WO2016104023A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2016104023A1
WO2016104023A1 PCT/JP2015/083028 JP2015083028W WO2016104023A1 WO 2016104023 A1 WO2016104023 A1 WO 2016104023A1 JP 2015083028 W JP2015083028 W JP 2015083028W WO 2016104023 A1 WO2016104023 A1 WO 2016104023A1
Authority
WO
WIPO (PCT)
Prior art keywords
led element
emission intensity
temperature
peak wavelength
light
Prior art date
Application number
PCT/JP2015/083028
Other languages
English (en)
French (fr)
Inventor
勇次 今井
Original Assignee
株式会社Nano Wave
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nano Wave filed Critical 株式会社Nano Wave
Priority to JP2016566048A priority Critical patent/JPWO2016104023A1/ja
Publication of WO2016104023A1 publication Critical patent/WO2016104023A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • a plurality of types of LED elements having different emission wavelengths and temperature characteristics are directly mounted on a mounting substrate, so that the average color rendering index (Ra) at the time of use is larger than that at normal temperature as a whole apparatus. It is related with the comprised light-emitting device.
  • Chip-on-board is a technology for directly mounting a chip such as a light-emitting element on a circuit pattern of a large mounting board without once forming a small package.
  • a white light emitting device it is common to include a yellow phosphor in a sealing resin for sealing the LED element after mounting the blue LED element.
  • the combination of the blue LED element and the yellow phosphor has a problem of low color rendering. Therefore, when white color rendering is required, a method of including a green phosphor or a red phosphor in a sealing resin in addition to a yellow phosphor is employed. However, in a method in which color rendering properties are supplemented with various phosphors using one type of LED element as a light source, loss at the time of wavelength conversion in each phosphor is large, and a reduction in light amount cannot be avoided.
  • a light emitting device described in Patent Document 1 has been proposed as a light emitting device capable of maintaining a high color rendering property and changing a color temperature without using a red phosphor having a particularly large loss.
  • the light emitting device includes a device substrate, a first color temperature light emitting unit group and a second color temperature light emitting unit group arranged in a predetermined arrangement pattern on the device substrate, and each light emitting unit group independently.
  • a power supply and a circuit pattern for supplying current and a controller for controlling a ratio of current supplied from the power supply to each light emitting unit group are provided.
  • the light emitting unit group of the first color temperature includes a plurality of blue light emitting type LED chips, and a first phosphor layer that seals the LED chips and includes the first phosphor.
  • the light emitting unit group having the second color temperature has a color temperature lower than the first color temperature, and includes an LED chip, a first phosphor layer that seals the LED chip, and a first fluorescence.
  • a light-emitting device described in Patent Document 2 has been proposed as a light-emitting device having a chip-on-board type mounting substrate that can improve color rendering without excessively reducing the amount of emitted light.
  • This light-emitting device includes a plurality of types of LED elements having different emission wavelengths and temperature characteristics, and the average color rendering index (Ra) at the time of use is higher than that at room temperature as a whole using the temperature characteristics of each LED element. Configured to grow.
  • the inventor of the present application has made extensive studies on a technique for increasing the average color rendering index (Ra) more accurately during use.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light-emitting device that can increase the average color rendering index (Ra) more accurately during use.
  • the plurality of types of LED elements include a blue LED element and a red LED element, and the blue LED element has an emission intensity at a peak wavelength at room temperature (25 ° C.) of Bn 25 .
  • the emission intensity at the peak wavelength at the use temperature (80 ° C.) is Bn 80
  • the emission intensity at the peak wavelength at room temperature (25 ° C.) of the red LED element is Rn 25
  • the peak wavelength at the use temperature (80 ° C.) of the red LED element is Bn 80 .
  • the plurality of types of LED elements include green LED elements, and the green LED element has a peak wavelength emission intensity at room temperature (25 ° C.) of Gn 25 , and the green LED element use temperature (80 ° C.).
  • the emission intensity at the peak wavelength is Gn 80
  • Gn 25 / Bn 25 ⁇ Gn 80 / Bn 80 And satisfy 1.2 ⁇ Gn 25 / Bn 25 and 1.5 ⁇ Gn 80 / Bn 80 It is preferable to satisfy.
  • the plurality of types of LED elements include yellow LED elements, the emission intensity of the peak wavelength at normal temperature (25 ° C.) of the yellow LED elements is Yn 25, and the operating temperature of the yellow LED elements (80 ° C.).
  • the emission intensity at the peak wavelength is Yn 80
  • Yn 25 / Bn 25 ⁇ Yn 80 / Bn 80 And satisfy 2.8 ⁇ Yn 25 / Bn 25 and 3.0 ⁇ Yn 80 / Bn 80 It is preferable to satisfy.
  • the blue LED element has a light emission intensity that is reduced by 20% to 30% when the temperature is changed from room temperature (25 ° C.) to a use temperature (80 ° C.), and the red LED element is used from room temperature (25 ° C.).
