WO2013154181A1 - チップオンボード型のパッケージ基板を有する発光装置の製造方法 - Google Patents

チップオンボード型のパッケージ基板を有する発光装置の製造方法 Download PDF

Info

Publication number
WO2013154181A1
WO2013154181A1 PCT/JP2013/061059 JP2013061059W WO2013154181A1 WO 2013154181 A1 WO2013154181 A1 WO 2013154181A1 JP 2013061059 W JP2013061059 W JP 2013061059W WO 2013154181 A1 WO2013154181 A1 WO 2013154181A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
package substrate
emitting diode
substrate
chip
Prior art date
Application number
PCT/JP2013/061059
Other languages
English (en)
French (fr)
Inventor
今井勇次
Original Assignee
株式会社ドゥエルアソシエイツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ドゥエルアソシエイツ filed Critical 株式会社ドゥエルアソシエイツ
Publication of WO2013154181A1 publication Critical patent/WO2013154181A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a method for manufacturing a light emitting device having a chip-on-board type package substrate.
  • a light-emitting element using a group III nitride semiconductor has been put into practical use.
  • This group III nitride semiconductor is generally grown on a growth substrate made of a different material having a similar crystal structure by using metal organic chemical vapor deposition (MOCVD) or molecular beam evaporation (MBE). It is.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam evaporation
  • As the growth substrate a sapphire substrate having a hexagonal structure is mainly used.
  • Patent Document 1 Laser lift-off technology is mainly used as a method for separating the growth substrate (see, for example, Patent Document 1).
  • a group III nitride semiconductor layer is grown on a growth substrate, a second substrate is bonded onto the group III nitride semiconductor layer, and then irradiated with a laser beam from the growth substrate side.
  • a laser lift method for separating a growth substrate from a nitride semiconductor layer is described.
  • Patent Document 2 describes using an AlN substrate as the second substrate
  • Patent Document 3 describes using a submount as the second substrate.
  • the growth substrate is transferred to an AlN substrate and a submount at a time, and then the growth substrate is peeled off using a laser beam.
  • a surface-mount type LED device is obtained.
  • the LED device including the AlN substrate and the submount is mounted on the package substrate of the light emitting device. That is, these technologies relate to the surface mount type rather than the chip on board type.
  • the spot diameter of the laser beam is about 50 mm to 300 mm, which is the standard size of a wafer, the power necessary for separation cannot be obtained. Therefore, a system is used in which line scanning is performed with a laser beam size about the final chip size.
  • Patent Document 4 a group III nitride semiconductor layer is grown on a growth substrate, a second substrate is bonded onto the group III nitride semiconductor layer, and then the entire wafer is scanned without performing a line scan. It is described that a laser is irradiated for each region of a scribe line corresponding to an element.
  • a laser is irradiated for each region of a scribe line corresponding to an element.
  • the growth substrate may be cracked or distorted, which may worsen the yield.
  • Patent Document 1 Patent Document 2, Patent Document 3, and Patent Document 4 all use the second substrate.
  • the obtained light-emitting element has the second substrate in addition to the group III nitride semiconductor layer necessary for light emission, the second light-emitting element is mounted on the chip-on-board type package substrate. There is a possibility that the optical and thermal performances are deteriorated due to the substrate.
  • Patent Document 2 and Patent Document 3 since the techniques described in Patent Document 2 and Patent Document 3 must use the semiconductor element structure formed on the growth substrate regardless of whether the product is non-defective or defective, the yield is extremely poor. There is a point.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light-emitting device capable of forming a semiconductor light-emitting unit on a chip-on-board type package substrate body without a growth substrate.
  • a manufacturing method is provided.
  • the present invention provides a method for manufacturing a light-emitting device including a chip-on-board type package substrate having a plurality of light-emitting diode light-emitting portions, a growth substrate, a semiconductor light-emitting portion on the growth substrate, and a semiconductor light-emitting portion on the semiconductor light-emitting portion
  • a mounting step in which each light emitting diode element is directly mounted on the package substrate body separately without being bonded to another substrate on the growth substrate, and each light emitting diode element is directly mounted on the package substrate body.
  • each light emitting die can be scanned without scanning a laser having a spot diameter larger than that of the light emitting diode element.
  • a plurality of light emitting diode elements are flip-chip mounted on the package substrate body, and each light emitting diode element is electrically connected to the package substrate body.
  • the growth substrate is peeled off in the peeling step, and the semiconductor light emitting portion remains on the package substrate body.
  • the semiconductor layer remains on the package substrate main body, the optical and thermal performances are not deteriorated due to other substrates such as the growth substrate.
  • the growth substrate is peeled off after mounting the light emitting diode element, a thin semiconductor layer can be formed on the package substrate body.
  • each separated light emitting diode element with a laser, and in a state where the elements are not separated, the entire wafer is line-scanned or the laser is irradiated for each region of the scribe line corresponding to the element.
  • the yield can be improved.
  • a laser having a spot diameter larger than that of the light emitting diode element is used, each light emitting diode can be irradiated with a beam uniformly.
  • light emitting diode elements that satisfy the desired performance in the sorting step can be sorted and used, and this can also improve the yield. That is, there is no possibility that an element with an initial failure is included unlike a conventional device in which a plurality of semiconductor element structures are formed on a growth substrate and pasted to a submount or an AlN substrate all at once.
  • the method for manufacturing the light emitting device may further include a withdrawal step in which the remnants of the growth substrate on the package substrate body are collectively removed by blowing gas after the peeling step.
  • the position of each light emitting diode element on the package substrate main body may be determined by being recognized by a CCD camera in the mounting step.
  • the semiconductor light emitting portion remaining after the growth substrate is removed on the package substrate main body may be 10 ⁇ m or less.
  • the growth substrate may be a sapphire substrate.
  • each of the light emitting diode elements is directly mounted on the package substrate body, aligned in a vertical direction and a horizontal direction on the package substrate body, and according to a circuit pattern on the package substrate body. They may be electrically connected in series and parallel to each other.
  • a light emitting device manufactured by the above manufacturing method is provided.
  • a thin semiconductor light emitting portion can be formed on a package substrate without a growth substrate.
  • FIG. 1 is a schematic side view of a light emitting device showing an embodiment of the present invention.
  • FIG. 2 is a plan view of the package substrate.
  • FIG. 3A is a schematic overall cross-sectional view of a light emitting element used as a semiconductor light emitting unit before removing the growth substrate
  • FIG. 3B is a schematic view of the light emitting element used as a semiconductor light emitting unit before removing the growth substrate. It is an expanded sectional view.
  • FIG. 4 is an explanatory diagram for forming the semiconductor light emitting unit on the package substrate body, and shows a state in which the light emitting element is set above the mounting position of the package substrate body.
  • FIG. 5 is an explanatory diagram of forming the semiconductor light emitting unit on the package substrate body, and shows a state in which the light emitting element is mounted on the package substrate body.
  • FIG. 6 is an explanatory diagram for forming the semiconductor light emitting unit on the package substrate body, and shows a state in which a laser is irradiated on the growth substrate of the light emitting element.
  • FIG. 7 is a schematic explanatory diagram of a laser irradiation apparatus.
  • FIG. 8 is an explanatory diagram of forming the semiconductor light emitting unit on the package substrate body, and shows a state in which the growth substrate of the light emitting element is removed.
  • 9A and 9B are cross-sectional views of a light emitting device, in which FIG.
  • FIG. 9A shows an embodiment of the present invention
  • FIG. 9B shows a conventional device.
