WO2013176039A1 - 超音波探触子の探傷感度調整方法及び異常診断方法 - Google Patents

超音波探触子の探傷感度調整方法及び異常診断方法 Download PDF

Info

Publication number
WO2013176039A1
WO2013176039A1 PCT/JP2013/063737 JP2013063737W WO2013176039A1 WO 2013176039 A1 WO2013176039 A1 WO 2013176039A1 JP 2013063737 W JP2013063737 W JP 2013063737W WO 2013176039 A1 WO2013176039 A1 WO 2013176039A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic probe
transducers
transducer
flaw detection
echo
Prior art date
Application number
PCT/JP2013/063737
Other languages
English (en)
French (fr)
Inventor
正樹 山野
喜之 中尾
繁俊 兵藤
雅樹 田中
吏 須田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US14/401,896 priority Critical patent/US10416123B2/en
Priority to BR112014028950-6A priority patent/BR112014028950B1/pt
Publication of WO2013176039A1 publication Critical patent/WO2013176039A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/275Arrangements for orientation or scanning by relative movement of the head and the sensor by moving both the sensor and the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2632Surfaces flat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the present invention relates to a method for appropriately adjusting the flaw detection sensitivity of an ultrasonic probe including a plurality of transducers arranged along a certain direction and a method for appropriately diagnosing an abnormality.
  • Flaw detection is performed using an ultrasonic probe having a plurality of transducers arranged along a certain direction, and each transducer being fixed to each other (hereinafter referred to as an array-type ultrasonic probe as appropriate).
  • an array-type ultrasonic probe As appropriate, m (n> m ⁇ 1) transducers are selected from n (n ⁇ 2) transducers included in the array-type ultrasonic probe, and a material to be inspected is selected from the selected transducers.
  • the ultrasonic wave is transmitted toward the object, and the echo from the material to be inspected is received by the selected vibrator.
  • the echoes received by the respective vibrators constituting the selected vibrator are synthesized, and the material to be inspected is detected using this synthesized waveform.
  • This operation is repeated by sequentially switching the selected transducers. For this reason, it is important to appropriately evaluate the relative sensitivity of each transducer and appropriately adjust the flaw detection sensitivity, which is the amplification degree of the echo signal. Specifically, it is important to adjust the flaw detection sensitivity so that when each echo is received from the same artificial flaw by each transducer, the same echo intensity can be obtained by each transducer.
  • the performance evaluation method for this array-type ultrasonic probe is not currently specified by the JIS standard or the like. For this reason, it is common to evaluate the performance in accordance with the JIS standard related to the performance evaluation method for a single-vibrator immersion vertical probe described in Non-Patent Document 1. Specifically, the evaluation method of the frequency response using the surface echo of the flat plate test piece described in Section 7.1 of Non-Patent Document 1, the relative using the surface echo of the flat plate test piece described in Section 7.3 The sensitivity evaluation method, and the beam shape and distance amplitude characteristic evaluation method using the ⁇ 4 mm steel ball or ⁇ 2.5 mm steel wire described in Section 8.5.1 are used.
  • the selected transducers are sequentially switched.
  • flaw detection is performed for each selected transducer.
  • the array-type ultrasonic probe A method of determining that an abnormality such as a failure of the transducer has not occurred in the ultrasonic probe is also implemented.
  • the present inventors have recognized the problem that it is difficult to appropriately evaluate the performance of the array-type ultrasonic probe by the performance evaluation method based on the above-mentioned JIS standard. Specifically, in the method using the surface echo of the flat plate test piece, it is difficult to appropriately evaluate the relative sensitivity of each transducer as described later, and thus to appropriately adjust the flaw detection sensitivity. Further, in the method using a ⁇ 4 mm steel ball or ⁇ 2.5 mm steel wire, although evaluation of relative sensitivity of each vibrator and adjustment of flaw detection sensitivity are possible as will be described later, the work of evaluation and adjustment is too complicated. For this reason, it is practically difficult to perform the operation particularly in a state where the array type ultrasonic probe is attached to the inspection line. Furthermore, the present inventors have also recognized the problem that the abnormality of the array-type ultrasonic probe cannot be sufficiently detected only by monitoring the decrease in the intensity of the composite waveform as in the above-described abnormality diagnosis method.
  • the above-mentioned problem is not limited to the array-type ultrasonic probe, and includes a plurality of transducers arranged along a certain direction, such as an ultrasonic probe in which a plurality of transducers of one transducer are arranged. This is a problem that can also occur in an ultrasonic probe.
  • the present invention has been made to solve the above-described problems of the prior art, and appropriately detects the flaw detection sensitivity of an ultrasonic probe having a plurality of transducers arranged along a certain direction. It is an object of the present invention to provide a method of adjusting and a method of appropriately diagnosing an abnormality, particularly a method that can be applied even when the ultrasonic probe is attached to an inspection line.
  • each transducer has a plate-like body.
  • the echo intensity distribution characteristics between each transducer when receiving echoes from the bottom surface or the inner surface of the tubular body corresponds to the echo intensity distribution characteristics when receiving echoes from the same artificial flaw on each transducer.
  • the present invention is a method for adjusting the flaw detection sensitivity of an ultrasonic probe including a plurality of transducers arranged along a certain direction, the surfaces being substantially parallel to each other.
  • the plate-like body is disposed opposite to the ultrasonic probe so that the surface of the plate-like body having a bottom surface and the arrangement direction of the transducers are substantially parallel, or the axial direction of the tubular body and the vibration
  • the distribution characteristics of the echo intensity between each transducer when each transducer receives an echo from the bottom surface of the plate-like body or the inner surface of the tubular body corresponds to the distribution characteristic of echo intensity when an echo is received.
  • the ultrasonic wave is transmitted from each transducer toward the surface of the plate-like body or the outer surface of the tubular body, and the flaw detection of each transducer is performed so that the intensity of the echo received by each transducer is substantially equal.
  • it can be expected that the echo intensities when the echoes from the same artificial flaw are received by each transducer after adjusting the flaw detection sensitivity are substantially equal. That is, according to the present invention, it is possible to appropriately adjust the flaw detection sensitivity of each transducer included in the ultrasonic probe.
  • the dimension of the plate-like body and the tubular body along the arrangement direction of the transducers is greater than or equal to the dimension along the arrangement direction of the transducers of the ultrasonic probe.
  • all the transducers are the bottom surface of the plate-like body or the tubular body. Since echoes from the inner surface of the body can be received, the flaw detection sensitivity can be easily adjusted, and is particularly suitable for adjusting an ultrasonic probe attached to an inspection line.
  • the present inventors have determined which When a failure occurs that causes a loss of function such as transmission or reception in one of the transducers, it is more appropriate for the measurement target than a decrease in the intensity of the composite waveform of echoes received from the measurement targets received by each transducer constituting the selected transducer. It has been found that the reduction in effective beam width occurs first.
  • the effective beam width means that the intensity of the synthesized waveform is predetermined in the profile of the intensity of the synthesized waveform of the echo obtained from the measurement target when the selected transducer is scanned relatively along the arrangement direction of the transducers. Means a length in a range that is equal to or greater than (for example, -6 dB when the maximum intensity is 0 dB).
  • FIG. 1A shows a case where flaw detection is performed on a tubular body.
  • FIG. 1 (b) shows a case where a flaw is detected in a plate-like body), and when the above-mentioned effective beam width is excessively reduced, the effective beam width of one selected transducer S1 and the next selected transducer S2 adjacent to this are selected.
  • the effective beam width does not overlap, and the non-overlapping portion becomes an undetected area, and there is a risk of missing a flaw.
  • the present invention is a method for diagnosing abnormality of an ultrasonic probe including n (n ⁇ 2) transducers arranged along a certain direction, The following first to fourth steps are included.
  • First Step m (n> m ⁇ 1) transducers are selected from the n transducers, ultrasonic waves are transmitted from the selected transducers to the measurement target, and the selected oscillations are performed. The child receives an echo from the measurement object.
  • Second Step The selected transducer is scanned relative to the measurement target along the arrangement direction of the transducers, and the effective beam width of the selected transducer with respect to the measurement target is calculated.
  • the present invention it is possible to appropriately adjust the flaw detection sensitivity of an ultrasonic probe including a plurality of transducers arranged along a certain direction and to appropriately diagnose an abnormality.
  • the flaw detection sensitivity can be adjusted and abnormality can be diagnosed.
  • FIG. 1 shows a situation in which flaw detection is performed by relatively scanning an array type ultrasonic probe in a direction orthogonal to the arrangement direction of transducers.
  • FIG. 2 shows an example of the flaw detection sensitivity correction amount required when oblique angle flaw detection is performed using an array type ultrasonic probe.