  • the emission intensity is preferably reduced by 10% or more and 15% or less.
  • the average color rendering index (Ra) can be increased more accurately during use.
  • FIG. 1 is a schematic side view of a light emitting device showing an embodiment of the present invention.
  • FIG. 2 is a plan view of the LED mounting substrate.
  • FIG. 3 is a cross-sectional view of the LED mounting substrate.
  • FIG. 4 is a graph illustrating an example of an emission spectrum of the light emitting device.
  • FIG. 5 is a graph showing an example of a conventional emission spectrum.
  • FIG. 6 is a graph comparing an example of the emission spectrum of the present invention with an example of a conventional emission spectrum.
  • FIG. 1 is a schematic side view of a light emitting device.
  • the light emitting device 7 includes a glass housing 2 and a terminal portion 4 formed on the lower side of the housing 2 and electrically connected to an external power source.
  • the LED mounting substrate 1 is housed inside.
  • the LED mounting substrate 1 extends from the terminal portion 4, is supported by a support portion 5 made of an inorganic material, and is electrically connected to the terminal portion 4 by an internal conductor 6.
  • FIG. 2 is a plan view of the LED mounting substrate.
  • the LED mounting substrate 1 is a chip-on-board type in which a plurality of LED elements 30, 40, 50, 60 are directly mounted on the mounting substrate body 10.
  • the light emitting device 7 includes a mounting substrate body 10, a circuit pattern 20 formed on the mounting substrate body 10, and a plurality of LED elements 30, 40, 50, 60 mounted on the mounting substrate body 10. Yes.
  • the light emitting device 7 includes a sealing resin 70 (see FIG. 3) that seals the LED elements 30, 40, 50, 60 on the mounting substrate body 10.
  • the LED mounting substrate 1 is directly connected to the internal conductor 6.
  • the material of the mounting substrate body 10 is arbitrary, for example, AlN, Si, Cu, Al 2 O 3 , SiC, or the like is used. It is also possible to use a synthetic resin such as glass epoxy for the mounting substrate body 10.
  • the mounting board main body 10 is formed in a square shape, and the LED elements 30, 40, 50, 60 are arranged in alignment in the vertical direction and the horizontal direction.
  • the circuit pattern 20 has a pair of anode electrode 21 and cathode electrode 22, and supplies power to the LED elements 30, 40, 50, 60.
  • a predetermined number of LED elements 30, 40, 50, 60 are connected in series to form a series connection group 23, and a plurality of series connection groups 23 are connected in parallel.
  • the four series connection groups 23 are each constituted by 13 LED elements 30, 40, 50, 60, and a total of 52 LED elements 30, 40, 50, 60 are used.
  • a blue LED element 30, a green LED element 40, a yellow LED element 50, and a red LED element 60 are used, and a plurality of types of LED elements are integrated. Is electrically controlled.
  • the blue LED element 30, the green LED element 40, the yellow LED element 50, and the red LED element 60 are different from each other not only in the emission wavelength but also in the temperature characteristics.
  • two blue LED elements 30, three green LED elements 40, three yellow LED elements 50, and five red LED elements 60 are mounted.
  • the blue LED element 30 and the green LED element 40 have, for example, an InGaN light emitting layer, and the yellow LED element 50 and the red LED element 60 have, for example, a GaAs light emitting layer.
  • the peak wavelength of the blue LED element 30 can be 455 nm
  • the peak wavelength of the green LED element 40 can be 525 nm
  • the peak wavelength of the yellow LED element 50 can be 590 nm
  • the peak wavelength of the red LED element 60 can be 630 nm.
  • each of the LED elements 30, 40, 50, 60 is a face-up type, and is electrically connected to the series connection portion 23 of the circuit pattern 20 by a wire.
  • the blue LED element 30 has a power attenuation rate greater than that of the green LED element 40, the yellow LED element 50, and the red LED element 60 from the normal temperature to the use temperature.
  • the attenuation rate of the light amount is 20% for the blue LED element 30, 15% for the green LED element 40, 15% for the yellow LED element 50, and the red LED element 60. It can be 10%.
  • the power attenuation rate of each LED element is preferably made smaller in the order of the blue LED element 30, the green LED element 40, the yellow LED element 50, and the red LED element 60.
  • the blue LED element 30 has a peak wavelength emission intensity at a normal temperature (25 ° C.) of Bn 25 , and the blue LED element 30 has a peak wavelength emission intensity of Bn 80 at a use temperature (80 ° C.).
  • the emission intensity at the peak wavelength of the red LED element 60 at 25 ° C. is Rn 25
  • the emission intensity at the peak wavelength of the red LED element 60 at the operating temperature (80 ° C.) is Rn 80
  • Rn 25 / Bn 25 ⁇ Rn 80 / Bn 80 And satisfy 3.0 ⁇ Rn 25 / Bn 25 and 3.3 ⁇ Rn 80 / Bn 80 It is preferable to satisfy.
