WO2016098224A1 - 検査プローブ - Google Patents

検査プローブ Download PDF

Info

Publication number
WO2016098224A1
WO2016098224A1 PCT/JP2014/083553 JP2014083553W WO2016098224A1 WO 2016098224 A1 WO2016098224 A1 WO 2016098224A1 JP 2014083553 W JP2014083553 W JP 2014083553W WO 2016098224 A1 WO2016098224 A1 WO 2016098224A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
probe
ultrasonic
fixed
illumination
Prior art date
Application number
PCT/JP2014/083553
Other languages
English (en)
French (fr)
Inventor
聡明 濱野
英介 椎名
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to KR1020197007803A priority Critical patent/KR20190031351A/ko
Priority to PCT/JP2014/083553 priority patent/WO2016098224A1/ja
Priority to KR1020177012625A priority patent/KR102085411B1/ko
Priority to JP2016564528A priority patent/JP6296173B2/ja
Publication of WO2016098224A1 publication Critical patent/WO2016098224A1/ja
Priority to US15/491,318 priority patent/US10365151B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/008Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means by using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2468Probes with delay lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Definitions

  • the present invention relates to an inspection probe provided with an ultrasonic probe.
  • Patent Document 1 discloses an ultrasonic probe that can accurately acquire position data on a subject.
  • the ultrasonic probe includes a transducer that transmits and receives ultrasonic waves to and from the subject, and an optical sensor that reads a pattern of the facing surface of the subject at a constant cycle, and the optical sensor at an arbitrary cycle.
  • An optical position detector for detecting the current position of the subject on the subject based on the amount of movement from the same pattern read in the previous cycle of the read pattern, the vibrator, and the optical position detection
  • the pattern of the opposite surface of the subject is accurately read by the optical sensor, and the position of the ultrasonic probe is detected by the optical position detector based on the accurately read pattern.
  • the optical position detector detects the position of the ultrasonic probe.
  • the pattern continue reading the pattern without noticing the presence of air bubbles between the pattern on the opposite surface of the subject and the optical sensor, or read the pattern from the opposite surface of the subject. It may be hindered by reflected light, which may hinder accurate pattern reading.
  • the present invention has been made in view of the above-described circumstances, and prevents the reading of the pattern by the optical sensor from being hindered by the light reflected on the opposing surface of the subject, and the pattern on the opposing surface of the subject and the optical sensor. It is an object of the present invention to make it possible to easily confirm whether or not bubbles are mixed between the two and to accurately read the pattern of the facing surface of the subject.
  • an ultrasonic probe that is movable on a subject, irradiates the subject with ultrasonic waves, and detects reflected waves, and a detection result by the ultrasonic probe.
  • An inspection probe of an inspection system having an arithmetic processing unit that executes arithmetic processing on the basis of the above and obtains a flaw detection result of the subject, wherein the inspection probe is arranged on the subject and is placed on the subject
  • a casing that is movable on a sheet material on which a two-dimensional pattern indicating a position is drawn, has transparency and sound wave transmission, the ultrasonic probe fixed to the casing, and the casing
  • An ultrasonic wave which is fixed to the body and has a predetermined angle of view for reading the two-dimensional pattern; and an illumination fixed to the housing; and which is incident on the opposing surface of the subject from the ultrasonic probe So that the point of incidence falls within the angle of view of the reader.
  • the ultrasonic probe is fixed to the body.
  • an incident angle of illumination light incident on the subject from the illumination is an ultrasonic wave incident on the subject from the ultrasonic probe.
  • the illumination is fixed to the casing so as to be larger than the incident angle.
  • the illumination light emitted from the illumination and reflected on the opposite surface of the subject without entering the subject, and the reflected light of the illumination light incident on the subject are
  • the illumination is fixed to the casing so as not to enter the reader.
  • the illumination is fixed below the reader.
  • the casing is a single solid acrylic resin.
  • ADVANTAGE OF THE INVENTION it can prevent that the reading of the pattern by an optical sensor is disturbed by the reflected light from the opposing surface of a subject.
  • An inspection system including the ultrasonic probe 2 according to the first embodiment of the present invention is used for, for example, inspection of a pipe P, which is an example of a subject, and detects a crack or the like generated in a weld line of the pipe P.
  • this inspection system includes a sheet material 1, an ultrasonic probe 2, a reader 3, an ultrasonic flaw detector 4 and an arithmetic processing device 5.
  • the sheet material 1 is affixed to the surface of the piping P as shown in FIG.
  • QR code registered trademark
  • 1 a two-dimensional pattern
  • data indicating the position (coordinates) on the pipe P is encrypted.
  • the QR code 1a is arranged at intervals of 10 mm in the axial direction and the circumferential direction of the pipe P.
  • the sheet material 1 is not directly applied to the surface of the pipe P, but a glycerin paste (contact medium) for propagating ultrasonic waves is applied and attached to the surface of the pipe P.
  • the sheet material 1 can be adsorbed to the pipe P due to the adhesiveness of the glycerin paste, and further on the surface of the pipe P. Even when there is unevenness, the sheet material 1 can be stuck flat.
  • the ultrasonic probe 2 is connected to the ultrasonic flaw detector 4 via a coaxial cable, and is movable on the pipe P.
  • the ultrasonic probe 2 generates an ultrasonic wave from the tip, detects a reflected wave of the ultrasonic wave, and outputs the detection result to the ultrasonic flaw detector 4 as a detection signal.
  • the ultrasonic probe 2 scans the surface of the pipe P manually by an inspector and detects an ultrasonic reflected wave indicating a crack or the like of the pipe P.
  • the ultrasonic probe 2 may be a single transducer or an array of transducers arranged in an array.
  • the reader 3 is an optical reader that is attached in the vicinity of the ultrasonic probe 2 and has a predetermined angle of view ⁇ for reading the QR code 1a on the surface of the sheet material 1 attached on the pipe P. To the communication I / F unit 13, and outputs an image signal including the read image of the QR code 1 a to the communication I / F unit 13.
  • the reader 3 includes a light emitting unit having a light emitting element such as an LED (Light Emitting Diode) and an imaging unit such as a CCD (Charge Coupled Device) camera, and the moving direction (scanning direction) of the ultrasonic probe 2. It is attached to the front side or rear side.
  • the reader 3 is integrated with the ultrasonic probe 2 by being fixed to a common housing 10 described later.
  • the ultrasonic flaw detector 4 is connected to the ultrasonic probe 2 and is connected to the communication I / F unit 13 of the arithmetic processing unit 5 to supply power to the ultrasonic probe 2 and the reader 3.
  • a detection signal input from the acoustic probe 2 is A / D converted and output to the communication I / F unit 13 of the arithmetic processing unit 5. Note that the direction of the arrow in FIG. 1 indicates the direction in which the signal travels, and is not related to the direction of power supply described above.
  • the ultrasonic probe 2 may be supplied with electric power from the ultrasonic flaw detector 4, and the reader 3 may be supplied with electric power from the communication I / F unit 13.
  • the connection between the ultrasound probe 2 and the reader 3 is not limited to a wired connection, and may be a wireless connection. A plurality of ultrasonic probes 2 may be provided.
  • the arithmetic processing unit 5 is a personal computer such as a desktop type or a notebook type connected to the ultrasonic flaw detector 4, and as shown in FIG. 1, a display unit 11, an operation unit 12, a communication I / F unit 13 and an arithmetic control unit 14.
