WO2013175801A1 - 回折光学素子およびその製造方法 - Google Patents

回折光学素子およびその製造方法 Download PDF

Info

Publication number
WO2013175801A1
WO2013175801A1 PCT/JP2013/003298 JP2013003298W WO2013175801A1 WO 2013175801 A1 WO2013175801 A1 WO 2013175801A1 JP 2013003298 W JP2013003298 W JP 2013003298W WO 2013175801 A1 WO2013175801 A1 WO 2013175801A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
optical
optical element
diffraction grating
adjustment layer
Prior art date
Application number
PCT/JP2013/003298
Other languages
English (en)
French (fr)
Inventor
村田 晶子
岡田 夕佳
辰敏 末永
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/130,737 priority Critical patent/US20140139923A1/en
Priority to JP2013548665A priority patent/JPWO2013175801A1/ja
Publication of WO2013175801A1 publication Critical patent/WO2013175801A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods

Definitions

  • the present application relates to a diffractive optical element, and relates to a diffractive optical element including two or more members each including different resins.
  • the diffractive optical element has a structure in which a diffraction grating for diffracting light is provided on a base made of an optical material such as glass or resin.
  • a diffractive optical element is used in an optical system of various optical devices including an imaging device and an optical recording device. For example, a lens designed to collect diffracted light of a specific order at one point, or a spatial low-pass filter A polarization hologram or the like is known.
  • a diffractive optical element has the feature that the optical system can be made compact. In contrast to refraction, longer wavelength light diffracts more greatly, so it is possible to improve chromatic aberration and curvature of field of the optical system by combining a diffractive optical element and a normal optical element using refraction. It is.
  • Patent Document 1 provides a diffraction grating on a surface of a base made of an optical material, and covers the diffraction grating with an optical adjustment layer made of an optical material different from that of the base.
  • the refractive indices at the wavelengths ⁇ of the two types of optical materials are n1 ( ⁇ ) and n2 ( ⁇ ), and the depth of the diffraction grating is d, the following formula (When 1) is satisfied, the diffraction efficiency for light of wavelength ⁇ is 100%.
  • m is an integer and indicates the diffraction order.
  • the optical material of ⁇ may be combined.
  • a material having a high refractive index and a low wavelength dispersion is combined with a material having a low refractive index and a high wavelength dispersion.
  • Patent Document 1 discloses that glass or resin is used as the first optical material serving as a base and ultraviolet curable resin is used as the second optical material.
  • the first optical material serving as the substrate When glass is used as the first optical material serving as the substrate, it is difficult to perform microfabrication compared to resin, and it is not easy to narrow the pitch of the diffraction grating and improve the diffraction performance. For this reason, it is difficult to improve the optical performance while reducing the size of the optical element.
  • the glass molding temperature is higher than that of the resin, the durability of the mold for molding the glass is lower than that of the mold for molding the resin, and there is a problem in productivity.
  • the diffraction grating When a resin is used as the first optical material serving as the substrate, it is superior to glass in terms of workability and moldability of the diffraction grating. However, it is difficult to realize various values of refractive index as compared with glass, and the difference in refractive index between the first optical material and the second optical material is small. Therefore, as is clear from Equation (1), the diffraction grating The depth d of becomes larger.
  • Patent Document 2 proposes a composite material containing inorganic particles having an average particle diameter of 1 nm to 100 nm in a matrix resin as the optical adjustment layer.
  • the refractive index and the Abbe number can be controlled by the material of the inorganic particles to be dispersed and the addition amount of the inorganic particles, and the refractive index and the Abbe number that are not found in conventional resins can be obtained. Therefore, by using the composite material for the optical adjustment layer, the degree of freedom in designing the diffraction grating when resin is used as the first optical material as the substrate is increased, the moldability is improved, and the excellent diffraction efficiency is achieved. Wavelength characteristics can be obtained.
  • the inventor of the present application has studied in detail the structure and production of a diffractive optical element using a resin for the substrate and the optical adjustment layer. As a result, in a diffractive optical element using a resin for the substrate and the optical adjustment layer, bubbles may be trapped in the annular zone of the diffraction grating during manufacture, or the adhesion between the optical adjustment layer and the substrate may not be sufficient. I understood that.
  • One non-limiting exemplary embodiment of the present application provides a diffractive optical element in which a base and an optical adjustment layer are bonded with good strength, and bubble entrapment in an annular portion is suppressed.
  • a diffractive optical element which is one embodiment of the present invention includes a first optical material including a first resin, and includes a base having a diffraction grating on the surface, a second optical material including a second resin and inorganic particles, and the diffraction
  • An optical adjustment layer provided on the substrate so as to cover the grating, and ⁇ SP defined by the following formula is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less, and the diffraction grating
  • the design order of diffraction by n is the nth order, and the n + 1-order unnecessary order diffracted light in the wavelength region of 400 nm to 700 nm is 7% or less.
  • bubble entrapment between the optical adjustment layer and the substrate is suppressed, and adhesion between the optical adjustment layer and the substrate is enhanced.
  • (A) is a figure which shows typically the cross-section of the diffractive optical element of this invention
  • (b) is a figure which shows a top view typically
  • (c) is a light ray to the diffractive optical element of this invention. It is a graph which shows the brightness
  • (A) to (e) are process cross-sectional views showing an example of a method for manufacturing the diffractive optical element shown in FIG.
  • the range of wavelength dependency of the selectable refractive index and refractive index of the resin is narrower than that of an inorganic material such as glass or ceramic. For this reason, when a resin is used for the substrate, it is very difficult to select a resin that satisfies the formula (1) and that can realize an optical adjustment layer that satisfies the necessary refractive index characteristics.
  • the inventor of the present application uses a composite material made of a resin containing inorganic particles to form an optical adjustment layer that satisfies such conditions, and to realize a practical diffractive optical element having high diffraction efficiency in a wide wavelength region. It was investigated.
  • the shape and size of the ring zone of the diffraction grating formed on the substrate surface, the type and viscosity of the material to be applied, and the wetness to the substrate Depending on the nature, the way in which the material to be applied grows and spreads differently, and bubbles may enter between the annular zone and the material to be applied. Such bubbles cause stray light and scattered light, leading to deterioration of the optical characteristics of the diffractive optical element.
  • the entrapment of bubbles in the annular zone of the diffraction grating and the adhesion between the substrate and the optical adjustment layer depend on the solubility parameter (SP value) of the material to be applied.
  • SP value solubility parameter
  • the wettability of the resin contained in the material to be applied is high, that is, the SP value is high, bubbles are less likely to be entrained in the diffraction grating, but the compatibility is also reduced, and the adhesion to the substrate may be reduced. I understood.
  • solubility parameter is the square root of the cohesive energy density in regular solution theory
  • the solubility parameter is an index of the intermolecular force of the substance, and it is considered that the closer the solubility parameter, the higher the affinity, that is, the stronger the interaction.
  • There are various derivation methods for the solubility parameter For example, a value obtained by a method of calculating from a molecular structure formula by Fedors et al. Can be used.
