WO2013175967A1 - トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法 - Google Patents

トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法 Download PDF

Info

Publication number
WO2013175967A1
WO2013175967A1 PCT/JP2013/063012 JP2013063012W WO2013175967A1 WO 2013175967 A1 WO2013175967 A1 WO 2013175967A1 JP 2013063012 W JP2013063012 W JP 2013063012W WO 2013175967 A1 WO2013175967 A1 WO 2013175967A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous web
rotary blade
cutting
blade member
speed value
Prior art date
Application number
PCT/JP2013/063012
Other languages
English (en)
French (fr)
Inventor
久興 信國
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Publication of WO2013175967A1 publication Critical patent/WO2013175967A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/56Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which travels with the work otherwise than in the direction of the cut, i.e. flying cutter
    • B26D1/60Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which travels with the work otherwise than in the direction of the cut, i.e. flying cutter and is mounted on a movable carriage
    • B26D1/605Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which travels with the work otherwise than in the direction of the cut, i.e. flying cutter and is mounted on a movable carriage for thin material, e.g. for sheets, strips or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/56Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which travels with the work otherwise than in the direction of the cut, i.e. flying cutter
    • B26D1/60Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which travels with the work otherwise than in the direction of the cut, i.e. flying cutter and is mounted on a movable carriage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/56Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which travels with the work otherwise than in the direction of the cut, i.e. flying cutter
    • B26D1/565Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which travels with the work otherwise than in the direction of the cut, i.e. flying cutter for thin material, e.g. for sheets, strips or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0515During movement of work past flying cutter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/465Cutting motion of tool has component in direction of moving work
    • Y10T83/4691Interrelated control of tool and work-feed drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/465Cutting motion of tool has component in direction of moving work
    • Y10T83/4757Tool carrier shuttles rectilinearly parallel to direction of work feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support
    • Y10T83/9372Rotatable type
    • Y10T83/9377Mounting of tool about rod-type shaft
    • Y10T83/9379At end of shaft