  • the display unit 11 is a display device such as a CRT (Cathode Ray Tube) display or a liquid crystal display, and displays various screens under the control of the arithmetic control unit 14.
  • the operation unit 12 includes a pointing device such as a mouse and a keyboard, and outputs an operation instruction received from the user to the arithmetic control unit 14.
  • the communication I / F unit 13 transmits / receives various signals to / from the ultrasonic flaw detector 4 through the communication cable under the control of the arithmetic control unit 14.
  • the communication I / F unit 13 is further connected to the reader 3 via a signal cable, and receives the image signal of the QR code 1a read by the reader 3.
  • the communication I / F unit 13 A / D converts the received image signal.
  • the arithmetic control unit 14 is an interface circuit that transmits / receives various signals to / from each of the CPU (Central Processing Unit), ROM (Read Only Memory), HDD (Hard Disk), RAM (Random Access Memory) and the electrically interconnected units. Etc.
  • the arithmetic control unit 14 performs various arithmetic processes based on various arithmetic control programs stored in the ROM and controls the overall operation of the arithmetic processing unit 5 by communicating with the respective units.
  • the arithmetic control unit 14 stores the inspection program 14a in the ROM or HDD, and operates based on the inspection program 14a, thereby analyzing the QR code 1a read by the reader 3 and analyzing the position data (absolute coordinates) on the pipe P. ) And the acquired position data on the pipe P and the flaw detection result obtained from the detection result by the ultrasonic probe 2 are associated with each other.
  • an instrument composed of the ultrasound probe 2, the reader 3, the illumination 6, and the housing 10 is referred to as an inspection probe 100.
  • FIG. 3 is a side view of the inspection probe 100 according to the first embodiment of the present invention.
  • FIG. 4 is a plan view of the inspection probe 100 according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of the housing 10 according to the first embodiment of the present invention.
  • the ultrasonic probe 2 of the inspection probe 100 shown in FIG. 3 is fixed to the housing 10.
  • the housing 10 is usually formed integrally as a single member using a delay material having sound wave permeability such as acrylic.
  • the casing 10 of the present embodiment is a member that is formed of a single solid acrylic resin and has an appearance like a prism.
  • the delay material refers to a material that propagates ultrasonic waves to an object at an arbitrary angle by refracting ultrasonic waves transmitted from the ultrasonic probe 2 like a lens.
  • the method of fixing the ultrasonic probe 2 to the housing 10 in this embodiment is screwing, the ultrasonic probe 2 may be fixed to the housing 10 using an adhesive. Further, the ultrasonic probe 2 and the housing 10 may be an integral housing.
  • the material of the housing 10 is not limited to acrylic, and any material having transparency and sound wave permeability can be used. Further, the shape of the housing 10 may be changed depending on the refraction angle of the ultrasonic wave used for the inspection.
  • the housing 10 functions as a delay material for the ultrasonic probe 2 and as a prism for the reader 3. That is, the ultrasonic wave and the light are partially overlapped and transmitted through the casing 10 that is a single acrylic resin as described later, so that the casing 10 and the inspection probe 100 can be downsized.
  • casing 10 of the leader 3 and the illumination 6 in this embodiment is also screwing, you may fix using an adhesive agent.
  • the reader 3 is fixed to the housing 10 in a vertically downward direction and faces the facing surface SP of the subject.
  • the ultrasonic probe 2 is arranged so that the incident point L2 where the ultrasonic wave transmitted from the ultrasonic probe 2 enters the facing surface SP of the subject falls within the angle of view ⁇ of the reader 3 (inside the housing 10). It is fixed to the housing 10 so that the ultrasonic waves and the light are partially transmitted. That is, the ultrasound probe 2 is fixed to the housing 10 at an acute angle ⁇ with respect to the normal of the opposing surface SP of the subject.
  • the ultrasonic wave transmitted from the ultrasonic probe 2 is incident on the facing surface SP of the subject at an incident angle ⁇ shown in FIG.
  • the illumination 6 is fixed below the reader 3. Therefore, the illumination light emitted from the illumination 6 is incident on the facing surface SP of the subject at an incident angle ⁇ shown in FIG. From FIG. 3, the incident angle ⁇ of the illumination light is larger than the incident angle ⁇ of the ultrasonic wave.
  • the incident angle ⁇ is preferably in the range of 5 ° to 35 °, for example, and more preferably in the range of 10 ° to 25 °.
  • the incident angle ⁇ is preferably in the range of, for example, less than 90 ° to 60 °, and more preferably in the range of 85 ° to 70 °.
  • the arrangement position and the number of the illuminations 6 may be appropriately changed according to the shape of the housing 10.
  • FIG. 4 A plan view of the inspection probe 100 as viewed from above is shown in FIG.
  • the ultrasonic probe 2 is fixed rearward with respect to the scanning direction of the inspection probe 100.
  • the reader 3 may be fixed to the rear of the inspection probe 100 in the scanning direction, and the ultrasonic probe 2 may be fixed to the front.
  • the left direction in FIG. 4 is defined as the front of the scanning direction of the inspection probe, but this is an example, and the probe may be scanned in any direction in FIG. .
  • the inspection probe 100 of the present embodiment as described above, the following technical effects can be obtained. Since acrylic resin having transparency and sound wave transmission is used for the casing 10, ultrasonic waves input to and output from the ultrasonic probe 2 fixed to the casing 10 and light input to the reader 3 (video) ) Can be passed through the housing 10 together. Therefore, size reduction of the housing
  • casing 10 is realizable.
  • the inspection probe 100 including the ultrasonic probe 2 can be miniaturized. Therefore, the operability of the inspection probe 100 is improved, and the range that cannot be scanned by an obstacle is reduced. Further, the distance between the reader 3 and the ultrasound probe 2 decreases due to the downsizing of the housing 10.
  • the distance between the view angle center position L1 of the reader 3 and the ultrasonic incident point L2 is reduced, and the amount of position correction is reduced.
  • the position correction the position of the absolute coordinate acquired from the QR code 1a read by the reader 3 and the position where the detection result of the object detected by the ultrasound probe 2 is originally matched. Therefore, when these positions are different, it means that correction is performed so that these positions coincide with each other.
  • the incident point L2 where the ultrasonic wave transmitted from the ultrasonic probe 2 enters the facing surface SP of the subject is within the angle of view ⁇ of the reader 3, the ultrasonic wave is transmitted. The position incident on the subject can be directly confirmed by the captured image of the reader 3.
  • FIGS. 8A and 8B are diagrams each showing an example of reading the facing surface SP of the subject by the inspection probe according to the first embodiment of the present invention.
  • FIG. 8A shows a state where bubbles are mixed in the contact medium applied under the sheet material 1. In such a state, since the ultrasonic wave does not propagate in the metal that is the subject, an accurate detection result cannot be obtained.
  • FIG. 8A shows a state where bubbles are mixed in the contact medium applied under the sheet material 1. In such a state, since the ultrasonic wave does not propagate in the metal that is the subject, an accurate detection result cannot be obtained.
  • FIG. 8A shows a state where bubbles are mixed in the contact medium applied under the sheet material 1. In such a state, since the ultrasonic wave does not propagate in the metal that is the subject, an accurate detection result cannot be obtained.
  • FIG. 8A shows a state where bubbles are mixed in the contact medium applied under the sheet material 1. In such a state, since the ultrasonic wave does not propagate in the metal that