  • the solubility parameter used in the present specification is a value obtained by a method of calculating from this molecular structural formula.
  • Examples of the structure that increases the solubility parameter include highly polar functional groups such as OH groups and amide bonds.
  • examples of the structure having a low solubility parameter include a fluorine atom, a hydrocarbon group, and a siloxane bond.
  • the inventor of the present application mainly studied a suitable resin as a material for the diffractive optical element, and arrived at a new diffractive optical element.
  • the outline of one embodiment of the present invention is as follows.
  • a diffractive optical element which is one embodiment of the present invention includes a first optical material including a first resin, and includes a base having a diffraction grating on the surface, a second optical material including a second resin and inorganic particles, and the diffraction
  • An optical adjustment layer provided on the substrate so as to cover the grating, and ⁇ SP defined by the following formula is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less, and the diffraction grating
  • the design order of diffraction by n is the nth order, and the n + 1-order unnecessary order diffracted light in the wavelength region of 400 nm to 700 nm is 7% or less.
  • ⁇ SP [Solubility parameter of the second resin]
  • a diffractive optical element includes a first optical material containing a first resin, a base having a diffraction grating on the surface, a second optical material containing a second resin and inorganic particles, An optical adjustment layer provided on the substrate so as to cover the diffraction grating, and ⁇ SP defined by the following formula is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less, The optical adjustment layer side in the body and the base side in the optical adjustment layer do not include a portion having a refractive index different from the refractive indexes of the first optical material and the second optical material.
  • ⁇ SP [Solubility parameter of the second resin] ⁇ [Solubility parameter of the first resin]
  • ⁇ SP may be +0.5 or more and +0.7 [cal / cm 3 ] 1/2 or less.
  • the first resin may contain at least one of polycarbonate and a resin having a fluorene structure.
  • the second resin may contain pentaerythritol triacrylate.
  • the inorganic particles may contain as a main component at least one selected from the group consisting of zirconium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, scandium oxide, alumina, and silica.
  • the refractive index of the first optical material may be smaller than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material may be larger than the wavelength dispersion of the refractive index of the second optical material.
  • the effective particle size of the inorganic particles may be 1 nm or more and 100 nm or less.
  • the method for producing a diffractive optical element includes a step of preparing a substrate having a diffraction grating on the surface, the first optical material including a first resin, and a raw material for the inorganic particles and the second resin.
  • Forming the optical adjustment layer made of the second optical material containing the second resin and the inorganic particles by curing the second resin raw material while pressing against the raw material.
  • the raw material of the second optical material does not substantially contain a solvent before the step of arranging the raw material of the second optical material, and ⁇ SP defined by the following formula is ⁇ 0.7 or more + 0.7 [ cal / cm 3 ] 1/2 or less.
  • ⁇ SP [Solubility parameter of the second resin] ⁇ [Solubility parameter of the first resin]
  • the step of preparing a raw material for the second optical material includes a step of mixing the inorganic particles dispersed in a solvent and a raw material of the second resin to obtain a mixture, and a step of removing the solvent from the mixture. You may go out.
  • the viscosity of the raw material of the second optical material in an uncured state may be 1000 mPa ⁇ s or less.
  • the first resin may contain at least one of polycarbonate and a resin having a fluorene structure.
  • the second resin may contain pentaerythritol triacrylate.
  • (First embodiment) 1A and 1B show a cross-sectional view and a top view of a first embodiment of a diffractive optical element according to the present invention.
  • the diffractive optical element 101 includes a base 1 and an optical adjustment layer 3.
  • the base 1 is made of a first optical material containing a first resin
  • the optical adjustment layer 3 is made of a second optical material containing a second resin.
  • a diffraction grating 2 is provided on one main surface of the substrate 1.
  • the cross-sectional shape, arrangement, pitch, and depth of the diffraction grating 2 are determined from the optical characteristics of the substrate 1 and the optical adjustment layer 3 and the optical design of the finally obtained diffractive optical element 101.
  • the diffraction grating 2 has a lens action
  • the diffraction grating having a sawtooth cross-sectional shape is arranged concentrically by continuously changing the pitch from the center of the lens to the periphery. You can do it.
  • the diffraction grating may be formed on a curved surface as shown in FIG.
  • the diffraction grating 2 is formed on the base 1 so that the surface passing through the tip of the diffraction grating 2 is an aspherical surface having a lens function, it is possible to select an optimal combination of the refraction action and the diffraction action, and the chromatic aberration, It is possible to improve the field curvature and the like in a balanced manner and obtain a lens having high imaging performance.
  • the depth d of the diffraction grating 2 can be determined using Equation (1).
  • FIG. 1A shows a diffractive optical element having a diffraction grating 2 on one main surface
  • the substrate 1 may have two or more diffraction grating surfaces.
  • the substrate 1 has a convex surface having the diffraction grating 2 and a plane located on the opposite side of the convex surface, but the diffraction grating is formed on at least one of the surfaces.
  • the two main surfaces of the substrate 1 may be both convex surfaces, convex and concave surfaces, both concave surfaces, concave surfaces and flat surfaces, or both flat surfaces.
  • the diffraction grating may be formed on only one surface or on both surfaces.
  • the shape, arrangement, pitch, and diffraction grating depth of the diffraction gratings on both sides may not necessarily match as long as they satisfy the performance required for the diffractive optical element. .
  • the optical adjustment layer 3 is provided so as to cover at least the main surface of the substrate 1 on which the diffraction grating 2 is provided so as to fill in the steps of the diffraction grating 2 in order to reduce the wavelength dependency of the diffraction efficiency in the diffractive optical element 101. ing.
  • the substrate 1 and the optical adjustment layer 3 satisfy the formula (1) in the entire wavelength region of light to be used.
  • the first optical material of the substrate 1 and the second optical material of the optical adjustment layer 3 exhibit a tendency that the wavelength dependence of the refractive index is opposite, and cancel each other in the change of the refractive index with respect to the wavelength. It is preferable to provide. More specifically, the refractive index of the first optical material is smaller than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is greater than the wavelength dispersion of the refractive index of the second optical material. Is preferred.
  • the wavelength dispersion of the refractive index is represented by, for example, the Abbe number.
  • the wavelength dependence of the refractive indexes of the first optical material and the second optical material depends on the physical properties of the first resin and the second resin contained therein.
  • Equation (1) In an actual diffractive optical element, it does not have to be strictly established in the entire wavelength range used by Equation (1). If the difference between the right side and the left side of Equation (1) is ⁇ 10%, high diffraction efficiency can be obtained in the design order.
  • the first optical material constituting the substrate 1 includes the first resin.
  • the material containing the resin is used as the first optical material in consideration of mold molding that can be expected to be most productive in the production of lenses.
  • the durability of the mold is a material containing a resin.
  • the substrate 1 having a diffraction grating shape is not easy to manufacture, whereas a resin-containing material can be applied to a manufacturing method with high mass productivity such as injection molding. is there.
  • the performance of the diffractive optical element 101 can be improved by reducing the pitch of the diffraction grating 2 or diffraction can be performed.