Definitions

  • the present invention relates to a continuous web cutting apparatus having a plurality of fibers including tow and a cutting method.
  • Patent Document 1 a cleaning web member in which a handle member is inserted so that it can be used for cleaning a desktop or the like.
  • a cleaning web member has a main body in which a plurality of fibers are laminated on a base sheet, and a thermoplastic fiber called tow is used as the fiber. Then, in this cleaning web member production line, a plurality of tows with the fiber direction along the transport direction are fixed to the base sheet by welding or the like on the base sheet continuous along the transport direction. A continuous web continuous in the transport direction is generated as a product, and finally, the continuous web is cut at a product pitch in the transport direction to produce a single-sheet cleaning web member.
  • the upper blade is moved toward the lower blade located on the opposite side of the thickness direction of the continuous web.
  • the continuous web is sheared by the upper blade and the lower blade.
  • the continuous web must be stopped every time it is cut, resulting in poor productivity.
  • wound concerning a continuous web is a thermoplastic resin fiber. Therefore, the tow at the position to be cut is easily welded or crimped by the holding pressure in the carrying direction that may occur due to the clearance in the carrying direction between the upper blade and the lower blade during shearing.
  • the present invention has been made in view of the conventional problems as described above, and its purpose is to cut a continuous web having a plurality of fibers including tows along a predetermined direction with a gap in the predetermined direction.
  • An apparatus and a method for cutting a continuous web without stopping the conveyance of the continuous web, exhibiting a good cutting property while suppressing the crimping and welding of the tow at the position to be cut, and further providing a continuous web.
  • An object of the present invention is to provide a cutting apparatus and a cutting method capable of making a single-cut product produced by cutting bulky.
  • a continuous web having a plurality of fibers including tows along a predetermined direction is a device that cuts the continuous web while being spaced in the predetermined direction while being conveyed on a predetermined track along the predetermined direction,
  • a disc-shaped rotary blade member for cutting the continuous web by moving in a crossing direction intersecting the predetermined direction while rotating around a rotation axis along the predetermined direction;
  • a restricting portion for restricting relative movement of the continuous web in the predetermined direction with respect to the rotary blade member while the rotary blade member cuts the continuous web;
  • a reciprocating mechanism that moves both the rotary blade member and the restricting portion along an outward path and a return path parallel to the predetermined trajectory;
  • a constant velocity region is set in which both the rotary blade member and the regulating portion move at the same speed value as the continuous web conveyance speed value,
  • the continuous web cutting device wherein the rotary blade member cuts the continuous web while moving in the constant velocity region.
  • the continuous web having a plurality of fibers including tows along a predetermined direction is a method of cutting the continuous web while being spaced in the predetermined direction while being conveyed on a predetermined track along the predetermined direction,
  • the restricting portion restricts the relative movement of the continuous web with respect to the rotary blade member while the rotary blade member cuts the continuous web.
  • FIG. 1 is a perspective view of a cleaning web member 1.
  • FIG. 2A is a plan view of the cleaning web member 1
  • FIG. 2B is a cross-sectional view taken along the line BB in FIG. 2A.
  • 4A is a schematic side view of the cutting device 20 of the first embodiment
  • FIG. 4B is a view taken along the line BB in FIG. 4A
  • FIG. 4C is a view taken along the line CC in FIG. 4A.
  • FIG. 5A to FIG. 5I are schematic views showing a state where the cutting device 20 cuts the semi-finished product 1a to generate the single-sheet cleaning web member 1.
  • FIG. 5A to FIG. 5I are schematic views showing a state where the cutting device 20 cuts the semi-finished product 1a to generate the single-sheet cleaning web member 1.
  • FIG. 5A to FIG. 5I are schematic views showing a state where the cutting
  • FIG. 6 is an explanatory diagram of operation pattern data of the reciprocating operation in the MD direction of the reciprocating unit 21.
  • 7A to 7C are explanatory views showing that each fiber bundle 5 is processed to be bulky by the rotary blade 31 in association with the cutting operation by the rotary blade 31, and
  • FIG. It is a schematic side view of the web member 1 for cleaning which shows a change.
  • FIG. 8A is a diagram illustrating a positional relationship between the rotation axis C31 of the rotary blade 31 according to the first embodiment and a central position C1a in the thickness direction of the semi-finished product 1a
  • FIGS. 8B and 8C relate to a comparative example.
  • FIG. 11A is a schematic side view of the cutting device 20a of the second embodiment, and FIG. 11B is a view taken along the line BB in FIG. 11A.
  • FIG. 11A is a schematic side view of the cutting device 20a of the second embodiment, and FIG. 11B is a view taken along the line BB in FIG. 11A.
  • FIG. 12A is a diagram showing a positional relationship between the rotation axis C31 of the rotary blade 31 according to the comparative example and the center position M1a in the width direction of the semi-finished product 1a
  • FIG. 12B shows the rotary blade 31 according to the second embodiment. It is a figure which shows the positional relationship of the rotating shaft C31 and the center position M1a of the width direction of the semi-finished product 1a.
  • a continuous web having a plurality of fibers including tows along a predetermined direction is a device that cuts the continuous web while being spaced in the predetermined direction while being conveyed on a predetermined track along the predetermined direction,
  • a disc-shaped rotary blade member for cutting the continuous web by moving in a crossing direction intersecting the predetermined direction while rotating around a rotation axis along the predetermined direction;
  • a restricting portion that restricts relative movement of the continuous web in the predetermined direction with respect to the rotary blade member while the rotary blade member cuts the continuous web;
  • a reciprocating mechanism that moves both the rotary blade member and the restricting portion along an outward path and a return path parallel to the predetermined trajectory;
  • a constant velocity region is set in which both the rotary blade member and the regulating portion move at the same speed value as the continuous web conveyance speed value,
  • the continuous web cutting device wherein the rotary blade member cuts the continuous web while moving in the constant velocity region.
  • the rotary blade member cuts the continuous web while moving in a predetermined direction at the same speed value as the continuous web conveyance speed value. Therefore, it is not necessary to stop the conveyance of the continuous web when cutting the continuous web. Further, the restricting portion restricts relative movement of the continuous web in a predetermined direction with respect to the rotating blade member while the rotating blade member is cut. Therefore, the continuous web rampage that may be caused by the contact of the rotary blade member that moves in the crossing direction while rotating with the continuous web is effectively prevented, and as a result, good cutting performance can be achieved.
  • a continuous web is cut
  • the rotary blade member preferably moves along the width direction of the continuous web as the intersecting direction.
  • the intersecting direction related to the moving direction of the rotary blade member is not the thickness direction of the continuous web but the width direction of the continuous web. Therefore, the size of the rotary blade member can be reduced. That is, when the rotary blade member is moved in the thickness direction of the continuous web to cut the continuous web, at least the rotary blade member having a diameter larger than the width of the continuous web must be used. When the size of the member is inevitably increased, if the rotary blade member is moved in the width direction of the continuous web, it can be avoided.
  • Such a continuous web cutting device The rotary blade member is guided so as to be capable of reciprocating in the width direction, The moving operation of the rotary blade member along the width direction performed during the restriction of the continuous web is preferably performed in the opposite direction to the movement operation of the rotary blade member performed during the immediately preceding restriction.
  • the cutting operation by the rotary blade member is bi-directional cutting that cuts the continuous web in both the forward and backward paths of the rotary blade member in the width direction. Therefore, the number of continuous web cuts per unit time can be increased, and productivity is improved.
  • the restricting portion has a feed mechanism that sends the continuous web relatively to the restricting portion in the predetermined direction,
  • the continuous web is fed into the cutting device at the conveyance speed value
  • the feeding mechanism relatively feeds the continuous web in the predetermined direction at a speed value obtained by subtracting the moving speed value from the transport speed value.
  • the feed mechanism of the restricting portion relatively moves the continuous web in a predetermined direction at a speed value obtained by subtracting the moving speed value of the restricting portion from the transport speed value of the continuous web. Therefore, the speed value in the absolute coordinate system of the continuous web can always be maintained at the same speed value as the transport speed value sent to the cutting device.
  • the continuous web having a plurality of fibers including tows along a predetermined direction is a method of cutting the continuous web while being spaced in the predetermined direction while being conveyed on a predetermined track along the predetermined direction,
  • the restricting portion restricts the relative movement of the continuous web with respect to the rotary blade member while the rotary blade member cuts the continuous web.
  • the rotary blade member cuts the continuous web while moving in a predetermined direction at the same speed value as the transport speed value of the continuous web. Therefore, it is not necessary to stop the conveyance of the continuous web when cutting the continuous web. Further, the restricting portion restricts relative movement of the continuous web in a predetermined direction with respect to the rotating blade member while the rotating blade member is cut. Therefore, the continuous web rampage that may be caused by the contact of the rotary blade member that moves in the crossing direction while rotating with the continuous web is effectively prevented, and as a result, good cutting performance can be achieved.
  • the continuous web is cut in the crossing direction by rotating the rotary blade member in the crossing direction, high cutting performance is achieved. Therefore, since it can cut reliably only by applying only the rotary blade member to the continuous web based on this high cutting property, it is not necessary to clamp the continuous web with a pair of blades at the time of cutting. Therefore, it is possible to surely suppress tow welding or pressure bonding at the position to be cut that may occur during the clamping. Further, the cut fibers such as tows are in contact with the disk surface of the disk-shaped rotating blade member immediately after the cutting of the fiber until the completion of the continuous web cutting by the rotating blade member, and are continuously generated by the rotation of the disk surface. Since it is unraveled in the thickness direction of the web, the fibers near the cutting position of the continuous web can be made soft and bulky, resulting in a bulky product that is produced by cutting the continuous web. Will be available.
  • FIG. 1 is a perspective view of a cleaning web member 1 as an example of a single-cut product 1 cut and generated using the cutting device 20 of the first embodiment.
  • 2A is a plan view of the same, and
  • FIG. 2B is a cross-sectional view taken along the line BB in FIG. 2A.
  • the planar shape of the cleaning web member 1 is a substantially rectangular shape having a longitudinal direction and a width direction as shown in FIGS. 1 and 2A. Moreover, as shown in FIG.1 and FIG.2B, about the thickness direction, the auxiliary
  • a fiber bundle member 5G that forms the main brush portion
  • hollow portions SP3 and SP3 for inserting and fixing the handle member 9 are defined.
  • the bifurcated insertion parts 9a and 9a of the handle member 9 are inserted into the hollow parts SP3 and SP3, and the lower surface of the cleaning web member 1 and both end parts in the width direction are used as a wiping surface for cleaning a desktop or the like. .
  • the fiber bundle member 5G is a member obtained by laminating a plurality of bundles of fiber bundles 5, 5... In the thickness direction.
  • a four-layer structure having four bundles of fiber bundles 5, 5... Stacked in the thickness direction is provided, but the number of fiber bundles 5, 5. Not exclusively.
  • Each fiber bundle 5 has, for example, tows having a fineness of 3.5 dtex (diameter: 18 to 25 ⁇ m) as a large number of long fibers.
  • the fineness of the tow is not limited to 3.5 dtex, and an arbitrary value may be selected from the range of 1.1 to 10 dtex (diameter of about 6 to about 60 ⁇ m).
  • each fiber bundle 5 may have a plurality of fineness tows in the range of 1.1 to 10 dtex.
  • Each tow is along the width direction of the web member 1 for cleaning. That is, the fiber direction of each tow (longitudinal direction of the tow) is along the width direction of the cleaning web member 1. Thereby, basically, both end portions in the width direction become tip portions of the brush portions. However, since these tows can be flexibly deformed flexibly, the tip of the tow bends to the lower surface side of the cleaning web member 1 so that the lower surface can also be the tip of the brush portion.
  • all the fibers of each fiber bundle 5 are composed of tows, but the present invention is not limited to this. That is, the fiber bundle 5 may contain fibers other than tow.
  • tow is a fiber composed of continuous filaments, and single component fibers such as PET (polyethylene terephthalate), PP (polypropylene), PE (polyethylene), and sheath / core are PE / PET or It is a composite fiber of PE / PP core-sheath structure, or a side-by-side type composite fiber such as PE / PET or PE / PP.
  • the cross-sectional shape may be a circle or other shapes.
  • the fibers may have crimps, in which case the crimping process is performed at the time of producing the filaments, and the number of crimps is increased by a preheating calendar or hot air treatment.
  • the crimped tow is transferred by a transfer roll. At this time, tension is applied in the longitudinal direction of the filament, and the tension is released. By repeating this process, continuous filaments of the tow are separated into individual pieces. To be opened.
  • the base sheet 2 and the auxiliary sheet 3 are both sheets having a substantially rectangular planar shape.
  • the width direction is set to be the same size, but the length of the base sheet 2 is set to be longer in the longitudinal direction, thereby assisting both ends 2e and 2e of the base sheet 2 in the longitudinal direction.
  • the auxiliary sheet 3 is laminated on the base sheet 2 in a state in which the sheet 3 protrudes outward from the both ends 3e, 3e in the longitudinal direction by a predetermined length.
  • both the base sheet 2 and the auxiliary sheet 3 are formed with zigzag cuts k, k... Along the width direction at intervals in the longitudinal direction at each end in the width direction. Yes. Then, a plurality of zigzag strips along the width direction are formed at the end portions in the width direction of the base sheet 2 and the auxiliary sheet 3 by the cuts k, k. However, these cuts k, k...
  • the base sheet 2 and the auxiliary sheet 3 are made of a nonwoven fabric containing thermoplastic fibers, for example.
  • thermoplastic fiber include PE, PP, PET fiber, a composite fiber of PE and PET (for example, a composite fiber having a core-sheath structure in which the core is PE and the sheath is PET), and a composite fiber of PE and PP (for example, the core is PE).
  • nonwoven fabric include a thermal bond nonwoven fabric, a spunbond nonwoven fabric, and a spunlace nonwoven fabric.
  • the material of the base sheet 2 and the auxiliary sheet 3 is not limited to the nonwoven fabric.
  • the strip sheet 7 is formed of a flexible sheet such as a nonwoven fabric containing thermoplastic fibers or a thermoplastic resin film, and is formed in a substantially rectangular shape having substantially the same plane size as the base sheet 2.
  • a zigzag cut (not shown) along the width direction is formed at each end in the width direction of the strip sheet 7 at intervals in the longitudinal direction.
  • a plurality of zigzag strips (not shown) along the width direction are formed at the end.
  • the strip sheet 7 may be omitted.
  • the fiber bundles 5, 5, 5, 5 and the strip sheets 7 of all the four bundles of the auxiliary sheet 3, the base sheet 2, and the fiber bundle member 5G are laminated in the thickness direction in this order, and FIG.
  • a plurality of welded joints J1, J2, J2... are integrally joined.
  • a first welded joint J1 is formed in a straight line along the longitudinal direction at the center position in the width direction, and the first welded joint J1 is used to form the entire cleaning web member 1 in the thickness direction.
  • the layers that is, all the configurations of the bundles 5, 5,... Of the four bundles of the fiber bundle member 5 ⁇ / b> G and the strip sheet 7) are joined by welding.
  • a plurality of island-like second welded joints J2, J2,... are formed intermittently along the longitudinal direction at each position spaced apart on both sides in the width direction of the first welded joint J1.
  • the main formation purpose of the second welded joint portion J2 is described above for inserting and fixing the handle member 9 between the auxiliary sheet 3 and the base sheet 2 in cooperation with the first welded joint portion J1.