  • the emission intensity at the peak wavelength of the green LED element 40 at normal temperature (25 ° C.) is Gn 25 and the emission intensity at the peak wavelength of the green LED element 40 at the use temperature (80 ° C.) is Gn 80 , Gn 25 / Bn 25 ⁇ Gn 80 / Bn 80 And satisfy 1.2 ⁇ Gn 25 / Bn 25 and 1.5 ⁇ Gn 80 / Bn 80 It is preferable to satisfy.
  • the emission intensity at the peak wavelength of the yellow LED element 50 at normal temperature (25 ° C.) is Yn 25 and the emission intensity at the peak wavelength of the yellow LED element 50 at the use temperature (80 ° C.) is Yn 80 , Yn 25 / Bn 25 ⁇ Yn 80 / Bn 80 And satisfy 2.8 ⁇ Yn 25 / Bn 25 and 3.0 ⁇ Yn 80 / Bn 80 It is preferable to satisfy.
  • FIG. 3 is a cross-sectional view of the LED mounting substrate. As shown in FIG. 3, each LED element 30, 40, 50, 60 on the mounting substrate body 10 is sealed with a sealing resin 70.
  • the sealing resin 70 can be an epoxy resin, a silicone resin, or the like.
  • the light emitting device 7 configured as described above, by applying current to the anode electrode 21 and the cathode electrode 22 of the circuit pattern 20, light of a desired wavelength is emitted from each of the LED elements 30, 40, 50, 60. Thus, white light is emitted from the light emitting device 7.
  • each LED element 30, 40, 50, 60 When each LED element 30, 40, 50, 60 emits light, each LED element 30, 40, 50, 60 itself generates heat and the temperature rises, and the amount of light emitted from each LED element 30, 40, 50, 60 changes. To do. This change in the amount of light depends on the temperature characteristics of each type of LED element 30, 40, 50, 60. In the light emitting device 7 of the present embodiment, although the light amount of each type of LED element 30, 40, 50, 60 changes, the average color rendering index (Ra) at the use temperature is larger than the normal temperature as a whole device. Therefore, relatively high color rendering is realized. Thereby, even if it is a chip-on-board type LED mounting substrate 1, it is possible to improve color rendering without excessively reducing the amount of emitted light without providing a special circuit pattern or performing current control. .
  • the temperature characteristic of the blue LED element 30 and the temperature characteristic of the red LED element 60 have a great influence on the average color rendering index (Ra), and Rn 25 / Bn 25 ⁇ Rn 80 / Bn 80 , 3
  • Ra average color rendering index
  • the average color rendering index (Ra) can be increased even more accurately.
  • the temperature characteristics of the blue LED element 30 and the yellow LED element 50 Yn 25 / Bn 25 ⁇ Yn 80 / Bn 80 , 2.8 ⁇ Yn 25 / Bn 25 , and 3.0 ⁇ Yn 80 / Bn 80 are satisfied. By satisfying this, the average color rendering index (Ra) can be increased even more accurately.
  • the average color rendering index (Ra) can be accurately increased also by relatively narrowing the spectral half width.
  • the spectral half width of the red LED element 60 is preferably equal to or less than the spectral half width of the blue LED element 30.
  • FIG. 4 is a graph showing an example of the emission spectrum of the light-emitting device, where the vertical axis represents the emission intensity and the horizontal axis represents the wavelength.
  • the emission spectrum at room temperature is a broken line, and the emission spectrum at operating temperature is a solid line.
  • the peak wavelength of the blue LED element 30 is 455 nm
  • the peak wavelength of the green LED element 40 is 525 nm
  • the peak wavelength of the yellow LED element 50 is 590 nm
  • the red LED element 60 The light emitting device 7 having a peak wavelength of 630 nm was used.
  • the light emitting device 7 of the present embodiment is configured such that the average color rendering index (Ra) increases as the light emission intensity of the blue LED element 30, the green LED element 40, the yellow LED element 50, and the red LED element 60 decreases.
  • Rn 25 / Bn 25 ⁇ Rn 80 / Bn 80 3.0 ⁇ Rn 25 / Bn 25 , and 3.3 ⁇ Rn 80 / The condition of Bn 80 was satisfied.
  • Ra at normal temperature (25 ° C.) was 90
  • Ra at operating temperature (80 ° C.) was 95.
  • FIG. 5 is a graph showing an example of a conventional emission spectrum, where the vertical axis represents the emission intensity and the horizontal axis represents the wavelength.
  • the emission spectrum of FIG. 5 was obtained by setting the peak wavelength of the blue LED element 30 to 450 nm, the peak wavelength of the green LED element 40 to 525 nm, the peak wavelength of the yellow LED element 50 to 590 nm, and the peak wavelength of the red LED element 60 to 630 nm.
