2007-12-17 2010-02-02 Ledtech Electronics Corp. Array type light-emitting device with high color rendering index
US7772603B2 (en) * 2007-12-17 2010-08-10 Ledtech Electronics Corp. Array type light-emitting device with high color rendering index
KR101266205B1 (ko) * 2008-07-08 2013-05-21 우시오덴키 가부시키가이샤 발광 장치 및 발광 장치의 제조 방법
KR101266226B1 (ko) * 2008-07-09 2013-05-21 우시오덴키 가부시키가이샤 발광 장치 및 발광 장치의 제조 방법
US8158026B2 (en) * 2008-08-12 2012-04-17 Samsung Led Co., Ltd. Method for preparing B-Sialon phosphor
JP2010199145A (ja) * 2009-02-23 2010-09-09 Ushio Inc 光源装置
US8384114B2 (en) * 2009-06-27 2013-02-26 Cooledge Lighting Inc. High efficiency LEDs and LED lamps
US8779685B2 (en) * 2009-11-19 2014-07-15 Intematix Corporation High CRI white light emitting devices and drive circuitry
EP2365525A3 (en) * 2010-03-12 2013-05-29 Toshiba Lighting & Technology Corporation Illumination apparatus having an array of red and phosphour coated blue LEDs
CN102192424B (zh) * 2010-03-12 2015-08-26 东芝照明技术株式会社 发光装置以及照明装置
JP4875198B1 (ja) * 2010-09-17 2012-02-15 株式会社東芝 Led電球
US20110256647A1 (en) * 2011-06-28 2011-10-20 Bridgelux Inc Methods of manufacturing elongated lenses for use in light emitting apparatuses
KR20150009880A (ko) * 2013-07-17 2015-01-27 삼성전자주식회사 직관형 발광 장치
US9410664B2 (en) * 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209504A (ja) * 1996-10-28 1998-08-07 General Electric Co <Ge> 一般照明システム
JP2001352104A (ja) * 2000-06-08 2001-12-21 Hitachi Cable Ltd 発光ダイオード
JP2005340748A (ja) * 2003-09-18 2005-12-08 Nichia Chem Ind Ltd 発光装置
JP2007517404A (ja) * 2003-12-24 2007-06-28 ゲルコアー リミテッド ライアビリティ カンパニー 窒化物フリップチップからのサファイヤのレーザ・リフトオフ
JP2007067000A (ja) * 2005-08-29 2007-03-15 Mitsubishi Rayon Co Ltd 発光ダイオードモジュール
JP2009260319A (ja) * 2008-03-26 2009-11-05 Toshiba Lighting & Technology Corp 照明装置
JP2011216868A (ja) * 2010-03-16 2011-10-27 Toshiba Lighting & Technology Corp 発光装置及び照明装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176948A (ja) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 発光装置、照明用光源、および照明装置
JP2016072269A (ja) * 2014-09-26 2016-05-09 日亜化学工業株式会社 発光装置及び発光装置用基板
WO2016104022A1 (ja) * 2014-12-25 2016-06-30 株式会社Nano Wave 小型空気浄化装置
WO2016104023A1 (ja) * 2014-12-25 2016-06-30 株式会社Nano Wave 発光装置
JPWO2016104022A1 (ja) * 2014-12-25 2017-10-05 株式会社Nano Wave 小型空気浄化装置
JP2020168393A (ja) * 2014-12-25 2020-10-15 株式会社Nano Wave 小型空気浄化装置
JP7010999B2 (ja) 2014-12-25 2022-02-10 株式会社Nano Wave 小型空気浄化装置

Also Published As

Publication number Publication date
JPWO2013176062A1 (ja) 2016-01-12
US20150097201A1 (en) 2015-04-09
KR20150022771A (ko) 2015-03-04
CN104335367A (zh) 2015-02-04
JP6267635B2 (ja) 2018-01-24
US9293662B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6267635B2 (ja) チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
US7622743B2 (en) Semiconductor light emitting device, lighting module, lighting apparatus, and manufacturing method of semiconductor light emitting device
JP4805831B2 (ja) 半導体発光装置、照明モジュール、照明装置、表面実装部品、および表示装置
JP4857310B2 (ja) 半導体発光素子及びその製造方法
US8324632B2 (en) Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
US7696523B2 (en) Light emitting device having vertical structure and method for manufacturing the same
US20050214965A1 (en) Vertical GaN light emitting diode and method for manufacturing the same
JP4579654B2 (ja) 半導体発光装置及びその製造方法、並びに半導体発光装置を備えた照明モジュール及び照明装置
WO2010050451A1 (ja) 半導体発光素子の製造方法
JP2006086469A (ja) 半導体発光装置、照明モジュール、照明装置及び半導体発光装置の製造方法
KR101132910B1 (ko) 발광 다이오드 제조방법
KR100774196B1 (ko) 수직형 발광 소자 제조방법
US20060284208A1 (en) Light emitting diode device using electrically conductive interconnection section
WO2013154181A1 (ja) チップオンボード型のパッケージ基板を有する発光装置の製造方法
JP2005268775A (ja) 半導体発光素子及びその製造方法
KR100670929B1 (ko) 플립칩 구조의 발광 소자 및 이의 제조 방법
KR100710394B1 (ko) 수직형 발광 소자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516784

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147032453

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14402842

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13794290

Country of ref document: EP

Kind code of ref document: A1