  • the optical element 101 can be reduced in size. Further, the diffractive optical element 101 can be reduced in weight.
  • the first resin among the translucent resin materials generally used as the base of the optical element, the refractive index characteristic and the wavelength dispersion that can reduce the wavelength dependency of the diffraction efficiency at the design order of the diffractive optical element.
  • the first optical material includes inorganic particles for adjusting optical properties such as refractive index and mechanical properties such as thermal expansion, and dyes and pigments that absorb electromagnetic waves in a specific wavelength region.
  • An agent may be included.
  • the second optical material constituting the optical adjustment layer 3 includes a second resin.
  • the reason why a material containing a resin is used as the second optical material is that the moldability of the optical adjustment layer 3 filling the steps of the diffraction grating 2 is good. Furthermore, since the molding temperature is lower than that of the inorganic material, it is particularly preferable when the substrate 1 is made of the first optical material containing the first resin.
  • the second optical material can have a high refractive index that cannot be achieved by the resin alone. For this reason, the difference in refractive index between the first optical material and the second optical material can be enlarged, and the depth of the diffraction grating 2 can be reduced as is apparent from the equation (1).
  • the inorganic particles 4 often have a higher refractive index than the resin. Therefore, when the first optical material containing the first resin is used for the substrate 1 and the second optical material in which the inorganic particles 4 are dispersed in the matrix resin 5 containing the second resin is used as the optical adjustment layer 3, the second optical material is used. It is preferable to adjust the material so as to exhibit higher refractive index and lower wavelength dispersibility than the first optical material because more materials can be selected as the inorganic particles 4. In other words, the first optical material preferably has a lower refractive index and higher wavelength dispersion than the second optical material.
  • the refractive index of the second optical material that is a composite material can be estimated from the refractive index of the second resin and inorganic particles 4 contained in the matrix resin 5 by, for example, Maxwell-Garnet theory expressed by the following formula (3). .
  • n COM ⁇ is the average refractive index of the second optical material at a specific wavelength ⁇
  • n p ⁇ and n m ⁇ are the refractive indexes of the inorganic particles and the second resin at the wavelength ⁇ , respectively. is there.
  • P is a volume ratio of the inorganic particles to the entire second optical material.
  • the Abbe number of the composite material is further estimated by estimating the refractive index of the Fraunhofer D-line (589.2 nm), F-line (486.1 nm), and C-line (656.3 nm) as the wavelength ⁇ . It is also possible to estimate.
  • the mixing ratio between the second resin and the inorganic particles 4 may be determined from the estimation based on this theory.
  • the refractive index of the formula (3) is calculated as a complex refractive index.
  • Expression (2) is an expression that holds when n p ⁇ ⁇ n m ⁇ .
  • the refractive index is estimated using the following expression (4).
  • the refractive index difference between the substrate 1 and the optical adjustment layer 3 can be increased, and the step of the diffraction grating provided on the substrate can be reduced. For this reason, when the substrate 1 is produced by molding, the transferability of the diffraction grating 2 is improved. Further, since the step of the diffraction grating 2 can be made shallow, transfer is easy even if the step pitch is narrowed. Therefore, the diffraction performance can be improved by narrowing the pitch of the diffraction grating 2. Furthermore, it is possible to use materials having various physical properties for the second resin, and it becomes easier to achieve both optical characteristics and physical or scientific characteristics other than the optical characteristics.
  • the first resin and the second resin are selected from known resin materials so that the first optical material and the second optical material have wavelength dependency of a desired refractive index.
  • ⁇ SP defined by the following formula is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less.
  • ⁇ SP [solubility parameter of the second resin] ⁇ [solubility parameter of the first resin]
  • the difference in solubility parameter between the first resin and the second resin is small, so that the strength of the intermolecular force between the first resin and the second resin becomes substantially equal.
  • the first optical material and the second optical material each containing the resin and the second resin have high affinity and are easily adhered to each other.
  • the bubble entrapment between the substrate 1 and the optical adjustment layer 3 is related to the wettability on the surface where the substrate and the optical adjustment layer 3 are in contact with each other.
  • One of the factors of wettability includes surface tension, and an SP value is given as a factor for determining surface tension.
  • ⁇ SP of the first resin and the second resin is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less as described above, Infiltration is suppressed.
  • the difference ⁇ SP in the SP value between the first optical material and the second optical material is within a range of +0.5 or more and +0.7 [cal / cm 3 ] 1/2 or less
  • the second resin contained in the optical adjustment layer 3 Solubility parameter is larger.
  • the wettability of the optical adjustment layer 3 is further improved, and the bubble entrapment in the diffraction grating can be suppressed without depending on the molding speed of the optical adjustment layer 3.
  • a diffractive optical element having more excellent optical characteristics can be realized.
  • the bubble entrapment also depends on the viscosity of the second optical material constituting the optical adjustment layer 3, and the bubble entrapment tends to occur even when the viscosity of the second optical material is low.
  • the viscosity of the second optical material becomes low and bubbles are likely to be trapped.
  • ⁇ SP described above indicates a relationship that the solubility parameters of the first resin and the second resin satisfy when the second optical material includes the second resin and inorganic particles.
  • the diffractive optical element of this embodiment when the design order of diffraction by the diffraction grating 2 is n-order, (n + 1) -order unnecessary diffracted light in the wavelength region of 400 nm to 700 nm is 7% or less.
  • FIG. 1C shows the result of measuring the maximum luminance 40, 41, 42 at the condensing points 30, 31, 32 corresponding to each diffraction order when the light beam is transmitted through the diffractive optical element.
  • the condensing point 31 indicates the 0th order diffracted light
  • the condensing point 32 and the condensing point 30 indicate the ⁇ 1st order diffracted light and the + 1st order diffracted light, respectively.
  • the condensing points 30, 31, and 32 have maximum luminances 40, 41, and 42, respectively.
  • the first optical material and the second optical material of the base 1 of the diffractive optical element and the optical adjustment layer 3 contain a resin
  • at the time of manufacturing the diffractive optical element at least one of the first optical material and the second optical material is uncured. Or is deformed to such a degree that it can be molded. Therefore, a chemical interaction occurs between the first resin of the first optical material and the second resin of the second optical material, and the first optical The optical properties of the material and the second optical material may change.
  • the diffractive optical element 101 includes the region 2 a on the optical adjustment layer 3 side in the substrate 1 and the substrate 1 side in the optical adjustment layer 3.
  • the region 3a does not include a portion having a refractive index different from any of the refractive indexes of the first optical material and the second optical material.
  • does not include a portion having a refractive index different from the refractive index of either the first optical material or the second optical material means that the substrate 1 and the optical adjustment layer 3 are not observed in TEM (transmission electron microscope) observation. It means that another layer or region cannot be visually observed during the period.
  • the first optical material and the second optical material do not exert a chemical action on each other to the extent that the optical characteristics are affected.
  • this suppresses the interaction between the first resin of the first optical material and the second resin of the second optical material when the diffractive optical element 101 is manufactured. This is because the process is adopted. For this reason, as described above, generation of unnecessary diffracted light is suppressed, and a diffractive optical element having excellent optical characteristics can be realized.