  • the bundles 5 and 5 are joined, but the two bundles of fiber bundles 5 and 5 located on the lower layer side and the strip sheet 7 located on the further lower layer side are not joined.
  • These welded joints J1, J2, J2,... Are formed by, for example, an ultrasonic welding process.
  • FIG. 3 is a schematic diagram showing a state before cutting. At this time, all the components 3, 2, 5, 5, 5, 5, 7 of the cleaning web member 1 such as the base sheet 2 and the fiber bundle 5 are already laminated and integrally welded, The individual cleaning web members 1 are not yet divided, that is, the parts 1U, 1U, ... corresponding to the cleaning web members 1, 1 ... along the transport direction of the production line are continuously produced in the transport direction. It is in the state of the continuum 1a arranged at the pitch P1.
  • the auxiliary sheet 3, the base sheet 2, and the strip sheet 7 are each in a continuous sheet state continuous in the transport direction, and each fiber bundle 5, 5... Is also continuous in the transport direction.
  • the continuous body 1a related to the cleaning web member 1 is referred to as “semi-finished product 1a”, and the portion 1U corresponding to the cleaning web member 1 in the semi-finished product 1a is also referred to as “unit semi-finished product 1U”.
  • the semi-finished product 1a corresponds to a “continuous web” according to the claims.
  • the semi-finished product 1a is transported in a so-called “lateral flow” transport mode. That is, the direction corresponding to the width direction of the cleaning web member 1 which is the single-cut product 1 is conveyed in a state in which the direction is in the conveyance direction. Then, the semi-finished product 1a is cut using the boundary position 1BL between the unit semi-finished products 1U and 1U adjacent to each other in the transport direction as the cutting target position PC, thereby generating the cleaning web member 1 as the single-cut product 1 Is done.
  • the conveyance direction of the semi-finished product 1a is also referred to as “MD direction” or “front-rear direction”, and is perpendicular to the conveyance direction.
  • the width direction of the semi-finished product 1a is also referred to as the CD direction.
  • the thickness direction of the semi-finished product 1a is in the vertical direction, which is the vertical direction.
  • FIG. 4A is a schematic side view of the cutting device 20 of the first embodiment
  • FIG. 4B is a view taken along the line BB in FIG. 4A
  • FIG. 4C is a view taken along the line CC in FIG. 4A.
  • FIG. 5A to 5I are schematic side views showing a state in which the cutting device 20 generates the single-cut product 1 by cutting the semi-finished product 1a.
  • the structure may be omitted for the purpose of preventing the illustrations from being complicated, and for the same purpose, hatching that should originally be shown in the cross-section is omitted. Sometimes.
  • a conveying device 12 such as a belt conveyor is provided at a position upstream of the cutting device 20 in the MD direction, and a conveying device 14 such as a belt conveyor is also provided at a downstream position.
  • the semi-finished product 1a sent from the upstream transport device 12 to the cutting device 20 at a predetermined entry-side transport speed value V1ai is a transport track Tr1a (corresponding to a predetermined track) set linearly along the MD direction.
  • Is cut into a single-cut product 1 by the cutting device 20 during movement at the same transfer speed value V1a as the above-mentioned input-side transfer speed value V1ai, and the cut-form product 1 cut and generated is
  • the sheet is sent to the downstream conveyance device 14 at the same conveyance speed value V1a as the conveyance speed value V1ai.
  • the semi-finished product 1a and the single-cut product 1 are not transported at all, and the semi-finished product 1a is maintained while maintaining the same transport speed value V1a as the above-described entrance-side transport speed value V1ai. Cutting can be performed, thereby improving productivity.
  • a controller for controlling the upstream and downstream transfer devices 12 and 14 receives a synchronization signal to synchronize with other devices on the production line, and the semi-finished product 1a based on this synchronization signal.
  • the transport operation is performed.
  • This synchronization signal is output from a rotation detection sensor such as a rotary encoder that measures the transport amount of the semi-finished product 1a in an apparatus serving as a reference for a production line.
  • the synchronization signal assigns each rotation angle value from 0 ° to 360 ° in proportion to the conveyance amount, with the conveyance amount for one unit semi-finished product 1U (that is, the product pitch P1) as the unit conveyance amount. Is a rotation angle signal.
  • the synchronization signal is not limited to any rotation angle signal.
  • a digital signal obtained by assigning each digital value of 0 to 8191 to the unit carry amount in proportion to the carry amount may be used as the synchronization signal, or the number of pulses proportional to the carry amount may be used as the synchronization signal.
  • the rotation angle may be detected by counting the number of pulses of the same signal.
  • the cutting device 20 has a reciprocating unit 21 that reciprocates between a downstream advance limit Pf and an upstream retract limit Pb in the MD direction along the transport track Tr1a.
  • the reciprocating unit 21 reciprocates using the movement from the backward limit Pb to the forward limit Pf as the forward path (FIGS. 5A to 5G) and the movement from the forward limit Pf to the backward limit Pb as the backward path (FIGS. 5G to 5G).
  • FIG. 5I shows that reciprocates between a downstream advance limit Pf and an upstream retract limit Pb in the MD direction along the transport track Tr1a.
  • the reciprocating unit 21 reciprocates using the movement from the backward limit Pb to the forward limit Pf as the forward path (FIGS. 5A to 5G) and the movement from the forward limit Pf to the backward limit Pb as the backward path (FIGS. 5G to 5G).
  • the reciprocating unit 21 includes a cutting mechanism 30 that cuts the semi-finished product 1a with the rotary blade 31, and a rotation while the rotary blade 31 is cutting the semi-finished product 1a.
  • a regulation unit 50 that regulates the relative movement of the semifinished product 1a with respect to the blade 31 in the MD direction is mounted, and the cutting mechanism 30 and the regulation unit 50 reciprocate along the MD direction together with the reciprocation unit 21 ( 5A to 5I).
  • a constant speed region Re in which the reciprocating unit 21 moves at the same movement speed value V21 as the conveyance speed value V1a of the semi-finished product 1a is set in a part of the forward path.
  • the rotary blade 31 moves in the CD direction (corresponding to the crossing direction) and cuts the semi-finished product 1a (FIGS. 5C to 5E).
  • the semi-finished product 1a can be cut while maintaining the above-mentioned conveyance speed value V1a without stopping the semi-finished product 1a. Further, while the rotary blade 31 is being cut, the restricting portion 50 regulates the relative movement of the semi-finished product 1a with respect to the rotary blade 31 in the MD direction and the vertical direction. Is effectively prevented, and as a result, good cutting properties can be achieved.
  • the reciprocating unit 21 is reciprocated between the forward limit Pf and the reverse limit Pb in the MD direction by an MD direction reciprocating mechanism (corresponding to a reciprocating mechanism).
  • the MD direction reciprocating mechanism includes a guide member 23 installed on a base Bs such as a floor portion of a production line, and a servo motor (not shown) as a drive source.
  • the guide member 23 is, for example, a linear guide 23, and guides the reciprocating unit 21 so that it can reciprocate along the MD direction parallel to the above-described transport track Tr1a.
  • the rotation operation of the servo motor is converted into a linear movement operation in the MD direction via an appropriate motion conversion mechanism such as a feed screw mechanism and transmitted to the reciprocating movement unit 21. Therefore, the reciprocating unit 21 is moved along the forward path if the servo motor performs forward rotation, and is moved along the return path if the servo motor performs reverse rotation.
  • This servo motor performs position control based on a position command signal (control signal) transmitted from the outside. That is, this servo motor has an amplifier (not shown) having a position detection element capable of detecting the actual position. Therefore, if an arbitrary position between the forward limit Pf and the reverse limit Pb is given as the target position, the servo motor can set the target in the MD direction based on the feedback signal of the actual position from the position detection element of the amplifier.
  • the reciprocating unit 21 can be moved to a position.
  • the target position data is transmitted from the controller 80 to the servo motor in the form of a position command signal, and the servo motor operates based on the position command signal.
  • the cutting mechanism 30 is disposed at the approximate center in the MD direction in the reciprocating unit 21.
  • the cutting mechanism 30 includes a rotary blade 31, a support base 33 that rotatably supports the rotary blade 31, a CD direction reciprocating mechanism that reciprocates the support base 33 in the CD direction, Have
  • the rotary blade 31 has a circular disc as a main body, and an acute edge is formed over the entire periphery of the outer peripheral edge.
  • the rotary blade 31 is integrally provided with a rotation axis C31 concentrically with the center of the circle and along the MD direction.
  • the rotation axis C31 is supported by the above-described support base via a bearing (not shown). 33 is supported.
  • the support base 33 is provided with a motor (not shown) as a drive source for driving and rotating the rotary blade 31 around the rotation axis C31. Then, the rotational force of the motor is transmitted to the rotary blade 31 by an appropriate power transmission mechanism (not shown) such as a winding transmission device, whereby the rotary blade 31 is continuously driven in one direction at a predetermined peripheral speed. It is rotated.
  • a motor not shown
  • an appropriate power transmission mechanism such as a winding transmission device
  • the CD direction reciprocating mechanism includes a guide member 35 that guides the support base 33 of the rotary blade 31 so as to reciprocate in the CD direction, and a drive mechanism that reciprocates the support base 33 in the CD direction.
  • the guide member 35 is, for example, a linear guide 35.
  • the drive mechanism includes a servo motor as a drive source and an appropriate motion conversion mechanism that converts the rotation operation of the servo motor into a linear movement operation in the CD direction and transmits it to the support base 33.
  • the servo motor rotates in the forward direction, the rotary blade 31 is moved from one end side to the other end side in the CD direction via the support base 33, and if it rotates in the reverse direction, from the other end side. Move to one end.
  • the servo motor operates based on an operation command signal that commands a forward or reverse rotation operation. For example, the servo motor rotates when the operation command signal is ON, and stops when the operation command signal is OFF. This operation command signal is transmitted from the controller 80 toward the servo motor.
  • the stroke amounts of the forward path and the return path related to the reciprocating movement in the CD direction are set to such a distance that the rotary blade 31 can traverse in the CD direction over the entire width of the semi-finished product 1a. Therefore, the rotary blade 31 is rotated by rotating from one end side in the CD direction to the other end side or moving from the other end side in the CD direction to the one end side while being driven and rotated around the rotation axis C31.
  • the semi-finished product 1 a is cut with the cutting edge of the blade 31.
  • the restriction unit 50 includes an upstream restriction mechanism 51 and a downstream restriction mechanism 55.
  • the upstream side regulation mechanism 51 is disposed at a position upstream of the installation position of the rotary blade 31 in the MD direction, and regulates the relative movement of the semi-finished product 1a at the upstream side position.
  • the downstream side regulation mechanism 55 is disposed at a position downstream of the installation position of the rotary blade 31 and regulates the relative movement of the semi-finished product 1a at the downstream side position.
  • these regulating mechanisms 51 and 55 have a function of transporting the semi-finished product 1a in the MD direction in the reciprocating unit 21 in addition to the function of regulating the relative movement of the semi-finished product 1a.
  • the reason for this is that in the reciprocating unit 21, the semi-finished product 1 a is cut to produce the single-cut product 1, so that the transport of the semi-finished product 1 a and the single-cut product 1 in the reciprocating unit 21 is as described above. This is because it cannot be performed by the external transfer devices 12 and 14. That is, a self-conveying mechanism for transporting the semi-finished product 1a and the cut sheet product 1 is required in the reciprocating unit 21, and this transport mechanism is connected to the above-described upstream side regulating mechanism 51 and downstream side regulating mechanism 55. I am also allowed to serve.
  • each of the upstream side regulation mechanism 51 and the downstream side regulation mechanism 55 has a pair of upper and lower endless belts 52, 52 (56, 56) disposed so as to face each other. is doing. And between the endless belts 52, 52 (56, 56), the above-mentioned transport track Tr1a of the semi-finished product 1a is set, and the semi-finished product 1a is an outer periphery of the endless belts 52, 52 (56, 56). A slight pressure is applied between the surfaces in the thickness direction.
  • Each endless belt 52 (56) is wound around a pair of rollers 53, 53 (57, 57) provided side by side in the MD direction.
  • At least one of the pair of rollers 53 and 53 (57, 57) is driven and rotated by a servo motor (not shown) as a drive source, and thereby each endless belt 52, 52 (56, 56) is rotated. It is possible to send the semi-finished product 1a in the MD direction via the drive circuit.
  • the transport speed value V1a in the absolute coordinate system of the semi-finished product 1a transported in the 21 is the aforementioned entrance-side transport speed value V1ai, that is, the transport speed value of the semi-finished product 1a immediately upstream in the MD direction of the cutting device 20. It becomes possible to maintain the same speed value as V1ai. Details are as follows.
  • the speed value related to the reciprocating movement of the reciprocating unit 21 is set to “moving speed value V21”, and the regulating unit 50 (the upstream regulating mechanism 51 and the downstream regulating mechanism 55) sends the semi-finished product 1a relatively in the MD direction.
  • the relative speed value is “relative feed speed value V50”
  • the transport speed value V1a of the semi-finished product 1a in the absolute coordinate system is obtained by adding the travel speed value V21 of the reciprocating unit 21 and the relative feed speed value V50. It is a speed value.
  • the relative feed speed value V50 is sequentially adjusted according to the movement speed value V21 so that the target relative feed speed value V50m determined by the following formula 1 is obtained, the semi-finished product 1a and the single-cut product in the reciprocating movement unit 21 are obtained.
  • the semi-finished product 1a and the sheet-like product 1 in the reciprocating unit 21 can be conveyed while maintaining the conveyance speed value V1a in the absolute coordinate system 1 at the entry-side conveyance speed value V1ai.
  • V50m (m / min) V1ai (m / min) ⁇ V21 (m / min) (1)
  • the speed value V21 when the unit 21 moves downstream in the MD direction is a positive value
  • V21 is a negative value
  • the target relative feed speed value V50m is a positive value
  • the semi-finished product 1a is sent to the downstream side in the MD direction relative to the reciprocating unit 21 (regulator 50)
  • the target relative feed speed value V50m is a negative value. Is sent relatively upstream in the MD direction.
  • the actual value of the moving speed value V21 is measured in real time by a detector such as an encoder and is sequentially transmitted to the controller 80.
  • the controller 80 performs the calculation of the above equation 1 to control the relative feed speed value V50.
  • the semi-finished product 1a is not moved relative to the rotary blade 31 in the MD direction.
  • the semi-finished product 1 a is in a state where the relative movement in the MD direction is further restricted in addition to the restriction of the relative movement in the vertical direction with respect to the rotary blade 31.
  • the rampage of the semi-finished product 1a during cutting is effectively prevented, and the rotary blade 31 can exhibit high cutting performance.
  • the moving speed value V21 becomes a value different from the entry-side transport speed value V1ai.
  • the relative feed speed values V50 of the upstream side regulation mechanism 51 and the downstream side regulation mechanism 55 are not zero. Therefore, the semi-finished product 1a is moved relative to the rotary blade 31 in the MD direction. That is, the restriction on the relative movement in the MD direction of the semi-finished product 1a by the upstream side regulation mechanism 51 and the downstream side regulation mechanism 55 is released almost simultaneously with leaving the constant velocity region Re.
  • the controller 80 is an appropriate computer or sequencer, and has a processor and a memory (not shown). Further, the above-described synchronization signal is input to the controller 80. Based on this synchronization signal, the controller 80 controls the MD direction reciprocating mechanism of the reciprocating unit 21, the CD direction reciprocating mechanism of the cutting mechanism 30, the regulating unit 50, and the like.