  • the illumination 6 is fixed below the reader 3 and is fixed to the housing 10 with a slight inclination to the facing surface SP of the subject rather than perpendicular to the facing surface SP of the subject. That is, the illumination 6 is fixed to the housing 10 so that the illumination light enters the subject at an incident angle ⁇ .
  • reading of the QR code 1a by the reader 3 is not hindered by the illumination light reflected on the facing surface SP of the subject, and the position data of the facing surface SP of the subject can be read accurately.
  • the illumination light is incident on the opposing surface SP of the subject at a large incident angle ⁇ due to the mounting angle of the illumination 6 with respect to the housing 10 as described above, and is thus emitted from the illumination 6 and incident on the subject.
  • the illumination 6 is provided with an inclination of (90 ⁇ ) ° with respect to the normal of the facing surface SP of the subject. It can be said that. Therefore, in consideration of the range of the incident angle ⁇ described above, the illumination 6 is preferably inclined with respect to the normal of the opposing surface SP of the subject within a range of, for example, greater than 0 ° and 30 °, from 5 °. It is more preferable to incline in the range of 20 °.
  • the end surface 10B1 on the side where the illumination 6 of the housing 10 is fixed in the present embodiment is formed in a shape having a sawtooth cross section as shown in FIG. This is irregular reflection of the reflected wave of the ultrasonic wave transmitted from the ultrasonic probe 2 and incident on the subject or the reflected wave of the ultrasonic wave reflected without entering the subject and incident on the end face 10B1. This is because the detection of the reflected wave of the ultrasonic wave directly incident on the ultrasonic probe 2 is not affected.
  • the four holes shown in FIG. 5 are screw holes h into which screws are inserted when the ultrasonic probe 2 and the reader 3 are fixed to the housing 10.
  • an antireflection film may be pasted on the surface of the housing 10, or the surface of the housing 10 may be painted in black. This is to prevent sunlight from entering the case 10 when working outdoors and to prevent outside light such as lighting from entering the case 10 when working indoors. It is.
  • the casing 10 is formed so as to take corners at both ends of one surface 10C of the casing 10 facing the facing surface SP of the subject. This is to allow the housing 10 to move smoothly on the facing surface SP of the subject.
  • one surface 10C of the housing 10 facing the facing surface SP of the subject may be processed into a concave shape according to the curved surface of the pipe.
  • FIG. 6A is a plan view of an inspection probe 200 according to a first modification of the first embodiment of the present invention.
  • the ultrasonic probe 2 of the first embodiment includes a transmission ultrasonic probe 2A and a reception ultrasonic probe 2B. It is made up of.
  • the transmission ultrasonic probe 2 ⁇ / b> A and the reception ultrasonic probe 2 ⁇ / b> B are acoustically isolated by the acoustic isolation surface 110.
  • the reader 3 is fixed to a substantially center where the casing 10 is divided into upper and lower halves on the paper surface of FIG. 6A.
  • the acoustic isolation surface 110 extends to the vicinity of the illumination 6 although not shown, even if it exists only on the side of the scanning direction of the inspection probe 200 relative to the reader 3. May be.
  • the reader 3 is arranged and fixed so as not to interfere with the sound isolation surface 110.
  • FIG. 6B is a plan view of the inspection probe 212 of the second modification example of the first embodiment of the present invention.
  • the same reference numerals are assigned to the same configurations as those of the first modification of the first embodiment of the present invention shown in FIG. 6A, and the description thereof is omitted.
  • a reader 312 is provided between the transmission ultrasonic probe 212A and the reception ultrasonic probe 212B. Also with the inspection probe 212 configured in this manner, the same technical effect as that of the inspection probe 100 including the ultrasonic probe 2 of the first embodiment can be obtained.
  • FIG. 7 is a side view of an inspection probe 300 according to a third modification of the first embodiment of the present invention.
  • the leader 30 is fixed to the end face 10 ⁇ / b> A of the housing 20.
  • the end face 10A is formed substantially perpendicular to the opposing surface SP of the subject, and the reader 30 is fixed substantially perpendicular to the end face 10A.
  • substantially vertical includes vertical and includes a range including about 10 ° before and after the vertical which is regarded as vertical.
  • a mirror 120 is fixed to the end surface 10B of the housing 20 on the opposite side to the reader 30 being fixed, and the reader 30 reads the QR code 1a reflected on the mirror 120. Therefore, when the mirror 120 is viewed from the reader 30, the mirror 120 is fixed along the end surface 10B inclined with respect to the facing surface SP of the subject so that the QR code 1a is reflected on the mirror 120.
  • the illumination 60 is fixed to both surfaces of the housing 20 that intersect perpendicularly to the scanning direction of the inspection probe 300. Also with the inspection probe 300 configured in this way, the same technical effect as the inspection probe 100 including the ultrasonic probe 2 of the first embodiment can be obtained.
  • the end surface 10B to which the mirror 120 is fixed is inclined at an acute angle with respect to the facing surface SP of the subject. Therefore, the inspection probe 300 according to the third modification of the first embodiment may be used for a subject having an obstacle that cannot use the inspection probe 100 shown in the first embodiment.
  • the casing is rectangular in plan view, but the mutual positions of the ultrasonic probe 2, the readers 3, 30, the illuminations 6, 60, and the mirror 120 as described in the above embodiment.
  • the outer shape of the housing may be a rounded shape or an arbitrary shape that fits in the hands of the inspector.
  • the housing 10 may be shaped like a mouse.
  • the illumination does not have to be fixed to the entire surface of the housing, and may be appropriately arranged according to the shape of the housing 10. A plurality of illuminations may be provided.
  • the application of the present invention is for internal inspection of a subject by an ultrasonic probe, it may be used for surface inspection of the subject.
  • piping was mentioned as an example as a subject, a subject is not limited to piping.
  • a sound wave may be described instead of an ultrasonic wave, but this is because the sound wave is not limited to an ultrasonic wave and may be emitted from an ultrasonic probe.
  • the incident point where the ultrasonic wave transmitted from the ultrasonic probe 2 enters the facing surface SP of the subject is L2, and L2 is shown in FIG. Further, the ultrasonic wave transmitted from the ultrasonic probe 2 is incident on the facing surface SP of the subject at an incident angle ⁇ shown in FIG.
  • the illumination light emitted from the illumination 6 is the facing surface of the subject. It is described that it is incident on the SP at an incident angle ⁇ shown in FIG. However, in FIG. 3, it appears that L2 is not an incident point on the facing surface SP of the subject but an incident point on the sheet material 1, and ⁇ and ⁇ are incident on the facing surface SP of the subject. Although it seems that it is not an angle but the incident angle to the sheet
  • the incident light incident on the opposite surface SP at an incident angle ⁇ shown in FIG. 3 and emitted from the illumination 6 enters the opposite surface SP of the subject at an incident angle ⁇ shown in FIG.
  • ADVANTAGE OF THE INVENTION it can prevent that the reading of the pattern by an optical sensor is disturbed by the reflected light from the opposing surface of a subject.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 被検体上を移動自在であり、前記被検体に超音波を照射して、反射波を検出する超音波探触子(2)と、前記超音波探触子(2)による検出結果に基づいて演算処理を実行し、前記被検体の探傷結果を取得する演算処理装置(5)とを有する検査システムの検査プローブ(100)であって、前記検査プローブ(100)は、前記被検体上に配列され前記被検体上の位置を示す2次元模様(1a)が描かれているシート材(1)上を移動自在とされ、透明性と音波透過性とを備える筐体(10)と、前記筐体(10)に固定された前記超音波探触子(2)と、前記筐体(10)に固定され前記2次元模様(1a)を読み取るリーダー(3)と、前記筐体(10)に固定された照明(6)と、を備え、前記超音波探触子(2)から前記被検体の対向面(SP)に入射する超音波の入射点(L2)が、前記リーダー(3)の画角(γ)内に入るように前記筐体(10)に前記超音波探触子(2)が固定されている。