  • the first resin of the first optical material constituting the substrate 1 Preferably has low refractive index and high wavelength dispersion.
  • Polycarbonate containing aromatic rings bisphenol A polycarbonate, bisphenol F polycarbonate, etc.
  • resins containing fluorene structure eg, Osaka Gas Chemical “OKP” series, etc.
  • the polycarbonate resin and other resin may be copolymerized with the second optical material so as to satisfy the formula (1), alloyed with other resins, A blended resin may be used as the first optical material.
  • the first optical material may contain an additive.
  • thermosetting resin As the second resin, it is preferable to use a thermosetting resin or an energy ray curable resin because the process of forming the optical adjustment layer 3 is simplified.
  • Specific examples include acrylate resins, methacrylate resins, epoxy resins, oxetane resins, and ene-thiol resins.
  • the SP value is separated from the polycarbonate so that the value of ⁇ SP is in the range of ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less.
  • the SP value can be easily adjusted.
  • the second resin may be composed of an alloy or blend of the above-described resins.
  • the above-described resin is preferably contained in the second resin in an amount of 20% by weight or more. Moreover, you may use what modified
  • the second optical material made of a composite material when used as the optical adjustment layer 3, the second optical material has a higher refractive index than the first optical material and has a lower wavelength than the first optical material. It is necessary to have dispersibility.
  • the inorganic particles 4 to be dispersed in the second resin are also preferably composed mainly of a material having a low wavelength dispersibility, that is, a high Abbe number.
  • the inorganic particles 4 when a polycarbonate-based resin having a benzene ring or a resin containing a fluorene structure is used as the first resin, the inorganic particles 4 are preferably composed mainly of a material having an Abbe number of 25 or more.
  • zirconium oxide (Abbe number: 35), yttrium oxide (Abbe number: 34), lanthanum oxide (Abbe number: 35), hafnium oxide (Abbe number 32), scandium oxide (Abbe number: 27), alumina (Abbe number) : 76) and at least one oxide selected from the group consisting of silica (Abbe number: 68) is particularly preferred. Moreover, you may use these complex oxides. In addition to these inorganic particles, as long as the wavelength band of light in which the diffractive optical element 101 is used satisfies Formula (1), for example, inorganic particles exhibiting a high refractive index represented by titanium oxide, zinc oxide, etc. You may coexist.
  • the effective particle size of the inorganic particles 4 is preferably 1 nm or more and 100 nm or less. When the effective particle size is 100 nm or less, loss due to Rayleigh scattering can be reduced, and the transparency of the optical adjustment layer 3 can be increased. Further, by setting the effective particle size to 1 nm or more, it is possible to suppress the influence of light emission or the like due to the quantum effect.
  • the 2nd optical material may further contain additives, such as a dispersing agent which improves the dispersibility of inorganic particles, a polymerization initiator, and a leveling agent, as needed.
  • the effective particle diameter will be described with reference to FIG.
  • the horizontal axis represents the particle size of the inorganic particles
  • the left vertical axis represents the frequency of the inorganic particles with respect to the particle size on the horizontal axis.
  • the vertical axis on the right represents the cumulative frequency of particle size.
  • the effective particle size means that the particle size at which the cumulative frequency is 50% in the particle size frequency distribution of the entire inorganic particles is the central particle size (median diameter: d50), and the cumulative frequency is centered on the central particle size. It refers to the particle size range B in the range A of 50%. Therefore, it is preferable that the range of the effective particle size defined as described above of the inorganic particles 4 is in the range of 1 nm to 100 nm. In order to accurately determine the value of the effective particle size, for example, it is preferable to measure 200 or more inorganic particles.
  • the second optical material preferably contains a silane coupling agent as a dispersant for uniformly dispersing the above-described inorganic particles.
  • the dispersant has an effect of suppressing aggregation of particles and improving the transparency of the optical adjustment layer.
  • the silane coupling agent include acrylic silane, vinyl silane, and epoxy silane.
  • Acrylic silane includes ⁇ -methacryloxypropyltrimethoxysilane.
  • the diffraction grating depth is reduced and processing becomes easy.
  • the distance between adjacent diffraction gratings can be reduced, that is, the pitch can be narrowed, so that a high diffraction effect can be provided.
  • a high-performance diffractive optical element can be realized.
  • the difference ⁇ SP value between the solubility parameter of the first resin and the solubility parameter of the second resin is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less.
  • the diffractive optical element that is capable of maintaining a good adhesion state without peeling off the optical adjustment layer from the substrate even in a harsh use environment, having high reliability, light weight, and excellent optical characteristics. can get. Further, since a resin is used for the substrate, the moldability is relatively easy and the life of the mold can be extended. Therefore, the diffraction grating element of this embodiment is excellent in mass productivity. Since the diffractive optical element of this embodiment has such a feature, for example, an optical device installed in a place where environmental temperature changes and vibrations are large, more specifically, a surveillance camera or an automobile installed outdoors. It is used suitably as optical elements, such as a vehicle-mounted camera.
  • an antireflection layer may be provided on the surface of the optical adjustment layer 3.
  • the material of the antireflection layer is not particularly limited as long as it has a refractive index smaller than that of the optical adjustment layer 3.
  • a resin or a composite material of resin and inorganic particles, an inorganic thin film formed by vacuum deposition, or the like can be used.
  • inorganic particles used in the composite material as the antireflection layer include silica, alumina, and magnesium oxide having a low refractive index.
  • a nanostructure antireflection shape may be formed on the surface of the optical adjustment layer 3.
  • the antireflection shape of the nanostructure can be easily formed by, for example, a transfer method (nanoimprint) using a mold.
  • a surface layer having an effect of adjusting mechanical properties such as friction resistance and thermal expansion may be separately formed on the surface of the optical adjustment layer 3 or the antireflection layer.
  • a surface layer having an effect of adjusting mechanical properties such as friction resistance and thermal expansion may be separately formed on the surface of the optical adjustment layer 3 or the antireflection layer.
  • a substrate 1 having a diffraction grating 2 formed on the surface is prepared.
  • a method in which a first optical material is supplied in a softened or melted state to a mold in which a diffraction grating shape is formed, and molding is performed, and a mold in which a diffraction grating shape is formed A method of casting a monomer, oligomer, or the like, which is a raw material of the first optical material, and polymerizing the raw material by heating and / or irradiation with energy rays, or a diffraction grating 2 by cutting, polishing, or the like on the surface of a previously formed substrate 1
  • the substrate 1 on which the diffraction grating 2 is formed can be produced by a method for molding the substrate. You may produce the base
  • the raw material of the 2nd optical material containing the inorganic particle and the raw material of 2nd resin is prepared.
  • inorganic particles selected according to optical characteristics required as the second optical material can be used.
  • ⁇ SP is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less, that is, the solubility parameter is ⁇ 0. 0 from the solubility parameter of the first resin contained in the first optical material.
  • the raw material of the 2nd optical material containing the raw material of the 2nd resin which is 7 or more +0.7 [cal / cm ⁇ 3 >] ⁇ 1/2 > or less is prepared.