  • the position command signal is transmitted as a control signal, while toward the servo motor of the CD direction reciprocating mechanism of the cutting mechanism 30. Transmits the above-described operation command signal as a control signal, and further, to each servo motor of the upstream side regulation mechanism 51 and the downstream side regulation mechanism 55 of the regulation unit 50, the above-mentioned target relative feed speed value as a control signal.
  • a speed command signal indicating V50m is transmitted.
  • a control program related to the above-described control is stored in advance in the memory of the controller 80.
  • the memory stores a calculation program for calculating the target relative feed speed value V50m of the restricting unit 50 based on the above-described equation 1, and the memory also stores the reciprocating unit 21 in the MD direction.
  • the data of the operation pattern that defines the operation and the data that defines the ON / OFF state of the operation command signal of the reciprocating mechanism in the CD direction of the cutting mechanism 30 are also stored in advance.
  • the processor reads and executes the corresponding control program and data from the memory as needed, thereby controlling the MD direction reciprocating mechanism, the CD direction reciprocating mechanism, and the upstream side regulating mechanism 51 and the downstream side regulating mechanism. Control of the mechanism 55 is realized.
  • FIG. 6 is an explanatory diagram of data of the operation pattern of the reciprocating movement operation in the MD direction of the reciprocating movement unit 21 (pattern indicating the correspondence between the target position in the MD direction of the reciprocating movement unit 21 and the rotation angle value of the synchronization signal). It is.
  • the vertical axis is the target position in the MD direction.
  • the horizontal axis represents the rotation angle value corresponding to the synchronization signal, that is, the unit transport amount corresponding to the transport amount of one unit semi-finished product 1U (product pitch P1) is assigned to each value of 0 ° to 360 °. It is. 360 ° is also 0 °.
  • FIG. The ON / OFF state of the command signal is also shown.
  • the controller 80 acquires a target position corresponding to the rotation angle value of the synchronization signal from the data of the operation pattern in the memory at a predetermined control cycle, and reciprocates in the MD direction using the acquired target position data as a position command signal. Send to mechanism servo motor. Then, the servo motor operates so that the reciprocating unit 21 moves to the target position of the position command signal, whereby the reciprocating unit 21 reciprocates in the operation pattern of FIG.
  • an acceleration region that is mainly accelerated and a constant movement speed value V21 are used.
  • a speed range and a deceleration range that mainly decelerates are set.
  • an acceleration region that mainly accelerates and a main deceleration is set.
  • the moving speed value V21 in the constant speed region of the forward path is set to the same speed value as the entry-side transport speed value V1ai in the MD direction of the semi-finished product 1a.
  • the rotary blade 31 and the regulating unit 50 mounted on the reciprocating unit 21 move at a moving speed value V21 that is the same as the incoming-side transport speed value V1ai that is the transport speed value V1a of the semi-finished product 1a.
  • the speed range is set to Re.
  • the ON state of the operation command signal of the rotary blade 31 is set in a predetermined rotation angle value range RON corresponding to a substantially central region in the constant velocity region Re.
  • the controller 80 switches the operation command signal to the CD direction reciprocating mechanism from the OFF state to the ON state.
  • the rotary blade 31 moves, for example from the one end side of CD direction to the other end side, and the semi-finished product 1a is cut
  • the controller 80 turns off the operation command signal, and thereby the movement of the rotary blade 31 in the CD direction is stopped. Then, the process waits at the other end until the operation command signal switches from the OFF state to the ON state.
  • the rotation direction of the servo motor indicated by this operation command signal is changed to the opposite direction of the rotation direction immediately before it, for example, every time it is turned on.
  • the blade 31 moves from the other end side in the CD direction to one end side to cut the semi-finished product 1a. Thereafter, the above process is repeated, whereby the single-cut product 1 is generated from the semi-finished product 1a by the bidirectional cutting operation.
  • the rotation angle value range RON associated with the ON state of the movement of the rotary blade 31 in the CD direction is completely included in the forward constant velocity region Re. Therefore, the cutting of the semi-finished product 1a by the rotary blade 31 is performed in a state where the moving speed value V21 in the MD direction of the reciprocating unit 21 is completely equal to the conveying speed value V1a of the semi-finished product 1a. That is, the rotary blade 31 cuts the semi-finished product 1a while moving in the MD direction at the same movement speed value V21 as the conveyance speed value V1a of the semi-finished product 1a. Therefore, it is not necessary to stop the conveyance of the semi-finished product 1a when cutting the semi-finished product 1a.
  • the relative feed speed value V50 of the semifinished product 1a by the restricting unit 50 is zero, so that the semifinished product 1a is relative to the rotary blade 31 in the MD direction. Cannot move. That is, the regulation unit 50 regulates the relative movement of the semi-finished product 1 a in the MD direction with respect to the rotary blade 31. And since the rotary blade 31 cut
  • the operation pattern of the reciprocating motion of the reciprocating unit 21 is not limited to the example of FIG. 6 and may be appropriately changed according to the actual situation.
  • each fiber bundle 5 can be brought into a bulky state immediately after cutting.
  • 7A to 7C are explanatory views showing that the fiber bundle 5 of the tow is processed to be bulky by the rotary blade 31 in association with the cutting operation by the rotary blade 31, and from one end to the other end in the CD direction. And a state in which the rotary blade 31 moves.
  • the semi-finished product 1a being cut by the rotary blade 31 has both a cut portion A1 through which the blade has passed and an uncut portion A2 through which the blade has not passed.
  • each tow of the cut portion A1 by the rotation of each disk surface 31s is a semi-finished product 1a as indicated by an arrow in FIG. 7B.
  • the tow fiber bundles 5 are dispersed in the thickness direction and processed into a fluffy and bulky state. Therefore, according to this cutting device 20, the cut sheet-like product 1 is sent to the lower process in a bulky state as shown in the right figure of FIG. 7D, not in a low bulky state as shown in the left figure of FIG. 7D. Therefore, it is not necessary to perform a special bulky process separately in the lower process or the like, and the cleaning web member 1 as the single-cut product 1 having a high dust trapping property can be shipped quickly.
  • the position of the rotation axis C31 of the rotary blade 31 and the center position C1a in the thickness direction of the semi-finished product 1a are set a predetermined distance in the thickness direction of the semi-finished product 1a.
  • the reason is shifted by D1, for the following reason.
  • the semi-finished product 1a when the position of the rotary shaft C31 and the center position C1a of the semi-finished product 1a coincide with each other in the thickness direction, as shown in FIG. 8B, the semi-finished product 1a
  • the moving direction of the cutting edge of the rotary blade 31 at a position in contact with the rotary blade 31 is parallel to the thickness direction of the semi-finished product 1a. Becomes worse.
  • the following problems can be solved. That is, when the rotation axis C31 and the center position C1a of the semi-finished product 1a coincide with each other as in the comparative example of FIG. 8B, the rotating shaft C31 being cut is cut into the semi-finished product 1a as shown in FIG. 8C.
  • the surface A1a is moved in the CD direction.
  • a part 33p of the support base 33 is generally present at the position of the rotation axis C31 so as to support the rotation axis C31.
  • the total MD direction thickness of 33p is considerably thicker than the thickness of the single rotary blade 31.
  • the size of the predetermined distance D1 is determined in consideration of the size of the part 33p so that the part 33p does not hit the semi-finished product 1a.
  • the upstream side regulation mechanism 51 and the downstream side regulation mechanism 55 are respectively positions in the vicinity of the cutting target position PC in the semi-finished product 1a. It is good to be comprised so that pinching is possible.
  • the clamping position PP51 by the upstream regulating mechanism 51 is the position of the unit semi-finished product 1U located next to the upstream side of the unit semi-finished product 1U. It is good to be comprised so that it may be located downstream from the 1st welding junction part J1.
  • the setting of the pinching positions PP51 and PP55 to such positions is realized, for example, as follows.
  • the diameter Dd of the rollers 53a, 53b, 57a, 57b involved in the clamping pressure is made smaller than the product dimension Lmd in the MD direction of the cleaning web member 1 (in order to realize more surely, it is half of the product dimension Lmd).
  • an inter-axis distance Dc rotation center
  • rollers 53a, 53b, 57a, 57b involved in clamping pressure are the following four rollers 53, 53, 57, 57. That is, the roller 57a is a roller 57 located on the upstream side of the pair of rollers 57, 57 for the upper endless belt 56 in the downstream side regulation mechanism 55 in FIG. 4A, and the roller 57b. This is the roller 57 positioned on the upstream side of the pair of rollers 57 and 57 for the lower endless belt 56 in the downstream side regulation mechanism 55. Further, the roller 53a is a roller 53 positioned on the downstream side of the pair of rollers 53, 53 for the upper endless belt 52 in the upstream side regulation mechanism 51 in FIG. 4A. 53b is a roller 53 positioned on the downstream side of the pair of rollers 53, 53 for the lower endless belt 52 in the upstream side regulation mechanism 51.
  • FIG. 10A and FIG. 10B are explanatory diagrams of modified examples of the first embodiment, and both drawings are shown in a schematic side view.
  • differences are mainly described, the same components are denoted by the same reference numerals, and the description thereof is omitted.
  • the first modification shown in FIG. 10A is different in that a single roller 59 is provided instead of the endless belt 56 on the upper side of the downstream regulating mechanism 55. And this roller 59 is clamping the semi-finished product 1a from the thickness direction with the endless belt 56 of the lower side.
  • the roller 59 is preferably configured to be driven and rotated by a driving source such as a servo motor. In this case, the semi-finished product 1a is moved in the MD in conjunction with the driving rotation of the lower endless belt 56. It can be smoothly fed in the direction, which effectively prevents the conveyance of the semi-finished product 1a.
  • FIG. 10B is different in that a single roller 54 is provided in place of the endless belt 52 on the upper side of the upstream side regulation mechanism 51. And this roller 54 is clamping the semi-finished product 1a from the thickness direction with the lower endless belt 52.
  • the roller 54 is also preferably configured to be driven and rotated by a drive source such as a servo motor. In this case, the semi-finished product 1a is moved to the MD in conjunction with the driving rotation of the lower endless belt 52. It can be smoothly fed in the direction, which effectively prevents the conveyance of the semi-finished product 1a.
  • FIG. 11A is a schematic side view of the cutting device 20a of the second embodiment
  • FIG. 11B is a view taken along the line BB in FIG. 11A.
  • the cutting device 20a of the second embodiment is mainly different from the first embodiment in that the moving direction of the rotary blade 31 is not in the CD direction but in the thickness direction (corresponding to the crossing direction) of the semi-finished product 1a.
  • the other points are generally the same as those in the first embodiment. Therefore, below, the same code
  • the thickness direction of the semi-finished product 1a is along the vertical direction, which is the vertical direction. Therefore, hereinafter, the thickness direction of the semi-finished product 1a is also referred to as “vertical direction”. To tell.
  • Such reciprocation of the rotary blade 31 is realized as follows.
  • the cutting mechanism 30 a is mounted on the reciprocating unit 21.
  • the cutting mechanism 30a is configured such that the rotary blade 31 that is driven and rotated supports the support base 33a, an appropriate guide member 35a such as a linear guide that guides the support base 33a so as to be reciprocally movable in the vertical direction, and the support base 33a in the vertical direction.
  • a drive mechanism (not shown) that reciprocates.
  • the drive mechanism includes a servo motor as a drive source, and an appropriate motion conversion mechanism that converts the rotation operation of the servo motor into a linear movement operation in the vertical direction and transmits it to the support base.
  • each stroke amount of the forward path and the return path is set to such a distance that the entire rotary blade 31 can traverse the semi-finished product 1a in the vertical direction, whereby the semi-finished product 1a is completely cut.
  • the position in the CD direction of the rotation axis C31 of the rotary blade 31 is arranged outside the edge 1ae in the CD direction of the semi-finished product 1a. This is for the same reason as described in the first embodiment, that is, to prevent a part 33ap of the support base 33a from interfering with the semi-finished product 1a and being unable to cut smoothly during cutting.
  • the radius R31 of the rotary blade 31 is lower so that the semi-finished product 1a can be cut over the entire width even in the state where the rotational axis C31 is greatly displaced in the CD direction from the center position M1a of the semi-finished product 1a.
  • a value larger than the value Rs calculated by Equation 2 is set.
  • Rs width W1a of semi-finished product 1a + Distance DC31 in the CD direction between the edge 1ae of the semi-finished product 1a and the rotation axis C31 (2)
  • FIG. 12A and 12B are explanatory diagrams thereof.
  • the position of the rotation axis C31 of the rotary blade 31 is matched with the center position M1a in the CD direction of the semi-finished product 1a, that is, these positions are not shifted in the CD direction.
  • the cutting direction of the rotary blade 31 at the position in contact with the semi-finished product 1a is parallel to the width direction (CD direction) of the semi-finished product 1a.
  • a large cutting resistance acts on the rotary blade 31 and the cutting performance deteriorates.
  • the size of the rotary blade 31 becomes larger than that of the first embodiment, and therefore the size of the rotary blade 31 is reduced. From the viewpoint, the first embodiment is more desirable.
  • the semi-finished product 1a related to the cleaning web member 1 is shown as an example of the continuous web 1a, but the present invention is not limited to this. That is, the present invention is not limited to the above as long as it is a continuous web 1a continuous in the conveying direction having a plurality of fibers including tows.
  • both the cutting mechanism 30 and the restricting portion 50 are mounted on the reciprocating unit 21, and both the cutting mechanism 30 and the restricting portion 50 are integrally reciprocated in the MD direction by the reciprocating movement of the unit 21. It was moved, but it is not limited to this.
  • the reciprocating unit 21 is divided into an upper unit located above the semi-finished product 1a and a lower unit located below, and each unit is driven by a dedicated guide member and a driving source. Also good.
  • the upper unit is equipped with the upper endless belt 52 and its rollers 53 and 53 on the upstream side regulation mechanism 51, and the upper endless belt 56 and its rollers 57 and 57 on the downstream side regulation mechanism 55.
  • the lower unit includes a lower endless belt 52 on the lower side of the upstream regulation mechanism 51 and its rollers 53, 53, a lower endless belt 56 on the downstream side regulation mechanism 55 and its rollers 57, 57, and a cutting unit.
  • a mechanism 30 is mounted. Further, both the drive source for reciprocating the upper unit in the MD direction and the drive source for reciprocating the lower unit in the MD direction are connected to each other on the basis of the above-described synchronization signal. Are controlled by the controller 80 so as to perform the same reciprocating motion.
  • the cutting edge of the rotary blade 31 has not been described in detail.
  • the cutting edge may be a smooth cutting edge having no recess over the entire circumference of the outer peripheral edge of the rotating blade 31, or A cutting edge in which a plurality of concave portions are arranged along the outer peripheral edge of the rotary blade 31 may be used.
  • tip when the latter blade edge
  • examples of the cutting edge having such a recess include a saw blade, but are not limited thereto.
  • a notch formed by cutting off at a depth exceeding 2 ⁇ m (the radial dimension of the rotary blade 31) when the blade edge is polished is also included in the concept of the recess.
  • This depth should be 5 ⁇ m or less, so that melting of the tow sticking to the cutting edge can be suppressed, and high cutting performance can be maintained for a long time.
  • the angle ⁇ 31 of the blade edge (FIG. 4B), that is, the angle ⁇ 31 formed between the two disk surfaces 31s, 31s in the thickness direction of the rotary blade 31 at the outer peripheral edge portion is set in the range of 15 ° to 20 °. If set within this range, from the viewpoint of improving the life, it is possible to achieve high cutting performance while effectively suppressing chipping of the cutting edge during polishing, which is likely to occur when a cemented carbide is used as the material of the rotary blade 31. Can do.
  • the rotation axis C31 of the rotary blade 31 is provided in parallel to the normal direction of the both board surfaces 31s and 31s.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