  • FIG. 10 is an explanatory view of forming a semiconductor light emitting unit according to a modification on the package substrate body, and shows a state in which the growth substrate is separated by chemical etching.
  • FIG. 11 is an explanatory diagram of forming the semiconductor light emitting unit on the package substrate body, and shows a state where the growth substrate of the light emitting element is removed.
  • FIG. 1 to 9 show an embodiment of the present invention
  • FIG. 1 is a schematic side view of a light emitting device.
  • the light-emitting device 1 includes a glass casing 2 and a terminal portion 4 formed on the lower side of the casing 2 and electrically connected to an external power source.
  • a package substrate 50 is accommodated therein.
  • the package substrate 50 extends from the terminal portion 4, is supported by a support portion 5 made of an inorganic material, and is electrically connected to the terminal portion 4 by an internal conductor 6.
  • the package substrate 50 includes a package substrate main body 10, a plurality of semiconductor light emitting units 22 arranged on the package substrate main body 10, a circuit pattern 11 of the package substrate main body 10, and a semiconductor light emitting unit. And a solder 32 to be described later. Further, the package substrate 50 includes a sealing resin 40 (see FIG. 9A) that seals the semiconductor light emitting unit 22 on the package substrate body 10.
  • the package substrate 50 is a chip-on-board type and is directly connected to the internal conductor 6.
  • the material of the package substrate main body 10 is arbitrary, for example, AlN, Si, Cu, Al 2 O 3 , SiC, or the like is used. It is also possible to use a synthetic resin such as glass epoxy for the package substrate body 10.
  • a circuit pattern 11 for supplying power to each semiconductor light emitting unit 22 is formed on the package substrate body 10.
  • the package substrate body 10 is formed in a square shape, and the semiconductor light emitting units 22 are arranged in alignment in the vertical direction and the horizontal direction.
  • FIG. 3A is a schematic overall cross-sectional view of a light-emitting element used as a semiconductor light-emitting portion before the growth substrate is removed.
  • the light emitting diode element 20 is a flip chip type, and a semiconductor light emitting portion 22 made of a group III nitride semiconductor layer is formed on the surface of a growth substrate 21.
  • the growth substrate 21 is made of, for example, sapphire.
  • a p-side electrode 28 and an n-side electrode 29 are formed on the semiconductor light emitting unit 22 as described later.
  • FIG. 3B is a schematic enlarged cross-sectional view of the light-emitting element used as a semiconductor light-emitting portion before removing the growth substrate.
  • the semiconductor light emitting unit 22 has a buffer layer 23, an n-type GaN layer 24, an active layer 25, a light guide layer 26, and a p-type GaN layer 27 in this order from the growth substrate 21 side. ing.
  • a p-side electrode 28 is formed on the p-type GaN layer 27 and an n-side electrode 29 is formed on the n-type GaN layer 24.
  • the buffer layer 23 is formed on the growth substrate 21 and is made of, for example, AlN.
  • the buffer layer 23 may be made of GaN.
  • the n-type GaN layer 24 as the first conductivity type layer is formed on the buffer layer 23 and is made of n-GaN.
  • the active layer 25 as a light emitting layer is formed on the n-type GaN layer 24 and is made of GalnN, and emits blue light by injecting electrons and holes.
  • the active layer 25 can also have a multiple quantum well structure.
  • blue light refers to light having a peak wavelength of 430 nm or more and 480 nm or less, for example. In the present embodiment, the peak wavelength of light emission of the active layer 25 is 450 nm.
  • the light guide layer 26 is formed on the active layer 25 and is made of p-AIGaN.
  • the p-type GaN layer 27 as the second conductivity type layer is formed on the light guide layer 26 and is made of p-GaN.
  • the n-type GaN layer 24 to the p-type GaN layer 27 are formed by epitaxial growth of a group III nitride semiconductor.
  • the thickness of each layer is, for example, 40 nm for the buffer layer 23, 5 ⁇ m for the n-type GaN layer 24, 2.5 nm for the active layer 25, 20 nm for the light guide layer 26, and 200 nm for the p-type GaN layer 27.
  • the thickness of the light emitting unit 22 can be set to 5262.5 nm.
  • the active layer is formed by recombination of electrons and holes.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the p-side electrode 28 is formed on the p-type GaN layer 27 and is made of a material such as Au.
  • the p-side electrode 28 is formed by a vacuum evaporation method, a sputtering method, a CVD (Chemical Vapor Deposition) method, or the like.
  • the n-side electrode 29 is formed on the exposed n-type GaN layer 24 by etching the n-type GaN layer 24 from the p-type GaN layer 27.
  • the n-side electrode 29 is made of, for example, W / Al / Au, and is formed by a vacuum deposition method, a sputtering method, a CVD (Chemical Vapor Deposition) method, or the like.
  • the manufacturing method of the light emitting device according to the present embodiment includes a plurality of independent flip chip types each having a growth substrate 21, a semiconductor light emitting unit 22 on the growth substrate 21, and electrodes 28 and 29 on the semiconductor light emitting unit 22.
  • a light-emitting diode element 20 selected from the light-emitting diode elements 20 satisfying the desired performance, and a plurality of light-emitting diode elements 20 selected in the selection process are bonded to another substrate of the growth substrate 21.
  • the light emitting diode element 20 includes a mounting process in which each light emitting diode element 20 is directly mounted on the package substrate body 10 and the light emitting diode elements 20 are directly mounted on the package substrate body 10.
  • the laser is uniformly irradiated to the entire element for each light emitting diode element 20 without scanning a laser having a large spot diameter.
  • a peeling step of peeling the entire portion of the substrate 21, the remains of the growth substrate 21 on the package substrate main body 10 includes a, a retreat step to dismiss collectively by blowing gas.
  • FIG. 4 is an explanatory diagram of forming the semiconductor light emitting unit on the package substrate body, and shows a state where the light emitting element is set above the mounting position of the package substrate body.
  • the light emitting diode elements 20 that are suitable for use in the package substrate 50 and satisfy the desired performance are selected.
  • the intended performance means whether or not the light emitting diode element 20 is lit when energized if the quality variation of the manufactured package substrate 50 does not matter. If there is a problem of variation in the above, it means whether the forward voltage, light quantity, color tone, etc. of the light emitting diode element 20 are within a predetermined design range. That is, at least defective LED elements 20 that do not light up are removed at this stage.
  • solder 32 made of Au—Sn is vapor-deposited in advance on the connection portion of the package substrate body 10 with the light emitting diode element 20. A material other than Au—Sn can be used as the solder 32.
  • FIG. 5 is an explanatory diagram of forming the semiconductor light emitting unit on the package substrate body, and shows a state in which the light emitting element is mounted on the package substrate body.
  • the p-side electrode 28 and the n-side electrode 29 are bonded to the solder 32 in a predetermined atmosphere under a predetermined temperature condition and a predetermined load condition.
  • the predetermined atmosphere may be, for example, an inert atmosphere such as nitrogen in addition to a forming gas in which nitrogen and hydrogen are mixed.
  • the forming gas one having 5% hydrogen and 95% nitrogen can be used.
  • the load applied to the light emitting diode element 20 is set to 5 g weight or more and 50 g weight or less, for example.
  • the temperature condition is arbitrary, but in order to melt the solder 32, it is necessary to heat to a temperature equal to or higher than the eutectic temperature or melting point of the material constituting the solder 32 (for example, a temperature of 250 ° C. or higher and 400 ° C. or lower). .
  • the solder 32 is Au 80% Au and Sn 20% Au—Sn solder, it is necessary to heat the eutectic temperature to about 280 ° C. or more.
  • the solder 32 is made of, for example, SnAgCu
  • the melting point of SnAgCu is about 220 ° C., so it is necessary to heat to at least about 220 ° C. or more.
  • the light emitting diode element 20 is fixed to the package substrate body 10 by melting and solidifying the solder 32.
  • FIG. 6 is an explanatory diagram for forming the semiconductor light emitting unit on the package substrate body, and shows a state in which a laser is irradiated on the growth substrate of the light emitting element.
  • the light emitting diode element 20 is irradiated with a laser beam from above the package substrate body 10.