Description

検査プローブ
本発明は、超音波探触子を備える検査プローブに関する。
 特許文献1には、被検体上の位置データを正確に取得することができる超音波探触子が開示されている。この超音波探触子は、上記被検体に対して超音波を送受信する振動子と、上記被検体の対向面のパターンを一定周期で読取る光学センサを有し、上記光学センサで任意の周期で読取られたパターンの1つ前の周期で読取られた同一パターンからの移動量に基づいて上記被検体上における自己の現在の位置を検出する光学位置検出器と、上記振動子及び上記光学位置検出器を収納する容器とを備える。
日本国特開2001-349878号公報
 上記従来技術の超音波探触子によれば、被検体の対向面のパターンを光学センサで正確に読み取り、正確に読み取ったパターンを基に光学位置検出器で超音波探触子の位置を検出する際、被検体の対向面のパターンと光学センサとの間に気泡が混入しているのに気付かずにパターンの読み取りを継続したり、光学センサによるパターンの読み取りが被検体の対向面からの反射光により妨げられたりすることがあり、正確なパターンの読み取りが阻害される可能性がある。
 本発明は、上述した事情に鑑みてなされたものであり、光学センサによるパターンの読み取りが被検体の対向面に反射する光により妨げられることを防止し、被検体の対向面のパターンと光学センサとの間に気泡が混入したか否かを容易に確認できるようにし、より正確に被検体の対向面のパターンを読み取ることを目的とする。
 本発明の第1の態様は、被検体上を移動自在であり、上記被検体に超音波を照射して、反射波を検出する超音波探触子と、上記超音波探触子による検出結果に基づいて演算処理を実行し、上記被検体の探傷結果を取得する演算処理装置とを有する検査システムの検査プローブであって、上記検査プローブは、上記被検体上に配列され前記被検体上の位置を示す2次元模様が描かれているシート材上を移動自在とされ、透明性と音波透過性とを備える筐体と、上記筐体に固定された上記超音波探触子と、上記筐体に固定され上記2次元模様を読み取る所定の画角を有するリーダーと、上記筐体に固定された照明と、を備え、上記超音波探触子から上記被検体の対向面に入射する超音波の入射点が、上記リーダーの上記画角内に入るように上記筐体に上記超音波探触子が固定されている。
 本発明の第2の態様は、上記第1の態様の検査プローブにおいて、上記照明から上記被検体に入射する照明光の入射角が、上記超音波探触子から上記被検体に入射する超音波の入射角よりも大きくなるように上記照明が上記筐体に固定されている。
本発明の第3の態様は、上記照明から発射されて上記被検体に入射せずに上記被検体の対向面で反射した照明光と、上記被検体に入射した上記照明光の反射光が上記リーダーに入射しないように上記照明が上記筐体に固定されている。
本発明の第4の態様は、上記第1の態様の検査プローブにおいて、上記照明が上記リーダーの下方に固定されている。
本発明の第5の態様は、上記第1の態様の検査プローブにおいて、上記筐体は中実の単一のアクリル樹脂である。
本発明によれば、光学センサによるパターンの読み取りが被検体の対向面からの反射光により妨げられることを防止することができる。また、被検体の対向面のパターンと光学センサとの間に気泡が混入しているか否かを容易に確認することができる。そのため、正確に被検体の対向面のパターンを読み取ることができ、気泡の混入により音波が入射していないにもかかわらずパターンの読み取りを継続してしまうことを防ぐことができる。
本発明の第1実施形態に係る検査システムの機能ブロック図である。 本発明の第1実施形態におけるシート材の表面を模式的に示した図である。 本発明の第1実施形態の検査プローブの側面図である。 本発明の第1実施形態の検査プローブの平面図である。 本発明の第1実施形態の筐体の平面図である。 本発明の第1実施形態の第1の変形例の検査プローブの平面図である。 本発明の第1実施形態の第2の変形例の検査プローブの平面図である。 本発明の第1実施形態の第3の変形例の検査プローブの側面図である。 本発明の第1実施形態の検査プローブによる被検体の対向面の読み取り例を示す図である。 本発明の第1実施形態の検査プローブによる被検体の対向面の読み取り例を示す図である。
 初めに本発明の第1実施形態について説明する。
 本発明の第1実施形態に係る超音波探触子2を備える検査システムは、例えば、被検体の一例である配管Pの検査に用いられ、配管Pの溶接線に発生する亀裂等を検出する。この検査システムは、図1に示すように、シート材1、超音波探触子2、リーダー3、超音波探傷器4及び演算処理装置5から構成されている。
シート材1は、図1に示すように、配管Pの表面に貼り付けられている。このシート材1には、図2に示すように、表面にQRコード(登録商標)1a(2次元模様)が配管P上の軸方向及び周方向に描かれている。QRコード1aには、配管P上の位置(座標)を示すデータが暗号化されており、例えば、配管Pの軸方向及び周方向に10mm間隔で配置されている。また、シート材1は、配管Pの表面に直接ではなく、超音波を伝播させるグリセリンペースト(接触媒質)が配管Pの表面に塗布されて貼り付けられている。このように、配管P上に塗布されたグリセリンペーストの上からシート材1を貼り付けることで、グリセリンペーストの粘着性によりシート材1を配管Pに吸着させることができ、さらに配管Pの表面に凹凸がある場合でも、シート材1を平らに貼り付けることができる。
超音波探触子2は、同軸ケーブルを介して超音波探傷器4に接続されており、配管P上を移動自在である。また、超音波探触子2は、先端から超音波を発生し、上記超音波の反射波を検出し、上記検出結果を検出信号として超音波探傷器4に出力する。例えば、この超音波探触子2は、検査員の手動によって配管Pの表面を走査させられ、配管Pの亀裂等を示す超音波の反射波を検出する。
 なお、超音波探触子2としては、単一の振動子を用いたものでも、振動子をアレイ状に配列したものであっても良い。
リーダー3は、超音波探触子2の近傍に取り付けられ、配管P上に貼り付けられたシート材1表面のQRコード1aを読み取る所定の画角γを有する光学式リーダーであり、信号ケーブルを介して通信I/F部13に接続され、読み取ったQRコード1aの画像が含まれる画像信号を通信I/F部13に出力する。例えば、リーダー3は、LED(Light Emitting Diode)等の発光素子を備える発光部と、CCD(Charge Coupled Device)カメラ等の撮像部とからなり、超音波探触子2の移動方向(走査方向)における前側または後側に取り付けられている。
なお、本実施形態において、リーダー3は、後述する共通の筐体10に固定されることによって、超音波探触子2と一体化されている。
超音波探傷器4は、超音波探触子2に接続されると共に演算処理装置5の通信I/F部13に接続され、超音波探触子2及びリーダー3に電力を供給し、また超音波探触子2から入力される検出信号をA/D変換して演算処理装置5の通信I/F部13に出力する。
なお、図1における矢印の向きは、信号の進む方向を表示しており、上述の電力供給の向きとは関係がない。
また、超音波探触子2には超音波探傷器4から電力が供給され、リーダー3には通信I/F部13から電力が供給されても良い。
なお、超音波探触子2及びリーダー3の接続は、有線接続に限らず、無線接続であっても良い。
また、超音波探触子2が複数設けられていても良い。
演算処理装置5は、超音波探傷器4に接続された、例えば、デスクトップ型またはノート型等のパーソナルコンピュータであり、図1に示すように、表示部11、操作部12、通信I/F部13及び演算制御部14を備える。
 表示部11は、CRT(Cathode Ray Tube)ディスプレイまたは液晶ディスプレイ等の表示器であり、演算制御部14の制御の下、各種画面を表示する。
 操作部12は、マウス等のポインティングデバイス及びキーボードから構成され、ユーザから受け付けた操作指示を演算制御部14に出力する。