 所定方向に沿ったトウを含む複数の繊維を有する連続ウエブが、所定方向に沿った所定軌道を搬送される間に、前記所定方向に間隔をあけながら前記連続ウエブを切断する装置である。前記所定方向に沿った回転軸回りに回転しながら、前記所定方向と交差する交差方向に移動することにより、前記連続ウエブを切断する円盤状の回転刃部材と、前記回転刃部材が前記連続ウエブを切断している間に亘って、前記回転刃部材に対する前記連続ウエブの前記所定方向の相対移動を規制する規制部と、前記回転刃部材及び前記規制部の両者を前記所定軌道と平行な往路及び復路に沿って移動させる往復移動機構と、を有する。前記往路には、前記回転刃部材及び前記規制部の両者が前記連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されている。前記等速域を移動中に、前記回転刃部材が前記連続ウエブを切断する。

Description

トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法
 本発明は、トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法に関する。
 従来、柄部材が差し込まれて、卓上等の清掃に使用可能な状態となる清掃用ウエブ部材が知られている(特許文献1)。そして、かかる清掃用ウエブ部材は、基材シートに複数の繊維を積層したものを本体とし、当該繊維には、トウという熱可塑性繊維が使用される。 
 そして、この清掃用ウエブ部材の製造ラインでは、搬送方向に沿って連続する基材シートに、繊維方向を搬送方向に沿わせた複数のトウを溶着等で基材シートに固定することにより、半製品として搬送方向に連続する連続ウエブを生成し、最後に、かかる連続ウエブを搬送方向に製品ピッチで切断することにより、単票状の清掃用ウエブ部材を製造する。
特開2005-40641号
 ここで、連続ウエブを切断する方法の一例として、連続ウエブを間欠搬送しながら、その搬送停止中に、上刃を、連続ウエブの厚さ方向の逆側に位置する下刃の方に移動して、上刃と下刃とで連続ウエブを剪断することが挙げられる。 
 しかしながら、この方法では、切断の度に、連続ウエブを搬送停止しなければならず、生産性が悪い。 
 また、連続ウエブに係るトウは熱可塑性樹脂繊維である。そのため、剪断時に上刃と下刃との間の搬送方向のクリアランスにて生じ得る搬送方向の挟圧によって、切断対象位置のトウ同士が溶着や圧着し易く、その結果、切断端縁が袋とじ状に綴じてしまって刷毛部としての性能(清掃時に埃をからめ取る性能)を損ねる虞がある。 
 更に、切断端縁が袋とじ状に綴じてしまうと、清掃用ウエブ部材の嵩が小さくなってしまい、このことも刷毛部の性能低下に繋がる。
 本発明は、上記のような従来の問題に鑑みてなされたものであって、その目的は、所定方向に沿ったトウを含む複数の繊維を有する連続ウエブを、所定方向に間隔をあけながら切断する装置及び方法であって、連続ウエブの搬送を停止せずに連続ウエブを切断できるとともに、切断対象位置でのトウの圧着や溶着を抑制しつつ良好な切断性を奏し、更に、連続ウエブを切断して生成される単票状製品を嵩高な状態にすることが可能な切断装置及び切断方法を提供することにある。
 上記目的を達成するための主たる発明は、
 所定方向に沿ったトウを含む複数の繊維を有する連続ウエブが、所定方向に沿った所定軌道を搬送される間に、前記所定方向に間隔をあけながら前記連続ウエブを切断する装置であって、
 前記所定方向に沿った回転軸回りに回転しながら、前記所定方向と交差する交差方向に移動することにより、前記連続ウエブを切断する円盤状の回転刃部材と、
 前記回転刃部材が前記連続ウエブを切断している間に亘って、前記回転刃部材に対する前記連続ウエブの前記所定方向の相対移動を規制する規制部と、
 前記回転刃部材及び前記規制部の両者を前記所定軌道と平行な往路及び復路に沿って移動させる往復移動機構と、を有し、
 前記往路には、前記回転刃部材及び前記規制部の両者が前記連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されており、
 前記等速域を移動中に、前記回転刃部材が前記連続ウエブを切断することを特徴とする連続ウエブの切断装置である。
 また、
 所定方向に沿ったトウを含む複数の繊維を有する連続ウエブが、所定方向に沿った所定軌道を搬送される間に、前記所定方向に間隔をあけながら前記連続ウエブを切断する方法であって、
 前記所定方向に沿った回転軸回りに回転しながら、前記所定方向と交差する交差方向に移動することにより、前記連続ウエブを切断する円盤状の回転刃部材と、
 前記回転刃部材に対する前記連続ウエブの前記所定方向の相対移動を規制可能な規制部と、
 前記回転刃部材及び前記規制部の両者を前記所定軌道と平行な往路及び復路に沿って移動させる往復移動機構と、を用い、
 前記往路において、前記回転刃部材及び前記規制部の両者を、前記連続ウエブの搬送速度値と同じ速度値で移動することと、
 前記同じ速度値で移動することにおいて、前記回転刃部材が前記連続ウエブを切断することと、
 前記回転刃部材が前記連続ウエブを切断している間に亘って、前記規制部が前記回転刃部材に対する前記連続ウエブの前記相対移動を規制することと、を有することを特徴とする連続ウエブの切断方法である。
 本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
 本発明によれば、所定方向に沿ったトウを含む複数の繊維を有する連続ウエブを、所定方向に間隔をあけながら切断する装置及び方法であって、連続ウエブの搬送を停止せずに連続ウエブを切断できるとともに、切断対象位置でのトウの圧着や溶着を抑制しつつ良好な切断性を奏し、更に、連続ウエブを切断して生成される単票状製品を嵩高な状態にすることが可能な切断装置及び切断方法を提供することができる。
清掃用ウエブ部材1の斜視図である。 図2Aは清掃用ウエブ部材1の平面図であり、図2Bは、図2A中のB-B断面図である。 清掃用ウエブ部材1の切断前の状態たる半製品1aの概略図である。 図4Aは、第1実施形態の切断装置20の概略側面図であり、図4Bは、図4A中のB-B矢視図であり、図4Cは、図4A中のC-C矢視図である。 図5A乃至図5Iは、切断装置20が半製品1aを切断することで単票状の清掃用ウエブ部材1を生成する様子を示す概略図である。 図6は、往復移動ユニット21のMD方向の往復移動動作の動作パターンのデータの説明図である。 図7A乃至図7Cは、回転刃31による切断動作に付随して同回転刃31により各繊維束5が嵩高に処理されることを示す説明図であり、図7Dは、回転刃31による嵩の変化を示す清掃用ウエブ部材1の概略側面図である。 図8Aは、第1実施形態に係る回転刃31の回転軸C31と半製品1aの厚さ方向の中央位置C1aとの位置関係を示す図であり、図8B及び図8Cは、比較例に係る回転刃31の回転軸C31と半製品1aの厚さ方向の中央位置C1aとの位置関係を示す図である。 上流側規制機構51及び下流側規制機構55の半製品1aに対する挟圧位置PP51,PP55の好ましい例を示す概略図である。 図10A及び図10Bは、それぞれ第1実施形態の変形例の説明図である。 図11Aは、第2実施形態の切断装置20aの概略側面図であり、図11Bは、図11A中のB-B矢視図である。 図12Aは、比較例に係る回転刃31の回転軸C31と半製品1aの幅方向の中央位置M1aとの位置関係を示す図であり、図12Bは、第2実施形態に係る回転刃31の回転軸C31と半製品1aの幅方向の中央位置M1aとの位置関係を示す図である。
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。 
 所定方向に沿ったトウを含む複数の繊維を有する連続ウエブが、所定方向に沿った所定軌道を搬送される間に、前記所定方向に間隔をあけながら前記連続ウエブを切断する装置であって、
 前記所定方向に沿った回転軸回りに回転しながら、前記所定方向と交差する交差方向に移動することにより、前記連続ウエブを切断する円盤状の回転刃部材と、
 前記回転刃部材が前記連続ウエブを切断している間に亘って、前記回転刃部材に対する前記連続ウエブの前記所定方向の相対移動を規制する規制部と、
 前記回転刃部材及び前記規制部の両者を前記所定軌道と平行な往路及び復路に沿って移動させる往復移動機構と、を有し、
 前記往路には、前記回転刃部材及び前記規制部の両者が前記連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されており、
 前記等速域を移動中に、前記回転刃部材が前記連続ウエブを切断することを特徴とする連続ウエブの切断装置。
 このような連続ウエブの切断装置によれば、回転刃部材は連続ウエブの搬送速度値と同じ速度値で所定方向に移動しながら連続ウエブを切断する。よって、連続ウエブの切断に際して連続ウエブの搬送を停止せずに済む。 
 また、回転刃部材が切断している間に亘って、規制部は、連続ウエブの回転刃部材に対する所定方向の相対移動を規制する。よって、回転しながら交差方向に移動する回転刃部材の連続ウエブへの当接起因で生じ得る連続ウエブの暴れは有効に防止され、その結果、良好な切断性を奏することができる。
 更に、回転刃部材を回転しながら交差方向に移動することにより連続ウエブを交差方向に沿って切断するので、高い切断性を奏する。よって、この高い切断性に基づいて回転刃部材のみを連続ウエブに当てるだけで確実に切断できるので、切断に際して一対の刃で連続ウエブを挟圧しなくて済む。従って、当該挟圧時に生じ得る切断対象位置でのトウの溶着や圧着を確実に抑制することができる。 
 また、切断されたトウ等の繊維は、当該繊維の切断直後から回転刃部材による連続ウエブの切断の完了までに亘って、円盤状の回転刃部材の盤面に当接し、当該盤面の回転により連続ウエブの厚さ方向などに解きほぐされるので、連続ウエブの切断位置近傍の繊維をふかふかの嵩高状態にすることができて、結果、連続ウエブを切断して生成される単票状製品を嵩高状態で提供可能となる。
 かかる連続ウエブの切断装置であって、
 前記回転刃部材は、前記交差方向として前記連続ウエブの幅方向に沿って移動するのが望ましい。 
 このような連続ウエブの切断装置によれば、回転刃部材の移動方向に係る交差方向は、連続ウエブの厚さ方向ではなく、連続ウエブの幅方向である。よって、回転刃部材のサイズの縮小化を図れる。つまり、回転刃部材を連続ウエブの厚さ方向に移動して連続ウエブを切断する場合には、少なくとも連続ウエブの幅方向の大きさよりも大きい直径の回転刃部材を用いざるを得ず、回転刃部材の大型化を余儀なくされるところ、回転刃部材を連続ウエブの幅方向に移動する構成にすれば、それを回避可能となる。
 かかる連続ウエブの切断装置であって、
 前記回転刃部材は、前記幅方向に往復移動可能に案内され、
 前記連続ウエブの規制中になされる前記幅方向に沿った前記回転刃部材の移動動作は、その直前の規制中になされた前記回転刃部材の移動動作の逆向きになされるのが望ましい。 
 このような連続ウエブの切断装置によれば、回転刃部材による切断動作は、回転刃部材の幅方向の往復移動の往路及び復路の両者でそれぞれ連続ウエブを切断する双方向切断となる。よって、単位時間当たりの連続ウエブの切断回数を多くすることができて、生産性が向上する。
 かかる連続ウエブの切断装置であって、
 前記規制部は、前記連続ウエブを、前記規制部に対して前記所定方向に相対的に送る送り機構を有し、
 前記切断装置には、前記連続ウエブが前記搬送速度値で送り込まれ、
 前記規制部が前記所定方向の下流側に移動する場合の移動速度値を正値とし、上流側に移動する場合の移動速度値を負値とした場合に、
 前記送り機構は、前記搬送速度値から前記移動速度値を減算してなる速度値で前記連続ウエブを前記所定方向に相対的に送るのが望ましい。 
 このような連続ウエブの切断装置によれば、規制部の送り機構は、連続ウエブの搬送速度値から規制部の移動速度値を減算してなる速度値で、連続ウエブを所定方向に相対的に送るので、連続ウエブの絶対座標系での速度値を、切断装置に送り込まれる上記搬送速度値と同じ速度値に常に維持することができる。
 また、
 所定方向に沿ったトウを含む複数の繊維を有する連続ウエブが、所定方向に沿った所定軌道を搬送される間に、前記所定方向に間隔をあけながら前記連続ウエブを切断する方法であって、
 前記所定方向に沿った回転軸回りに回転しながら、前記所定方向と交差する交差方向に移動することにより、前記連続ウエブを切断する円盤状の回転刃部材と、
 前記回転刃部材に対する前記連続ウエブの前記所定方向の相対移動を規制可能な規制部と、
 前記回転刃部材及び前記規制部の両者を前記所定軌道と平行な往路及び復路に沿って移動させる往復移動機構と、を用い、
 前記往路において、前記回転刃部材及び前記規制部の両者を、前記連続ウエブの搬送速度値と同じ速度値で移動することと、
 前記同じ速度値で移動することにおいて、前記回転刃部材が前記連続ウエブを切断することと、
 前記回転刃部材が前記連続ウエブを切断している間に亘って、前記規制部が前記回転刃部材に対する前記連続ウエブの前記相対移動を規制することと、を有することを特徴とする連続ウエブの切断方法。
 このような連続ウエブの切断方法によれば、回転刃部材は連続ウエブの搬送速度値と同じ速度値で所定方向に移動しながら連続ウエブを切断する。よって、連続ウエブの切断に際して連続ウエブの搬送を停止せずに済む。 
 また、回転刃部材が切断している間に亘って、規制部は、連続ウエブの回転刃部材に対する所定方向の相対移動を規制する。よって、回転しながら交差方向に移動する回転刃部材の連続ウエブへの当接起因で生じ得る連続ウエブの暴れは有効に防止され、その結果、良好な切断性を奏することができる。
 更に、回転刃部材を回転しながら交差方向に移動することにより連続ウエブを交差方向に切断するので、高い切断性を奏する。よって、この高い切断性に基づいて回転刃部材のみを連続ウエブに当てるだけで確実に切断できるので、切断に際して一対の刃で連続ウエブを挟圧しなくて済む。従って、当該挟圧時に生じ得る切断対象位置でのトウの溶着や圧着を確実に抑制することができる。 
 また、切断されたトウ等の繊維は、当該繊維の切断直後から回転刃部材による連続ウエブの切断の完了までに亘って、円盤状の回転刃部材の盤面に当接し、当該盤面の回転により連続ウエブの厚さ方向などに解きほぐされるので、連続ウエブの切断位置近傍の繊維をふかふかの嵩高状態にすることができて、結果、連続ウエブを切断して生成される単票状製品を嵩高状態で提供可能となる。
 ===第1実施形態===
 図1は、第1実施形態の切断装置20を用いて切断生成される単票状製品1の一例としての清掃用ウエブ部材1の斜視図である。また、図2Aは同平面図であり、図2Bは、図2A中のB-B断面図である。
 この清掃用ウエブ部材1の平面形状は、図1及び図2Aに示すように長手方向と幅方向とを有した略矩形状をなしている。また、図1及び図2Bに示すように、厚さ方向については、基材シート2と、基材シート2の上面を覆って設けられる補助シート3と、基材シート2の下面を覆って設けられてメインの刷毛部をなす繊維束部材5Gと、繊維束部材5Gの下面に設けられて補助的な刷毛部をなす短冊シート7と、を有している。ここで、補助シート3と基材シート2との間には、柄部材9を差し込み固定する空洞部SP3,SP3が区画されている。そして、これら空洞部SP3,SP3に柄部材9の二股状の差し込み部9a,9aを差し込んで、清掃用ウエブ部材1の下面及び幅方向の両端部を拭き取り面として卓上等の清掃に使用される。
 図2Bに示すように、繊維束部材5Gは、複数束の繊維束5,5…を、厚さ方向に積層した部材である。この例では、複数束の一例として4束の繊維束5,5…を厚さ方向に積層して有した4層構造となっているが、繊維束5,5…の数は、何等これに限らない。
 各繊維束5は、多数の長繊維として例えば繊度が3.5dtex(直径18~25μm)のトウを有する。但し、トウの繊度は何等3.5dtexに限るものではなく、例えば1.1~10dtex(直径約6~約60μm)の範囲から任意値が選択されても良いし、更には、各繊維束5が、1.1~10dtexの範囲の複数の繊度のトウを有していても良い。
 各トウは、清掃用ウエブ部材1の幅方向に沿っている。すなわち、各トウの繊維方向(トウの長手方向)は、清掃用ウエブ部材1の幅方向に沿っている。これにより、基本的には、幅方向の両端部が刷毛部の先端部となる。但し、これらトウは柔軟に曲げ変形自在なため、トウの先端部が清掃用ウエブ部材1の下面側に曲がることで、同下面側も刷毛部の先端部になり得る。ちなみに、この例では、各繊維束5の全ての繊維をトウで構成しているが、何等これに限るものではない。すなわち、繊維束5にトウ以外の繊維が含まれていても良い。
 ちなみに、トウというのは、連続フィラメントからなる繊維のことであり、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PE(ポリエチレン)などの単独成分の繊維や、鞘部/芯部がPE/PETやPE/PPの芯鞘構造の複合繊維、又は、PE/PET、PE/PPなどのサイドバイサイド型複合繊維である。なお、断面形状は円形でも良いし、それ以外の形状であっても良い。また、繊維が捲縮を有していても良く、その場合には、フィラメントの製造時にクリンパー加工され、さらに予熱カレンダー、又は熱風処理によって捲縮数が増加される。なお、捲縮されたトウは、移送ロールによって移送され、このときフィラメントの長手方向へ張力が与えられ、且つ張力が解除され、この工程を繰り返すことにより、トウの連続フィラメントが個々にばらばらに分離するように開繊される。
 図1、図2A、及び図2Bに示すように、基材シート2及び補助シート3は、どちらも平面形状が略長方形のシートである。そして、幅方向については互いに同寸に設定されているが、長手方向については、基材シート2の方が長く設定され、これにより、基材シート2の長手方向の両端部2e,2eが補助シート3の長手方向の両端3e,3eから所定長さだけ外方に突出した状態で、基材シート2上に補助シート3が積層されている。
 また、この例では、基材シート2及び補助シート3のどちらも、幅方向の各端部に、幅方向に沿ったジグザグ形状の切り込みk,k…が長手方向に間隔をあけて形成されている。そして、これら切り込みk,k…により基材シート2及び補助シート3の幅方向の各端部には、幅方向に沿ったジグザグ形状の複数の短冊片が形成されている。但し、これら切り込みk,k…は無くても良い。
 かかる基材シート2及び補助シート3は、例えば熱可塑性繊維を含む不織布から形成されている。熱可塑性繊維としては、例えば、PE、PP、PET繊維、PEとPETの複合繊維(例えば芯がPEで鞘がPETの芯鞘構造の複合繊維)、PEとPPの複合繊維(例えば芯がPEで鞘がPPの芯鞘構造の複合繊維)等が挙げられ、不織布の態様としては、サーマルボンド不織布、スパンボンド不織布、スパンレース不織布等が挙げられる。但し、これら基材シート2及び補助シート3の材料は、何等不織布に限らない。
 短冊シート7は、熱可塑性繊維を含む不織布、或いは熱可塑性樹脂フィルムなどの柔軟なシートで形成され、基材シート2とほぼ同じ平面サイズの略長方形に形成されている。短冊シート7の幅方向の各端部には、幅方向に沿ったジグザグ形状の切り込み(不図示)が長手方向に間隔をあけて形成されており、これら切り込みにより短冊シート7の幅方向の各端部には、幅方向に沿ったジグザグ形状の複数の短冊片(不図示)が形成されている。但し、この短冊シート7は無くても良い。