  • the spot diameter of the laser beam is formed larger than the planar view area of the light emitting diode element 20, and the entire light emitting diode element 20 can be irradiated without scanning the laser beam.
  • the energy of the beam applied to the light emitting diode element 20 can be made more uniform as it is larger than the light emitting diode element 20. Since the light emitting diode element 20 is a flip chip type, the growth substrate 21 is located on the upper side, the energy of the laser beam is applied to the interface between the growth substrate 21 and the semiconductor light emitting unit 22, and the growth substrate 21 is the semiconductor light emitting unit. Separate from 22.
  • the position of the light emitting diode element 20 is determined by being recognized by the CCD camera. This is possible because each LED element 20 is mounted, and cannot be recognized by the CCD camera when the semiconductor light emitting unit 22 is connected by a wafer-like substrate or submount. If a scribe line is formed on a wafer so that it can be recognized by a CCD camera, the growth substrate is cracked or distorted. Further, in the present embodiment, since it is not necessary to consider the warpage of the wafer as in the case of irradiating the laser beam in the state of the wafer, the focus of the laser beam is accurately set at the interface between the growth substrate 21 and the semiconductor light emitting unit 22. Can be adapted to
  • FIG. 7 is a schematic explanatory diagram of a laser irradiation apparatus.
  • a laser irradiation apparatus 100 is a laser oscillator 110 that oscillates a laser beam, a mirror 120 that changes the direction of the oscillated laser beam, an optical lens 130 that focuses the laser beam, and a laser beam irradiation target.
  • a stage 140 for supporting the work object, that is, the package substrate main body 10 is provided.
  • the laser irradiation apparatus 100 may include a housing 150 that maintains the path of the laser beam in a vacuum state.
  • the laser oscillator 110 can be an excimer laser such as KrF or ArF.
  • the beam emitted from the laser oscillator 110 is reflected by the mirror 120 and its direction is changed.
  • a plurality of mirrors 120 are provided to change the direction of the laser beam.
  • the optical lens 130 is positioned above the stage 140 and focuses the laser beam incident on the package substrate body 10.
  • the stage 140 is moved in the x direction and / or the y direction by a moving means (not shown), and the package substrate body 10 placed thereon is moved.
  • the laser beam is irradiated through the growth substrate 21 and is mainly absorbed at the interface between the growth substrate 21 and the semiconductor light emitting unit 22.
  • the laser beam is irradiated with a spot diameter larger than that of the light emitting diode element 20 in a plan view.
  • the spot diameter can be set to, for example, 1 mm or more and 10 mm or less.
  • FIG. 8 is an explanatory diagram of forming the semiconductor light emitting unit on the package substrate body, and shows a state in which the growth substrate of the light emitting element is removed.
  • FIG. 9A and 9B are cross-sectional views of the package substrate, in which FIG. 9A shows an embodiment of the present invention, and FIG. 9B shows a conventional one.
  • the sealing resin 40 can be a transparent resin such as epoxy or silicone.
  • the sealing resin 40 contains a phosphor 41 that emits yellow light when excited by blue light emitted from each semiconductor light emitting unit 22.
  • YAG Yttrium Aluminum Garnet
  • silicate or the like can be used as the phosphor 41 that emits yellow light.
  • the completed package substrate 50 is attached to the support portion 5 and connected to the terminal portion 4 and the internal conductor 6. Thereafter, the light emitting device 1 is completed by assembling the housing 2 to the terminal portion 4.
  • the plurality of light emitting diode elements 20 are flip-chip mounted on the package substrate body 10, and each light emitting diode element 20 is mounted on the package substrate. It is electrically connected to the main body 10.
  • the growth substrate 21 is peeled off in the peeling step, and the semiconductor light emitting unit 22 remains on the package substrate body 10.
  • the semiconductor light emitting unit 22 could not be disposed on the package substrate body 10 unless the semiconductor layer is thick enough to handle the semiconductor layer (for example, 50 ⁇ m), but the growth substrate 21 on the package substrate body 10 cannot be disposed.
  • the semiconductor light emitting unit 22 can be formed on the package substrate body 10.
  • a thin semiconductor light emitting unit 22 having a thickness of, for example, 10 ⁇ m or less can be formed on the package substrate body 10.
  • the semiconductor light emitting portion 22 since only the semiconductor light emitting portion 22 remains on the package substrate main body 10, optical and thermal performances are not deteriorated due to the growth substrate 21.
  • the growth substrate 21 is removed after the light emitting diode element 20 is mounted, the thin substrate shown in FIG. 9A is clear as compared with the conventional package substrate 250 shown in FIG.
  • the semiconductor light emitting unit 22 can be formed on the package substrate body 10.
  • the light emitting diode element 20 that satisfies the desired performance in the sorting step can be sorted and used, and the yield can be improved. That is, there is no possibility that an element having an initial failure is included unlike a conventional device in which a plurality of semiconductor element structures are formed on a growth substrate and pasted to a submount or an AlN substrate all at once. Further, it is not necessary to attach the support substrate or the like to another substrate, and it is not necessary to peel the support substrate or the like on the package substrate.
  • each separated light emitting diode element 20 it is only necessary to irradiate each separated light emitting diode element 20 with a laser.
  • the entire wafer is line-scanned in a state where the elements are not separated or a laser is irradiated to each scribe line region corresponding to the element.
  • the growth substrate 21 is removed by a laser having a spot diameter larger than that of the light emitting diode element 20, each light emitting diode 20 can be irradiated with a beam uniformly.
  • laser lift-off is performed in units of wafers in which a plurality of light-emitting diode elements are adjacent to each other. Even if an attempt is made to irradiate a laser in element units, the adjacent light-emitting diode elements are also affected. I can't do it. However, as in this embodiment, once each light emitting diode element is cut out from the wafer, laser irradiation can be performed in a completely independent state for each light emitting diode element.
  • the semiconductor light emitting unit 22 can be made thin, and the heat generated from the semiconductor light emitting unit 22 is generated by the package substrate. It can be quickly diffused to the main body 10 side. That is, heat transfer from the semiconductor light emitting unit 22 to the sealing resin 40 and the phosphor 41 through the growth substrate 21 can be reduced, and deterioration of the sealing resin 40 and the phosphor 41 can be suppressed.
  • the growth substrate 21 does not exist, light is not reflected at the interface between the semiconductor light emitting unit 22 and the growth substrate 21, and the light extraction efficiency from the semiconductor light emitting unit 22 is improved.
  • the light emission efficiency could be improved by about 10 to 30% as compared with the one having the growth substrate 21.
  • the laser is applied to the interface between the semiconductor light emitting unit 22 and the growth substrate 21 to remove the growth substrate 21.
  • the growth substrate 21 may be removed by etching. Good.
  • the growth substrate 21 can be removed by etching the growth substrate 21 itself or by etching a sacrificial layer formed between the growth substrate 21 and the active layer 25.
  • the growth substrate 21 can be separated by etching using the buffer layer 23 as a sacrificial layer. As shown in FIG. 10, the buffer layer 23 is gradually chemically etched inward from the exposed side surface.
  • the etching solution is appropriately selected according to the constituent material of the buffer layer 23 to be etched.
  • a potassium hydroxide (KOH) solution a sodium hydroxide (NaOH) solution Etc. can be used.
  • a potassium hydroxide (KOH) solution or a sodium hydroxide (NaOH) solution is used as an etching solution, even if the concentration is 5 to 99 vol% diluted with pure water, The concentration may be 100 vol%.
  • the etching process temperature is from room temperature (25 ° C.) to 50 ° C.
  • the etching process time depends on the constituent material and thickness of the buffer layer 23 and the type and concentration of the etching solution.
  • the buffer layer 23 is made of AlN and has a thickness of 20 nm and a potassium hydroxide solution having a concentration of 100% is used as an etching solution
  • the time is, for example, 5 to 20 seconds.
  • the thing using sapphire was shown as the growth board