  • FIG. 3 shows an example of the flaw detection sensitivity correction amount required when receiving the surface echoes of the plate-like body and the tubular body using the array type ultrasonic probe.
  • FIG. 4 shows an example of the flaw detection sensitivity correction amount required when receiving an echo from a ⁇ 4 mm steel ball using an array type ultrasonic probe.
  • FIG. 1 shows a situation in which flaw detection is performed by relatively scanning an array type ultrasonic probe in a direction orthogonal to the arrangement direction of transducers.
  • FIG. 2 shows an example of the flaw detection sensitivity correction amount required when oblique angle flaw detection is performed using an array type ultrasonic probe.
  • FIG. 3 shows an example of the
  • FIG. 5 shows an example of the flaw detection sensitivity correction amount required when receiving the bottom echoes of the plate-like body and the tubular body using the array-type ultrasonic probe.
  • FIG. 6 is an explanatory diagram for explaining the meaning of the effective beam width.
  • FIG. 7 is a graph showing an example of the relationship between the failure rate of the transducers constituting the selected transducer, the echo intensity received by the selected transducer, and the effective beam width of the selected transducer.
  • FIG. 8 is a graph showing an example of the result of comparing the actual measured value of the effective beam width of the selected transducer with the calculated value by numerical calculation.
  • the flaw detection sensitivity adjustment method is a method for adjusting flaw detection sensitivity (amplification degree of echo signals) of an array-type ultrasonic probe.
  • FIG. 2 shows an example of the flaw detection sensitivity correction amount required when oblique angle flaw detection is performed using an array type ultrasonic probe.
  • FIG. 2A is an explanatory diagram for explaining an outline of oblique flaw detection
  • FIG. 2B shows a flaw detection sensitivity correction amount required for each transducer.
  • notches F1 and F2 are provided on the bottom surface and the surface of the plate-like body P1 having a surface and a bottom surface substantially parallel to each other.
  • the array-type ultrasonic probe 100 is disposed so as to face the surface of the plate-like body P1 so that the arrangement direction of the transducers 11 (eight of # 1 to # 8) is inclined. Then, ultrasonic waves were transmitted toward the surface of the plate-like body P1 for each transducer # 1 to # 8, and echoes from the notches F1 and F2 were received for each transducer # 1 to # 8. At this time, the plate-like body P1 was scanned in the horizontal direction in FIG. 2 so that the echoes from the notches F1 and F2 could be received by the transducers # 1 to # 8.
  • the flaw detection sensitivity correction amount required to make the echo intensities received by the transducers # 1 to # 8 substantially equal.
  • the flaw detection sensitivity correction amount is 6 dB, it means that the flaw detection sensitivity (amplification degree of the echo signal) needs to be about twice that before the correction.
  • the distribution characteristics of the echo intensity between the transducers # 1 to # 8 before the flaw detection sensitivity is corrected are the same for the bottom notch F1 and the surface notch F2.
  • FIG. 3 shows an example of the flaw detection sensitivity correction amount required when receiving the surface echoes of the plate-like body and the tubular body using the array type ultrasonic probe.
  • FIG. 3A is an explanatory diagram for explaining the outline of the evaluation test when the surface echo of the plate-like body is used, and FIG.
  • FIG. 3B is an explanation for explaining the outline of the evaluation test when the surface echo of the tubular body is used.
  • FIG. 3 (c) shows the flaw detection sensitivity correction amount required for each transducer. Specifically, when the surface echo of the plate-like body is used, as shown in FIG. 3A, the vibrator 11 (# 1) is applied to the surface of the plate-like body P1 having a surface and a bottom surface substantially parallel to each other. The array type ultrasonic probe 100 is arranged so as to face each other so that the arrangement directions of (# 8 to # 8) are substantially parallel.
  • ultrasonic waves were transmitted toward the surface of the plate-like body P1 for each of the transducers # 1 to # 8, and echoes from the surface of the plate-like body P1 were received for each of the transducers # 1 to # 8.
  • the arrangement direction of the transducers 11 is substantially parallel to the axial direction of the tubular body P2.
  • the array-type ultrasonic probe 100 was arranged so as to face. Then, ultrasonic waves were transmitted toward the outer surface of the tubular body P2 for each transducer # 1 to # 8, and echoes from the outer surface of the tubular body P2 were received for each transducer # 1 to # 8.
  • the flaw detection sensitivity correction amount on the vertical axis in FIG. 3 (c) has the same meaning as that shown in FIG. 2 (b), and is used to substantially equalize the intensity of echoes received by the transducers # 1 to # 8. This means the amount of flaw detection sensitivity correction required.
  • the distribution characteristics of the echo intensity between the transducers # 1 to # 8 before the flaw detection sensitivity is corrected are the same between the plate-like body P1 and the tubular body P2.
  • the echo intensity distribution characteristic shown in FIG. 3C corresponds to the echo intensity distribution characteristic shown in FIG. 2B. do not do.
  • each transducer # 1 to # 8 is adjusted in accordance with the result shown in FIG. 3C, the echo intensity when the echo from the artificial flaw is received by each transducer # 1 to # 8 is the same. It cannot be made substantially equal, that is, the flaw detection sensitivity cannot be adjusted appropriately.
  • FIG. 4 shows an example of the flaw detection sensitivity correction amount required when receiving an echo from a ⁇ 4 mm steel ball using an array type ultrasonic probe.
  • FIG. 4A is an explanatory diagram for explaining an outline of an evaluation test in the case of using an echo from a ⁇ 4 mm steel ball
  • FIG. 4B shows a flaw detection sensitivity correction amount required for each transducer.
  • an array type ultrasonic probe 100 is arranged opposite to a ⁇ 4 mm steel ball B, and the transducers # 1 to # 8 are superposed toward the ⁇ 4 mm steel ball B.
  • each transducer # 1 to # 8 corresponds to the echo intensity distribution characteristic shown in FIG. 2B. Therefore, if the flaw detection sensitivity of each transducer # 1 to # 8 is adjusted according to the result shown in FIG. 4B, the echo intensity when each transducer # 1 to # 8 receives an echo from an artificial flaw is substantially reduced. Can be equivalent. However, as described above, either the array-type ultrasonic probe 100 or the ⁇ 4 mm steel ball B is scanned each time so that the ⁇ 4 mm steel ball B is positioned directly below the transducer 11 that transmits and receives ultrasonic waves. Since the evaluation operation is too complicated, it is substantially difficult to perform the operation particularly in a state where the array type ultrasonic probe is attached to the inspection line.
  • FIG. 5 shows an example of the flaw detection sensitivity correction amount required when receiving the bottom echoes of the plate-like body and the tubular body using the array-type ultrasonic probe.
  • FIG. 5A is an explanatory diagram for explaining the outline of the evaluation test when the bottom echo of the plate-like body is used
  • FIG. 5B is an explanation for explaining the outline of the evaluation test when the bottom echo of the tubular body is used.
  • FIG. 5C shows the flaw detection sensitivity correction amount required for each transducer.
  • the vibrator 11 (# 1) is applied to the surface of the plate-like body P1 having a surface and a bottom surface substantially parallel to each other.
  • the array type ultrasonic probe 100 is arranged so as to face each other so that the arrangement directions of (# 8 to # 8) are substantially parallel.
  • ultrasonic waves were transmitted toward the surface of the plate-like body P1 for each transducer # 1 to # 8, and echoes from the bottom surface of the plate-like body P1 were received for each transducer # 1 to # 8.
  • the bottom echo of the tubular body is used, as shown in FIG.
  • the arrangement direction of the transducers 11 (eight of # 1 to # 8) is substantially parallel to the axial direction of the tubular body P2.
  • the array-type ultrasonic probe 100 was arranged so as to face. Then, ultrasonic waves were transmitted toward the outer surface of the tubular body P2 for each transducer # 1 to # 8, and echoes from the inner surface of the tubular body P2 were received for each transducer # 1 to # 8.
  • the flaw detection sensitivity correction amount on the vertical axis of FIG. 5 (c) has the same meaning as that shown in FIG. 2 (b), and is to make the intensity of echoes received by the transducers # 1 to # 8 substantially equal. This means the amount of flaw detection sensitivity correction required. As can be seen from FIG.
  • the distribution characteristics of the echo intensity between the transducers # 1 to # 8 before the flaw detection sensitivity is corrected are the same between the plate-like body P1 and the tubular body P2.
  • the echo intensity distribution characteristic shown in FIG. 5C corresponds to the echo intensity distribution characteristic shown in FIG. 2B. To do. Therefore, if the flaw detection sensitivity of each transducer # 1 to # 8 is adjusted according to the result shown in FIG. 5C, the echo intensity when the echo from the artificial flaw is received by each transducer # 1 to # 8 is substantially reduced. It can be assumed that the detection sensitivity can be adjusted appropriately.
  • the flaw detection sensitivity adjustment method is plate-shaped so that the surface of the plate-like body P1 having a surface and a bottom surface substantially parallel to each other and the arrangement direction of the vibrators 11 are substantially parallel.
  • the body P1 is disposed opposite to the array-type ultrasonic probe 100, or the tubular body P2 is arranged so that the axial direction of the tubular body P2 and the arrangement direction of the transducers 11 are substantially parallel.
  • An ultrasonic wave is transmitted from each vibrator 11 toward the surface of the plate-like body P1 or the outer surface of the tubular body P2, and each vibrator 11 sends a bottom surface of the plate-like body P1 or the tubular body P2.