  • FIG. 6 is a graph comparing an example of the emission spectrum of the present invention with an example of a conventional emission spectrum. As shown in FIG. 6, when comparing the emission spectrum of the conventional example with the emission spectrum of the example, the emission spectrum of the example has a steep vicinity around the emission peak at 630 nm due to the red LED element 60.
  • the present invention can be applied if at least two types of LED elements of blue and red are included. It is. In short, it is sufficient if the color rendering property is enhanced by utilizing the difference in temperature characteristics.
  • the detailed configuration of the light emitting device 7 can be changed as appropriate.
  • the power attenuation rate of each LED element can be arbitrarily changed.
  • the power attenuation rate of the blue LED element 30 is 20 to 30%
  • the power attenuation rate of the green LED element 40 is 15 to 20%
  • the power attenuation factor of the element 50 can be in the range of 15 to 20%
  • the power attenuation factor of the red LED element 50 can be in the range of 10 to 15%.
  • fluorescent substance is used additionally, making the relationship of the emitted light intensity of each LED element like the said embodiment.
  • the color rendering property may be enhanced.
  • the light-emitting device of the present invention is industrially useful because it can increase the average color rendering index (Ra) more accurately during use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 使用時に、より的確に平均演色評価数(Ra)を大きくする。複数種類のLED素子がLED実装基板に直接的に実装された発光装置において、複数種類のLED素子は青色LED素子と赤色LED素子を含み、青色LED素子の常温(25℃)におけるピーク波長の発光強度をBn25、青色LED素子の使用温度(80℃)におけるピーク波長の発光強度をBn80、赤色LED素子の常温(25℃)におけるピーク波長の発光強度をRn25、赤色LED素子の使用温度(80℃)におけるピーク波長の発光強度をRn80としたとき、Rn25/Bn25<Rn80/Bn80を満たし、かつ、3.0≦Rn25/Bn25、及び、3.3≦Rn80/Bn80を満たすようにした。

Description

発光装置
 本発明は、発光波長及び温度特性を互いに異にした複数種類のLED素子が実装基板に直接的に実装され、装置全体として常温時よりも使用時の平均演色評価数(Ra)が大きくなるよう構成された発光装置に関する。
 近年、LED素子を用いた発光装置として、チップオンボード(COB)型の発光装置が注目されている。チップオンボードとは、発光素子等のチップを一旦小型のパッケージとすることなく、大型の実装基板の回路パターンにチップを直接実装する技術である。白色の発光装置とする場合、青色のLED素子を実装した後、LED素子を封止する封止樹脂に黄色蛍光体を含ませるものが一般的である。
 ここで、青色LED素子と黄色蛍光体の組み合わせでは、演色性が低いという問題点がある。そこで、白色に演色性が要求される場合には、黄色蛍光体の他に、緑色蛍光体や赤色蛍光体を封止樹脂に含ませる方法が採られる。しかしながら、一種類のLED素子を発光源として各種蛍光体で演色性を補う方法では、各蛍光体での波長変換の際の損失が大きく、光量の低下は免れ得ない。
 特に損失の大きい赤色蛍光体を使用することなく、高い演色性を維持するとともに、色温度を変化させることが可能な発光装置として、特許文献1に記載のものが提案されている。この発光装置は、装置基板と、装置基板上に所定の配列パターンで配置された第1の色温度の発光部群及び第2の色温度の発光部群と、各発光部群に独立して電流を供給する電源及び回路パターンと、電源から各発光部群に供給される電流の比率を制御するコントローラとを備えている。
 ここで、第1の色温度の発光部群は、青色発光タイプの複数のLEDチップと、これらLEDチップを封止し第1の蛍光体を含む第1の蛍光体層とを有する。また、第2の色温度の発光部群は、第1の色温度よりも低い色温度であって、LEDチップと、これらLEDチップを封止する第1の蛍光体層と、第1の蛍光体層上に配置され第2の蛍光体を含む第2の蛍光体層とを有する。