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】成長基板のない状態でチップオンボード型のパッケージ基板本体上に半導体発光部を形成することのできる発光装置の製造方法を提供する。 【解決手段】複数の発光ダイオード発光部を有するチップオンボード型のパッケージ基板を備える発光装置の製造方法であって、複数の発光ダイオード素子を成長基板の他の基板に接合することなく各発光ダイオード素子ごとに別個にパッケージ基板本体に直接的に実装する実装工程と、パッケージ基板本体に各発光ダイオード素子が直接的に実装された状態で、発光ダイオード素子よりも大きなスポット径のレーザを走査させることなく各発光ダイオード素子ごとに素子全体にレーザを均一に照射し成長基板の全部分を剥離する剥離工程と、を含むようにした。

Description

チップオンボード型のパッケージ基板を有する発光装置の製造方法
 本発明は、チップオンボード型のパッケージ基板を有する発光装置の製造方法に関する。
 III族窒化物半導体を用いた発光素子が実用化されている。このIII族窒化物半導体は、類似の結晶構造の異種材料からなる成長基板上に金属有機化学気相成長法(MOCVD)または分子線蒸着法(MBE)などを用いて成長されるものが一般的である。成長基板としては、六方晶系の構造を有するサファイア基板が主に用いられる。
 この成長基板を分離する方法として、レーザリフトオフ技術が主に用いられる(例えば、特許文献1参照)。特許文献1には、成長基板上にIII族窒化物半導体層を成長させ、このIII族窒化物半導体層上に第2の基板を接合した後、成長基板側からレーザビームを照射し、III族窒化物半導体層から成長基板を分離するレーザリフト方法が記載されている。
 また、特許文献2には上記第2の基板としてAlN基板を用いることが記載され、特許文献3には上記第2の基板としてサブマウントを用いることが記載されている。特許文献2及び特許文献3に記載の技術では、成長基板上に複数の半導体素子構造を形成した状態で、一括してAlN基板及びサブマウントに転写した後、成長基板をレーザビームを用いて剥離して、表面実装型のLEDデバイスとしている。そして、AlN基板及びサブマウントを含むLEDデバイスは、発光装置のパッケージ基板に搭載される。すなわち、これらの技術はチップオンボード型でなく表面実装型に関する。
 ここで、レーザービームのスポット径を、ウェハの標準的なサイズである直径50mm~300mm程度とすると、分離に必要なパワーを得ることができない。従って、最終チップサイズ程度のレーザビームサイズでラインスキャンをする方式が用いられている。
 しかしながら、特許文献1から3に記載のリフトオフ方法では、レーザビームをラインスキャンしていることから、ウェハ全体に均一にビームを照射することが困難である。これにより、成長基板の剥離に分布が生じ、得られる発光素子の特性にばらつきが生じたり、初期不良の発光素子が多く存在することになり、歩留まりが悪いという問題がある。
 ここで、特許文献4には、成長基板上にIII族窒化物半導体層を成長させ、このIII族窒化物半導体層上に第2の基板を接合した後、ウェハ全体をラインスキャンせずに、素子に対応するスクライブラインの領域ごとにレーザを照射することが記載されている。しかし、この方法であっても、各素子の境界部分にビームを均一に照射することはできず、ウェハ単位で成長基板を剥離する際に各素子の境界部分で剥離に分布が生じることとなり、歩留まりは依然として悪い。また、ウェハにスクライブラインを形成すると、成長基板にひび割れが生じたりひずみが生じ、却って歩留まりが悪化することもある。
特開2011-49518号公報 特表2008-533716号公報 特開2005-252222号公報 特開2012-16727号公報
 また、第2の基板なしで発光素子を切り出す前に成長基板を分離させてしまうと、半導体層のみの状態となり、ハンドリングが困難となる問題点がある。これにより、半導体層をハンドリング可能な程度まで厚くしない限り、パッケージ基板に半導体層のみを配置することができない。そのようなわけで、特許文献1、特許文献2、特許文献3及び特許文献4では、いずれも第2の基板を利用している。
 そして、得られる発光素子が発光のために必要なIII族窒化物半導体層の他に第2の基板を有することから、発光素子をチップオンボード型のパッケージ基板に搭載した際に、第2の基板に起因して光学的、熱的等な性能が悪化するおそれがある。
 さらに、特許文献2及び特許文献3に記載された技術は、良品、不良品にかかわらず、成長基板上に形成された半導体素子構造を利用せざるを得ないことから、歩留まりが極めて悪いという問題点がある。
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、成長基板のない状態でチップオンボード型のパッケージ基板本体上に半導体発光部を形成することのできる発光装置の製造方法を提供する。
 本発明では、複数の発光ダイオード発光部を有するチップオンボード型のパッケージ基板を備える発光装置の製造方法であって、成長基板と、前記成長基板上の半導体発光部と、前記半導体発光部上の電極と、をそれぞれ有する互いに独立した複数のフリップチップ型の発光ダイオード素子から、所期の性能を満たす発光ダイオード素子を選別する選別工程と、前記選別工程にて選別された複数の発光ダイオード素子を、成長基板の他の基板に接合することなく、前記各発光ダイオード素子ごとに別個にパッケージ基板本体に直接的に実装する実装工程と、前記パッケージ基板本体に前記各発光ダイオード素子が直接的に実装された状態で、前記発光ダイオード素子よりも大きなスポット径のレーザを走査させることなく、前記各発光ダイオード素子ごとに素子全体にレーザを均一に照射し、前記成長基板の全部分を剥離する剥離工程と、を含む発光装置の製造方法が提供される。
 この発光装置の製造方法によれば、実装工程にて、複数の発光ダイオード素子がパッケージ基板本体にフリップチップ実装され、各発光ダイオード素子がパッケージ基板本体に電気的に接続される。次いで、剥離工程にて成長基板が剥離され、半導体発光部がパッケージ基板本体上に残留する。
 このように、パッケージ基板本体上に半導体層のみが残るため、成長基板等の他の基板に起因して光学的、熱的等な性能が悪化することはない。また、発光ダイオード素子を実装した後に成長基板を剥離するようにしたので、薄型の半導体層をパッケージ基板本体上に形成することができる。
 また、リフトオフの際、分離した各発光ダイオード素子ごとにレーザを照射すればよく、素子が分離されない状態でウェハ全体をラインスキャンしたり素子に対応するスクライブラインの領域ごとにレーザを照射する従来の方法と比べて、成長基板の剥離に分布が生じることを抑制することができ、歩留まりを向上させることができる。特に、発光ダイオード素子よりも大きなスポット径のレーザを用いたので、各発光ダイオードに均一にビームを照射することができる。
 さらにまた、選別工程で予め所期の性能を満たす発光ダイオード素子を選別して使用することができ、これによっても歩留まりを向上させることができる。すなわち、成長基板上に複数の半導体素子構造を形成したまま、一括してサブマウントやAlN基板に貼り付けるような従来のもののように、初期不良の素子が含まれてしまうようなことはない。