  • the echo intensity before correction is an oblique flaw detection. While the distribution characteristic is not equivalent to the echo intensity before correction in the case of performing (see FIG. 2), the method using the bottom echo of the plate-like body P1 or the method using the bottom (inner surface) echo of the tubular body P2 (see FIG. 5). ), The reason why the echo intensity before correction has a distribution characteristic equivalent to the echo intensity before correction when oblique inspection is performed (see FIG. 2) can be considered as follows.
  • the refraction angle varies depending on the incident angle, if there is a deviation in the direction of the ultrasonic wave transmitted from each transducer 11, the direction of the ultrasonic wave that is refracted at the incident point and propagates inside the inspection object. This deviation is expected to increase further. For this reason, it is considered that the distribution characteristic of the echo intensity before correction is greatly varied.
  • the direction of the ultrasonic wave is transmitted when the ultrasonic wave transmitted from each transducer 11 propagates inside the plate-like body P1 or the tubular body P2. It is considered that the deviation of the echo intensity increases, and the distribution characteristic of the echo intensity before correction is greatly varied.
  • the ultrasonic wave transmitted from each transducer 11 is echoed before being propagated into the plate-like body P1 and the tubular body P2. Therefore, it is considered that the distribution characteristics of the echo intensity before correction are small in comparison with the case of using the bottom echo.
  • the abnormality diagnosis method is a method for diagnosing abnormality of an array-type ultrasonic probe having n (n ⁇ 2) transducers.
  • n (n ⁇ 2) transducers are selected from the n transducers, and the selected transducers are directed to the measurement target.
  • an ultrasonic wave is transmitted, and an echo from the measurement object is received by the selected vibrator.
  • the echoes received by the transducers constituting the selected transducer are synthesized, and the measurement object is flawed using the synthesized waveform. This operation is repeated by sequentially switching the selected transducers.
  • the abnormality diagnosis method is a method of diagnosing an abnormality based on whether or not the effective beam width of the selected transducer with respect to the measurement target is equal to or smaller than a predetermined threshold value.
  • FIG. 6 is an explanatory diagram for explaining the meaning of the effective beam width.
  • the graph shown by the solid line in FIG. 6 shows the case where the selected transducer is scanned relatively along the arrangement direction of the transducers (for example, the array-type ultrasonic probe is mechanically scanned (moved) with respect to the measurement target).
  • An example of a profile of echo intensity (intensity of a composite waveform of echoes) obtained from a measurement target obtained when the selected transducer is also scanned) is shown.
  • the effective beam width means a length of a range in which the echo intensity is a predetermined intensity (for example, ⁇ 6 dB when the maximum intensity is 0 dB) or more in this profile.
  • FIG. 7 is a graph showing an example of the relationship between the failure rate of the vibrators constituting the selected vibrator, the echo intensity received by the selected vibrator (the intensity of the combined waveform of echoes), and the effective beam width of the selected vibrator. It is. Specifically, the number of transducers constituting the selected transducer is 16, and the supply of the transmission voltage (pulse signal voltage for transmitting ultrasonic waves from the transducer) to the transducer is stopped, or The failure of the vibrator was simulated by stopping the input of the echo signal received by the vibrator to the waveform synthesis circuit (the circuit that synthesizes the echo signal received by each vibrator).
  • a ⁇ 4 mm steel ball was used, and the selection vibrator was arranged opposite to the ⁇ 4 mm steel ball in the same manner as the configuration shown in FIG. Then, ultrasonic waves were transmitted and received substantially simultaneously from all the vibrators constituting the selected vibrator to the ⁇ 4 mm steel ball except the failed vibrator, and the intensity of the composite waveform of the echo was measured. Further, the selected transducer was relatively scanned along the transducer arrangement direction, and a profile of the echo intensity (the intensity of the combined waveform of echoes) similar to that illustrated in FIG. 6 was calculated. The above operation was repeated by changing the number of failed vibrators.
  • the echo intensity shown in FIG. 7 means the maximum intensity in the intensity profile of the composite waveform of the echo calculated as described above.
  • the effective beam width shown in FIG. 7 is calculated from the profile calculated as described above.
  • the effective beam is lower than the echo intensity.
  • the decrease in width occurs first.
  • the effective beam width is reduced by 6 dB or more.
  • the effective beam width of one selected transducer and the effective beam width of a selected transducer adjacent to the selected transducer do not overlap and do not overlap. The part may become an undetected area, and there is a risk of missing a flaw.
  • the reduction in the effective beam width occurs prior to the reduction in the echo intensity. Therefore, monitoring the reduction in the echo intensity cannot be sufficiently foreseen. Therefore, in order to appropriately diagnose an abnormality of the array-type ultrasonic probe such as a failure of the transducer constituting each selected transducer, it is determined whether or not the effective beam width is equal to or smaller than a predetermined threshold value. This is very important.
  • the abnormality diagnosis method is characterized by including the following first to fourth steps.
  • Second step The selected transducer is scanned relative to the measurement target along the arrangement direction of the transducers, and the effective beam width of the selected transducer with respect to the measurement target is calculated.
  • Third Step The selected vibrator is sequentially switched, and the first step and the second step are alternately repeated.
  • the first step and the second step are, for example, the following (a) to (c) It is possible to execute by any of the methods.
  • the first step is executed by transmitting / receiving ultrasonic waves toward the target
  • the second step is executed by scanning the array type ultrasonic probe along the arrangement direction of the transducers by the scanning mechanism.
  • the first step is executed by transmitting and receiving ultrasonic waves toward the artificial flaws of the tube, and the tube is spirally conveyed in the axial direction, or the tube is rotated in the circumferential direction and the array type ultrasonic probe is rotated.
  • the second step is performed by scanning the contact in the axial direction of the tube.
  • the method (a) described above is not practical when the array-type ultrasonic probe cannot be easily removed from the inspection line. Further, although the methods (b) and (c) described above do not require the array-type ultrasonic probe to be removed from the inspection line, the array-type ultrasonic probe is used in order to calculate the effective beam width. It takes time and effort to scan.
  • an array type ultrasonic probe that is an alternative to an array type ultrasonic probe (diagnostic target ultrasonic probe) that diagnoses an abnormality attached to an inspection line.
  • Prepare an acoustic probe alternative ultrasonic probe
  • calculate the effective beam width of this alternative ultrasonic probe outside the inspection line and use this calculated value to determine the effective beam of the ultrasonic probe to be diagnosed. It is conceivable to calculate (estimate) the width.
  • Prepare another alternative ultrasound probe of the same specification send ultrasonic waves from each transducer included in the alternative ultrasound probe to the measurement target, and receive the measurement target from each transducer Flaw detection sensitivity and / or transmission of each transducer included in the alternative ultrasonic probe so that the echo intensity from the transducer is equivalent to the echo intensity received by each transducer included in the diagnostic target ultrasonic probe
  • It is also possible to estimate the abnormality of the diagnostic target ultrasonic probe by executing the first step to the fourth step with respect to the voltage adjusting step and the adjusted alternative ultrasonic probe.
  • another alternative ultrasonic probe having the same specifications includes at least n transducers, and the center frequency and the width of the transducers in the arrangement direction are substantially the same as those of the ultrasonic probe to be diagnosed. It means that it is an ultrasonic probe.
  • the measurement target is the plate-like body P1, and the dimension of the plate-like body P1 (the diagnostic target ultrasonic probe is provided). If the dimension along the array direction of the transducer) is greater than or equal to the dimension of the ultrasound probe to be diagnosed (dimension along the array direction of the transducer), each transducer included in the ultrasound probe to be diagnosed It is only necessary to transmit ultrasonic waves toward the surface of the plate-like body P1 and receive echoes from the bottom surface of the plate-like body P1 with each transducer.
  • the diagnostic target ultrasonic probe is attached to the inspection line and it is not necessary to relatively scan the diagnostic target ultrasonic probe to calculate the effective beam width, the diagnosis is performed.
  • the effective beam width of the target ultrasonic probe can be calculated (estimated) relatively easily.
  • FIG. 8 is a graph showing an example of the result of comparing the actual value of the effective beam width of the selected transducer with the calculated value of the effective beam width by the above numerical calculation.
  • the actual value of the effective beam width shown in FIG. 8 is measured under the same conditions as described with reference to FIG.
  • the calculated value of the effective beam width is obtained by executing numerical calculations corresponding to the first step and the second step using the software after parameter adjustment. As shown in FIG. 8, the measured value and the calculated value of the effective beam width are in good agreement, and it can be seen that the abnormality of the array-type ultrasonic probe can be estimated by numerical calculation.