 通信I/F部13は、演算制御部14の制御の下、通信ケーブルを介して超音波探傷器4との間で各種信号の送受信を行う。
 通信I/F部13は、さらに、信号ケーブルを介して、リーダー3に接続され、リーダー3が読み取ったQRコード1aの画像信号を受信する。通信I/F部13は、受信した画像信号をA/D変換する。
 演算制御部14は、CPU(Central Processing Unit)、ROM(Read Only Memory)、HDD(Hard Disk)、RAM(Random Access Memory)及び電気的に相互接続された各部と各種信号の送受信を行うインターフェイス回路等から構成されている。この演算制御部14は、上記ROMに記憶された各種演算制御プログラムに基づいて各種の演算処理を行うと共に各部と通信を行うことにより演算処理装置5の全体動作を制御する。
演算制御部14は、ROMまたはHDDに検査プログラム14aを記憶し、検査プログラム14aに基づいて動作することで、リーダー3によって読み取られたQRコード1aを解析して配管P上の位置データ(絶対座標)を取得し、取得した配管P上の位置データと、超音波探触子2による検出結果から得られる探傷結果とを関連付ける。
 次に、このように構成された検査システムの超音波探触子2、リーダー3、照明6、筐体10の構成を図3~図5を参照しながら詳細に説明する。ここで、超音波探触子2、リーダー3、照明6、筐体10より構成される器具を検査プローブ100と呼ぶ。
図3は、本発明の第1実施形態の検査プローブ100の側面図である。図4は、本発明の第1実施形態の検査プローブ100の平面図である。図5は、本発明の第1実施形態の筐体10の平面図である。
 図3に示す検査プローブ100の超音波探触子2は、筐体10に固定されている。筐体10は通常アクリル等の音波透過性を備えた遅延材を用いて単一の部材として一体的に形成されている。本実施形態の筐体10は、中実に形成された単一のアクリル樹脂により形成されておりプリズムのような外観を持つ部材である。ここで、遅延材とは、超音波探触子2から発信される超音波をレンズのように屈折させることで、任意の角度で被検体に超音波を伝搬させる材料のことをいう。
本実施形態における超音波探触子2の筐体10への固定方法はネジ止めであるが、超音波探触子2を筐体10に接着剤を使用して固定しても良い。また、超音波探触子2と筐体10は一体構造の筐体となっていてもよい。ここで、筐体10の材料はアクリルに限定されず、透明性と音波透過性を有する素材であれば使用可能である。また、筐体10は検査に使用する超音波の屈折角度によって形状が変更されても良い。
 筐体10には、超音波探触子2に加え、リーダー3と照明6が固定されている。従って、筐体10は、超音波探触子2に対しては遅延材として、リーダー3に対してはプリズムとして機能する。即ち、単一のアクリル樹脂である筐体10内を超音波と光が後述するように一部重なって伝達されることで、筐体10及び検査プローブ100の小型化が実現できる。
なお、本実施形態におけるリーダー3と照明6の筐体10への固定方法もネジ止めであるが、接着剤を使用して固定しても良い。
 図3に示すように、本実施形態においては、リーダー3が垂直下向きに筐体10に固定されており被検体の対向面SPに正対している。
超音波探触子2は、超音波探触子2から発信した超音波が被検体の対向面SPに入射する入射点L2がリーダー3の画角γ内に入るように(筐体10内を超音波と光が一部重なって伝達されるように)筐体10に固定されている。即ち、超音波探触子2は、被検体の対向面SPの垂線に対して鋭角α傾斜して筐体10に固定されている。
超音波探触子2から発信した超音波は、被検体の対向面SPに対して図3に示す入射角αで入射する。
 照明6は、図3に示すように、リーダー3よりも下方に固定されている。そのため、照明6から発せられた照明光は、被検体の対向面SPに対して、図3に示す入射角βで入射する。図3より、超音波の入射角αよりも照明光の入射角βの方が大きい。ここで、入射角αは例えば5°から35°の範囲にあることが好ましく、より好ましくは、10°から25°の範囲にあることが好ましい。また、入射角βは例えば90°未満から60°の範囲にあることが好ましく、より好ましくは、85°から70°の範囲にあることが好ましい。
 また、照明6の配置位置や個数は、筐体10の形状に合わせて適宜変更しても良い。
 このような検査プローブ100を上側から見た平面図が図4に示されている。本実施形態においては、超音波探触子2が検査プローブ100の走査方向に対して後方に固定されている。しかしながら、検査プローブ100の走査方向の後方にリーダー3が固定され、前方に超音波探触子2が固定されていても良い。
 なお、本願では、説明のために図4の紙面の左方向を検査プローブの走査方向に対する前方と定義しているが、これは一例であり、図4におけるあらゆる方向にプローブを走査しても良い。
 上記のような本実施形態の検査プローブ100によれば、以下のような技術的効果が得られる。
 筐体10に透明性と音波透過性を有するアクリル樹脂を用いているため、筐体10に固定された超音波探触子2に入出力される超音波とリーダー3に入力される光(映像)とを共に筐体10を通過させることができる。そのため、筐体10の小型化が実現できる。
 筐体10の小型化が実現されることで、超音波探触子2を含む検査プローブ100の小型化が実現できる。そのため、検査プローブ100の操作性が向上し、障害物により走査できない範囲が減少する。
 また、筐体10の小型化により、リーダー3と超音波探触子2との距離が減少する。そのため、リーダー3の画角中心位置L1と超音波の入射点L2の距離が減少し、位置補正をする量が減少する。ここで、位置補正とは、リーダー3が読むQRコード1aより取得した絶対座標の位置と、超音波探触子2が検出した被検体の検出結果が得られた位置とが本来一致していることが望ましいため、これらの位置が異なっている場合、これらの位置を一致させる補正を行うことをいう。
 また、上記実施形態によれば、超音波探触子2から発信した超音波が被検体の対向面SPに入射する入射点L2がリーダー3の画角γ内に入っているため、超音波が被検体に入射する位置をリーダー3の撮像画像で直接確認できる。そのため、超音波透過の障害となる気泡の混入の有無を、超音波探触子2の検出結果を示す超音波波形と同時に演算処理装置5の表示部11で確認でき、検査員は探傷作業に集中できる。
この気泡混入の有無の読み取り例を図8Aと図8Bに示す。図8A、図8Bは、共に本発明の第1実施形態の検査プローブによる被検体の対向面SPの読み取り例を示す図である。
図8Aでは、気泡がシート材1の下に塗布された接触媒質に混入した状態を示す。このような状態では、超音波が被検体である金属中に伝播しないため、正確な検出結果を得ることができない。一方、図8Bでは、接触媒質への気泡の混入がなく、正確な検出結果が得られる状態を示す。
従って、本実施形態によれば、検査員が気泡の混入の有無を容易に確認することができ、気泡の混入に気付かないまま検査を続けた結果、正確な検査結果が得られないという可能性を排除できる。
また、照明6がリーダー3の下に固定され、かつ、被検体の対向面SPの垂直よりも被検体の対向面SPに僅かに傾斜して筐体10に固定されている。即ち、照明光が入射角βで被検体に入射するように照明6が筐体10に固定されている。そのため、リーダー3によるQRコード1aの読み取りが被検体の対向面SPに反射する照明光により妨げられることがなく、正確に被検体の対向面SPの位置データを読み取ることが可能となる。これは、筐体10に対する照明6の上記のような取付け角度により、照明光が被検体の対向面SPに対して大きな入射角βで入射するため、照明6から発射されて被検体に入射せずに被検体の対向面SPで反射した照明光と、被検体に入射した照明光の反射光がリーダー3に入射しないためであると考えられる。