 これら補助シート3、基材シート2、繊維束部材5Gの全4束の各繊維束5,5,5,5及び短冊シート7は、この順番で厚さ方向に積層され、そして、図2A及び図2Bに示すように、複数の溶着接合部J1,J2,J2…が形成されることにより一体に接合されている。 
 例えば、幅方向の中央位置には、長手方向に沿った直線状に第1溶着接合部J1が形成されており、この第1溶着接合部J1によって、清掃用ウエブ部材1の厚さ方向の全層(つまり、補助シート3と、基材シート2と、繊維束部材5Gの全4束の各繊維束5,5…と、短冊シート7との全ての構成)が溶着接合されている。
 また、この第1溶着接合部J1の幅方向の両側にそれぞれ所定間隔をおいた各位置には、長手方向に沿って断続的に複数の島状の第2溶着接合部J2,J2…が形成されている。この第2溶着接合部J2の主な形成目的は、第1溶着接合部J1と協働することで、補助シート3と基材シート2との間に柄部材9を差し込み固定するための既述の空洞部SP3,SP3を形成することにある。そのため、図2Bに示すように、この第2溶着接合部J2では、厚さ方向の上層側に位置する補助シート3、基材シート2、及び基材シート2寄りに位置する2束の各繊維束5,5は接合されているが、その下層側に位置する2束の各繊維束5,5、及びその更に下層側に位置する短冊シート7については接合されていない。これら溶着接合部J1,J2,J2…は、例えば超音波溶着処理で形成される。
 このような清掃用ウエブ部材1は、その製造ラインの概ね最終工程に設けられた切断装置20によって製品サイズに切断されることにより製造される。図3は、切断前の状態を示す概略図である。この時点では、基材シート2や繊維束5等の清掃用ウエブ部材1の全構成部品3,2,5,5,5,5,7は既に積層されて一体に溶着接合済みであるが、未だ個別の清掃用ウエブ部材1には分断されておらず、つまり、製造ラインの搬送方向に沿って清掃用ウエブ部材1,1…に相当する部分1U,1U…が搬送方向に連続して製品ピッチP1で並ぶ連続体1aの状態にある。より詳しくは、補助シート3や、基材シート2、及び短冊シート7は、それぞれ、搬送方向に連続した連続シートの状態にあり、また、各繊維束5,5…も、それぞれ搬送方向に連続した連続体の状態にある。以下では、この清掃用ウエブ部材1に係る連続体1aのことを「半製品1a」といい、半製品1aにおいて清掃用ウエブ部材1に相当する部分1Uのことを、「単位半製品1U」とも言う。なお、この半製品1aが、請求項に係る「連続ウエブ」に相当する。
 また、この例では、かかる半製品1aは、所謂「横流れ」の搬送形態で搬送されている。すなわち、単票状製品1たる清掃用ウエブ部材1の幅方向に相当する方向が、搬送方向を向いた状態で搬送されている。そして、搬送方向に互いに隣り合う単位半製品1U,1U同士の間の境界位置1BLを切断対象位置PCとして半製品1aは切断され、これにより、単票状製品1たる清掃用ウエブ部材1が生成される。ちなみに、上述から明らかなことであるが、この半製品1aにおいて各繊維束5,5…のトウの繊維方向は搬送方向に沿っているので、上述の切断時にはトウも切断されることになる。
 以下、この切断を行う切断装置20について説明するが、以下の説明では、この半製品1aの搬送方向のことを、「MD方向」又は「前後方向」とも言い、この搬送方向と直交する二方向のうちで半製品1aの幅方向のことを、CD方向とも言う。また、この例では、MD方向及びCD方向はどちらも水平方向を向いているので、半製品1aの厚さ方向は、鉛直方向たる上下方向を向いている。
 図4Aは、第1実施形態の切断装置20の概略側面図であり、図4Bは、図4A中のB-B矢視図であり、図4Cは、図4A中のC-C矢視図である。また、図5A乃至図5Iは、切断装置20が半製品1aを切断することで単票状製品1を生成する様子を示す概略側面図である。なお、これらの図を含め、以下で説明に用いる図では、図の錯綜を防ぐ目的で構成を省略して示している場合があり、更に同目的で、本来断面部に示すべきハッチングを省略していることもある。
 この切断装置20のMD方向の上流側の位置には、ベルトコンベア等の搬送装置12が設けられており、また下流側の位置にも、ベルトコンベア等の搬送装置14が設けられている。そして、上流側の搬送装置12から切断装置20に所定の入側搬送速度値V1aiで送り込まれた半製品1aは、MD方向に沿って直線状に設定された搬送軌道Tr1a(所定軌道に相当)を上記の入側搬送速度値V1aiと同じ搬送速度値V1aで移動中に、切断装置20によって単票状製品1に切断され、そして、切断生成された単票状製品1は、上記の入側搬送速度値V1aiと同じ搬送速度値V1aで下流側の搬送装置14に送り出される。つまり、この切断装置20によれば、半製品1a及び単票状製品1の搬送を一切停止せずに上記の入側搬送速度値V1aiと同じ搬送速度値V1aを維持しながら、半製品1aの切断を行うことが可能であり、これにより、生産性の向上が図られている。
 ちなみに、上流側及び下流側の搬送装置12,14を制御するコントローラ(不図示)は、製造ラインの他の装置との同期を取るべく同期信号を受信し、この同期信号に基づいて半製品1aの搬送動作を行っている。この同期信号は、例えば製造ラインの基準となる装置での半製品1aの搬送量を計測するロータリーエンコーダ等の回転検出センサーから出力される。そして、当該同期信号は、例えば単位半製品1Uの一つ分の搬送量(つまり製品ピッチP1)を単位搬送量として0°~360°の各回転角度値を、搬送量に比例して割り当ててなる回転角度信号である。つまり、単位半製品1Uが一つ分だけ搬送されると、0°から360°までの回転角度値が出力され、当該一つ分の搬送の都度、0°から360°までの回転角度値の出力が周期的に繰り返される。但し、同期信号は、何等回転角度信号に限るものではない。例えば上記単位搬送量に0~8191の各デジタル値を、搬送量に比例して割り当ててなるデジタル信号を、同期信号として用いても良いし、或いは、同期信号として搬送量に比例した数のパルスを有するパルス信号を用い、同信号のパルスの数をカウントして回転角度を検知しても良い。
 図4Aに示すように、切断装置20は、上記の搬送軌道Tr1aに沿ってMD方向の下流側の前進限Pfと上流側の後退限Pbとの間を往復移動する往復移動ユニット21を有する。そして、この往復移動ユニット21は、後退限Pbから前進限Pfへの移動を往路とし(図5A乃至図5G)、前進限Pfから後退限Pbへの移動を復路として往復移動する(図5G乃至図5I)。
 また、図4Aに示すように、この往復移動ユニット21には、回転刃31で半製品1aを切断する切断機構30と、回転刃31が半製品1aを切断している間に亘って、回転刃31に対する半製品1aのMD方向の相対移動を規制する規制部50と、が搭載されており、これら切断機構30及び規制部50は、往復移動ユニット21と共にMD方向に沿って往復移動する(図5A乃至図5I)。
 更に、往路のうちの一部の領域には、往復移動ユニット21が半製品1aの搬送速度値V1aと同じ移動速度値V21で移動する等速域Reが設定されており、この等速域Reを移動中に、回転刃31がCD方向(交差方向に相当)に移動して半製品1aを切断する(図5C乃至図5E)。
 これにより、この切断装置20によれば、半製品1aを搬送停止すること無く上記の搬送速度値V1aを維持しながら、半製品1aを切断することができる。また、この回転刃31が切断している間に亘って、規制部50が、回転刃31に対する半製品1aのMD方向及び上下方向の相対移動を規制するので、切断中の半製品1aの暴れは有効に防止され、その結果、良好な切断性を奏することができる。
 なお、上述の切断が終わって、往復移動ユニット21が等速域Reを出て前進限Pfに至ると(図5F及び図5G)、同ユニット21は移動方向を反転して復路の移動動作を行う(図5H)。そして、更に復路にて後退限Pbに至ると(図5I)、再度移動方向を反転して往路の移動動作を開始し(図5A)、当該往路では、上述した切断動作を再度行う(図5A乃至図5G)。従って、以降これを繰り返すことにより、半製品1aにおける下流端の単位半製品1Uが順次切り離されて、単票状製品1が生成される。
 以下、切断装置20の各構成要素21,30,50、及びこれら各構成要素21,30,50を制御するコントローラ80について詳しく説明する。
 <<<往復移動ユニット21>>>
 図4Aに示すように、往復移動ユニット21は、MD方向往復移動機構(往復移動機構に相当)によって、MD方向における前進限Pfと後退限Pbとの間を往復移動される。MD方向往復移動機構は、製造ラインの床部等の基部Bsに設置されたガイド部材23と、駆動源としての不図示のサーボモータと、を有する。ガイド部材23は、例えばリニアガイド23であり、往復移動ユニット21を上述の搬送軌道Tr1aと平行なMD方向に沿って往復移動可能に案内する。また、サーボモータの回転動作は、送りねじ機構のような適宜な運動変換機構を介してMD方向の直線移動動作に変換されて往復移動ユニット21に伝達される。よって、サーボモータが正転の回転動作をすれば、往復移動ユニット21は往路に沿って移動され、逆転の回転動作をすれば、復路に沿って移動される。
 なお、このサーボモータは、外部から送信される位置指令信号(制御信号)に基づいて位置制御を行う。すなわち、このサーボモータは、その実績位置を検出可能な位置検出要素を具備したアンプ(不図示)を有している。よって、前進限Pfと後退限Pbとの間の任意の位置を目標位置として与えられれば、サーボモータは、アンプの上記位置検出要素からの実績位置のフィードバック信号等に基づいて、MD方向の目標位置へと往復移動ユニット21を移動することができる。かかる目標位置のデータは、コントローラ80から位置指令信号の形でサーボモータに送信され、サーボモータはこの位置指令信号に基づいて動作する。
 <<<切断機構30>>>
 図4Aに示すように、切断機構30は、往復移動ユニット21におけるMD方向の略中央に配置されている。そして、切断機構30は、図4Cに示すように、回転刃31と、回転刃31を回転自在に支持する支持台33と、支持台33をCD方向に往復移動するCD方向往復移動機構と、を有する。
 回転刃31は、正円形状の円盤を本体とし、その外周縁部の全周に亘って鋭角な刃先が形成されている。そして、かかる回転刃31には、その円心と同芯に且つMD方向に沿って回転軸C31が一体に設けられており、当該回転軸C31は不図示のベアリング等を介して上記の支持台33に支持されている。
 この支持台33には、回転刃31を回転軸C31回りに駆動回転する駆動源として不図示のモータが設けられている。そして、モータの回転力が、巻き掛け伝動装置等の適宜な動力伝達機構(不図示)によって回転刃31に伝達され、これにより回転刃31は、所定の周速で一方向に連続して駆動回転される。
 一方、図4Cに示すように、CD方向往復移動機構は、回転刃31の支持台33をCD方向に往復移動可能に案内するガイド部材35と、支持台33をCD方向に往復移動する駆動機構(不図示)とを有する。ガイド部材35は、例えばリニアガイド35である。また、駆動機構は、駆動源としてのサーボモータと、サーボモータの回転動作をCD方向の直線移動動作に変換して支持台33に伝達する適宜な運動変換機構と、を有する。
 そして、サーボモータが正転の回転動作をすれば、支持台33を介して回転刃31はCD方向の一端側から他端側へと移動され、逆転の回転動作をすれば、他端側から一端側へと移動される。なお、サーボモータは、正転又は逆転の回転動作を指令する作動指令信号に基づいて作動し、例えば作動指令信号がON状態において回転動作をし、OFF状態においては停止する。この作動指令信号は、コントローラ80からサーボモータに向けて送信される。
 このCD方向の往復移動に係る往路及び復路の各ストローク量は、回転刃31が半製品1aの全幅に亘ってCD方向に横断しきるような距離に設定されている。よって、回転刃31が回転軸C31回りに駆動回転した状態で、CD方向の一端側から他端側へと移動するか、或いはCD方向の他端側から一端側へと移動することにより、回転刃31の刃先でもって半製品1aは切断される。
 <<<規制部50>>>
 図4Aに示す規制部50は、前述のように、回転刃31が半製品1aを切断している間に亘って、回転刃31に対する半製品1aのMD方向及び上下方向の相対移動を規制するものである。そして、規制部50は、上流側規制機構51と下流側規制機構55とを有する。上流側規制機構51は、回転刃31の設置位置よりもMD方向の上流側の位置に配置され、当該上流側の位置で半製品1aの相対移動を規制する。下流側規制機構55は、回転刃31の設置位置よりも下流側の位置に配置され、当該下流側の位置で半製品1aの相対移動を規制する。
 但し、これらの規制機構51,55は、半製品1aの上記相対移動を規制するという機能以外に、往復移動ユニット21内において半製品1aをMD方向に搬送する機能も有している。この理由は、この往復移動ユニット21内では、半製品1aを切断して単票状製品1を生成するので、この往復移動ユニット21内の半製品1a及び単票状製品1の搬送を、前述の外部の搬送装置12,14で行うことができないためである。つまり、往復移動ユニット21内に、半製品1a及び単票状製品1を搬送するための自前の搬送機構が必要であり、この搬送機構を上述の上流側規制機構51及び下流側規制機構55に兼ねさせている。
 よって、これらの規制機構51,55は、それぞれベルトコンベアで構成されている。すなわち、図4Aに示すように、上流側規制機構51及び下流側規制機構55のどちらも、互いの外周面を対向して配された上下一対の無端ベルト52,52(56,56)を有している。そして、これら無端ベルト52,52(56,56)同士の間に、前述の半製品1aの搬送軌道Tr1aが設定されており、半製品1aは、無端ベルト52,52(56,56)の外周面同士から厚さ方向に若干挟圧されている。また、各無端ベルト52(56)は、MD方向の前後に並んで設けられた一対のローラー53,53(57,57)に掛け回されている。そして、これら一対のローラー53,53(57,57)のうちの少なくとも一方が、駆動源としてのサーボモータ(不図示)によって駆動回転され、これによる各無端ベルト52,52(56,56)の駆動周回を介して、半製品1aをMD方向に送ることが可能となっている。
 そして、かような搬送機能をこれら規制機構51,55たる規制部50が有していれば、当該往復移動ユニット21がMD方向に往復移動する場合でも、その往復移動によらず、往復移動ユニット21内を搬送される半製品1aの絶対座標系での搬送速度値V1aを、前述の入側搬送速度値V1ai、つまり切断装置20のMD方向の直近上流側での半製品1aの搬送速度値V1aiと同じ速度値に維持可能となる。詳しくは次の通りである。
 先ず、往復移動ユニット21の往復移動に係る速度値を「移動速度値V21」とし、規制部50(上流側規制機構51及び下流側規制機構55)が半製品1aを相対的にMD方向に送る相対速度値を「相対送り速度値V50」とした場合には、絶対座標系における半製品1aの搬送速度値V1aは、往復移動ユニット21の移動速度値V21と相対送り速度値V50とを加算した速度値である。
 よって、下式1で定まる目標相対送り速度値V50mになるように、相対送り速度値V50を移動速度値V21に応じて逐次調整すれば、往復移動ユニット21内の半製品1a及び単票状製品1の絶対座標系での搬送速度値V1aを入側搬送速度値V1aiに維持しつつ、往復移動ユニット21内の半製品1a及び単票状製品1を搬送することができる。 
V50m(m/分)=V1ai(m/分)-V21(m/分)…(1)
 ちなみに、上式1中の往復移動ユニット21の移動速度値V21については、同ユニット21がMD方向の下流側に移動する場合の速度値V21を正値とし、上流側に移動する場合の速度値V21を負値としている。そして、目標相対送り速度値V50mが正値の場合には、往復移動ユニット21(規制部50)に対して相対的にMD方向の下流側に半製品1aは送られる一方、負値の場合には、相対的にMD方向の上流側に送られる。なお、移動速度値V21の実績値は、エンコーダ等の検出器によってリアルタイムで計測されて逐次コントローラ80に送信され、コントローラ80は上式1の演算を行って上記相対送り速度値V50を制御する。
 ところで、図5C乃至図5Eに示すように、往路において往復移動ユニット21が、前述の等速域Reに入ると、この等速域Reでは往復移動ユニット21が半製品1aの入側搬送速度値V1aiと同じ移動速度値V21で移動する。よって、上式1から明らかなように、かかる等速域Reでは、上流側規制機構51及び下流側規制機構55の相対送り速度値V50は零(=V1ai-V1ai)になり、これら規制機構51,55の各無端ベルト52,52,56,56は駆動周回を停止する。そして、これを往復移動ユニット21上の相対座標系で見た場合には、半製品1aは見かけ上移動停止状態になっている。つまり、等速域Reにおいては、半製品1aは回転刃31に対してMD方向の相対移動をしていない状態になっており、更に換言すると、上流側規制機構51及び下流側規制機構55によって半製品1aは回転刃31に対する上下方向の相対移動の規制に加えて、更にMD方向の相対移動を規制された状態になっている。そして、これにより、切断中の半製品1aの暴れは有効に防止され、回転刃31は高い切断性を奏することができる。
 ちなみに、図5F及び図5Gのように、往路の等速域Reから往復移動ユニット21が出れば、移動速度値V21は、入側搬送速度値V1aiとは異なる値になるので、上式1から分かるように、上流側規制機構51及び下流側規制機構55の相対送り速度値V50は零ではなくなる。よって、回転刃31に対して半製品1aはMD方向に相対移動される。つまり、等速域Reを出るのと略同時に、上流側規制機構51及び下流側規制機構55による半製品1aのMD方向の相対移動の規制は、解除されることになる。
 <<<コントローラ80>>>
 コントローラ80は、適宜なコンピュータやシーケンサであり、不図示のプロセッサとメモリとを有している。また、コントローラ80には、前述の同期信号が入力される。そして、この同期信号に基づいて、コントローラ80は、往復移動ユニット21のMD方向往復移動機構、切断機構30のCD方向往復移動機構、及び規制部50などを制御する。
 例えば、往復移動ユニット21のMD方向往復移動機構のサーボモータのアンプに向けては、制御信号として前述の位置指令信号を送信する一方、切断機構30のCD方向往復移動機構のサーボモータに向けては、制御信号として前述の作動指令信号を送信し、更に、規制部50の上流側規制機構51及び下流側規制機構55の各サーボモータに向けては、制御信号として前述の目標相対送り速度値V50mを示す速度指令信号を送信する。
 ちなみに、コントローラ80のメモリには、上述の制御に係る制御プログラムが予め格納されている。例えば、メモリには、上述の式1に基づいて規制部50の目標相対送り速度値V50mを算出する演算プログラムが格納されており、また、同メモリには、往復移動ユニット21のMD方向往復移動動作を規定する動作パターンのデータや、切断機構30のCD方向往復移動機構の作動指令信号のON/OFF状態を規定するデータも予め格納されている。そして、プロセッサがメモリから随時対応する制御プログラムやデータを読み出して実行することにより、上述のMD方向往復移動機構の制御や、CD方向往復移動機構の制御、並びに上流側規制機構51及び下流側規制機構55の制御が実現される。