Abstract

【課題】アレイ型超音波探触子の探傷感度を適切に調整する方法等を提供する。 【解決手段】本発明に係る探傷感度調整方法は、互いに略平行な表面及び底面を有する板状体P1の表面と振動子11の配列方向とが略平行となるように板状体を超音波探触子に対向配置する、又は、管状体P2の軸方向と振動子の配列方向とが略平行となるように管状体を超音波探触子に対向配置するステップと、各振動子から板状体の表面又は管状体の外面に向けて超音波を送信し、各振動子で板状体の底面又は管状体の内面からのエコーを受信するステップと、各振動子で受信したエコーの強度が略同等となるように、各振動子の探傷感度を調整するステップと、を含む。

Description

超音波探触子の探傷感度調整方法及び異常診断方法
 本発明は、一定の方向に沿って配列された複数の振動子を具備する超音波探触子の探傷感度を適切に調整する方法及び異常を適切に診断する方法に関する。
 一定の方向に沿って配列された複数の振動子を具備し、各振動子が互いに固定されている超音波探触子(以下、適宜、アレイ型超音波探触子という)を用いて探傷を行う場合、アレイ型超音波探触子が具備するn個(n≧2)の振動子のうち、m個(n>m≧1)の振動子を選択し、該選択振動子から被検査材に向けて超音波を送信し、該選択振動子で被検査材からのエコーを受信する。そして、選択振動子を構成する各振動子で受信したエコーを合成し、この合成波形を用いて被検査材を探傷する。この動作は、選択振動子を順次切り替えて繰り返される。このため、各振動子の相対感度を適正に評価し、エコー信号の増幅度である探傷感度を適切に調整することが重要である。具体的には、各振動子で同一の人工きずからのエコーを受信した場合に、各振動子で同等のエコー強度が得られるような探傷感度に調整することが重要である。
 このアレイ型超音波探触子の性能評価方法は、現状では特にJIS規格等で規定されていない。このため、非特許文献1に記載の一振動子水浸垂直探触子の性能評価方法に関するJIS規格に準拠して性能を評価するのが一般的である。具体的には、非特許文献1の7.1項に記載の平板試験片の表面エコーを用いた周波数応答性の評価方法、7.3項に記載の平板試験片の表面エコーを用いた相対感度の評価方法、さらには、8.5.1項に記載のφ4mm鋼球又はφ2.5mm鋼線を用いたビーム形状及び距離振幅特性の評価方法などを用いることになる。
 また、前述のように、アレイ型超音波探触子を用いて探傷を行う場合には、選択振動子を順次切り替える。すなわち、アレイ型超音波探触子を用いた探傷では、いわば各選択振動子毎に探傷を行うことになる。このため、アレイ型超音波探触子の異常診断方法として、各選択振動子毎に所定の人工きずを探傷し、得られた合成波形の強度が許容値以下に低下していなければ、アレイ型超音波探触子に振動子の故障等の異常が生じていないと判断する方法も実施されている。
JIS Z2350「超音波探触子の性能測定方法」
 しかしながら、本発明者らは、上述のJIS規格に準拠した性能評価方法では、アレイ型超音波探触子の性能評価を適切に行うことが困難であるという問題を認識していた。具体的には、平板試験片の表面エコーを用いる方法では、後述のように各振動子の相対感度を適正に評価すること、ひいては探傷感度を適切に調整することは困難である。また、φ4mm鋼球又はφ2.5mm鋼線を用いる方法では、後述のように各振動子の相対感度の評価、探傷感度の調整は可能であるものの、その評価・調整の作業が繁雑過ぎる。このため、特に、アレイ型超音波探触子を検査ラインに取り付けた状態では作業を行うことが実質的に困難である。さらに、本発明者らは、上述の異常診断方法のように合成波形の強度の低下を監視するだけでは、アレイ型超音波探触子の異常を十分に検知できないという問題も認識していた。
 上述した問題は、アレイ型超音波探触子に限らず、一振動子の探触子が複数配列された超音波探触子など、一定の方向に沿って配列された複数の振動子を具備する超音波探触子にも生じ得る問題である。
 本発明は、以上に説明した従来技術の問題点を解決するべくなされたものであり、一定の方向に沿って配列された複数の振動子を具備する超音波探触子の探傷感度を適切に調整する方法及び異常を適切に診断する方法、とりわけ前記超音波探触子を検査ラインに取り付けた状態であっても適用できる方法を提供することを課題とする。
 本発明者らは、一定の方向に沿って配列された複数の振動子を具備する超音波探触子の探傷感度を適切に調整する方法について鋭意検討した結果、各振動子で板状体の底面又は管状体の内面からのエコーを受信した場合の各振動子間でのエコー強度の分布特性が、各振動子で同一の人工きずからのエコーを受信した場合のエコー強度の分布特性に対応することを見出し、本発明を完成した。
 すなわち、前記課題を解決するため、本発明は、一定の方向に沿って配列された複数の振動子を具備する超音波探触子の探傷感度を調整する方法であって、互いに略平行な表面及び底面を有する板状体の表面と前記振動子の配列方向とが略平行となるように前記板状体を前記超音波探触子に対向配置する、又は、管状体の軸方向と前記振動子の配列方向とが略平行となるように前記管状体を前記超音波探触子に対向配置するステップと、前記各振動子から前記板状体の表面又は前記管状体の外面に向けて超音波を送信し、前記各振動で前記板状体の底面又は前記管状体の内面からのエコーを受信するステップと、前記各振動子で受信したエコーの強度が略同等となるように、前記各振動子の探傷感度を調整するステップと、を含むことを特徴とする超音波探触子の探傷感度調整方法を提供する。
 前述のように、各振動子で板状体の底面又は管状体の内面からのエコーを受信した場合の各振動子間でのエコー強度の分布特性は、各振動子で同一の人工きずからのエコーを受信した場合のエコー強度の分布特性に対応する。本発明によれば、各振動子から板状体の表面又は管状体の外面に向けて超音波を送信し、各振動子で受信したエコーの強度が略同等となるように各振動子の探傷感度を調整するため、探傷感度を調整した後の各振動子で同一の人工きずからのエコーを受信した場合のエコー強度も略同等となることが期待できる。すなわち、本発明によれば、超音波探触子が具備する各振動子の探傷感度を適切に調整することが可能である。
 好ましくは、前記板状体及び前記管状体の前記振動子の配列方向に沿った寸法は、前記超音波探触子の前記振動子の配列方向に沿った寸法以上とされる。
 斯かる好ましい構成によれば、超音波探触子を板状体又は管状体に対して振動子の配列方向に相対的に走査しなくても、全ての振動子が板状体の底面又は管状体の内面からのエコーを受信できるため、探傷感度の調整が容易であり、とりわけ検査ラインに取り付けられた超音波探触子の調整に好適である。
 また、本発明者らは、一定の方向に沿って配列された複数の振動子を具備する超音波探触子の異常を適切に診断する方法について鋭意検討した結果、選択振動子を構成する何れかの振動子に送信や受信などの機能が喪失する故障が生じた場合、選択振動子を構成する各振動子で受信した測定対象からのエコーの合成波形の強度の低下よりも、測定対象に対する有効ビーム幅の低下の方が先に生じるということを見出した。ここで、有効ビーム幅とは、選択振動子を振動子の配列方向に沿って相対的に走査した場合に、測定対象から得られるエコーの合成波形の強度のプロファイルにおいて、合成波形の強度が所定の強度(例えば、最大強度を0dBとしたときに-6dB)以上となる範囲の長さを意味する。
 図1に示すように、超音波探触子100を振動子11の配列方向と直交する方向に相対的に走査して探傷を行う場合(図1(a)は管状体を探傷する場合、図1(b)は板状体を探傷する場合を示す)、上記の有効ビーム幅が過度に低下すると、一の選択振動子S1の有効ビーム幅と、これに隣り合う次の選択振動子S2の有効ビーム幅とが重複しなくなり、重複しない部分が未探傷領域となって、きずを見逃すおそれがある。選択振動子S2と、これに隣り合う選択振動子S3についても同様である。
 本発明者らは、この有効ビーム幅の低下が、前述のようにエコーの合成波形の強度の低下よりも先に生じるため、エコーの合成波形の強度の低下を監視していたのでは十分に予見できないことを見出した。従って、各選択振動子を構成する振動子の故障などの異常を適切に診断するには、この有効ビーム幅が所定のしきい値以下であるかどうかを判断することが重要であることに想到した。本発明者らは、以上の知見に基づき本発明を完成した。
 すなわち、前記課題を解決するため、本発明は、一定の方向に沿って配列されたn個(n≧2)の振動子を具備する超音波探触子の異常を診断する方法であって、以下の第1~第4ステップを含むことを特徴とする。
 (1)第1ステップ
 前記n個の振動子のうち、m個(n>m≧1)の振動子を選択し、該選択振動子から測定対象に向けて超音波を送信し、前記選択振動子で前記測定対象からのエコーを受信する。
 (2)第2ステップ
 前記選択振動子を前記測定対象に対して前記振動子の配列方向に沿って相対的に走査し、前記選択振動子の前記測定対象に対する有効ビーム幅を算出する。
 (3)第3ステップ
 前記選択振動子を順次切り替えて前記第1ステップ及び前記第2ステップを交互に繰り返す。
 (4)第4ステップ
 前記第3ステップにより得られた各選択振動子の有効ビーム幅の何れかが所定のしきい値以下である場合に、当該所定のしきい値以下の有効ビーム幅である選択振動子に異常が生じていると判断する。
 斯かる発明によれば、超音波探触子の異常を適切に診断することが可能である。
 本発明によれば、一定の方向に沿って配列された複数の振動子を具備する超音波探触子の探傷感度を適切に調整することと、異常を適切に診断することが可能である。とりわけ超音波探触子を検査ラインに取り付けた状態であっても、探傷感度の調整や異常の診断が可能である。
図1は、アレイ型超音波探触子を振動子の配列方向と直交する方向に相対的に走査して探傷を行う状況を示す。 図2は、アレイ型超音波探触子を用いて斜角探傷を行うときに必要となった探傷感度補正量の一例を示す。 図3は、アレイ型超音波探触子を用いて板状体及び管状体の表面エコーを受信するときに必要となった探傷感度補正量の一例を示す。 図4は、アレイ型超音波探触子を用いてφ4mm鋼球からのエコーを受信するときに必要となった探傷感度補正量の一例を示す。 図5は、アレイ型超音波探触子を用いて板状体及び管状体の底面エコーを受信するときに必要となった探傷感度補正量の一例を示す。 図6は、有効ビーム幅の意味を説明する説明図である。 図7は、選択振動子を構成する振動子の故障の割合と、選択振動子で受信したエコー強度及び選択振動子の有効ビーム幅との関係の一例を示すグラフである。 図8は、選択振動子の有効ビーム幅の実測値と数値計算による計算値とを比較した結果の一例を示すグラフである。