  • the second resin is a resin that can be applied to the substrate 1 even when mixed with inorganic particles to form a composite and has a viscosity that does not entrap bubbles in the diffraction grating. Is preferably selected.
  • the uncured viscosity is preferably 1000 mPa ⁇ s or less.
  • the viscosity of resin in the mixed state is 1000 mPa * s or less.
  • the raw material of the second optical material including the inorganic particles and the raw material of the second resin does not substantially contain a solvent in a state before being disposed on the substrate 1.
  • the substantially free state means that the solvent content is 0.3% or less with respect to the total weight of the raw material of the second optical material.
  • the raw material of the second optical material does not substantially contain the solvent, the chemical interaction between the first optical material and the second optical material at the time of manufacturing the diffractive optical element is suppressed, and the refractive index is reduced.
  • the raw material of the second optical material that does not substantially contain the solvent can be obtained, for example, by using the raw material of the second resin that does not substantially contain the solvent and dispersing inorganic particles in the raw material of the second resin.
  • the inorganic particles are mixed with the solvent, and the mixed liquid and the raw material of the second resin are mixed, whereby the inorganic particles are secondly mixed.
  • a solvent that can be easily removed from the raw material of the second resin in which the inorganic particles are dispersed can be selected.
  • IPA isopropyl alcohol
  • an evaporator is used to remove the solvent.
  • the raw material 12 ′ of the second optical material containing the solvent is put into the flask 10, and the solvent is substantially reduced by reducing the pressure while warming with a water bath or the like. Remove until no more.
  • a raw material 12 of the second optical material is disposed on the base 1 so as to cover the diffraction grating 2.
  • the method of disposing the raw material 12 of the second optical material on the diffraction grating 2 of the base 1 depends on the shape accuracy of the diffraction grating 2 determined from the material characteristics such as viscosity and the optical characteristics required for the diffractive optical element. It can be appropriately selected from various known coating layer forming processes. For example, coating using a liquid injection nozzle such as a dispenser, dip coating such as dip coating, spray coating, spray coating such as an inkjet method, coating by rotation such as spin coating, coating by squeezing such as screen printing, etc. Good. Moreover, you may combine these processes suitably. This also applies to the following embodiments.
  • ⁇ SP of the first resin and the second resin is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less.
  • the shape accuracy required for the optical adjustment layer 3 particularly the shape of the surface opposite to the diffraction grating 2 with high accuracy
  • a mold is used in the curing process, and the shape of the optical adjustment layer 3 is changed. Control may be performed with higher molding accuracy.
  • the raw material 12 of the optical adjustment layer from which the solvent has been removed is dropped onto the substrate 1 from the dispenser 11. Subsequently, as illustrated in FIG. 4D, the mold 13 is pressed against the raw material 12, and the mold 13 is disposed on the base 1 so as to cover the raw material 12.
  • the material of the mold 13 can be appropriately selected according to the required shape accuracy and durability. For example, metals such as iron, aluminum, alloys thereof, and brass can be used. You may use the metal which surface-treated, such as nickel plating, as needed. Resins such as quartz, glass, epoxy resin, polyester resin, and polyolefin resin can also be used as the material of the mold 13.
  • the raw material 12 of the second optical material may be disposed inside the mold 13 and then pressed against the substrate 1.
  • the raw material 12 before curing has a low viscosity, it is easy to go around the substrate 1 having the diffraction grating 2 formed on the surface, and the entrapment of bubbles and the like is suppressed, and the optical adjustment layer 3 and the substrate 1 are cured. Since the adhesiveness is also improved, it is more preferable to directly arrange the raw material 12 on the substrate 1.
  • the optical adjustment layer 3 When the optical adjustment layer 3 is molded using the mold 13, it is common to perform mold release after the curing step. However, if the raw material 12 does not deform in the state before curing, the raw material of the second resin contained in the raw material 12 may be cured after first releasing the mold.
  • mold release is performed after curing by energy beam irradiation, the energy beam is irradiated to the raw material of the second resin contained in the raw material 12 in a state where the raw material 12 is regulated by the mold 13.
  • an opaque material such as metal is used as the mold 13, as shown in FIG. 4D, energy rays are irradiated from the surface opposite to the surface on which the raw material 12 of the substrate 1 is disposed.
  • the second resin can be cured by irradiating the raw material of the second resin contained in the raw material 12 with energy rays.
  • the entire raw material 12 is cured.
  • the diffractive optical element 101 in which the optical adjustment layer 3 is formed on the surface of the substrate 1 is completed as shown in FIG.
  • ⁇ SP which is a difference in solubility parameter between the first resin and the second resin, is small, so that the optical adjustment layer 3 is in close contact with the surface of the substrate 1.
  • the solvent is contained in the raw material 12 of the second optical material, it may be considered that the solvent is removed after the raw material of the second optical material is arranged on the substrate 1.
  • the solubility of the first resin and the first resin as the second resin is prevented so that the monomer or oligomer that is the raw material of the second resin does not penetrate into the substrate 1 during this period. It is necessary to prepare a material with a large parameter difference.
  • the manufacturing method of the present embodiment since the raw material of the second optical material does not substantially contain a solvent, the penetration of the raw material of the second resin of the base 1 and the solvent is suppressed. .
  • the production tact for manufacturing the diffractive optical element can be shortened.
  • the raw material of the second optical material when the raw material of the second optical material is disposed on the substrate 1, the raw material of the second optical material does not substantially contain a solvent.
  • a chemical interaction between the first optical material and the second optical material during the manufacture of the diffractive optical element is suppressed, and a layer or region having a refractive index different from that of either the first optical material or the second optical material is formed. Can be suppressed.
  • ⁇ SP is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less, bubble entrapment into the diffraction grating of the substrate 1 during the manufacture of the diffractive optical element is suppressed, and the substrate and the optical element Adhesion with the adjustment layer is also improved.
  • a diffractive optical element 101 having the structure shown in FIGS. 1A to 1B was produced by the following method.
  • the diffractive optical element 101 has a lens action and is designed to use first-order diffracted light. The same applies to the following embodiments.
  • a polycarbonate resin (d-line refractive index 1.585, Abbe number 28, SP value 9.8 [cal / cm 3 ] 1/2 ) is injection-molded to form an aspheric shape.
  • the effective radius of the lens part is 0.828 mm
  • the number of annular zones is 29, the minimum annular zone pitch is 14 ⁇ m
  • the paraxial R (curvature radius) of the aspherical surface on which diffraction is formed is ⁇ 1.0144 mm.
  • a composite material as a raw material for the optical adjustment layer 3 was prepared as follows.
  • acrylate resin A d-line refractive index 1.529, Abbe number 50, SP value 11.5 [cal / cm 3 ] 1/2
  • acrylate resin B d-line refraction
  • an IPA dispersion of zirconium oxide (primary particle size of 3 to 10 nm, effective particle size of 6 nm by light scattering method, containing a silane surface treatment agent) was oxidized in the total solid content excluding IPA as a dispersion medium. It was dispersed so that the weight ratio of zirconium was 36% by weight and mixed with a photopolymerization initiator.