 図6は、往復移動ユニット21のMD方向の往復移動動作の動作パターン(往復移動ユニット21のMD方向の目標位置と、同期信号の回転角度値との対応関係を示すパターン)のデータの説明図である。縦軸はMD方向の目標位置である。また、横軸は同期信号に対応する回転角度値であり、つまり単位半製品1Uの一つ分(製品ピッチP1)の搬送量たる単位搬送量を0°~360°の各値に割り当てたものである。なお、360°は、0°でもある。また、上述のCD方向往復移動機構の作動指令信号に係るデータには、この回転角度値に関連付けて作動指令信号のON/OFF状態が規定されているので、同図6中には、この作動指令信号のON/OFF状態についても併記している。
 コントローラ80は、所定の制御周期で、同期信号の回転角度値に対応する目標位置を、メモリ内の上記動作パターンのデータから取得し、取得した目標位置のデータを位置指令信号としてMD方向往復移動機構のサーボモータに送信する。すると、サーボモータは、この位置指令信号の目標位置に往復移動ユニット21が移動するように動作し、これにより、図6の動作パターンで、往復移動ユニット21は往復移動する。
 ここで、図6に示すように、例えば往路に対応する回転角度値の範囲たる0°~225°までの範囲には、主に加速する加速域と、一定の移動速度値V21で移動する定速域と、主に減速する減速域とが設定されており、他方、復路に対応する回転角度値の範囲たる225°~360°の範囲には、主に加速する加速域と、主に減速する減速域とが設定されている。また、往路の定速域の移動速度値V21は、半製品1aのMD方向の入側搬送速度値V1aiと同じ速度値に設定されている。つまり、この定速域は、往復移動ユニット21に搭載された回転刃31及び規制部50が半製品1aの搬送速度値V1aたる入側搬送速度値V1aiと同値の移動速度値V21で移動する等速域Reにされている。また、かかる等速域Reのうちで略中央の領域に対応する所定の回転角度値の範囲RONには、回転刃31の作動指令信号のON状態が設定されている。
 よって、同期信号が示す回転角度値が、上記の範囲RON内に入ったら、コントローラ80は、CD方向往復移動機構への作動指令信号をOFF状態からON状態に切り換える。これにより、回転刃31は、例えばCD方向の一端側から他端側へと移動して、半製品1aは切断される。そして、同期信号の回転角度値が上記範囲RONから外れたら、コントローラ80は、作動指令信号をOFF状態にして、これにより、回転刃31のCD方向の移動は停止される。そして、次に作動指令信号がOFF状態からON状態に切り換わるまで他端側で待機する。なお、この作動指令信号が示すサーボモータの回転方向は、例えばON状態にされる度に、その直前の回転方向の逆向きに変更され、これにより、次の作動指令信号のON状態では、回転刃31は、CD方向の他端側から一端側へと移動して、半製品1aを切断する。そして、以降、上述を繰り返し、これにより、双方向の切断動作で半製品1aから単票状製品1が生成される。
 また、図6からわかるように、回転刃31のCD方向への移動のON状態が対応付けられた回転角度値の範囲RONは、完全に往路の等速域Reに包含されている。よって、回転刃31による半製品1aの切断は、完全に往復移動ユニット21のMD方向の移動速度値V21と、半製品1aの搬送速度値V1aとが等しい状態で行われる。つまり、回転刃31は半製品1aの搬送速度値V1aと同じ移動速度値V21でMD方向に移動しながら半製品1aを切断する。よって、半製品1aの切断に際して半製品1aの搬送を停止せずに済む。
 更に、前述したように、かかる等速域Reでは、規制部50による半製品1aの相対送り速度値V50は零になっているので、半製品1aは、回転刃31に対してMD方向に相対移動できない状態になっている。つまり、規制部50によって、半製品1aは、回転刃31に対するMD方向の相対移動を規制されている。そして、この相対移動を規制された状態において回転刃31は半製品1aを切断するので、切断中の半製品1aの暴れは有効に防止され、その結果、良好な切断性を奏することができる。
 ちなみに、往復移動ユニット21の往復移動動作の動作パターンは何等図6の例に限るものではなく、実情に応じて適宜変更して構わない。
 ところで、このような回転刃31を用いた場合には、切断直後から各繊維束5を嵩高状態にすることができる。図7A乃至図7Cは、回転刃31による切断動作に付随して同回転刃31によりトウの繊維束5が嵩高に処理されることを示す説明図であって、CD方向の一端から他端へと回転刃31が移動する様子を示している。図7Bに示すように、回転刃31で切断中の半製品1aには、刃先が通過した切断済み部分A1と、未だ刃先が通過していない未切断部分A2との両者が存在する。そして、切断済み部分A1には、順次回転刃31の各盤面31s,31sが当接し、各盤面31sの回転によって切断済み部分A1の各トウは、図7B中に矢印で示すように半製品1aの厚さ方向に散らされて解きほぐされ、その結果、トウの繊維束5は厚さ方向に分散してふわふわの嵩高状態に処理される。従って、この切断装置20によれば、単票状製品1は、図7Dの左図のような嵩の低い状態ではなく、図7Dの右図のような嵩高状態で下工程へ送られる。よって、かかる下工程などで別途特段の嵩高処理を施さずに済んで、埃の捕捉性の高い嵩高状態の単票状製品1たる清掃用ウエブ部材1を迅速に出荷可能となる。
 また、図8Aに示すように、この第1実施形態では、回転刃31の回転軸C31の位置と半製品1aの厚さ方向の中央位置C1aとを、半製品1aの厚さ方向に所定距離D1だけずらしているが、この理由は次の通りである。先ず、図8Bの比較例のように、これら回転軸C31の位置と半製品1aの中央位置C1aとが厚さ方向に関して互いに一致している場合には、同図8Bのように、半製品1aに当接する位置での回転刃31の刃先の移動方向が、半製品1aの厚さ方向と平行になるが、その場合には、切断開始時に大きな切断抵抗が回転刃31に作用して切断性が悪くなる。この点につき、図8Aに示すように、回転刃31の回転軸C31の位置と半製品1aの厚さ方向の中央位置C1aとを半製品1aの厚さ方向に所定距離D1だけずらしていれば、切断開始時に半製品1aに当接する位置での刃先の移動方向が半製品1aの厚さ方向に対して所定の傾き角α1をもつようになる。そして、これにより、切断開始時の切断抵抗の軽減を図れて、結果、切断開始から切断終了までに亘り良好な切断性を奏するようになる。
 ちなみに、上述のように所定距離D1だけずらせば、次のような不具合も解消される。すなわち、図8Bの比較例のように回転軸C31と半製品1aの中央位置C1aとが一致している場合には、切断中の回転軸C31は、図8Cに示すように半製品1aの切断面A1a内をCD方向に移動することになる。ところが、一般に回転軸C31の位置には、図4Cに示すように回転軸C31を支持すべく支持台33の一部33pが存在しているので、回転軸C31を含めその近傍に位置する関連部分33pのトータルのMD方向の厚さは、回転刃31の単体の厚さよりもかなり厚くなっている。よって、上述の切断面A1a内を回転軸C31がCD方向に移動する際には(図8C)、上記一部33p等が切断面A1aに引っ掛かる等して切断中のCD方向の移動抵抗が大きくなる虞があって、このことは、CD方向の高速移動を困難にして生産性を落とす一因になる。また、CD方向の移動時に、上記一部33p等が切断面A1aのトウにきつく当たってこれを傷めてしまう虞もある。この点につき、図8Aのように回転軸C31の位置を、半製品1aの中央位置C1aから厚さ方向に所定距離D1だけずらしておけば、回転軸C31の近傍に位置する上記支持台33の一部33pを、切断面A1aの外に位置させて、当該一部33pと切断面A1aとの干渉を回避できるので、上述の不具合を有効に防ぐことができる。なお、所定距離D1の大きさの決定は、上記の一部33pが半製品1aに当たらないように当該一部33pの大きさを考慮してなされる。
 また、切断中の半製品1aの回転刃31に対する相対移動を確実に規制する観点からは、上流側規制機構51及び下流側規制機構55が、それぞれ、半製品1aにおける切断対象位置PCの近傍位置を挟圧可能に構成されていると良い。例えば、図9の半製品1aの概略図に示すように、先ず、下流側規制機構55による挟圧位置PP55が、半製品1aにおいて最も下流側に位置する単位半製品1Uの第1溶着接合部J1よりも上流側に位置するように構成されていると良く、更には、上流側規制機構51による挟圧位置PP51が、上記単位半製品1Uの上流側の隣に位置する単位半製品1Uの第1溶着接合部J1よりも下流側に位置するように構成されていると良い。
 そして、このような位置への挟圧位置PP51,PP55の設定は、例えば次のようにして実現される。先ず、挟圧に関与するローラー53a,53b,57a,57bの直径Ddを、清掃用ウエブ部材1のMD方向の製品寸法Lmdよりも小さくし(より確実に実現するには、製品寸法Lmdの半分の値(=Lmd/2)よりも小さくし)、そして、これらローラー53a,53b,57a,57bのうちで互いに対応してMD方向の隣に並ぶローラー同士の間の軸間距離Dc(回転中心軸同士の間の距離Dc)、つまり、ローラー53a,57a同士の間の軸間距離Dc、及びローラー53b,57b同士の間の軸間距離Dcを、それぞれローラー同士が干渉しない範囲で、上記製品寸法Lmdよりも小さくすれば良い(より確実に実現するには、上記製品寸法Lmdの半分の値(=Lmd/2)よりも小さくすれば良い)。
 ちなみに、上述の「挟圧に関与するローラー53a,53b,57a,57b」と言うのは、次の4本のローラー53,53,57,57のことである。すなわち、ローラー57aというのは、図4A中の下流側規制機構55における上側の無端ベルト56用の一対のローラー57,57のうちで上流側に位置するローラー57のことであり、そして、ローラー57bというのは、同下流側規制機構55における下側の無端ベルト56用の一対のローラー57,57のうちで上流側に位置するローラー57のことである。また、ローラー53aというのは、同図4A中の上流側規制機構51における上側の無端ベルト52用の一対のローラー53,53のうちで下流側に位置するローラー53のことであり、そして、ローラー53bというのは、同上流側規制機構51における下側の無端ベルト52用の一対のローラー53,53のうちで下流側に位置するローラー53のことである。
 図10A及び図10Bは、第1実施形態の変形例の説明図であり、どちらの図も概略側面視で示している。なお、以下の説明では、主に相違点について述べ、同一の構成については同一の符号を付して、その説明については省略する。
 図10Aに示す第1変形例は、下流側規制機構55の上側の無端ベルト56に代えて一本のローラー59が設けられている点で相違する。そして、このローラー59は、下側の無端ベルト56とで半製品1aを厚さ方向から挟圧している。なお、このローラー59は、望ましくはサーボモータ等の駆動源によって駆動回転されるように構成されている良く、そうすれば、下側の無端ベルト56の駆動周回と連動して半製品1aをMD方向に円滑に送ることができて、これにより、半製品1aの搬送の阻害は有効に防止される。
 図10Bに示す第2変形例は、上流側規制機構51の上側の無端ベルト52に代えて一本のローラー54が設けられている点で相違する。そして、このローラー54は、下側の無端ベルト52とで半製品1aを厚さ方向から挟圧している。なお、このローラー54も、望ましくはサーボモータ等の駆動源によって駆動回転されるように構成されている良く、そうすれば、下側の無端ベルト52の駆動周回と連動して半製品1aをMD方向に円滑に送ることができて、これにより、半製品1aの搬送の阻害は有効に防止される。
 ===第2実施形態===
 図11Aは、第2実施形態の切断装置20aの概略側面図であり、図11Bは、図11A中のB-B矢視図である。
 この第2実施形態の切断装置20aでは、回転刃31の移動方向がCD方向ではなく、半製品1aの厚さ方向(交差方向に相当)に沿っている点で主に第1実施形態と相違し、これ以外の点は概ね第1実施形態と同様である。よって、以下では、第1実施形態と同じ構成については同じ符号を付し、その説明については省略する。
 この切断装置20aでは、往復移動ユニット21が往路の等速域Reを移動中に、切断機構30aの回転刃31が回転軸C31回りに駆動回転した状態で、半製品1aの厚さ方向の一端側から他端側へと移動するか、或いは厚さ方向の他端側から一端側へと移動する。そして、これらの移動中に、駆動回転する回転刃31の刃先でもって半製品1aを切断する。なお、この図11A及び図11Bの例では、半製品1aの厚さ方向は、鉛直方向たる上下方向に沿っているので、以下では、半製品1aの厚さ方向のことを「上下方向」とも言う。
 かかる回転刃31の往復移動は、次のようにして実現される。先ず、切断機構30aは、往復移動ユニット21に搭載されている。また、この切断機構30aは、駆動回転する回転刃31を支持台33aと、支持台33aを上下方向に往復移動可能に案内するリニアガイド等の適宜なガイド部材35aと、支持台33aを上下方向に往復移動する不図示の駆動機構と、を有している。更に、駆動機構は、駆動源としてのサーボモータと、サーボモータの回転動作を上下方向の直線移動動作に変換して支持台に伝達する適宜な運動変換機構と、を有している。よって、サーボモータが正転の回転動作をすれば、回転刃31は、往路として上下方向の一端側から他端側へと移動され、逆転の回転動作をすれば、復路として他端側から一端側へと移動される。ちなみに、往路及び復路の各ストローク量は、回転刃31の全部が、半製品1aを上下方向に横断しきるような距離に設定されており、これにより、半製品1aは完全に切断される。
 ところで、この例では、図11Bに示すように、回転刃31の回転軸C31のCD方向の位置が、半製品1aのCD方向の端縁1aeよりも外側に配されているが、この理由は、前述の第1実施形態で説明したのと同様の理由であり、つまり、切断中に支持台33aの一部33apが半製品1aに干渉して円滑に切断できなくなることを防ぐためである。なお、このように回転軸C31を半製品1aの中央位置M1aからCD方向に大きくずらして配置した状態でも半製品1aを全幅に亘って切断可能にすべく、回転刃31の半径R31は、下式2で算出される値Rsよりも大きい値に設定されている。 
 Rs=半製品1aの幅寸W1a
 +半製品1aの端縁1aeと回転軸C31との間のCD方向の距離DC31…(2)
 ちなみに、このようにずらして配置すれば、切断開始時の切断性が向上するという作用効果も奏する。図12A及び図12Bは、その説明図である。図12Aの比較例では、回転刃31の回転軸C31の位置を半製品1aのCD方向の中央位置M1aと一致させており、つまり、これら位置同士をCD方向にずらしていない。そして、この場合、同図12Aの如き切断開始時には、半製品1aに当接する位置での回転刃31の刃先の移動方向が半製品1aの幅方向(CD方向)と平行になるため、切断開始時に大きな切断抵抗が回転刃31に作用して切断性が悪くなる。これに対して、図12Bのように、回転刃31の回転軸C31の位置を半製品1aの端縁1aeよりもCD方向の外側にずらしておけば、切断開始時から、半製品1aに当接する位置での刃先の移動方向が半製品1aの幅方向(CD方向)に対して所定の傾き角α2をもつようになる。そして、これにより、切断開始時の切断抵抗の軽減を図れて、結果、切断開始から切断終了までに亘り良好な切断性を奏することができる。
 但し、図4Cと図11Bとの対比から明らかなように、この第2実施形態では回転刃31のサイズが第1実施形態と比べて大径になってしまうため、回転刃31のサイズ縮小の観点からは、第1実施形態の方が望ましい。
 ===その他の実施の形態===
 以上、本発明の実施形態について説明したが、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得るとともに、本発明にはその等価物が含まれるのはいうまでもない。例えば、以下に示すような変形が可能である。
 上述の実施形態では、連続ウエブ1aの一例として清掃用ウエブ部材1に係る半製品1aを示したが、何等これに限るものではない。すなわち、トウを含む複数の繊維を有する搬送方向に連続した連続ウエブ1aであれば、何等上記に限らない。
 上述の実施形態では、往復移動ユニット21上に切断機構30及び規制部50の両者を搭載し、当該ユニット21の往復移動によって、これら切断機構30及び規制部50の両者を一体にMD方向に往復移動させていたが、何等これに限るものではない。例えば、往復移動ユニット21を、半製品1aよりも上側に位置する上側ユニットと、下側に位置する下側ユニットとに二分し、各ユニットを、それぞれ専用のガイド部材及び駆動源で駆動させても良い。なお、その場合には、上側ユニットには、上流側規制機構51の上側の無端ベルト52及びそのローラー53,53と、下流側規制機構55の上側無端ベルト56及びそのローラー57,57とが搭載され、他方、下側ユニットには、上流側規制機構51の下側の無端ベルト52及びそのローラー53,53と、下流側規制機構55の下側無端ベルト56及びそのローラー57,57と、切断機構30とが搭載される。また、上側ユニットをMD方向に往復移動するための駆動源及び下側ユニットをMD方向に往復移動するための駆動源の両者は、既述の同期信号に基づいて互いに上側ユニットと下側ユニットとが同じ往復移動動作をするように、コントローラ80によって制御される。
 上述の実施形態では、回転刃31の刃先について詳しく述べていなかったが、この刃先については、回転刃31の外周縁部の全周に亘って凹部の無い平滑な刃先としても良いし、或いは、回転刃31の外周縁部に沿って複数の凹部が並んだ刃先としても良い。なお、後者の刃先を適用した場合には、凹部に半製品1aのトウを引っ掛けながら切断することができるので、切断性が更に向上される。ちなみに、かかる凹部を有する刃先としては、鋸刃などが挙げられるが、何等これに限らない。例えば凹部としては刃先の研磨時に2μmを超える深さ(回転刃31の半径方向の寸法)で欠け落ちる等してなる切り欠き部も、上述の凹部の概念に含まれる。なお、この深さは、5μm以下にすると良く、そうすれば、刃先に固着するトウの溶け滓を抑制することができて、高い切断性を長期に亘り持続可能となる。
 また、刃先の角度α31(図4B)、つまり回転刃31の厚さ方向の両盤面31s,31s同士が互いの外周縁部にてなす角度α31については、15°~20°の範囲に設定すると良く、この範囲に設定すれば、寿命向上の観点から回転刃31の素材に超硬合金を用いた場合に起き易い研磨時の刃先の欠け落ちを有効に抑制しつつ、高い切断性を奏することができる。ちなみに、回転刃31の回転軸C31は、両盤面31s,31sの法線方向と平行に設けられている。
1 清掃用ウエブ部材(単票状製品)、1a 半製品(連続ウエブ)、1ae 端縁、1U 単位半製品、1BL 境界位置、2 基材シート、2e 両端部、3 補助シート、3e 両端、5 繊維束、5G 繊維束部材、7 短冊シート、9 柄部材、9a 差し込み部、12 上流側の搬送装置、14 下流側の搬送装置、20 切断装置、20a 切断装置、21 往復移動ユニット、23 ガイド部材、30 切断機構、30a 切断機構、31 回転刃、31s 盤面、33 支持台、33a 支持台、33p 一部、33ap 一部、35 ガイド部材、35a ガイド部材、50 規制部、51 上流側規制機構、52 無端ベルト、53 ローラー、53a ローラー、53b ローラー、54 ローラー、55 下流側規制機構、56 無端ベルト、57 ローラー、57a ローラー、57b ローラー、59 ローラー、80 コントローラ、A1 切断済み部分、A1a 切断面、A2 未切断部分、J1 第1溶着接合部、J2 第2溶着接合部、SP3 空洞部、PC 切断対象位置、Bs 基部、Tr1a 搬送軌道、C1a 中央位置、M1a 中央位置、C31 回転軸、PP51 挟圧位置、PP55 挟圧位置