 以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。
 <超音波探触子の探傷感度調整方法>
 本実施形態に係る探傷感度調整方法は、アレイ型超音波探触子の探傷感度(エコー信号の増幅度)を調整する方法である。
 図2は、アレイ型超音波探触子を用いて斜角探傷を行うときに必要となった探傷感度補正量の一例を示す。図2(a)は斜角探傷の概要を説明する説明図を、図2(b)は各振動子に必要となった探傷感度補正量を示す。
 具体的には、図2(a)に示すように、互いに略平行な表面及び底面を有する板状体P1の底面及び表面にそれぞれノッチF1、F2を設けた。この板状体P1の表面に対して、振動子11(♯1~♯8の8個)の配列方向が傾くようにアレイ型超音波探触子100を対向配置した。そして、各振動子♯1~♯8毎に板状体P1の表面に向けて超音波を送信し、各振動子♯1~♯8毎にノッチF1、F2からのエコーを受信した。この際、各振動子♯1~♯8でノッチF1、F2からのエコーを受信できるように、板状体P1を図2の左右方向に走査した。
 図2(b)の縦軸である探傷感度補正量は、各振動子♯1~♯8で受信したエコーの強度を略同等にするために必要となった探傷感度の補正量を意味する。例えば、探傷感度補正量が6dBであれば、探傷感度(エコー信号の増幅度)を補正前の約2倍にする必要があったことを意味する。図2(b)から分かるように、探傷感度を補正する前の各振動子♯1~♯8間でのエコー強度の分布特性は、底面ノッチF1と表面ノッチF2とで同等であった。
 本発明者らは、上記の人工きずを用いた評価方法とその他の評価方法とを対比調査した。まず最初に、前述したJIS規格に準拠して板状体の表面エコーを用いる方法、及び、管状体(外径φ114mm、肉厚7.5mm)の表面(外面)エコーを用いる方法を検討した。
 図3は、アレイ型超音波探触子を用いて板状体及び管状体の表面エコーを受信するときに必要となった探傷感度補正量の一例を示す。図3(a)は板状体の表面エコーを用いる場合の評価試験の概要を説明する説明図を、図3(b)は管状体の表面エコーを用いる場合の評価試験の概要を説明する説明図を、図3(c)は各振動子に必要となった探傷感度補正量を示す。
 具体的には、板状体の表面エコーを用いる場合、図3(a)に示すように、互いに略平行な表面及び底面を有する板状体P1の表面に対して、振動子11(♯1~♯8の8個)の配列方向が略平行となるようにアレイ型超音波探触子100を対向配置した。そして、各振動子♯1~♯8毎に板状体P1の表面に向けて超音波を送信し、各振動子♯1~♯8毎に板状体P1の表面からのエコーを受信した。
 また、管状体の表面エコーを用いる場合、図3(b)に示すように、管状体P2の軸方向に対して、振動子11(♯1~♯8の8個)の配列方向が略平行となるようにアレイ型超音波探触子100を対向配置した。そして、各振動子♯1~♯8毎に管状体P2の外面に向けて超音波を送信し、各振動子♯1~♯8毎に管状体P2の外面からのエコーを受信した。
 図3(c)の縦軸である探傷感度補正量は、図2(b)に示すものと同じ意味であり、各振動子♯1~♯8で受信したエコーの強度を略同等にするために必要となった探傷感度の補正量を意味する。図3(c)から分かるように、探傷感度を補正する前の各振動子♯1~♯8間でのエコー強度の分布特性は、板状体P1と管状体P2とで同等であった。そして、図3(c)と図2(b)とを対比すれば分かるように、図3(c)に示すエコー強度の分布特性は、図2(b)に示すエコー強度の分布特性に対応しない。従って、図3(c)に示す結果に従って各振動子♯1~♯8の探傷感度を調整したとしても、各振動子♯1~♯8で人工きずからのエコーを受信した場合のエコー強度を略同等にはできない、すなわち、探傷感度を適切に調整できない。
 次に、本発明者らは、前述したJIS規格に記載のφ4mm鋼球からのエコーを用いる方法を検討した。
 図4は、アレイ型超音波探触子を用いてφ4mm鋼球からのエコーを受信するときに必要となった探傷感度補正量の一例を示す。図4(a)はφ4mm鋼球からのエコーを用いる場合の評価試験の概要を説明する説明図を、図4(b)は各振動子に必要となった探傷感度補正量を示す。
 具体的には、図4(a)に示すように、φ4mm鋼球Bにアレイ型超音波探触子100を対向配置し、各振動子♯1~♯8からφ4mm鋼球Bに向けて超音波を送信し、各振動子♯1~♯8でφ4mm鋼球Bからのエコーを受信した。この際、超音波を送受信する振動子11の直下にφ4mm鋼球Bが位置するように、その都度、アレイ型超音波探触子100又はφ4mm鋼球Bの何れか一方を図4の左右方向に走査した。
 図4(b)の縦軸である探傷感度補正量は、図2(b)に示すものと同じ意味であり、各振動子♯1~♯8で受信したエコーの強度を略同等にするために必要となった探傷感度の補正量を意味する。図4(b)と図2(b)とを対比すれば分かるように、図4(b)に示すエコー強度の分布特性は、図2(b)に示すエコー強度の分布特性に対応する。従って、図4(b)に示す結果に従って各振動子♯1~♯8の探傷感度を調整すれば、各振動子♯1~♯8で人工きずからのエコーを受信した場合のエコー強度を略同等にできる。しかしながら、前述のように、超音波を送受信する振動子11の直下にφ4mm鋼球Bが位置するように、その都度、アレイ型超音波探触子100又はφ4mm鋼球Bの何れか一方を走査しなければならず、評価作業が繁雑過ぎるため、特にアレイ型超音波探触子を検査ラインに取り付けた状態では作業を行うことが実質的に困難である。
 本発明者らは、さらに鋭意検討を重ね、板状体の底面エコーを用いる方法、及び、管状体(外径φ114mm、肉厚7.5mm)の底面(内面)エコーを用いる方法を検討した。
 図5は、アレイ型超音波探触子を用いて板状体及び管状体の底面エコーを受信するときに必要となった探傷感度補正量の一例を示す。図5(a)は板状体の底面エコーを用いる場合の評価試験の概要を説明する説明図を、図5(b)は管状体の底面エコーを用いる場合の評価試験の概要を説明する説明図を、図5(c)は各振動子に必要となった探傷感度補正量を示す。
 具体的には、板状体の底面エコーを用いる場合、図5(a)に示すように、互いに略平行な表面及び底面を有する板状体P1の表面に対して、振動子11(♯1~♯8の8個)の配列方向が略平行となるようにアレイ型超音波探触子100を対向配置した。そして、各振動子♯1~♯8毎に板状体P1の表面に向けて超音波を送信し、各振動子♯1~♯8毎に板状体P1の底面からのエコーを受信した。
 また、管状体の底面エコーを用いる場合、図5(b)に示すように、管状体P2の軸方向に対して、振動子11(♯1~♯8の8個)の配列方向が略平行となるようにアレイ型超音波探触子100を対向配置した。そして、各振動子♯1~♯8毎に管状体P2の外面に向けて超音波を送信し、各振動子♯1~♯8毎に管状体P2の内面からのエコーを受信した。
 図5(c)の縦軸である探傷感度補正量は、図2(b)に示すものと同じ意味であり、各振動子♯1~♯8で受信したエコーの強度を略同等にするために必要となった探傷感度の補正量を意味する。図5(c)から分かるように、探傷感度を補正する前の各振動子♯1~♯8間でのエコー強度の分布特性は、板状体P1と管状体P2とで同等であった。そして、図5(c)と図2(b)とを対比すれば分かるように、図5(c)に示すエコー強度の分布特性は、図2(b)に示すエコー強度の分布特性に対応する。従って、図5(c)に示す結果に従って各振動子♯1~♯8の探傷感度を調整すれば、各振動子♯1~♯8で人工きずからのエコーを受信した場合のエコー強度を略同等にできる、すなわち、探傷感度を適切に調整できると考えられる。
 上記の経緯を踏まえて、本実施形態に係る探傷感度調整方法は、互いに略平行な表面及び底面を有する板状体P1の表面と振動子11の配列方向とが略平行となるように板状体P1をアレイ型超音波探触子100に対向配置する、又は、管状体P2の軸方向と振動子11の配列方向とが略平行となるように管状体P2をアレイ型超音波探触子100に対向配置するステップと、各振動子11から板状体P1の表面又は管状体P2の外面に向けて超音波を送信し、各振動子11で板状体P1の底面又は管状体P2の内面からのエコーを受信するステップと、各振動子11で受信したエコーの強度が略同等となるように、各振動子11の探傷感度(エコー信号の増幅度)を調整するステップと、を含むことを特徴としている。
 なお、前述したJIS規格に準拠した板状体P1の表面エコーを用いる方法や、管状体P2の表面(外面)エコーを用いる方法(図3参照)では、補正前のエコー強度が斜角探傷を行う場合(図2参照)の補正前のエコー強度と同等の分布特性にならない一方、板状体P1の底面エコーを用いる方法や、管状体P2の底面(内面)エコーを用いる方法(図5参照)では、補正前のエコー強度が斜角探傷を行う場合(図2参照)の補正前のエコー強度と同等の分布特性になる理由として、以下のようなことが考えられる。
 アレイ型超音波探触子100のように、複数の振動子11が互いに固定されている(各振動子11が相対的に変位しない)探触子では、各振動子11の傾きが若干ズレていることが考えられる。特に振動子11の数が多ければ多いほど、各振動子11の傾きを一定に揃えることは不可能に近い。従って、各振動子11から送信される超音波の方向にも若干のズレが生じていると考えられる。斜角探傷を行う場合には、超音波が被検査材への入射点で屈折し被検査材内部に伝搬する。屈折角は入射角に依存して変動するため、各振動子11から送信される超音波の方向にズレが生じていると、入射点で屈折して被検査材内部に伝搬する超音波の方向のズレはさらに増大すると考えられる。このため、補正前のエコー強度の分布特性はバラツキが大きなものになると考えられる。
 同様に、板状体P1や管状体P2の底面エコーを用いる方法でも、各振動子11から送信された超音波が板状体P1や管状体P2の内部に伝搬する際に、超音波の方向のズレが増大し、補正前のエコー強度の分布特性はバラツキが大きなものになると考えられる。