 また、上記発光装置の製造方法において、前記剥離工程の後、前記パッケージ基板本体上の前記成長基板の残骸を、ガスを吹き付けることにより一括して退去させる退去工程を含んでもよい。
 また、上記発光装置の製造方法において、前記実装工程にて、前記パッケージ基板本体上における前記各発光ダイオード素子の位置は、CCDカメラで認識して配置することで定まっていてもよい。
 また、上記発光装置の製造方法において、前記パッケージ基板本体上に前記成長基板を除去されて残留する前記半導体発光部は、10μm以下であってもよい。
 また、上記発光装置の製造方法において、前記成長基板は、サファイア基板であってもよい。
 また、上記発光装置の製造方法において、前記各発光ダイオード素子は、前記パッケージ基板本体に直接実装され、前記パッケージ基板本体上で縦方向及び横方向に整列し、前記パッケージ基板本体上の回路パターンにより互いに直列及び並列に電気的に接続されてもよい。
 また、本発明では、上記製造方法により製造された発光装置が提供される。
 本発明によれば、成長基板のない状態でパッケージ基板上に薄型の半導体発光部を形成することができる。
図1は、本発明の一実施形態を示す発光装置の概略側面図である。 図2は、パッケージ基板の平面図である。 図3(a)は、半導体発光部として用いられる成長基板除去前の発光素子の模式全体断面図であり、図3(b)は、半導体発光部として用いられる成長基板除去前の発光素子の模式拡大断面図である。 図4は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子をパッケージ基板本体の搭載位置上方にセットした状態を示している。 図5は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子をパッケージ基板本体に搭載した状態を示している。 図6は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子の成長基板にレーザを照射している状態を示している。 図7は、レーザ照射装置の概略説明図である。 図8は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子の成長基板が除去された状態を示している。 図9は、発光装置の断面図であり、(a)は本発明の一実施形態のものを示し、(b)は従来のものを示す。 図10は、変形例を示す半導体発光部をパッケージ基板本体に形成する説明図であり、化学エッチングで成長基板を分離している状態を示している。 図11は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子の成長基板が除去された状態を示している。
 図1から図9は本発明の一実施形態を示し、図1は発光装置の概略側面図である。
 図1に示すように、この発光装置1は、ガラスの筐体2と、筐体2の下側に形成され外部電源と電気的に接続される端子部4と、を有し、筐体2内にパッケージ基板50が収容されている。パッケージ基板50は、端子部4から延び無機材料からなる支持部5により支持され、内部導線6により端子部4と電気的に接続されている。
 また、図2に示すように、パッケージ基板50は、パッケージ基板本体10と、このパッケージ基板本体10上に配置された複数の半導体発光部22と、パッケージ基板本体10の回路パターン11及び半導体発光部22とを電気的に接続する後述のはんだ32と、を備えている。また、パッケージ基板50は、パッケージ基板本体10上で半導体発光部22を封止する封止樹脂40(図9(a)参照)を備えている。パッケージ基板50は、チップオンボード型であり、内部導線6と直接的に接続される。
 パッケージ基板本体10の材質は任意であるが、例えば、AlN、Si、Cu、Al、SiC等が用いられる。尚、パッケージ基板本体10に、例えばガラスエポキシ等の合成樹脂を用いることも可能である。パッケージ基板本体10上には、各半導体発光部22へ電力を供給する回路パターン11が形成されている。本実施形態においては、パッケージ基板本体10は正方形状に形成され、各半導体発光部22は縦方向及び横方向に整列して配置される。
 図3(a)は、半導体発光部として用いられる成長基板除去前の発光素子の模式全体断面図である。
 図3(a)に示すように、この発光ダイオード素子20は、フリップチップ型であり、成長基板21の表面上に、III族窒化物半導体層からなる半導体発光部22が形成されたものである。成長基板21は、例えばサファイアからなる。また、半導体発光部22上には、後述するように、p側電極28及びn側電極29が形成される。
 図3(b)は、半導体発光部として用いられる成長基板除去前の発光素子の模式拡大断面図である。図3(b)においては、説明のため、成長基板21の一部を省略して図示している。
 図3(b)に示すように、半導体発光部22は、バッファ層23、n型GaN層24、活性層25、光ガイド層26、p型GaN層27を成長基板21側からこの順に有している。p型GaN層27上にはp側電極28が形成されるとともに、n型GaN層24上にはn側電極29が形成されている。
 バッファ層23は、成長基板21上に形成され、例えばAlNで構成されている。尚、バッファ層23をGaNで構成してもよい。第1導電型層としてのn型GaN層24は、バッファ層23上に形成され、n-GaNで構成されている。発光層としての活性層25は、n型GaN層24上に形成され、GalnNで構成され、電子及び正孔の注入により青色光を発する。尚、活性層25を多重量子井戸構造とすることもできる。ここで、青色光とは、例えば、ピーク波長が430nm以上480nm以下の光をいうものとする。本実施形態においては、活性層25の発光のピーク波長は450nmである。
 光ガイド層26は、活性層25上に形成され、p―AIGaNで構成されている。第2導電型層としてのp型GaN層27は、光ガイド層26上に形成され、p-GaNで構成されている。n型GaN層24からp型GaN層27までは、III族窒化物半導体のエピタキシャル成長により形成される。ここで、各層の厚さは、例えば、バッファ層23を40nm、n型GaN層24を5μm、活性層25を2.5nm、光ガイド層26を20nm、p型GaN層27を200nmとし、半導体発光部22の厚さを5262.5nmとすることができる。尚、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電圧が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。
 p側電極28は、p型GaN層27上に形成され、例えばAu等の材料からなる。本実施形態においては、p側電極28は、真空蒸着法、スパッタリング法、CVD(Chemical Vapor Deposition)法等により形成される。n側電極29は、p型GaN層27からn型GaN層24をエッチングして、露出したn型GaN層24上に形成される。n側電極29は、例えばW/Al/Auから構成され、真空蒸着法、スパッタリング法、CVD(Chemical Vapor Deposition)法等により形成される。