上記の照明6の傾斜角を上記の照明光の入射角βを使用して表現すると、照明6は、被検体の対向面SPの垂線に対して、(90―β)°傾斜して設けられていると言える。従って、上記の入射角βの範囲を考慮すると、照明6は、被検体の対向面SPの垂線に対して、例えば0°より大きく30°の範囲で傾斜しているのが好ましく、5°から20°の範囲で傾斜しているのがより好ましい。
なお、本実施形態における筐体10の照明6が固定される側の端面10B1は、図5に示すような鋸刃状の断面を有する形状に形成されている。これは、超音波探触子2から発信され被検体に入射した超音波の反射波や、被検体に入射せずに反射した超音波の反射波の内、端面10B1に入射する反射波を乱反射させることによって、超音波探触子2に直接入射される超音波の反射波の検出に影響を与えないためである。
ここで、図5に示される4ヵ所の孔部は、超音波探触子2とリーダー3を筐体10に固定する際にネジが挿入されるネジ孔hである。
 また、筐体10の表面には、反射防止フィルムが貼られていたり、筐体10の表面が黒色で塗装されていたりしても良い。これは、野外で作業をする際には太陽光が筐体10内に入射するのを防ぎ、屋内で作業をする際には照明等の外光が筐体10内に入射するのを防ぐためである。
 また、図3に示すように、被検体の対向面SPに対向する筐体10の一面10Cの両端部の角を取るように筐体10が形成されている。これは筐体10が被検体の対向面SP上をスムーズに移動できるようにするためである。
 また、被検体が配管である場合、被検体(配管)の対向面SPに対向する筐体10の一面10Cを配管の曲面に合わせて凹状に加工しても良い。
 次に、図6Aを用いて、本発明の第1実施形態の第1の変形例を説明する。
以下の説明では、第1実施形態との相違点のみを説明し、第1実施形態と同様の構成要素については同一の参照番号を付し、その説明を省略する。
図6Aは、本発明の第1実施形態の第1の変形例の検査プローブ200の平面図である。
本発明の第1実施形態の第1の変形例では、図6Aに示すように、第1実施形態の超音波探触子2が、送信超音波探触子2Aと受信超音波探触子2Bより構成されている。ここで、送信超音波探触子2Aと受信超音波探触子2Bは、音響隔離面110によって音響的に隔離されている。また、リーダー3は筐体10を図6Aの紙面で上下半分に分けた略中心に固定されている。
ここで、音響隔離面110は、図6Aに示すように、リーダー3よりも検査プローブ200の走査方向の進行方向側のみに存在していても、図示されていないが照明6の近傍まで延びていても良い。音響隔離面110が照明6の近傍まで延びている場合には、リーダー3は音響隔離面110に干渉しないように配置され固定される。
このように構成された発信超音波探触子2Aと受信超音波探触子2Bとを備える検査プローブ200によっても、第1実施形態の超音波探触子2を備える検査プローブ100と同様の技術的効果が得られる。
なお、音響の干渉が検査に影響しない場合には、音響隔離面110を設けなくても良い。例えば、音響隔離面110を設けない構成の一例として、図6Bに示すような第1実施形態の第2の変形例がある。図6Bは、本発明の第1実施形態の第2の変形例の検査プローブ212の平面図である。以下の図6Bの説明では、図6Aに示す本発明の第1実施形態の第1の変形例と同様の構成については同一の参照番号を付し、その説明を省略する。
図6Bに示す本発明の第1実施形態の第2の変形例では、送信超音波探触子212Aと受信超音波探触子212Bとの間にリーダー312が設けられている。このように構成された検査プローブ212によっても、第1実施形態の超音波探触子2を備える検査プローブ100と同様の技術的効果が得られる。
次に、図7を用いて、本発明の第1実施形態の第3の変形例を説明する。
図7は、本発明の第1実施形態の第3の変形例の検査プローブ300の側面図である。
 図7に示す第1実施形態の第3の変形例では、リーダー30が、筐体20の端面10Aに固定されている。図7に示すように、端面10Aは被検体の対向面SPに対して略垂直に形成され、リーダー30は端面10Aに略垂直に固定されている。
ここで、略垂直とは、垂直を含み、垂直と見なされる垂直の前後10°程度を含む範囲とする。
また、リーダー30が固定されているのと反対側の筐体20の端面10Bにはミラー120が固定されており、リーダー30はミラー120に映るQRコード1aを読み取る。そのため、リーダー30からミラー120を見た場合、QRコード1aがミラー120に映るように、ミラー120は被検体の対向面SPに対して傾斜した端面10Bに沿って固定されている。
また、照明60は、検査プローブ300の走査方向に対して垂直に交わる筐体20の両面に固定されている。
このように構成された検査プローブ300によっても、第1実施形態の超音波探触子2を備える検査プローブ100と同様の技術的効果が得られる。また、このような第1実施形態の第3の変形例によれば、ミラー120が固定される端面10Bが被検体の対向面SPに対して鋭角に傾斜している。そのため、第1実施形態に示す検査プローブ100を使用できないような障害物がある被検体に対して、第1実施形態の第3の変形例による検査プローブ300を使用しても良い。
 以上、本発明の実施形態について説明したが、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記実施例においては筐体が平面視で矩形であるが、上記実施形態に記載されたような超音波探触子2、リーダー3、30、照明6、60、ミラー120の相互の位置関係を満たしている限り、筐体の外形は丸みを帯びた形状や、検査員の手に馴染む任意の形状であっても良い。例えば、筐体10がマウスのような形状をしていても良い。
 また、照明は、筐体の一面の全面に固定されいなくとも良く、筐体10の形状に合わせて適宜配置されても良い。照明は複数設けられていても良い。
 本発明の用途は、超音波探触子による被検体の内部検査用としたが、被検体の表面検査に使用しても良い。
また、被検体として配管を一例として挙げたが、被検体は配管に限定されない。
 なお、上記記載において、超音波に代えて音波と記載されている場合があるが、これは、超音波に限らず音波が超音波探触子から発射されても良いためである。
 さらに、上記記載において、超音波探触子2から発信した超音波が被検体の対向面SPに入射する入射点をL2とし、図3にL2を図示している。また、超音波探触子2から発信した超音波は、被検体の対向面SPに対して図3に示す入射角αで入射し、照明6から発せられた照明光は、被検体の対向面SPに対して、図3に示す入射角βで入射すると記載されている。しかしながら、図3では、L2が被検体の対向面SPへの入射点ではなく、シート材1への入射点であるかのように見え、α、βが、被検体の対向面SPへの入射角ではなく、シート材1への入射角であるかのように見えるが、これは簡略して図示しているためである。従って、上記の記載の通り、超音波探触子2から発信した超音波が被検体の対向面SPに入射する点を入射点L2とし、超音波探触子2から発信した超音波が被検体の対向面SPに対して図3に示す入射角αで入射し、照明6から発せられた照明光は、被検体の対向面SPに対して、図3に示す入射角βで入射する。
本発明によれば、光学センサによるパターンの読み取りが被検体の対向面からの反射光により妨げられることを防止することができる。また、被検体の対向面のパターンと光学センサとの間に気泡が混入しているか否かを容易に確認することができる。そのため、正確に被検体の対向面のパターンを読み取ることができ、気泡の混入により音波が入射していないにもかかわらずパターンの読み取りを継続してしまうことを防ぐことができる。
 1 シート材
2 超音波探触子
3、30 リーダー
4 超音波探傷器
5 演算処理装置
1a QRコード
11 表示部
12 操作部
13 通信I/F部
14 演算制御部
14a 検査プログラム
100、200、300 検査プローブ 
120 ミラー
110 音響隔離面