 これに対し、板状体P1や管状体P2の表面エコーを用いる方法では、各振動子11から送信された超音波が板状体P1や管状体P2の内部に伝搬する前のエコー(屈折を伴わないエコー)を受信するため、底面エコーを用いる場合に比べて補正前のエコー強度の分布特性はバラツキが小さなものになると考えられる。
 <超音波探触子の異常診断方法>
 本実施形態に係る異常診断方法は、n個(n≧2)の振動子を具備するアレイ型超音波探触子の異常を診断する方法である。
 本実施形態のアレイ型超音波探触子を用いた探傷時には、n個の振動子のうち、m個(n>m≧1)の振動子を選択し、該選択振動子から測定対象に向けて超音波を送信し、前記選択振動子で測定対象からのエコーを受信する。そして、選択振動子を構成する各振動子で受信したエコーを合成し、この合成波形を用いて測定対象を探傷する。この動作は、選択振動子を順次切り替えて繰り返される。
 本実施形態に係る異常診断方法は、上記の選択振動子の前記測定対象に対する有効ビーム幅が所定のしきい値以下であるかどうかで異常を診断する方法である。
 図6は、有効ビーム幅の意味を説明する説明図である。
 図6の実線で示すグラフは、選択振動子を振動子の配列方向に沿って相対的に走査した場合(例えば、アレイ型超音波探触子を測定対象に対して機械的に走査(移動)することにより、選択振動子も走査されることになる)に得られる測定対象からのエコー強度(エコーの合成波形の強度)のプロファイルの一例を示す。有効ビーム幅とは、このプロファイルにおいて、エコー強度が所定の強度(例えば、最大強度を0dBとしたときに-6dB)以上となる範囲の長さを意味する。
 図7は、選択振動子を構成する振動子の故障の割合と、選択振動子で受信したエコー強度(エコーの合成波形の強度)及び選択振動子の有効ビーム幅との関係の一例を示すグラフである。
 具体的には、選択振動子を構成する振動子数を16個とし、振動子への送信電圧(振動子から超音波を送信させるためのパルス信号の電圧)の供給を停止するか、或いは、振動子で受信したエコー信号の波形合成回路(各振動子で受信したエコー信号を合成する回路)への入力を停止することにより、振動子の故障を模擬した。
 測定対象としてはφ4mm鋼球を用い、前述した図4(a)に示す形態と同様に、選択振動子をφ4mm鋼球に対向配置した。そして、選択振動子を構成する各振動子のうち、故障振動子を除く全ての振動子からφ4mm鋼球に向けて超音波を略同時に送受信し、エコーの合成波形の強度を測定した。さらに、選択振動子を振動子の配列方向に沿って相対的に走査し、図6に例示したものと同様のエコー強度(エコーの合成波形の強度)のプロファイルを算出した。
 以上の動作を故障振動子数を変更して繰り返した。
 図7に示すエコー強度は、上記のようにして算出したエコーの合成波形の強度のプロファイルにおける最大の強度を意味する。また、図7に示す有効ビーム幅は、上記のようにして算出したプロファイルから算出したものである。
 図7に示すように、故障振動子数が増加する(振動子故障割合が増加する)につれて、エコー強度及び有効ビーム幅の双方が低下する傾向にあるものの、エコー強度の低下よりも、有効ビーム幅の低下の方が先に生じている。図7に示す例では、振動子故障割合が25%のとき、エコー強度は約2dB程度しか低下しないが、有効ビーム幅は6dB以上も低下している。
 図1を参照して前述したように、有効ビーム幅が過度に低下すると、一の選択振動子の有効ビーム幅と、これに隣り合う選択振動子の有効ビーム幅とが重複しなくなり、重複しない部分が未探傷領域となって、きずを見逃すおそれがある。この有効ビーム幅の低下は、前述のようにエコー強度の低下よりも先に生じるため、エコー強度の低下を監視していたのでは十分に予見できない。従って、各選択振動子を構成する振動子の故障などのアレイ型超音波探触子の異常を適切に診断するには、この有効ビーム幅が所定のしきい値以下であるかどうかを判断することが重要である。
 上記の経緯を踏まえて、本実施形態に係る異常診断方法は、以下の第1~第4ステップを含むことを特徴としている。
 (1)第1ステップ
 n個の振動子のうち、m個(n>m≧1)の振動子を選択し、該選択振動子から測定対象に向けて超音波を送信し、前記選択振動子で測定対象からのエコーを受信する。
 (2)第2ステップ
 前記選択振動子を測定対象に対して振動子の配列方向に沿って相対的に走査し、前記選択振動子の測定対象に対する有効ビーム幅を算出する。
 (3)第3ステップ
 前記選択振動子を順次切り替えて第1ステップ及び第2ステップを交互に繰り返す。
 (4)第4ステップ
 前記第3ステップにより得られた各選択振動子の有効ビーム幅の何れかが所定のしきい値以下である場合に、当該所定のしきい値以下の有効ビーム幅である選択振動子に異常が生じていると判断する。 
 アレイ型超音波探触子が板状体や管状体の超音波探傷を実施する検査ラインに取り付けられている場合、第1ステップ及び第2ステップは、例えば、以下の(a)~(c)のいずれかの方法によって実行することが可能である。
 (a)超音波探傷を実施する検査ラインからアレイ型超音波探触子を取り外して、走査機構を備えた水槽内に設置し、該水槽内に設置した測定対象(例えば、φ4mm鋼球)に向けて超音波を送受信することで第1ステップを実行し、走査機構によりアレイ型超音波探触子を振動子の配列方向に沿って走査することで第2ステップを実行する。
 (b)超音波探傷を実施する検査ラインにアレイ型超音波探触子を取り付けた状態で、人工きずを施した被検査材(例えば、板状体)を検査ラインに設置し、被検査材の人工きずに向けて超音波を送受信することで第1ステップを実行し、アレイ型超音波探触子を被検査材に対して振動子の配列方向に沿って相対的に走査することで第2ステップを実行する。
 (c)超音波探傷を実施する検査ラインにアレイ型超音波探触子を取り付けた状態で、人工きずを施した管をその軸方向が振動子の配列方向と略平行となるように検査ラインに設置し、管の人工きずに向けて超音波を送受信することで第1ステップを実行し、管を軸方向にスパイラル搬送するか、又は、管を周方向に回転させると共にアレイ型超音波探触子を管の軸方向に走査することで第2ステップを実行する。
 ただし、上述した(a)の方法は、アレイ型超音波探触子を検査ラインから容易に取り外すことができない場合には実用的ではない。また、上述した(b)及び(c)の方法は、アレイ型超音波探触子を検査ラインから取り外す必要がないものの、有効ビーム幅を算出するためにアレイ型超音波探触子を相対的に走査する必要がある点で、手間が掛かる。
 そこで、有効ビーム幅を比較的容易に算出する方法として、例えば、検査ラインに取り付けられた異常を診断するアレイ型超音波探触子(診断対象超音波探触子)の代替となるアレイ型超音波探触子(代替超音波探触子)を用意し、この代替超音波探触子の有効ビーム幅を検査ライン外で算出して、この算出値から診断対象超音波探触子の有効ビーム幅を算出(推定)することが考えられる。
 すなわち、診断対象超音波探触子が具備する各振動子から測定対象に向けて超音波を送信し、各振動子で測定対象からのエコーを受信するステップと、診断対象超音波探触子と同仕様である別の代替超音波探触子を用意して、該代替超音波探触子が具備する各振動子から測定対象に向けて超音波を送信し、各振動子で受信した測定対象からのエコー強度が、診断対象超音波探触子が具備する各振動子で受信したエコー強度と同等となるように、代替超音波探触子が具備する各振動子の探傷感度及び/又は送信電圧を調整するステップと、調整後の代替超音波探触子について、第1ステップ~前記第4ステップを実行することにより、診断対象超音波探触子の異常を推定することも可能である。
 ここで、同仕様である別の代替超音波探触子とは、少なくともn個の振動子を具備し、中心周波数及び配列方向の振動子の幅が診断対象超音波探触子と略同一の超音波探触子であることを意味する。
 上記の方法によれば、例えば、図5(a)を参照して前述したように、測定対象を板状体P1とし、その板状体P1の寸法(診断対象超音波探触子が具備する振動子の配列方向に沿った寸法)を診断対象超音波探触子の寸法(振動子の配列方向に沿った寸法)以上とすれば、診断対象超音波探触子が具備する各振動子から板状体P1の表面に向けて超音波を送信し、各振動子で板状体P1の底面からエコーを受信するだけでよい。換言すれば、診断対象超音波探触子を検査ラインに取り付けた状態で、なお且つ、有効ビーム幅を算出するために診断対象超音波探触子を相対的に走査する必要もないので、診断対象超音波探触子の有効ビーム幅を比較的容易に算出(推定)することが可能である。
 また、有効ビーム幅を比較的容易に算出する方法として、超音波の伝搬解析を行うソフトウェア(有限要素法を用いて波動方程式を解くソフトウェア)を用いた数値計算を利用することも考えられる。このようなソフトウェアは市販されており、例えば、伊藤忠テクノソリューションズ社製の「ComWAVE」(登録商標)という名称のソフトウェアを用いることが可能である。
 すなわち、アレイ型超音波探触子が具備する各振動子から測定対象に向けて超音波を送信し、各振動子で測定対象からのエコーを受信するステップと、超音波の伝搬解析を行うソフトウェアを利用して、アレイ型超音波探触子が具備する各振動子から測定対象に向けて超音波を送信したときに、各振動子で受信される測定対象からのエコーの強度を数値計算し、各振動子で受信されるエコーの強度の計算値と実測値とが同等となるように、前記ソフトウェアにおいて各振動子の探傷感度及び/又は送信電圧に対応するパラメータを調整するステップと、パラメータ調整後のソフトウェアを利用して、第1ステップ~第4ステップに相当する数値計算を実行することにより、アレイ型超音波探触子の異常を推定することも可能である。
 図8は、選択振動子の有効ビーム幅の実測値と上記数値計算による有効ビーム幅の計算値とを比較した結果の一例を示すグラフである。
 図8に示す有効ビーム幅の実測値は、図7を参照して説明したのと同じ条件で測定したものである。有効ビーム幅の計算値は、パラメータ調整後の上記ソフトウェアを利用して、第1ステップ及び第2ステップに相当する数値計算を実行することにより得られたものである。 
 図8に示すように、有効ビーム幅の実測値と計算値は良好に一致しており、数値計算によってもアレイ型超音波探触子の異常を推定可能であることが分かる。
11・・・振動子
100・・・超音波探触子(アレイ型超音波探触子)
P1・・・板状体
P2・・・管状体