 しかしながら、特許文献1に記載の発光装置では、各発光部群に独立して電流が供給されるように電源及び回路パターンを別個に設けなければならないし、各発光部群に供給される電流の比率を制御するコントローラを備えなければならず、実用性に乏しい。
 発光量を過度に減殺せずに演色性を向上させることのできるチップオンボード型の実装基板を有する発光装置として、特許文献2に記載の発光装置が提案されている。この発光装置は、発光波長及び温度特性が互いに異なる複数種類のLED素子を含み、各LED素子の温度特性を利用して、装置全体として常温時よりも使用時の平均演色評価数(Ra)が大きくなるよう構成される。
特開2008-218485号公報 国際公開第2013/176062号
 本願発明者は、使用時に、より的確に平均演色評価数(Ra)を大きくする技術について鋭意検討を重ねていた。
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、使用時に、より的確に平均演色評価数(Ra)を大きくすることのできる発光装置を提供することにある。
 本発明では、発光波長及び温度特性を互いに異にした複数種類のLED素子が実装基板に直接的に実装され、装置全体として常温時よりも使用時の平均演色評価数(Ra)が大きくなるよう構成された発光装置において、前記複数種類のLED素子は、青色LED素子と赤色LED素子を含み、前記青色LED素子の常温(25℃)におけるピーク波長の発光強度をBn25、前記青色LED素子の使用温度(80℃)におけるピーク波長の発光強度をBn80、前記赤色LED素子の常温(25℃)におけるピーク波長の発光強度をRn25、前記赤色LED素子の使用温度(80℃)におけるピーク波長の発光強度をRn80としたとき、
 Rn25/Bn25<Rn80/Bn80
を満たし、かつ、
 3.0≦Rn25/Bn25、及び、3.3≦Rn80/Bn80
を満たす発光装置が提供される。
 上記発光装置において、前記複数種類のLED素子は、緑色LED素子を含み、前記緑色LED素子の常温(25℃)におけるピーク波長の発光強度をGn25とし、前記緑色LED素子の使用温度(80℃)におけるピーク波長の発光強度をGn80としたとき、
 Gn25/Bn25<Gn80/Bn80
を満たし、かつ、
 1.2≦Gn25/Bn25、及び、1.5≦Gn80/Bn80
を満たすことが好ましい。
 上記発光装置において、前記複数種類のLED素子は、黄色LED素子を含み、前記黄色LED素子の常温(25℃)におけるピーク波長の発光強度をYn25とし、前記黄色LED素子の使用温度(80℃)におけるピーク波長の発光強度をYn80としたとき、
 Yn25/Bn25<Yn80/Bn80
を満たし、かつ、
 2.8≦Yn25/Bn25、及び、3.0≦Yn80/Bn80
を満たすことが好ましい。
 上記発光装置において、前記青色LED素子は、常温(25℃)から使用温度(80℃)となると発光強度が20%以上30%以下低下し、前記赤色LED素子は、常温(25℃)から使用温度(80℃)となると発光強度が10%以上15%以下低下することが好ましい。
 本発明によれば、使用時に、より的確に平均演色評価数(Ra)を大きくすることができる。
図1は、本発明の一実施形態を示す発光装置の概略側面図である。 図2は、LED実装基板の平面図である。 図3は、LED実装基板の断面図である。 図4は、発光装置の発光スペクトルの一例を示すグラフである。 図5は、従来の発光スペクトルの一例を示すグラフである。 図6は、本発明の発光スペクトルの一例と、従来の発光スペクトルの一例を比較したグラフである。
 図1から図4は本発明の一実施形態を示し、図1は発光装置の概略側面図である。
 図1に示すように、この発光装置7は、ガラスの筐体2と、筐体2の下側に形成され外部電源と電気的に接続される端子部4と、を有し、筐体2内にLED実装基板1が収容されている。LED実装基板1は、端子部4から延び無機材料からなる支持部5により支持され、内部導線6により端子部4と電気的に接続されている。
 図2はLED実装基板の平面図である。
 図2に示すように、LED実装基板1は、複数のLED素子30,40,50,60が直接的に実装基板本体10に実装されるチップオンボード型である。発光装置7は、実装基板本体10と、実装基板本体10上に形成された回路パターン20と、実装基板本体10上に実装された複数のLED素子30,40,50,60と、を備えている。また、発光装置7は、実装基板本体10上で各LED素子30,40,50,60を封止する封止樹脂70(図3参照)を備えている。LED実装基板1は、内部導線6と直接的に接続される。
 実装基板本体10の材質は任意であるが、例えば、AlN、Si、Cu、Al、SiC等が用いられる。尚、実装基板本体10に、例えばガラスエポキシ等の合成樹脂を用いることも可能である。本実施形態においては、実装基板本体10は正方形状に形成され、各LED素子30,40,50,60は縦方向及び横方向に整列して配置される。
 回路パターン20は、一対のアノード電極21及びカソード電極22を有し、各LED素子30,40,50,60へ電力を供給する。そして、所定個数のLED素子30,40,50,60が直列に接続されて直列接続群23を構成し、複数の直列接続群23が並列に接続されている。本実施形態においては、4つの直列接続群23がそれぞれ13個のLED素子30,40,50,60により構成され、計52個のLED素子30,40,50,60が使用されている。
 具体的に、本実施形態においては、青色LED素子30と、緑色LED素子40と、黄色LED素子50と、赤色LED素子60の4種類のLED素子が使用され、複数種類のLED素子が一体的に電気的に制御される。青色LED素子30と、緑色LED素子40と、黄色LED素子50と、赤色LED素子60と、は発光波長のみならず、温度特性も互いに異なっている。各直列接続部23には、2つの青色LED素子30と、3つの緑色LED素子40と、3つの黄色LED素子50と、5つの赤色LED素子60が実装される。
 青色LED素子30及び緑色LED素子40は、例えばInGaN系の発光層を有し、黄色LED素子50及び赤色LED素子60は、例えばGaAs系の発光層を有する。例えば、青色LED素子30のピーク波長を455nm、緑色LED素子40のピーク波長を525nm、黄色LED素子50のピーク波長を590nm、赤色LED素子60のピーク波長を630nmとすることができる。本実施形態においては、各LED素子30,40,50,60はフェイスアップ型であり、それぞれワイヤにより回路パターン20の直列接続部23と電気的に接続される。