  • the solvent in the composite material was completely removed using an evaporator, and the composite material was filled into a syringe while defoaming using a vacuum stirring defoaming mixer (manufactured by EME Co., Ltd., V-mini300).
  • the refractive index at d-line is 1.623
  • the Abbe number is 43
  • the light transmittance at a wavelength of 400 to 700 nm is 90% or more (film thickness 30 ⁇ m).
  • the refractive index was measured using a raw material of the optical adjustment layer 3 on a flat plate, forming a film under the same conditions, and using a prism coupler (manufactured by Metricon Corporation, MODEL 2010). The measurement was performed at three wavelengths (405 nm, 532 nm, and 633 nm), and the refractive index and Abbe number of other wavelengths were calculated by an approximate expression using the respective measured refractive index values.
  • this second optical material was dropped on the substrate 1 using a dispenser, and immediately placed on a mold (a nickel plating film was formed on the surface of the stainless steel alloy), and the back surface of the substrate 1 (the composite material was dropped). from the surface opposite to the surface), UV (illuminance 120 mW / cm 2, to cure the second resin by irradiating the integrated quantity of light 4000 mJ / cm 2). Thereafter, it was separated from the mold and formed as the optical adjustment layer 3.
  • the surface shape of the optical adjustment layer 3 was formed so as to coincide with the aspherical shape along the envelope shape at the base of the diffraction grating 2.
  • the thickness of the optical adjustment layer 3 is 30 ⁇ m at the thickest part (that is, the part corresponding to the deepest part of the diffractive optical element), and 15 ⁇ m at the thinnest part (that is, the part corresponding to the tip part of the diffractive optical element). Formed.
  • the diffraction efficiency of the diffractive optical element 101 produced through the above steps was measured.
  • a white light source and a color filter R: 640 nm, G: 540 nm, B: 440 nm
  • the maximum luminance at the condensing point corresponding to each diffraction order when a light beam of each wavelength is transmitted through the diffractive optical element Measurement was performed using an ultra-precise three-dimensional measuring apparatus (manufactured by Mitaka Kogyo Co., Ltd.), and the calculation was performed using the following formula 7. In the following examples and comparative examples, higher-order diffracted light higher than third-order diffracted light was not detected.
  • the first-order diffraction efficiency of the diffractive optical element 101 of this example was 90% or more at all wavelengths, and the second-order diffracted light was 6%. In addition, if the first-order diffraction efficiency is 85% or more, it can be said that the diffractive optical element has high light collecting performance.
  • the diffractive optical element 101 was observed with an optical microscope, no bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed.
  • the diffractive optical element 101 was placed in an environmental tester (manufactured by ESPEC ENGINEERING, PVL-2SP) and left in an environment of 90 ° C. and 85% humidity for 168 hours. After standing, the diffractive optical element was observed with an optical microscope, and the adhesion of the optical adjustment layer was examined. As a result, no peeling within the effective diameter of the diffractive optical element was observed.
  • Example 2 As Example 2, a diffractive optical element having the same structure as Example 1 was produced by the same method as Example 1. The difference from Example 1 is that the second resin is mixed with the acrylate resin A and the acrylate resin B at a weight ratio of 20:80.
  • the first-order diffraction efficiency of the diffractive optical element 101 of this example was 92% or more at all wavelengths, and the second-order diffracted light was 6%.
  • the diffractive optical element 101 was observed with an optical microscope, no bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed. Further, when the adhesion of the optical adjustment layer was examined in the same manner as in Example 1, no peeling within the effective diameter of the diffractive optical element was observed.
  • Example 3 As Example 3, a diffractive optical element having the same structure as Example 1 was produced by the same method as Example 1. The difference from Example 1 is that the second resin is mixed with acrylate resin A and acrylate resin B at a weight ratio of 40:60.
  • the first-order diffraction efficiency of the diffractive optical element 101 of this example was 90% or more at all wavelengths, and the second-order diffracted light was 7%.
  • the diffractive optical element 101 was observed with an optical microscope, no bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed. Further, when the adhesion of the optical adjustment layer was examined in the same manner as in Example 1, no peeling within the effective diameter of the diffractive optical element was observed.
  • Example 4 As Example 4, a diffractive optical element having the same structure as Example 1 was produced by the same method as Example 1. The difference from Example 1 is that the second resin is mixed with acrylate resin A and acrylate resin B at a weight ratio of 50:50.
  • the first-order diffraction efficiency of the diffractive optical element 101 of this example was 91% or more at all wavelengths and the second-order diffracted light was 5%.
  • the diffractive optical element 101 was observed with an optical microscope, no bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed. Further, when the adhesion of the optical adjustment layer was examined in the same manner as in Example 1, no peeling within the effective diameter of the diffractive optical element was observed.
  • Example 5 As Example 5, a diffractive optical element having the same structure as Example 1 was produced by the same method as Example 1. The difference from Example 1 is that the second resin is mixed with acrylate resin A and acrylate resin B at a weight ratio of 60:40.
  • the first-order diffraction efficiency of the diffractive optical element 101 of this example was 91% or more at all wavelengths, and the second-order diffracted light was 6%.
  • the diffractive optical element 101 was observed with an optical microscope, no bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed. Further, when the adhesion of the optical adjustment layer was examined in the same manner as in Example 1, no peeling within the effective diameter of the diffractive optical element was observed.
  • Example 1 As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. The difference from Example 1 is that the second resin is mixed with acrylate resin A and acrylate resin B at a weight ratio of 0: 100.
  • the primary diffraction efficiency of the diffractive optical element 101 of this comparative example was 90% or more at all wavelengths, and the secondary diffraction light was 6%.
  • the diffractive optical element 101 was observed with an optical microscope, bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed. Further, when the adhesion of the optical adjustment layer was examined in the same manner as in Example 1, no peeling within the effective diameter of the diffractive optical element was observed.
  • Example 2 As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. The difference from Example 1 is that the second resin is mixed with the acrylate resin A and the acrylate resin B at a weight ratio of 70:30.
  • the primary diffraction efficiency of the diffractive optical element 101 of this comparative example was 90% or more at all wavelengths and the secondary diffraction light was 7%.
  • the diffractive optical element 101 was observed with an optical microscope, no bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed. Further, when the adhesion of the optical adjustment layer was examined in the same manner as in Example 1, peeling within the effective diameter of the diffractive optical element was observed.
  • Example 3 As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. The difference from Example 1 is that the second resin is acrylate resin A and epoxy acrylate resin C (d-line refractive index 1.569, Abbe number 35, SP value 12.1 [cal / cm 3 ] 1/2 ). Is mixed at a weight ratio of 90:10, and an IPA dispersion of zirconium oxide (primary particle size of 3 to 10 nm, effective particle size of 6 nm by light scattering method, containing silane surface treatment agent) is added to the mixture. It is the point which dispersed so that the weight ratio of the zirconium oxide in the total solid content except IPA which is may become 25 weight%, and mixed with the photoinitiator.