Claims (2)

  1.  一定の方向に沿って配列された複数の振動子を具備する超音波探触子の探傷感度を調整する方法であって、
     互いに略平行な表面及び底面を有する板状体の表面と前記振動子の配列方向とが略平行となるように前記板状体を前記超音波探触子に対向配置する、又は、管状体の軸方向と前記振動子の配列方向とが略平行となるように前記管状体を前記超音波探触子に対向配置するステップと、
     前記各振動子から前記板状体の表面又は前記管状体の外面に向けて超音波を送信し、前記各振動子で前記板状体の底面又は前記管状体の内面からのエコーを受信するステップと、
     前記各振動子で受信したエコーの強度が略同等となるように、前記各振動子の探傷感度を調整するステップと、
    を含むことを特徴とする超音波探触子の探傷感度調整方法。
  2.  一定の方向に沿って配列されたn個(n≧2)の振動子を具備する超音波探触子の異常を診断する方法であって、
     前記n個の振動子のうち、m個(n>m≧1)の振動子を選択し、該選択振動子から測定対象に向けて超音波を送信し、前記選択振動子で前記測定対象からのエコーを受信する第1ステップと、
     前記選択振動子を前記測定対象に対して前記振動子の配列方向に沿って相対的に走査し、前記選択振動子の前記測定対象に対する有効ビーム幅を算出する第2ステップと、
     前記選択振動子を順次切り替えて前記第1ステップ及び前記第2ステップを交互に繰り返す第3ステップと、          
     前記第3ステップにより得られた各選択振動子の有効ビーム幅の何れかが所定のしきい値以下である場合に、当該所定のしきい値以下の有効ビーム幅である選択振動子に異常が生じていると判断する第4ステップと、
    を含むことを特徴とする超音波探触子の異常診断方法。
PCT/JP2013/063737 2012-05-23 2013-05-17 超音波探触子の探傷感度調整方法及び異常診断方法 WO2013176039A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/401,896 US10416123B2 (en) 2012-05-23 2013-05-17 Flaw detection sensitivity adjustment method and abnormality diagnosis method for ultrasonic probe
BR112014028950-6A BR112014028950B1 (pt) 2012-05-23 2013-05-17 método de ajuste de sensibilidade de detecção de defeitos e método de diagnóstico de anormalidades para sonda ultrassônica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012117876A JP5669023B2 (ja) 2012-05-23 2012-05-23 超音波探触子の探傷感度調整方法
JP2012-117876 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013176039A1 true WO2013176039A1 (ja) 2013-11-28