Claims (5)

  1.  被検体上を移動自在であり、前記被検体に超音波を照射して、反射波を検出する超音波探触子と、前記超音波探触子による検出結果に基づいて演算処理を実行し、前記被検体の探傷結果を取得する演算処理装置とを有する検査システムの検査プローブであって、前記検査プローブは、
    前記被検体上に配列され前記被検体上の位置を示す2次元模様が描かれているシート材上を移動自在とされ、透明性と音波透過性とを備える筐体と、
     前記筐体に固定された前記超音波探触子と、
    前記筐体に固定され前記2次元模様を読み取る所定の画角を有するリーダーと、
    前記筐体に固定された照明と、を備え、
    前記超音波探触子から前記被検体の対向面に入射する超音波の入射点が、前記リーダーの前記画角内に入るように前記筐体に前記超音波探触子が固定されている検査プローブ。
  2. 前記照明から前記被検体に入射する照明光の入射角が、前記超音波探触子から前記被検体に入射する超音波の入射角よりも大きくなるように前記照明が前記筐体に固定されている請求項1に記載の検査プローブ。
  3. 前記照明から発射されて前記被検体に入射せずに前記被検体の対向面で反射した照明光と、前記被検体に入射した前記照明光の反射光が前記リーダーに入射しないように前記照明が前記筐体に固定されている請求項1に記載の検査プローブ。
  4. 前記照明が前記リーダーの下方に固定されている請求項1に記載の検査プローブ。
  5. 前記筐体は中実の単一のアクリル樹脂である請求項1に記載の検査プローブ。
PCT/JP2014/083553 2014-12-18 2014-12-18 検査プローブ WO2016098224A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197007803A KR20190031351A (ko) 2014-12-18 2014-12-18 검사 프로브
PCT/JP2014/083553 WO2016098224A1 (ja) 2014-12-18 2014-12-18 検査プローブ
KR1020177012625A KR102085411B1 (ko) 2014-12-18 2014-12-18 검사 프로브
JP2016564528A JP6296173B2 (ja) 2014-12-18 2014-12-18 検査プローブ
US15/491,318 US10365151B2 (en) 2014-12-18 2017-04-19 Inspection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083553 WO2016098224A1 (ja) 2014-12-18 2014-12-18 検査プローブ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/491,318 Continuation US10365151B2 (en) 2014-12-18 2017-04-19 Inspection probe

Publications (1)

Publication Number Publication Date
WO2016098224A1 true WO2016098224A1 (ja) 2016-06-23

Family

ID=56126145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083553 WO2016098224A1 (ja) 2014-12-18 2014-12-18 検査プローブ

Country Status (4)