 また、本実施形態においては、青色LED素子30は、常温時から使用温度時のパワー減衰率が、緑色LED素子40、黄色LED素子50及び赤色LED素子60よりも大きくなっている。例えば、常温を25℃、使用温度を80℃とした場合、光量の減衰率を青色LED素子30で20%、緑色LED素子40で15%、黄色LED素子50で15%、赤色LED素子60で10%とすることができる。各LED素子のパワー減衰率は、青色LED素子30、緑色LED素子40,黄色LED素子50及び赤色LED素子60の順に小さくなるようにすることが好ましい。
 また、具体的には、常温(25℃)における青色LED素子30のピーク波長の発光強度をBn25、使用温度(80℃)における青色LED素子30のピーク波長の発光強度をBn80、常温(25℃)における赤色LED素子60のピーク波長における発光強度をRn25、使用温度(80℃)における赤色LED素子60のピーク波長の発光強度をRn80としたとき、
 Rn25/Bn25<Rn80/Bn80
を満たし、かつ、
 3.0≦Rn25/Bn25、及び、3.3≦Rn80/Bn80
を満たすことが好ましい。
 より好ましくは、常温(25℃)における緑色LED素子40のピーク波長における発光強度をGn25、使用温度(80℃)における緑色LED素子40のピーク波長の発光強度をGn80としたとき、
 Gn25/Bn25<Gn80/Bn80
を満たし、かつ、
 1.2≦Gn25/Bn25、及び、1.5≦Gn80/Bn80
を満たすことが好ましい。
 さらにより好ましくは、常温(25℃)における黄色LED素子50のピーク波長における発光強度をYn25、使用温度(80℃)における黄色LED素子50のピーク波長の発光強度をYn80としたとき、
 Yn25/Bn25<Yn80/Bn80
を満たし、かつ、
 2.8≦Yn25/Bn25、及び、3.0≦Yn80/Bn80
を満たすことが好ましい。
 図3は、LED実装基板の断面図である。
 図3に示すように、実装基板本体10上の各LED素子30,40,50,60は、封止樹脂70で封止される。封止樹脂70は、エポキシ系、シリコーン系等の透明樹脂とすることができる。
 以上のように構成された発光装置7では、回路パターン20のアノード電極21及びカソード電極22に電流を印加することにより、各LED素子30,40,50,60から所期の波長の光が発せられて、発光装置7から白色光が発せられる。
 各LED素子30,40,50,60が発光すると、各LED素子30,40,50,60自体が発熱して温度が上昇し、各LED素子30,40,50,60から発せられる光量が変化する。この光量の変化は、各種類のLED素子30,40,50,60の温度特性に依存する。本実施形態の発光装置7は、各種類のLED素子30,40,50,60の光量が変化するものの、装置全体としては常温時よりも使用温度時の平均演色評価数(Ra)が大きくなるよう構成されているので、比較的高い演色性が実現される。これにより、チップオンボード型のLED実装基板1であっても、特殊な回路パターンを設けたり電流制御を行ったりすることなく、発光量を過度に減殺せずに演色性を向上させることができる。
 特に、青色LED素子30の温度特性と赤色LED素子60の温度特性が平均演色評価数(Ra)に大きな影響を及ぼすことが判明しており、Rn25/Bn25<Rn80/Bn80、3.0≦Rn25/Bn25、及び、3.3≦Rn80/Bn80の条件を満たすことにより、使用時に、より的確に平均演色評価数(Ra)を大きくすることができる。
 この条件を満たした上で、青色LED素子30の温度特性と緑色LED素子40に関して、Gn25/Bn25<Gn80/Bn80、1.2≦Gn25/Bn25、及び、1.5≦Gn80/Bn80を満たすことにより、さらにより的確に平均演色評価数(Ra)を大きくすることができる。
 また、青色LED素子30の温度特性と黄色LED素子50に関して、Yn25/Bn25<Yn80/Bn80、2.8≦Yn25/Bn25、及び、3.0≦Yn80/Bn80を満たすことによっても、さらにより的確に平均演色評価数(Ra)を大きくすることができる。
 また、赤色LED素子60の発光に関し,スペクトル半値幅を比較的狭くすることによっても、的確に平均演色評価数(Ra)を大きくすることができる。具体的に、赤色LED素子60のスペクトル半値幅は、青色LED素子30のスペクトル半値幅と同じか、それ以下とすることが好ましい。
 図4は、発光装置の発光スペクトルの一例を示すグラフであり、縦軸は発光強度、横軸は波長である。常温での発光スペクトルが破線、使用温度での発光スペクトルが実線である。尚、図4に示す実施例のデータを取得するにあたり、青色LED素子30のピーク波長が455nm、緑色LED素子40のピーク波長が525nm、黄色LED素子50のピーク波長が590nm、赤色LED素子60のピーク波長が630nmの発光装置7を用いた。
 温度の上昇に伴い、各LED素子30,40,50,60の光量が低下するため、図4に示すように、発光装置7の使用を開始すると全体として光量が低下する。しかし、本実施形態の発光装置7は、青色LED素子30、緑色LED素子40,黄色LED素子50及び赤色LED素子60の発光強度が低下すると、平均演色評価数(Ra)が大きくなるよう構成される。ここで、青色LED素子30と赤色LED素子60の発光強度の関係は、Rn25/Bn25<Rn80/Bn80、3.0≦Rn25/Bn25、及び、3.3≦Rn80/Bn80の条件を満たすようにした。この結果、常温(25℃)のRaは90、使用温度(80℃)のRaは95とすることができた。
 図5は、従来の発光スペクトルの一例を示すグラフであり、縦軸は発光強度、横軸は波長である。図5の発光スペクトルは、青色LED素子30のピーク波長を450nm、緑色LED素子40のピーク波長を525nm、黄色LED素子50のピーク波長を590nm、赤色LED素子60のピーク波長を630nmとして得られたものである。
 図6は、本発明の発光スペクトルの一例と、従来の発光スペクトルの一例を比較したグラフである。図6に示すように、従来例の発光スペクトルと、実施例の発光スペクトルを比較すると、実施例の発光スペクトルは赤色LED素子60に起因する630nmの発光ピーク付近が急峻になっている。