  • the second resin is acrylate resin A and epoxy acrylate resin C (d-line refractive index 1.569, Abbe number 35, SP value 12.1 [cal / cm 3 ] 1/2 ).
  • the primary diffraction efficiency of the diffractive optical element 101 of this comparative example was 91% or more at all wavelengths and the secondary diffraction light was 6%.
  • the diffractive optical element 101 was observed with an optical microscope, no bubbles were observed within the effective diameter of the diffractive optical element. Further, when the substrate was cut at a cross section passing through the optical axis and the boundary portion between the substrate 1 and the optical adjustment layer 3 was observed with an optical microscope, no change in the diffraction grating or refractive index change layer due to the interaction of the materials was observed. Further, when the adhesion of the optical adjustment layer was examined in the same manner as in Example 1, peeling within the effective diameter of the diffractive optical element was observed.
  • Example 4 As a comparative example, a diffractive optical element having the same structure as in Example 4 was produced by the same method as in Example 4. The difference from Example 4 is that when the optical adjustment layer is formed, inorganic particles are not mixed and the resin layer is formed only with a resin.
  • Example 5 As a comparative example, a diffractive optical element having the same structure as in Example 3 was produced by the same method as in Example 3. The difference from Example 3 is that when the optical adjustment layer is formed, inorganic particles are not mixed, and the resin layer is formed only with a resin.
  • Example 6 a diffractive optical element having the same structure as in Example 5 was produced by the same method as in Example 5. The difference from Example 5 is that when the optical adjustment layer is formed, the inorganic particles are not mixed and the resin layer is formed only from the resin.
  • Table 1 summarizes the results of the composition and viscosity of the second resin, ⁇ SP, ejection and bubbles, and high-temperature and high-humidity storage test of the diffractive optical element according to each example and comparative example.
  • ⁇ , ⁇ , and ⁇ indicate the evaluation of the discharge time, the state of bubbles, and the results of the high-temperature and high-humidity storage test, and the results of the respective evaluation items are shown in FIG.
  • ⁇ SP is in the range of ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less.
  • entrapment of bubbles when forming the optical adjustment layer and peeling of the optical adjustment layer after the high temperature and high humidity test were not observed. This is because ⁇ SP is not less than ⁇ 0.7 and not more than +0.7 [cal / cm 3 ] 1/2 and the solubility parameter of any of the first resin and the second resin is not small.
  • Is applied on the diffraction grating of the substrate 1 the air between the substrate 1 and the raw material 12 is pushed out along the surface of the substrate 1 and the surface of the raw material 12, and the entrapment of bubbles is suppressed. It is believed that there is. Further, since ⁇ SP is small, it is considered that the adhesion between the first optical material and the second optical material is improved.
  • ⁇ SP is outside the range of ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less. For this reason, it is considered that bubbles are trapped, high adhesion cannot be obtained, and the optical adjustment layer is peeled off in the high temperature and high humidity test.
  • ⁇ Sp is ⁇ 0.8
  • the solubility parameter of the second resin contained in the optical adjustment layer 3 is relatively small. For this reason, it is thought that the wettability of the optical adjustment layer 3 is poor and bubbles are easily trapped.
  • ⁇ SP is larger than +0.7, and the difference in solubility parameter between the first resin and the second resin is large. Therefore, it is considered that the adhesion between the first optical material and the second optical material is lowered, and the optical adjustment layer is peeled off in the high temperature and high humidity test.
  • the second optical material of the optical adjustment layer does not contain inorganic particles. For this reason, since the viscosity of the second optical material is lowered, bubbles are trapped even when the value of ⁇ SP is in the range of ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less. it is conceivable that.
  • the second optical material contains the second resin and inorganic particles, and ⁇ SP is ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less. It can be seen that the diffractive optical element having excellent optical characteristics can be obtained without the optical adjustment layer being peeled off from the substrate even in a severe use environment.
  • ⁇ SP has excellent characteristics in the range of ⁇ 0.7 or more and +0.7 [cal / cm 3 ] 1/2 or less.