Country Link
US (1) US10365151B2 (ja)
JP (1) JP6296173B2 (ja)
KR (2) KR20190031351A (ja)
WO (1) WO2016098224A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175693A1 (ja) 2019-02-28 2020-09-03 株式会社Ihi 超音波探傷装置
WO2020175687A1 (ja) 2019-02-28 2020-09-03 株式会社Ihi 超音波探傷装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017220274A1 (de) * 2017-11-14 2019-05-16 Siemens Aktiengesellschaft Prüfung von Nutverschlusskeilen eines Generatorrotors
EP4001735B1 (de) * 2020-11-18 2024-04-10 Georg Fischer Rohrleitungssysteme AG Überwachung von rohrleitungssystemen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200463A (ja) * 1985-03-01 1986-09-05 Hitachi Constr Mach Co Ltd 超音波探触子
JPH0618247A (ja) * 1992-07-03 1994-01-25 Osaka Gas Co Ltd 配管内面診断の検査方法およびこれに用いる検査位置表示シート
JP2001349878A (ja) * 2000-06-08 2001-12-21 Japan Probe Kk 超音波探触子、超音波探傷システム及び超音波探傷方法
JP2006170766A (ja) * 2004-12-15 2006-06-29 Mitsubishi Heavy Ind Ltd 探傷装置
JP2008089317A (ja) * 2006-09-29 2008-04-17 Hitachi Ltd 超音波探触子
JP2010054497A (ja) * 2008-07-31 2010-03-11 Mitsubishi Electric Corp 超音波探傷の感度設定方法および超音波探傷装置
JP2010096520A (ja) * 2008-10-14 2010-04-30 National Institute Of Advanced Industrial Science & Technology スキャン画像取得装置およびシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US296370A (en) * 1884-04-08 Implement for smoothing or polishing metallic surfaces
TWM296370U (en) 2006-01-27 2006-08-21 Guang-Hua Hou Supersonic high-temperature instantaneously inspecting apparatus
TWM406734U (en) 2010-11-12 2011-07-01 jia-ji Song Three-axis positioning underwater ultrasonic measuring system
TWM403764U (en) * 2010-12-14 2011-05-11 Jonsa Technologies Co Ltd Satellite antenna to adjust the degree of elevation
JP5792958B2 (ja) 2011-01-13 2015-10-14 キヤノン株式会社 放射線撮像装置、放射線撮像システム及び放射線撮像装置の製造方法
JP5669023B2 (ja) * 2012-05-23 2015-02-12 新日鐵住金株式会社 超音波探触子の探傷感度調整方法
GB201214273D0 (en) * 2012-08-09 2012-09-26 Airbus Uk Ltd .Improvements to radius inspection tools
US20150054942A1 (en) * 2013-08-26 2015-02-26 General Electric Company Modular inspection system inspection module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200463A (ja) * 1985-03-01 1986-09-05 Hitachi Constr Mach Co Ltd 超音波探触子
JPH0618247A (ja) * 1992-07-03 1994-01-25 Osaka Gas Co Ltd 配管内面診断の検査方法およびこれに用いる検査位置表示シート
JP2001349878A (ja) * 2000-06-08 2001-12-21 Japan Probe Kk 超音波探触子、超音波探傷システム及び超音波探傷方法
JP2006170766A (ja) * 2004-12-15 2006-06-29 Mitsubishi Heavy Ind Ltd 探傷装置
JP2008089317A (ja) * 2006-09-29 2008-04-17 Hitachi Ltd 超音波探触子
JP2010054497A (ja) * 2008-07-31 2010-03-11 Mitsubishi Electric Corp 超音波探傷の感度設定方法および超音波探傷装置
JP2010096520A (ja) * 2008-10-14 2010-04-30 National Institute Of Advanced Industrial Science & Technology スキャン画像取得装置およびシステム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175693A1 (ja) 2019-02-28 2020-09-03 株式会社Ihi 超音波探傷装置
WO2020175687A1 (ja) 2019-02-28 2020-09-03 株式会社Ihi 超音波探傷装置
KR20210124461A (ko) 2019-02-28 2021-10-14 가부시키가이샤 아이에이치아이 초음파 탐상 장치
TWI744809B (zh) * 2019-02-28 2021-11-01 日商Ihi股份有限公司 超音波探傷裝置
JPWO2020175687A1 (ja) * 2019-02-28 2021-12-02 株式会社Ihi 超音波探傷装置
JP7188552B2 (ja) 2019-02-28 2022-12-13 株式会社Ihi 超音波探傷装置
US11875497B2 (en) 2019-02-28 2024-01-16 Ihi Corporation Ultrasonic flaw detection device
US12025584B2 (en) 2019-02-28 2024-07-02 Ihi Corporation Ultrasonic flaw detection device

Also Published As

Publication number Publication date
KR20190031351A (ko) 2019-03-25
US10365151B2 (en) 2019-07-30
JP6296173B2 (ja) 2018-03-20
JPWO2016098224A1 (ja) 2017-04-27
KR102085411B1 (ko) 2020-03-05
KR20170066624A (ko) 2017-06-14
US20170219422A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
EP2177903B1 (en) Inspection apparatus
US10365151B2 (en) Inspection probe
US8892252B1 (en) Motion capture tracking for nondestructive inspection
JP3947873B2 (ja) プロジェクタ並びにプロジェクタの付属装置
JP6489179B2 (ja) 位置把握方法
US8928608B2 (en) Touch screen, touch system and method for positioning a touch object in touch system
EP1041507A2 (en) Coordinate input pen, and electronic board, coordinate input system and electronic board system using the coordinate input pen
JP2002132437A (ja) 超音波座標入力装置およびインタラクティブボード
US7468785B2 (en) Enhanced triangulation
JP4515445B2 (ja) コンピュータ・マウス内の光信号処理のための方法及びデバイス
WO2020175687A1 (ja) 超音波探傷装置
TW201237353A (en) Laser-optical position detecting module
TWI470185B (zh) 反光偵測裝置、反光偵測方法及電子裝置
TWI559002B (zh) 檢查探針
JP2008089344A (ja) 超音波探傷装置
JP5530809B2 (ja) 位置検出装置、及び画像処理システム
JP2004094569A (ja) 位置検出方法、位置検出装置及びその位置検出装置を用いた電子黒板装置
JP6740042B2 (ja) 位置検知システム
CN102063228B (zh) 光学侦测系统及应用该光学侦测系统的触摸屏
JP2004038528A (ja) 光学式座標検出装置
JP4070619B2 (ja) 超音波光座標入力装置
JP2005265480A (ja) 場の測定システム、波源探査方法、及び波源探査プログラム
US10281436B2 (en) Acoustic wave acquisition apparatus and method for controlling the same
JP2007188511A (ja) プロジェクタ並びにプロジェクタの付属装置
TWM504955U (zh) 超音波成像系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564528

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177012625

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908434

Country of ref document: EP

Kind code of ref document: A1