 尚、前記実施形態においては、青色、緑色、黄色及び赤色の4種類のLED素子を用いたものを示したが、少なくとも青色と赤色の2種類のLED素子を含んでいれば本発明を適用可能である。要は、温度特性の違いを利用して、演色性が高くなるように構成されていればよい。また、発光装置7の細部構成なども適宜に変更が可能である。
 さらに、各LED素子のパワー減衰率は任意に変更することができ、例えば、青色LED素子30のパワー減衰率を20~30%、緑色LED素子40のパワー減衰率を15~20%、黄色LED素子50のパワー減衰率を15~20%、赤色LED素子50のパワー減衰率を10~15%の範囲とすることができる。
 また、前記実施形態においては、LED素子で励起される蛍光体を使用しないものを示したが、各LED素子同士の発光強度の関係を前記実施形態のようにしつつ、蛍光体を追加的に使用して演色性を高める構成としてもよい。
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 以上のように、本発明の発光装置は、使用時に、より的確に平均演色評価数(Ra)を大きくすることができ産業上有用である。
 1  LED実装基板
 7  発光装置
 10  実装基板本体
 20  回路パターン
 21  アノード電極
 22  カソード電極
 23  直列接続群
 30  青色LED素子
 40  緑色LED素子
 50  黄色LED素子
 60  赤色LED素子
 70  封止樹脂

Claims (5)

  1.  発光波長及び温度特性を互いに異にした複数種類のLED素子がLED実装基板に直接的に実装され、装置全体として常温時よりも使用時の平均演色評価数(Ra)が大きくなるよう構成された発光装置において、
     前記複数種類のLED素子は、青色LED素子と赤色LED素子を含み、
     前記青色LED素子の常温(25℃)におけるピーク波長の発光強度をBn25、前記青色LED素子の使用温度(80℃)におけるピーク波長の発光強度をBn80、前記赤色LED素子の常温(25℃)におけるピーク波長の発光強度をRn25、前記赤色LED素子の使用温度(80℃)におけるピーク波長の発光強度をRn80としたとき、
     Rn25/Bn25<Rn80/Bn80
    を満たし、かつ、
     3.0≦Rn25/Bn25、及び、3.3≦Rn80/Bn80
    を満たす発光装置。
  2.  前記複数種類のLED素子は、緑色LED素子を含み、
     前記緑色LED素子の常温(25℃)におけるピーク波長の発光強度をGn25とし、前記緑色LED素子の使用温度(80℃)におけるピーク波長の発光強度をGn80としたとき、
     Gn25/Bn25<Gn80/Bn80
    を満たし、かつ、
     1.2≦Gn25/Bn25、及び、1.5≦Gn80/Bn80
    を満たす請求項1に記載の発光装置。
  3.  前記複数種類のLED素子は、黄色LED素子を含み、
     前記黄色LED素子の常温(25℃)におけるピーク波長の発光強度をYn25とし、前記黄色LED素子の使用温度(80℃)におけるピーク波長の発光強度をYn80としたとき、
     Yn25/Bn25<Yn80/Bn80
    を満たし、かつ、
     2.8≦Yn25/Bn25、及び、3.0≦Yn80/Bn80
    を満たす請求項1または2に記載の発光装置。
  4.  前記青色LED素子は、常温(25℃)から使用温度(80℃)となると発光強度が20%以上30%以下低下し、
     前記赤色LED素子は、常温(25℃)から使用温度(80℃)となると発光強度が10%以上15%以下低下する請求項1から3のいずれか1項に記載の発光装置。
  5.  前記複数種類のLED素子で励起される蛍光体を使用しない請求項1から4のいずれか1項に記載の発光装置。
PCT/JP2015/083028 2014-12-25 2015-11-25 発光装置 WO2016104023A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566048A JPWO2016104023A1 (ja) 2014-12-25 2015-11-25 発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262543 2014-12-25
JP2014262543 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104023A1 true WO2016104023A1 (ja) 2016-06-30

Family

ID=56150055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083028 WO2016104023A1 (ja) 2014-12-25 2015-11-25 発光装置

Country Status (2)

Country Link
JP (1) JPWO2016104023A1 (ja)
WO (1) WO2016104023A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093192A (ja) * 2016-11-30 2018-06-14 日亜化学工業株式会社 発光装置及び基板
JP2021104446A (ja) * 2018-08-21 2021-07-26 株式会社ユニバーサルエンターテインメント 遊技機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110951A (ja) * 2017-12-20 2019-07-11 株式会社ユニバーサルエンターテインメント 遊技機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356116A (ja) * 2003-05-26 2004-12-16 Citizen Electronics Co Ltd 発光ダイオード
JP2009231128A (ja) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led照明装置