Family

ID=49623733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063737 WO2013176039A1 (ja) 2012-05-23 2013-05-17 超音波探触子の探傷感度調整方法及び異常診断方法

Country Status (5)

Country Link
US (1) US10416123B2 (ja)
JP (1) JP5669023B2 (ja)
AR (2) AR091126A1 (ja)
BR (1) BR112014028950B1 (ja)
WO (1) WO2013176039A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677995A (zh) * 2015-03-11 2015-06-03 郭玉 超声仪的校准装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098224A1 (ja) * 2014-12-18 2016-06-23 株式会社Ihi 検査プローブ
JP7035116B2 (ja) * 2020-06-08 2022-03-14 株式会社東芝 処理システム、処理方法、プログラム、及び記憶媒体
CN112611801B (zh) * 2020-11-03 2023-02-21 邯郸钢铁集团有限责任公司 一种在线检测钢轨组织方法
CN116907586B (zh) * 2023-09-06 2023-11-21 深圳市三维医疗设备有限公司 一种基于云计算的超声设备运行状态管理系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391793A (en) * 1977-01-24 1978-08-11 Nippon Steel Corp Abnormality judgement method of surface wave method ultrasonic probe
JPS60260850A (ja) * 1984-06-08 1985-12-24 Kawasaki Steel Corp 厚板用自動超音波探傷装置の分割形垂直探触子検定方法
JPS6170459A (ja) * 1984-09-13 1986-04-11 Sumitomo Metal Ind Ltd 超音波探傷装置の探触子の位置設定方法及び装置
JPH05188138A (ja) * 1991-11-13 1993-07-30 Hitachi Constr Mach Co Ltd 計測装置の検査方法、超音波検査装置の検査方法、電子走査式超音波検査装置、力覚センサシステムの検査方法および力覚センサシステム
JPH06125901A (ja) * 1992-10-21 1994-05-10 Yokogawa Medical Syst Ltd 超音波プローブ,超音波カプラントおよび超音波診断装置
JPH10227769A (ja) * 1997-02-12 1998-08-25 Hitachi Constr Mach Co Ltd 超音波検査装置の管理システム
JPH10227772A (ja) * 1997-02-12 1998-08-25 Hitachi Constr Mach Co Ltd 超音波検査装置の診断方法および装置
JPH11160293A (ja) * 1997-11-27 1999-06-18 Hitachi Constr Mach Co Ltd 超音波プローブの劣化診断方法、劣化補正方法および超音波検査方法
JP2006047328A (ja) * 2005-10-24 2006-02-16 Sumitomo Metal Ind Ltd 超音波探傷方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462082A (en) * 1981-09-17 1984-07-24 Rockwell International Corporation Automatic calibration system for ultrasonic inspection
JPS62194456A (ja) * 1986-02-20 1987-08-26 Nippon Steel Corp アレイ型探触子のチエツク方法
CA2712540C (en) * 2005-08-26 2015-12-08 Masaki Yamano Ultrasonic probe, ultrasonic testing equipment, ultrasonic testing method, and manufacturing method of seamless pipe or tube
US7389692B2 (en) * 2005-11-04 2008-06-24 Ge Inspection Technologies, Lp Digital log amplifier for ultrasonic testing
CA2593894C (en) * 2006-12-01 2016-11-08 Roentgen Technische Dienst B.V. A method for configuring an array of transducers in an ultrasonic test apparatus
JP5448030B2 (ja) * 2008-11-19 2014-03-19 新日鐵住金株式会社 超音波探傷方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391793A (en) * 1977-01-24 1978-08-11 Nippon Steel Corp Abnormality judgement method of surface wave method ultrasonic probe
JPS60260850A (ja) * 1984-06-08 1985-12-24 Kawasaki Steel Corp 厚板用自動超音波探傷装置の分割形垂直探触子検定方法
JPS6170459A (ja) * 1984-09-13 1986-04-11 Sumitomo Metal Ind Ltd 超音波探傷装置の探触子の位置設定方法及び装置
JPH05188138A (ja) * 1991-11-13 1993-07-30 Hitachi Constr Mach Co Ltd 計測装置の検査方法、超音波検査装置の検査方法、電子走査式超音波検査装置、力覚センサシステムの検査方法および力覚センサシステム
JPH06125901A (ja) * 1992-10-21 1994-05-10 Yokogawa Medical Syst Ltd 超音波プローブ,超音波カプラントおよび超音波診断装置
JPH10227769A (ja) * 1997-02-12 1998-08-25 Hitachi Constr Mach Co Ltd 超音波検査装置の管理システム
JPH10227772A (ja) * 1997-02-12 1998-08-25 Hitachi Constr Mach Co Ltd 超音波検査装置の診断方法および装置
JPH11160293A (ja) * 1997-11-27 1999-06-18 Hitachi Constr Mach Co Ltd 超音波プローブの劣化診断方法、劣化補正方法および超音波検査方法
JP2006047328A (ja) * 2005-10-24 2006-02-16 Sumitomo Metal Ind Ltd 超音波探傷方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677995A (zh) * 2015-03-11 2015-06-03 郭玉 超声仪的校准装置

Also Published As

Publication number Publication date
JP2013245956A (ja) 2013-12-09
BR112014028950A2 (pt) 2017-06-27
US20150135799A1 (en) 2015-05-21
AR091126A1 (es) 2015-01-14
US10416123B2 (en) 2019-09-17
JP5669023B2 (ja) 2015-02-12
BR112014028950B1 (pt) 2020-10-27
AR114028A2 (es) 2020-07-15

Similar Documents

Publication Publication Date Title
US9127998B1 (en) Active ultrasonic method of quantifying bolt tightening and loosening
WO2013176039A1 (ja) 超音波探触子の探傷感度調整方法及び異常診断方法
EP0232613A2 (en) Detection of hydrogen damage in boiler tubes
KR101641014B1 (ko) 결함 검출 장치, 결함 검출 방법 및 기억 매체
JP5448030B2 (ja) 超音波探傷方法及び装置
JP4589280B2 (ja) ガイド波を用いた配管検査方法及びその配管検査装置
US8286488B2 (en) Apparatus and system for measuring material thickness
JP6014525B2 (ja) 超音波探傷の探触子および超音波探傷方法
KR20190016086A (ko) 초음파 탐상 장치, 초음파 탐상 방법, 용접 강관의 제조 방법 및, 용접 강관의 품질 관리 방법
JP5663319B2 (ja) ガイド波検査方法及び装置
JP5700310B2 (ja) 超音波探触子の異常診断方法
JP4602421B2 (ja) 超音波探傷装置
JP2009002832A (ja) 超音波探傷検査装置及び超音波探傷検査方法
JP4241529B2 (ja) 超音波検査方法及び超音波検査装置
JP5893538B2 (ja) ガイド波を用いた非破壊検査方法及び装置
KR101113095B1 (ko) 비파괴 검사용 초음파 측정장치
JP6383645B2 (ja) 超音波探傷方法
JP6274957B2 (ja) 斜角超音波探触子のカップリングモニタ方法
EP4107521A1 (en) Ultrasonic probe couplant monitoring
JP5847010B2 (ja) 非破壊検査装置および非破壊検査方法
JP2014211398A (ja) 管状構造物の欠陥検査方法及び装置
CN113804134B (zh) 基于高频散超声导波的锚固件径向最大腐蚀深度检测方法及系统
JPH09145697A (ja) 複合型探触子装置
Tzaferis et al. The Effect of Complex Corrosion Profiles on Remaining Wall Thickness Quantification Using Shear Horizontal Guided Waves
JP2012093307A (ja) スポット溶接部の検査方法及び検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14401896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014028950

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13793765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014028950

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141119