 以下、図4から図8を参照して、発光装置の製造方法について説明する。
 本実施形態の発光装置の製造方法は、成長基板21と、成長基板21上の半導体発光部22と、半導体発光部22上の電極28,29と、をそれぞれ有する互いに独立した複数のフリップチップ型の発光ダイオード素子20から、所期の性能を満たす発光ダイオード素子20を選別する選別工程と、選別工程にて選別された複数の発光ダイオード素子20を、成長基板21の他の基板に接合することなく、各発光ダイオード素子20ごとに別個にパッケージ基板本体10に直接的に実装する実装工程と、パッケージ基板本体10に各発光ダイオード素子20が直接的に実装された状態で、発光ダイオード素子20よりも大きなスポット径のレーザを走査させることなく、各発光ダイオード素子20ごとに素子全体にレーザを均一に照射し、成長基板21の全部分を剥離する剥離工程と、パッケージ基板本体10上の成長基板21の残骸を、ガスを吹き付けることにより一括して退去させる退去工程と、を含んでいる。
 図4は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子をパッケージ基板本体の搭載位置上方にセットした状態を示している。
 まず、パッケージ基板50に使用に適した、所期の性能を満たす発光ダイオード素子20の選別を行う。ここで所期の性能とは、製造されるパッケージ基板50の品質のばらつきが問題とならないのであれば、発光ダイオード素子20が通電時に点灯するかしないかということになるし、パッケージ基板50の品質のばらつきが問題となるのであれば、発光ダイオード素子20の順方向電圧、光量、色調等が所定の設計範囲内であるかないかということになる。すなわち、少なくとも点灯しないような不良の発光ダイオード素子20はこの段階で除かれる。
 また、図4に示すように、パッケージ基板本体10における発光ダイオード素子20との接続部位には、予めAu-Snからなるはんだ32が蒸着されている。尚、はんだ32としてAu-Sn以外の材料を用いることもできる。
 図5は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子をパッケージ基板本体に搭載した状態を示している。
 次いで、図5に示すように、所定の雰囲気下、所定の温度条件、所定の荷重条件にて、p側電極28及びn側電極29をはんだ32に接合させる。所定の雰囲気は、例えば、窒素及び水素を混合したフォーミングガスの他、窒素等の不活性雰囲気とすることができる。例えば、フォーミングガスとして、水素5%、窒素95%のものを用いることができる。また、発光ダイオード素子20に加えられる荷重は、例えば5g重以上50g重以下に設定される。温度条件は任意であるが、はんだ32を溶融させるためには、はんだ32を構成する材料の共晶温度又は融点以上の温度(例えば、250℃以上400℃以下の温度)に加熱する必要がある。例えば、はんだ32がAu80%、Sn20%のAu-Snはんだである場合、共晶温度である約280℃以上に加熱する必要ある。また、はんだ32を例えばSnAgCuで構成した場合、SnAgCuの融点が約220℃であるので、少なくとも約220℃以上に加熱する必要ある。このように、はんだ32を溶融固化してパッケージ基板本体10に発光ダイオード素子20を固定する。
 図6は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子の成長基板にレーザを照射している状態を示している。
 次いで、図6に示すように、パッケージ基板本体10の上方から発光ダイオード素子20にレーザビームを照射する。レーザビームのスポット径は、発光ダイオード素子20の平面視面積より大きく形成され、レーザビームを走査することなく、発光ダイオード素子20全体にビームを照射することができる。ここで、レーザビームはスポットの径方向について光の強度分布があることから、発光ダイオード素子20より大きいほど、発光ダイオード素子20に照射されるビームのエネルギーをより均一にすることができる。発光ダイオード素子20はフリップチップ型であることから、成長基板21が上側に位置しており、レーザビームのエネルギーが成長基板21と半導体発光部22の界面に与えられ、成長基板21が半導体発光部22から分離する。
 ここで、発光ダイオード素子20の位置は、CCDカメラで認識して配置することで定まっている。これは、発光ダイオード素子20ごとに搭載されていることから可能となっており、ウェハ状の基板やサブマウントにより半導体発光部22が連結された状態では、CCDカメラで認識することはできない。仮にCCDカメラで認識可能なようにウェハにスクライブラインを形成すると、成長基板にひび割れが生じたりひずみが生じてしまう。また、本実施形態においては、ウェハの状態でレーザビームを照射する場合のようにウェハの反り等を考慮する必要がないので、レーザビームの焦点を的確に成長基板21と半導体発光部22の界面に合わせることができる。
 ここで、図7を参照してレーザ照射方法について説明する。図7は、レーザ照射装置の概略説明図である。
 図7に示すように、レーザ照射装置100は、レーザビームを発振するレーザ発振器110、発振されたレーザビームの方向を変えるミラー120、レーザビームをフォーカシングする光学レンズ130及びレーザビームの照射対象である作業対象物、即ちパッケージ基板本体10を支持するためのステージ140を有する。また、レーザ照射装置100は、レーザビームの経路を真空状態に維持するハウジング150を有していてもよい。
 レーザ発振器110は、KrF、ArF等のエキシマレーザとすることができる。レーザ発振器110で放出されたビームは、ミラー120で反射されて方向が変更される。ミラー120は、レーザビームの方向を変更するために複数設けられる。また、光学レンズ130は、ステージ140の上方に位置し、パッケージ基板本体10に入射されるレーザビームをフォーカシングする。
 ステージ140は、図示しない移動手段によりx方向及び/又はy方向に移動し、その上に載置されたパッケージ基板本体10を移動する。レーザビームは、成長基板21を通して照射され、主に成長基板21と半導体発光部22の間の界面で吸収される。レーザビームは、平面視にて発光ダイオード素子20より大きなスポット径で照射される。ここで、スポット径は、例えば1mm以上10mm以下とすることができる。
 図8は、半導体発光部をパッケージ基板本体に形成する説明図であり、発光素子の成長基板が除去された状態を示している。
 レーザ照射装置により成長基板21の全部分を剥離することにより、図8に示すように、半導体発光部22のみを回路パターン11に電気的に接続された状態でパッケージ基板本体10上に残すことができる。尚、剥離された成長基板21の残骸は、パッケージ基板本体10上にガスを吹き付けることにより、パッケージ基板本体10上から退去させることができる。すなわち、全ての成長基板21を剥離させた後に、各成長基板21の残骸を一括して退去させればよい。