JP2010092993A (ja) * 2008-10-06 2010-04-22 Sharp Corp 照明装置
WO2013176062A1 (ja) * 2012-05-21 2013-11-28 株式会社ドゥエルアソシエイツ チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
JP2014150293A (ja) * 2014-05-30 2014-08-21 Mitsubishi Electric Corp 発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356116A (ja) * 2003-05-26 2004-12-16 Citizen Electronics Co Ltd 発光ダイオード
JP2009231128A (ja) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led照明装置
JP2010092993A (ja) * 2008-10-06 2010-04-22 Sharp Corp 照明装置
WO2013176062A1 (ja) * 2012-05-21 2013-11-28 株式会社ドゥエルアソシエイツ チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
JP2014150293A (ja) * 2014-05-30 2014-08-21 Mitsubishi Electric Corp 発光装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093192A (ja) * 2016-11-30 2018-06-14 日亜化学工業株式会社 発光装置及び基板
JP7071618B2 (ja) 2016-11-30 2022-05-19 日亜化学工業株式会社 発光装置及び基板
JP2021104446A (ja) * 2018-08-21 2021-07-26 株式会社ユニバーサルエンターテインメント 遊技機
JP7141490B2 (ja) 2018-08-21 2022-09-22 株式会社ユニバーサルエンターテインメント 遊技機

Also Published As

Publication number Publication date
JPWO2016104023A1 (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5099418B2 (ja) 照明装置
JP5240603B2 (ja) 白色光源モジュール及びバックライトユニット並びにlcdディスプレイ
CN103828487B (zh) 具有可选择和/或可调节色点的半导体发光器件以及相关方法
US8193735B2 (en) LED lamp with high efficacy and high color rendering and manufacturing method thereof
US20140167601A1 (en) Enhanced Luminous Flux Semiconductor Light Emitting Devices Including Red Phosphors that Exhibit Good Color Rendering Properties and Related Red Phosphors
US9219202B2 (en) Semiconductor light emitting devices including red phosphors that exhibit good color rendering properties and related red phosphors
US9219201B1 (en) Blue light emitting devices that include phosphor-converted blue light emitting diodes
US20150060922A1 (en) Semiconductor Light Emitting Devices Including Multiple Red Phosphors That Exhibit Good Color Rendering Properties With Increased Brightness
US20140168965A1 (en) Led device having adjustable color temperature
JP2008218485A (ja) 発光装置
JP6230392B2 (ja) 発光装置
JP6782231B2 (ja) 放射スペクトルが調整可能な光源
US20160233393A1 (en) Light emitting device
US20160254421A1 (en) White light emitting devices including both red and multi-phosphor blue-shifted-yellow solid state emitters
WO2016104023A1 (ja) 発光装置
US8833966B2 (en) Light device and its light emitting diode module
JP2009224656A (ja) 発光装置
US9837585B2 (en) Light emitting device
KR100972984B1 (ko) 넓은 발광파장 스펙트럼을 갖는 반도체 발광소자
KR101493708B1 (ko) 백색 발광 장치
TWI595803B (zh) 白光照明系統
KR101399997B1 (ko) 헥사 구조를 갖는 led 패키지
JP2015106502A (ja) 照明装置
KR101071378B1 (ko) 고연색성 발광모듈
EP2830093A1 (en) LED-module with high color rendering index

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872592

Country of ref document: EP

Kind code of ref document: A1