Claims (5)

  1.  所定方向に沿ったトウを含む複数の繊維を有する連続ウエブが、所定方向に沿った所定軌道を搬送される間に、前記所定方向に間隔をあけながら前記連続ウエブを切断する装置であって、
     前記所定方向に沿った回転軸回りに回転しながら、前記所定方向と交差する交差方向に移動することにより、前記連続ウエブを切断する円盤状の回転刃部材と、
     前記回転刃部材が前記連続ウエブを切断している間に亘って、前記回転刃部材に対する前記連続ウエブの前記所定方向の相対移動を規制する規制部と、
     前記回転刃部材及び前記規制部の両者を前記所定軌道と平行な往路及び復路に沿って移動させる往復移動機構と、を有し、
     前記往路には、前記回転刃部材及び前記規制部の両者が前記連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されており、
     前記等速域を移動中に、前記回転刃部材が前記連続ウエブを切断することを特徴とする連続ウエブの切断装置。
  2.  請求項1に記載の連続ウエブの切断装置であって、
     前記回転刃部材は、前記交差方向として前記連続ウエブの幅方向に沿って移動することを特徴とする連続ウエブの切断装置。
  3.  請求項2に記載の連続ウエブの切断装置であって、
     前記回転刃部材は、前記幅方向に往復移動可能に案内され、
     前記連続ウエブの規制中になされる前記幅方向に沿った前記回転刃部材の移動動作は、その直前の規制中になされた前記回転刃部材の移動動作の逆向きになされることを特徴とする連続ウエブの切断装置。
  4.  請求項1乃至3の何れかに記載の連続ウエブの切断装置であって、
     前記規制部は、前記連続ウエブを、前記規制部に対して前記所定方向に相対的に送る送り機構を有し、
     前記切断装置には、前記連続ウエブが前記搬送速度値で送り込まれ、
     前記規制部が前記所定方向の下流側に移動する場合の移動速度値を正値とし、上流側に移動する場合の移動速度値を負値とした場合に、
     前記送り機構は、前記搬送速度値から前記移動速度値を減算してなる速度値で前記連続ウエブを前記所定方向に相対的に送ることを特徴とする連続ウエブの切断装置。
  5.  所定方向に沿ったトウを含む複数の繊維を有する連続ウエブが、所定方向に沿った所定軌道を搬送される間に、前記所定方向に間隔をあけながら前記連続ウエブを切断する方法であって、
     前記所定方向に沿った回転軸回りに回転しながら、前記所定方向と交差する交差方向に移動することにより、前記連続ウエブを切断する円盤状の回転刃部材と、
     前記回転刃部材に対する前記連続ウエブの前記所定方向の相対移動を規制可能な規制部と、
     前記回転刃部材及び前記規制部の両者を前記所定軌道と平行な往路及び復路に沿って移動させる往復移動機構と、を用い、
     前記往路において、前記回転刃部材及び前記規制部の両者を、前記連続ウエブの搬送速度値と同じ速度値で移動することと、
     前記同じ速度値で移動することにおいて、前記回転刃部材が前記連続ウエブを切断することと、
     前記回転刃部材が前記連続ウエブを切断している間に亘って、前記規制部が前記回転刃部材に対する前記連続ウエブの前記相対移動を規制することと、を有することを特徴とする連続ウエブの切断方法。
PCT/JP2013/063012 2012-05-21 2013-05-09 トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法 WO2013175967A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012115784A JP5836194B2 (ja) 2012-05-21 2012-05-21 トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法
JP2012-115784 2012-05-21

Publications (1)

Publication Number Publication Date
WO2013175967A1 true WO2013175967A1 (ja) 2013-11-28

Family

ID=49580203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063012 WO2013175967A1 (ja) 2012-05-21 2013-05-09 トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法

Country Status (3)

Country Link
US (1) US9003937B2 (ja)
JP (1) JP5836194B2 (ja)
WO (1) WO2013175967A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157533A1 (ja) * 2012-04-19 2013-10-24 株式会社瑞光 使い捨て着用物品の製造方法および製造装置
JP5656915B2 (ja) * 2012-05-21 2015-01-21 ユニ・チャーム株式会社 トウを含む複数の繊維を有するウエブ部材の切断装置、及び切断方法
JP5871711B2 (ja) * 2012-05-21 2016-03-01 ユニ・チャーム株式会社 トウを含む複数の繊維を有するウエブ部材の切断装置、及び切断方法
JP5836194B2 (ja) * 2012-05-21 2015-12-24 ユニ・チャーム株式会社 トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法
US9956699B2 (en) 2013-05-03 2018-05-01 The Procter & Gamble Company Cutting apparatuses
DE102017215712A1 (de) * 2017-09-06 2019-03-07 Bhs Corrugated Maschinen- Und Anlagenbau Gmbh Verbindungsschnittanordnung
CN108252074A (zh) * 2018-01-09 2018-07-06 广州市画尔服饰有限公司 衣料的粘合方法和装置、机器设备、计算机可读存储介质
WO2020070315A1 (en) * 2018-10-05 2020-04-09 Marel A/S Food item cutting system and method
CN110315587A (zh) * 2019-06-03 2019-10-11 武汉人天包装自动化技术股份有限公司 一种同步跟随装置
CN111331645A (zh) * 2020-04-13 2020-06-26 苏州舒而适纺织新材料科技有限公司 一种纺织用智能纺织新材料断切装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165995A (ja) * 1982-03-26 1983-10-01 住友ゴム工業株式会社 帯状ゴム弾性体の走行切断装置
JPS59169795A (ja) * 1983-03-15 1984-09-25 昭和飛行機工業株式会社 カツタ−装置
JPH01288556A (ja) * 1988-05-16 1989-11-20 Fuji Photo Film Co Ltd シート状物搬送装置
JPH0647697A (ja) * 1991-07-11 1994-02-22 Marunaka Tekkosho:Kk シ−トの切断方法及びシ−ト切断用カッタ−装置
JP2010125535A (ja) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd 切断装置

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US760800A (en) * 1903-09-12 1904-05-24 Frank R Nice Rubber-dam holder and cutter.
US855301A (en) * 1906-06-08 1907-05-28 Edwin Eetor Gobie Paper-hanger's trimmer.
US1079998A (en) * 1912-05-28 1913-12-02 James E Arrants Tobacco-cutter.
US1434475A (en) * 1921-01-07 1922-11-07 James B Austin Paper-cutting device
US1615901A (en) * 1924-01-14 1927-02-01 Charles J Carlson Universal sawing or cutting machine
US1735520A (en) * 1926-12-27 1929-11-12 Frank M Williams Cutting or trimming device
US1949490A (en) * 1932-12-09 1934-03-06 Ross Nathan Fabric cutting device
US2759542A (en) * 1953-01-22 1956-08-21 Sarl Les Ateliers De Const Mec Apparatus for cutting a moving broad strip longitudinally and obliquely
US3143023A (en) * 1961-12-28 1964-08-04 Grace W R & Co Apparatus for cutting thin limp foils or sheets
US3605537A (en) * 1969-08-13 1971-09-20 Lloyd P Pickler Insulation cutter
US3665982A (en) * 1970-02-13 1972-05-30 Kvalheim Machinery Co Adjustable trim saw apparatus for miter cuts and saw kerfs
US3657952A (en) * 1970-02-20 1972-04-25 Peter A Brockbank Apparatus for selectively cutting and conveying sheet material
US3910142A (en) * 1971-02-05 1975-10-07 Automated Building Components Automated saw
US3821915A (en) * 1972-07-11 1974-07-02 Paper Pak Prod Inc Fiber cutting apparatus with self-contained blade sharpener
JPS5633346A (en) * 1979-08-21 1981-04-03 Sharp Corp Paper guide device
US4444077A (en) * 1981-09-25 1984-04-24 Georgia-Pacific Corporation Flying saw apparatus
US4452117A (en) * 1982-04-12 1984-06-05 Rockwell International Corporation Self-adjusting fence for motorized saw unit
US4548108A (en) * 1983-08-08 1985-10-22 Cashin Systems Corporation Slicing machine
IT1169683B (it) * 1983-11-08 1987-06-03 Cavagna Elio Srl Perfezionamento ai gruppi di taglio impiegabili nel campo della cartotecnica e del tipo includente almeno un sistema di coltello circolare ruotante e contro coltello,per la recisione selettiva di materiale nastriforme in strisce di predeterminata larghezza
US5249491A (en) * 1987-08-21 1993-10-05 Aaron U. Jones Sawmill method and apparatus with movable scanning means
US4813316A (en) * 1987-12-10 1989-03-21 Hobart Corporation Control system and method for a food product slicer
US5046392A (en) * 1989-04-06 1991-09-10 Richard Keon Cutter for preparing an insulation batt for installation
DE59010262D1 (de) * 1989-08-17 1996-05-09 Hell Ag Linotype Vorrichtung zum automatischen auf- und abspannen von aufzeichnungsmaterial und betriebsweise der vorrichtung
JPH0818176B2 (ja) * 1989-11-24 1996-02-28 昭和アルミニウム株式会社 定尺切断装置
US6212983B1 (en) * 1992-03-04 2001-04-10 Stoddard H. Pyle Tiltable infeed and outfeed saw table
US5715738A (en) * 1994-09-20 1998-02-10 Eastman Machine Company Skate for end cutter
GB2297682B (en) * 1995-02-08 1997-01-15 Gerber Garment Technology Inc Apparatus and method for bite cutting pattern pieces for made to order garments
JP3208306B2 (ja) * 1995-11-17 2001-09-10 ユニ・チャーム株式会社 使い捨て拭き取り用具
JP3124478B2 (ja) * 1995-12-01 2001-01-15 ユニ・チャーム株式会社 使い捨て拭き取り用具の製造方法
US6014921A (en) * 1996-05-14 2000-01-18 Esselte N.V. Printing device with an automatic cutting mechanism
US6250192B1 (en) * 1996-11-12 2001-06-26 Micron Technology, Inc. Method for sawing wafers employing multiple indexing techniques for multiple die dimensions
DE19748789C2 (de) * 1997-11-05 2000-05-25 Boewe Systec Ag Vorrichtung zum Querschneiden einer Papierbahn
US6056682A (en) * 1997-12-22 2000-05-02 Heidelberger Druckmaschinen Ag Method and apparatus for severing a running material web in a folding apparatus of a web-fed rotary printing press
US6394330B1 (en) * 1998-08-13 2002-05-28 3M Innovative Properties Company Method for slitting and processing a web into plural use supply forms
JP3631088B2 (ja) * 1999-03-05 2005-03-23 ユニ・チャーム株式会社 複合シートおよびその製造方法
US6681669B1 (en) * 1999-06-07 2004-01-27 Gerber Technology, Inc. Method and apparatus for cutting a compressible material having an uncompressed thickness greater than a radius of a wheel cutter
FR2795014B1 (fr) * 1999-06-21 2001-10-19 Lectra Systemes Sa Procede et installation pour la decoupe et le dechargement automatique de piles de pieces dans un matelas de matiere en feuille
US7124672B2 (en) * 1999-07-23 2006-10-24 Shade-O-Matic Limited Blind cut down machine
IT1316805B1 (it) * 2000-03-17 2003-05-12 Giovanni Gambini Dispositivo per la selezione ed eliminazione di rifili di rotoli dicarta asciugatutto e/o igienica
US6732625B1 (en) * 2000-04-28 2004-05-11 Tidland Corporation Easily adjusted web slitter
CN1839746B (zh) 2000-07-10 2010-06-30 尤妮佳股份有限公司 清扫物品
US6644154B2 (en) * 2001-04-27 2003-11-11 Paper Converting Machine Co. Apparatus for transverse cutting
DE10132760A1 (de) * 2001-07-10 2003-01-30 Hauni Maschinenbau Ag Vorrichtung zur Vorbereitung eines Faserstranges der tabakverarbeitenden Industrie
US6640855B2 (en) * 2001-09-05 2003-11-04 Hearthstone, Inc. Log home fabrication process and associate log cutting machine
US6845697B2 (en) * 2001-10-26 2005-01-25 Premark Feg L.L.C. Slicer carriage tracking arrangement
US6813985B2 (en) * 2001-10-31 2004-11-09 Thomas Gharst Insulation carrying and cutting device
US20050076759A1 (en) * 2003-10-08 2005-04-14 Brian Westfall Linear saw with stab-cut bevel capability
US20040069106A1 (en) * 2002-10-14 2004-04-15 Mcadoo David L. Linear feed cutting apparatus and method
US7047856B2 (en) * 2003-01-24 2006-05-23 Tapco International Corporation Saw table
US7124671B2 (en) * 2003-05-06 2006-10-24 Pitney Bowes Inc. Method and device for reducing web breakage in a web cutter
ITTO20030371A1 (it) * 2003-05-20 2004-11-21 Tecnau Srl Equipaggiamento di taglio per moduli continui.
US7000658B1 (en) * 2004-01-29 2006-02-21 Harry Soukiassian Precision adjustable woodworking platform
WO2005079588A1 (en) * 2004-02-20 2005-09-01 Scanvaegt International A/S Method and apparatus for portion cutting of food products or similar items
US20050211031A1 (en) * 2004-03-23 2005-09-29 L&P Property Management Company Quilted fabric panel cutter
US7617751B2 (en) * 2004-03-23 2009-11-17 L&P Property Management Company Quilted fabric panel cutter
DE202006009493U1 (de) * 2006-06-14 2007-07-26 Monolith GmbH Bürosysteme Rollenschneidgerät zum Beschneiden von Blattgut
ITVI20060333A1 (it) * 2006-11-13 2008-05-14 Simec Spa "macchina per il taglio combinato di lastre in materiale duro"
US7284305B1 (en) * 2007-01-12 2007-10-23 Milliken & Company Apparatus and process for automatically cutting textile web with reduced wrinkling
DE202008002453U1 (de) * 2008-02-21 2009-04-02 Purple Cows Gmbh Schneidgerät
DE102008019776A1 (de) * 2008-04-18 2009-10-22 CFS Bühl GmbH Verfahren, Vorrichtung sowie Messer zum Aufschneiden von Lebensmitteln
DE102008034675A1 (de) * 2008-07-25 2010-01-28 Visonn Gmbh & Co. Kg Schneidwerkzeug zum Durchtrennen von plattenartigen Arbeitsstücken
US20100024621A1 (en) * 2008-07-31 2010-02-04 Van Mark Products Corporation Saw Table and Power Saw Combination
US20100257984A1 (en) * 2009-04-09 2010-10-14 Scaroni David W Produce processing apparatus
US20130087029A1 (en) * 2010-06-11 2013-04-11 Sharp Kabushiki-Kaisha Method and device for trimming module
JP5836194B2 (ja) * 2012-05-21 2015-12-24 ユニ・チャーム株式会社 トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165995A (ja) * 1982-03-26 1983-10-01 住友ゴム工業株式会社 帯状ゴム弾性体の走行切断装置
JPS59169795A (ja) * 1983-03-15 1984-09-25 昭和飛行機工業株式会社 カツタ−装置
JPH01288556A (ja) * 1988-05-16 1989-11-20 Fuji Photo Film Co Ltd シート状物搬送装置
JPH0647697A (ja) * 1991-07-11 1994-02-22 Marunaka Tekkosho:Kk シ−トの切断方法及びシ−ト切断用カッタ−装置
JP2010125535A (ja) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd 切断装置

Also Published As

Publication number Publication date
JP2013241695A (ja) 2013-12-05
JP5836194B2 (ja) 2015-12-24
US9003937B2 (en) 2015-04-14
US20130305894A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5836194B2 (ja) トウを含む複数の繊維を有する連続ウエブの切断装置、及び切断方法
JP5871711B2 (ja) トウを含む複数の繊維を有するウエブ部材の切断装置、及び切断方法
JP5656915B2 (ja) トウを含む複数の繊維を有するウエブ部材の切断装置、及び切断方法
JP5607043B2 (ja) 複合構造物の製造方法および装置
JP6073128B2 (ja) 切断装置及び切断装置を用いた清掃部材の製造方法
US11744744B2 (en) Curved elastic with entrapment
JPWO2015152331A1 (ja) プリプレグシート積層装置
JP6116241B2 (ja) 伸縮性シートの製造装置、及び製造方法
JP6012463B2 (ja) 伸縮性シートの製造装置、及び製造方法
JP5948239B2 (ja) 伸縮性シートの製造装置、及び製造方法
JP6134512B2 (ja) 伸縮性シートの製造装置、及び製造方法
JP6131044B2 (ja) 伸縮性シートの製造装置、及び製造方法
JP6140443B2 (ja) 伸縮性シートの製造装置、及び製造方法
JP6078337B2 (ja) 伸縮性シートの製造装置
JP6035143B2 (ja) 伸縮性シートの製造装置、及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793094

Country of ref document: EP

Kind code of ref document: A1