 図9は、パッケージ基板の断面図であり、(a)は本発明の一実施形態のものを示し、(b)は従来のものを示す。
 次いで、図9(a)に示すように、パッケージ基板本体10上の半導体発光部22を封止樹脂40で封止し、パッケージ基板50が完成する。封止樹脂40は、エポキシ系、シリコーン系等の透明樹脂とすることができる。また、封止樹脂40には、各半導体発光部22から発せられる青色光により励起されると黄色光を発する蛍光体41が含有されている。黄色光を発する蛍光体41としては、YAG(Yttrium Aluminum Garnet)系、ケイ酸塩系等のものを用いることができる。
 完成したパッケージ基板50は支持部5に取り付けられ、端子部4と内部導線6により接続される。この後、端子部4に筐体2を組み付けることにより、発光装置1が完成する。
 以上説明したように、本実施形態の発光装置1の製造方法によれば、実装工程にて、複数の発光ダイオード素子20がパッケージ基板本体10にフリップチップ実装され、各発光ダイオード素子20がパッケージ基板本体10に電気的に接続される。次いで、剥離工程にて成長基板21が剥離され、半導体発光部22がパッケージ基板本体10上に残留する。従来、半導体層をハンドリング可能な程度(例えば、50μm)まで厚くしない限り、パッケージ基板本体10に半導体発光部22のみを配置することができなかったが、パッケージ基板本体10上での成長基板21のリフトオフにより、パッケージ基板本体10上への半導体発光部22の形成が可能となった。これにより、例えば10μm以下のような薄型の半導体発光部22をパッケージ基板本体10に形成することができる。
 このように、パッケージ基板本体10上に半導体発光部22のみが残るため、成長基板21に起因して光学的、熱的等な性能が悪化することはない。また、発光ダイオード素子20を実装した後に成長基板21を除去するようにしたので、図9(b)に示す従来のパッケージ基板250と比べても明らかなように、図9(a)に示す薄型の半導体発光部22をパッケージ基板本体10上に形成することができる。
 また、選別工程で予め所期の性能を満たす発光ダイオード素子20を選別して使用することができ、歩留まりを向上させることができる。すなわち、成長基板上に複数の半導体素子構造を形成したまま、一括してサブマウントやAlN基板に貼り付けるような従来のもののように、初期不良の素子が含まれてしまうようなことはない。また、支持基板等の他の基板への貼り付けは必要はないし、支持基板等をパッケージ基板上で剥がす必要もない。
 さらに、リフトオフの際、分離した各発光ダイオード素子20ごとにレーザを照射すればよく、素子が分離されない状態でウェハ全体をラインスキャンしたり素子に対応するスクライブラインの領域ごとにレーザを照射する従来の方法と比べて、成長基板21の剥離に分布が生じることを抑制することができ、これによっても歩留まりを向上させることができる。特に、本実施形態においては、発光ダイオード素子20よりも大きなスポット径のレーザにより成長基板21を除去していることから、各発光ダイオード20に均一にビームを照射することができ、成長基板21の剥離に分布が生じることを的確に抑制することができ、歩留まりを確実に向上させることができる。通常、レーザリフトオフは、複数の発光ダイオード素子が隣接した状態のウェハ単位で行われ、素子単位でレーザを照射しようとしても、隣接する発光ダイオード素子にも影響が及ぶことから、素子単位でレーザリフトオフをすることはできない。しかしながら、本実施形態のように、一旦ウェハから各発光ダイオード素子を切り出すことにより、各発光ダイオード素子ごとに完全に独立した状態でのレーザ照射が可能となる。
 また、本実施形態の発光装置1によれば、半導体発光部22上に成長基板21が存在しないことから、半導体発光部22を薄型とすることができ、半導体発光部22から発する熱をパッケージ基板本体10側へ速やかに放散させることができる。すなわち、半導体発光部22から成長基板21を通じて封止樹脂40、蛍光体41等への伝熱を減じて、封止樹脂40、蛍光体41等の劣化を抑制することができる。
 また、成長基板21が存在しないことにより、半導体発光部22と成長基板21との界面で光が反射することがなくなり、半導体発光部22からの光取りだし効率が向上する。本実施形態の発光装置1を実際に製作したところ、成長基板21を有するものと比較して、発光効率を10~30%程度向上させることができた。
 尚、前記実施形態においては、レーザを半導体発光部22と成長基板21の界面に照射して成長基板21を除去するものを示したが、例えば、エッチングにより成長基板21を除去するようにしてもよい。この場合、成長基板21自体をエッチングするか、成長基板21と活性層25の間に形成された犠牲層をエッチングすることで、成長基板21を除去することができる。前記実施形態の発光ダイオード素子20の場合、バッファ層23を犠牲層としてエッチングすることにより、成長基板21を分離することが可能である。図10に示すように、バッファ層23は、露出されている側面から、内方向に向かって次第に化学エッチングされることとなる。
 エッチング液は、エッチングすべきバッファ層23の構成材料に応じて適宜に選択されるが、例えばバッファ層23がAlNよりなる場合には、水酸化カリウム(KOH)溶液、水酸化ナトリウム(NaOH)溶液などを用いることができる。また、エッチング液として、水酸化カリウム(KOH)溶液および水酸化ナトリウム(NaOH)溶液を用いる場合には、純水で希釈されてなる、その濃度が5~99vol%のものであっても、また濃度が100vol%のものであってもよい。
 エッチング処理条件としては、エッチング処理温度は、常温(25℃)~50℃であり、また、エッチング処理時間は、バッファ層23の構成材料および厚み、エッチング溶液の種類および濃度にもよるが、例えばバッファ層23がAlNよりなり、その厚みが20nmであると共に、エッチング液として濃度100%の水酸化カリウム溶液を用いた場合には、例えば5~20秒間である。これにより、図11に示すように、バッファ層23及び成長基板21が除去された半導体発光部122をパッケージ基板本体10上に形成することができる。
 また、前記実施形態においては、成長基板21としてサファイアを用いたものを示したが、他の材料を用いてもよいことは勿論であるし、その他発光装置1の具体的構成も適宜に変更可能であることは勿論である。
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 1  発光装置
 2  筐体
 4  端子部
 5  支持部
 6  内部導線
 10  パッケージ基板本体
 11  回路パターン
 20  発光素子
 21  成長基板
 22  半導体発光部
 23  バッファ層
 24  n型GaN層
 25  活性層
 26  光ガイド層
 27  p型GaN層
 28  p側電極
 29  n側電極
 32  はんだ
 40  封止樹脂
 41  蛍光体
 50  パッケージ基板
 100 レーザ照射装置
 110 レーザ発振器
 120 ミラー
 122 半導体発光部
 130 光学レンズ
 140 ステージ
 150 ハウジング
 250 従来のパッケージ基板

Claims (6)

  1.  複数の発光ダイオード発光部を有するチップオンボード型のパッケージ基板を備える発光装置の製造方法であって、
     成長基板と、前記成長基板上の半導体発光部と、前記半導体発光部上の電極と、をそれぞれ有する互いに独立した複数のフリップチップ型の発光ダイオード素子から、所期の性能を満たす発光ダイオード素子を選別する選別工程と、
     前記選別工程にて選別された複数の発光ダイオード素子を、成長基板の他の基板に接合することなく、前記各発光ダイオード素子ごとに別個にパッケージ基板本体に直接的に実装する実装工程と、
     前記パッケージ基板本体に前記各発光ダイオード素子が直接的に実装された状態で、前記発光ダイオード素子よりも大きなスポット径のレーザを走査させることなく、前記各発光ダイオード素子ごとに素子全体にレーザを均一に照射し、前記成長基板の全部分を剥離する剥離工程と、を含むチップオンボード型のパッケージ基板を有する発光装置の製造方法。
  2.  前記剥離工程の後、前記パッケージ基板本体上の前記成長基板の残骸を、ガスを吹き付けることにより一括して退去させる退去工程を含む請求項1に記載のチップオンボード型のパッケージ基板を有する発光装置の製造方法。
  3.  前記実装工程にて、前記パッケージ基板本体上における前記各発光ダイオード素子の位置は、CCDカメラで認識して配置することで定まっている請求項2に記載のチップオンボード型のパッケージ基板を有する発光装置の製造方法。
  4.  前記パッケージ基板本体上に前記成長基板を除去されて残留する前記半導体発光部は、10μm以下である請求項3に記載のチップオンボード型のパッケージ基板を有する発光装置の製造方法。
  5.  前記成長基板は、サファイア基板である請求項4に記載のチップオンボード型のパッケージ基板を有する発光装置の製造方法。
  6.  前記各発光ダイオード素子は、前記パッケージ基板本体に直接実装され、前記パッケージ基板本体上で縦方向及び横方向に整列し、前記パッケージ基板本体上の回路パターンにより互いに直列及び並列に電気的に接続される請求項5に記載のチップオンボード型のパッケージ基板を有する発光装置の製造方法。
PCT/JP2013/061059 2012-04-13 2013-04-12 チップオンボード型のパッケージ基板を有する発光装置の製造方法 WO2013154181A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-092202 2012-04-13
JP2012092202 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013154181A1 true WO2013154181A1 (ja) 2013-10-17

Family

ID=49327739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061059 WO2013154181A1 (ja) 2012-04-13 2013-04-12 チップオンボード型のパッケージ基板を有する発光装置の製造方法

Country Status (2)

Country Link
JP (1) JPWO2013154181A1 (ja)
WO (1) WO2013154181A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103541A (ja) * 2013-11-21 2015-06-04 スタンレー電気株式会社 半導体発光素子アレイおよびその製造方法
JP2015128088A (ja) * 2013-12-27 2015-07-09 日亜化学工業株式会社 半導体光源装置
CN105493298A (zh) * 2015-07-14 2016-04-13 歌尔声学股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
JP2016092090A (ja) * 2014-10-31 2016-05-23 日亜化学工業株式会社 発光装置及びその製造方法
JP2019511838A (ja) * 2016-04-04 2019-04-25 グロ アーベーGlo Ab ダイ移送用のバックプレーン通過レーザ照射

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329896A (ja) * 2001-05-02 2002-11-15 Kansai Tlo Kk Led面発光装置
JP2008140873A (ja) * 2006-11-30 2008-06-19 Toyoda Gosei Co Ltd フリップチップ実装されたiii−v族半導体素子およびその製造方法
WO2008102548A1 (ja) * 2007-02-21 2008-08-28 Panasonic Corporation 半導体発光素子および半導体発光装置の製造方法
JP2010205920A (ja) * 2009-03-03 2010-09-16 Sharp Corp 発光装置、発光装置ユニット、および発光装置製造方法
JP2011187735A (ja) * 2010-03-09 2011-09-22 Toshiba Corp 半導体発光装置および半導体発光装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329896A (ja) * 2001-05-02 2002-11-15 Kansai Tlo Kk Led面発光装置
JP2008140873A (ja) * 2006-11-30 2008-06-19 Toyoda Gosei Co Ltd フリップチップ実装されたiii−v族半導体素子およびその製造方法
WO2008102548A1 (ja) * 2007-02-21 2008-08-28 Panasonic Corporation 半導体発光素子および半導体発光装置の製造方法
JP2010205920A (ja) * 2009-03-03 2010-09-16 Sharp Corp 発光装置、発光装置ユニット、および発光装置製造方法
JP2011187735A (ja) * 2010-03-09 2011-09-22 Toshiba Corp 半導体発光装置および半導体発光装置の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103541A (ja) * 2013-11-21 2015-06-04 スタンレー電気株式会社 半導体発光素子アレイおよびその製造方法
JP2015128088A (ja) * 2013-12-27 2015-07-09 日亜化学工業株式会社 半導体光源装置
JP2016092090A (ja) * 2014-10-31 2016-05-23 日亜化学工業株式会社 発光装置及びその製造方法
CN105493298A (zh) * 2015-07-14 2016-04-13 歌尔声学股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
WO2017008254A1 (en) * 2015-07-14 2017-01-19 Goertek. Inc Transferring method, manufacturing method, device and electronic apparatus of micro-led
JP2017539097A (ja) * 2015-07-14 2017-12-28 ゴルテック.インク マイクロ発光ダイオードの搬送方法、製造方法、マイクロ発光ダイオード装置、及び電子機器
US10141287B2 (en) 2015-07-14 2018-11-27 Goertek, Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-LED
JP2019511838A (ja) * 2016-04-04 2019-04-25 グロ アーベーGlo Ab ダイ移送用のバックプレーン通過レーザ照射

Also Published As

Publication number Publication date
JPWO2013154181A1 (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6267635B2 (ja) チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
JP5313256B2 (ja) 基板リフトオフに関する強固なled構造
US8399272B2 (en) Method of manufacturing semiconductor light emitting element
KR100495215B1 (ko) 수직구조 갈륨나이트라이드 발광다이오드 및 그 제조방법
US7696523B2 (en) Light emitting device having vertical structure and method for manufacturing the same
TW200404375A (en) Semiconductor element and method for producing the same
JP2006332681A (ja) 発光ダイオードの製造方法
JP2007207981A (ja) 窒化物半導体発光素子の製造方法
JP2004072052A (ja) 半導体装置及びその製造方法
KR101132910B1 (ko) 발광 다이오드 제조방법
WO2013154181A1 (ja) チップオンボード型のパッケージ基板を有する発光装置の製造方法
JP2004112000A (ja) 半導体発光素子の製造方法
KR100774196B1 (ko) 수직형 발광 소자 제조방법
JP2007221051A (ja) 窒化物系半導体素子の製造方法
KR100710394B1 (ko) 수직형 발광 소자의 제조방법
KR20090015712A (ko) 수직구조 발광다이오드 소자의 제조방법
KR101364719B1 (ko) 수직형 발광 다이오드 제조방법
JP2012129440A (ja) 半導体発光素子の製造方法及び半導体積層構造
JP2006237386A (ja) 窒化物系半導体発光ダイオード
JP2007258753A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13776373

Country of ref document: EP

Kind code of ref document: A1