  • the diffractive optical element disclosed in the present application can be suitably used as, for example, a camera lens, a spatial low-pass filter, a polarization hologram, or the like.
  • it is suitably used as an optical element of an apparatus installed in a place where environmental temperature changes and vibrations are severe.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 本願に開示された回折光学素子は、第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、第2樹脂および無機粒子を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層とを備え、下記式で定義されるΔSPが-0.7以上+0.7[cal/cm31/2以下であり、 ΔSP=[前記第2樹脂の溶解度パラメータ]-[前記第1樹脂の溶解度パラメータ] 前記回折格子による回折の設計次数はn次であり、400nm以上700nm以下の波長領域におけるn+1次の不要次数回折光が7%以下である。

Description

回折光学素子およびその製造方法
 本願は、回折光学素子に関し、異なる樹脂をそれぞれ含む2つ以上の部材によって構成される回折光学素子に関する。
 回折光学素子は、ガラスや樹脂等の光学材料からなる基体に光を回折させる回折格子が設けられた構造を備える。回折光学素子は、撮像装置や光学記録装置を含む種々の光学的機器の光学系に用いられており、例えば、特定次数の回折光を1点に集めるように設計されたレンズや、空間ローパスフィルタ、偏光ホログラム等が知られている。
 回折光学素子は、光学系をコンパクトにできるという特長を有する。また、屈折とは逆に長波長の光ほど大きく回折することから、回折光学素子と屈折を利用する通常の光学素子とを組み合わせることにより、光学系の色収差や像面湾曲を改善することも可能である。
 しかし、回折効率は理論的に光の波長に依存することから、特定の波長の光における回折効率が最適となるように回折光学素子を設計すると、その他の波長の光では回折効率が低下するという課題が生じる。例えば、カメラ用レンズ等白色光を利用する光学系に回折光学素子を用いる場合、この回折効率の波長依存性によって、色むらや不要次数光によるフレアが生じ、回折光学素子だけで適切な光学特性を有する光学系を構成するのは困難である。
 このような課題に対して、特許文献1は、光学材料からなる基体の表面に回折格子を設け、基体と異なる光学材料からなる光学調整層で回折格子を覆うことによって、位相差型の回折光学素子を構成し、光学特性が所定の条件を満たすように2つの光学材料を選択することによって、設計した回折次数での回折効率を波長によらず高くする、つまり、回折効率の波長依存性を低減する方法を開示している。
 回折光学素子を透過する光の波長をλとし、2種類の光学材料の波長λにおける屈折率をn1(λ)およびn2(λ)とし、回折格子の深さをdとした場合、下記式(1)を満たす場合、波長λの光に対する回折効率が100%となる。ここで、mは整数であり、回折次数を示す。
Figure JPOXMLDOC01-appb-M000001
 したがって、回折効率の波長依存性を低減するためには、使用する光の波長帯域内においてdがほぼ一定となるような波長依存性を持つ屈折率n1(λ)の光学材料と屈折率n2(λ)の光学材料とを組み合わせればよい。一般的には、屈折率が高く、波長分散の低い材料と屈折率が低く波長分散の高い材料とが組み合わされる。特許文献1は、基体となる第1光学材料としてガラスまたは樹脂を用い、第2光学材料として紫外線硬化樹脂を用いることを開示している。
 基体となる第1光学材料としてガラスを用いる場合、樹脂と比較して微細加工が難しく、回折格子のピッチを狭くし、回折性能を向上させることが容易ではない。このため、光学素子の小型化を図りながら光学性能を高めることが困難である。また、ガラスの成形温度は樹脂より高温であるため、ガラスを成型するための金型の耐久性が樹脂を成形するための金型に比べて低く、生産性にも課題がある。
 一方、基体となる第1光学材料として樹脂を用いる場合、回折格子の加工性および成形性の点でガラスより優れる。しかし、ガラスと比べて種々の値の屈折率を実現することが難しく、第1光学材料と第2光学材料との屈折率差が小さくなるため、式(1)から明らかなように、回折格子の深さdは大きくなる。
 その結果、基体自体の加工性は優れるものの、回折格子を形成するための金型を深く加工したり、溝の先端を鋭利な形状に成形したりする必要があり、金型の加工が困難になる。また、回折格子が深くなるほど、基体および金型の少なくとも一方の加工上の制約から回折格子のピッチを大きくする必要がある。このため回折格子の数を増やすことができず、回折光学素子の設計上の制約が大きくなる。
 このような課題を解決するため、本願の出願人は、特許文献2において、光学調整層として、マトリクス樹脂中に平均粒径1nm~100nmの無機粒子を含んだコンポジット材料を用いることを提案している。このコンポジット材料は、分散させる無機粒子の材料や無機粒子の添加量によって屈折率およびアッベ数を制御でき、従来の樹脂にはない屈折率およびアッベ数を得ることができる。したがって、コンポジット材料を光学調整層に用いることにより、基体である第1の光学材料として樹脂を用いた場合の回折格子の設計自由度を高くして、成形性を向上させ、かつ優れた回折効率の波長特性を得ることができる。
特開平10-268116号公報 国際公開第07/026597号
 本願発明者は、基体および光学調整層に樹脂を用いる回折光学素子の構造および製造等について詳細に検討を行った。その結果、基体および光学調整層に樹脂を用いる回折光学素子では、製造時に回折格子の輪帯部分に気泡のかみこみが発生したり、光学調整層と基体との密着性が十分ではない場合があることが分かった。
 本願の、限定的ではない例示的なある実施形態は、基体と光学調整層とが良好な強度で接着しており、輪帯部分への気泡のかみこみが抑制された回折光学素子を提供する。
 本発明の一態様である回折光学素子は、第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、第2樹脂および無機粒子を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層とを備え、下記式で定義されるΔSPが-0.7以上+0.7[cal/cm31/2以下であり、前記回折格子による回折の設計次数はn次であり、400nm以上700nm以下の波長領域におけるn+1次の不要次数回折光が7%以下である。
 本願に開示された回折光学素子によれば、光学調整層と基体との間における気泡のかみこみが抑制され、また、光学調整層と基体との密着性が高められる。
(a)は本発明の回折光学素子の断面構造を模式的に示す図であり、(b)は上面図を模式的に示す図であり、(c)は本発明の回折光学素子に光線を透過させた際の各次数の回折光の輝度を示すグラフである。 図1に示す回折光学素子の断面を拡大して示す図である。 粒子の実効粒径の定義を説明するグラフである。 (a)から(e)は、図1に示す回折光学素子の製造方法の一例を示す工程断面図である。
 光学素子の構成材料として樹脂を用いる場合、ガラスやセラミックなどの無機材料と比較して、樹脂の選択可能な屈折率および屈折率の波長依存性の範囲は狭くなる。このため、基体に樹脂を用いた場合、式(1)を満たし、かつ、必要な屈折率特性を満足する光学調整層を実現し得る樹脂を選択することは非常に困難である。本願発明者は、無機粒子を含む樹脂からなるコンポジット材料を用いて、このような条件を満足する光学調整層を形成し、広い波長領域において高い回折効率を有する実用的な回折光学素子実現することを検討した。
 一般に、樹脂からなる基体に未硬化状態の樹脂を含む材料を塗布・成型する場合、基体表面に形成された回折格子の輪帯の形状や大きさ、塗布する材料の種類や粘度、基体に対する濡れ性により、塗布する材料の伸び方、広がり方が異なり、輪帯と塗布する材料との間に気泡が入り込むことがある。このような気泡は、迷光や散乱光の要因となり、回折光学素子の光学特性の低下をまねく。
 本願発明者による詳細な検討の結果、回折格子の輪帯部分における気泡のかみこみや基体と光学調整層との密着性は、塗布する材料の溶解度パラメーター(SP値)に依存することが分かった。具体的には、1μm~20μm程度の段差を有する輪帯回折格子がある基体に対して、塗布する材料に含まれる樹脂の濡れ性が低い場合、すなわちSP値が低い場合や、粘度が低い場合は空気を巻き込みやすく、回折格子における気泡のかみこみが発生する。
 一方、塗布する材料に含まれる樹脂の濡れ性が高い、すなわちSP値が高いと、回折格子における気泡のかみこみは起こりにくくなるが、相溶性も小さくなるため、基体に対する密着性も低下することが分かった。
 ここで、溶解度パラメータは、正則溶液理論における凝集エネルギー密度の平方根であり、ある物質の溶解度パラメータδは、モル体積Vと1モルあたりの凝集エネルギーΔEを用いて、以下の式(2)により定義される。
   δ=(ΔE/V)1/2 (2)
 溶解度パラメータは物質の分子間力の指標であり、溶解度パラメータが近い物質ほど親和性が高い、つまり相互作用が強いと考えられる。溶解度パラメータには、さまざまな導出方法が存在するが、例えばFedorsらによる分子構造式から計算する方法により求めた値等を用いることができる。本願明細書で用いる溶解度パラメータはこの分子構造式から計算する方法によって求めた値である。溶解度パラメータが高くなる構造としては、OH基、アミド結合等の高極性の官能基が挙げられる。一方、溶解度パラメータが低くなる構造としては、フッ素原子、炭化水素基、シロキサン結合等が挙げられる。
 したがって、回折格子のような微小な構造を有する基体に対して、気泡のかみこみがなく、さらに密着性も確保するためには、基体に対して適切なSP値を有する材料を選択することが好ましい。本願発明者は、これらの観点から、主として、回折光学素子の材料として適切な樹脂を検討し、新規な回折光学素子を想到した。本発明の一態様の概要は以下のとおりである。
 本発明の一態様である回折光学素子は、第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、第2樹脂および無機粒子を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層とを備え、下記式で定義されるΔSPが-0.7以上+0.7[cal/cm31/2以下であり、前記回折格子による回折の設計次数はn次であり、400nm以上700nm以下の波長領域におけるn+1次の不要次数回折光が7%以下である。
  ΔSP=[前記第2樹脂の溶解度パラメータ]-[前記第1樹脂の溶解度パラメータ]
 本発明の他の態様である回折光学素子は、第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、第2樹脂および無機粒子を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層とを備え、下記式で定義されるΔSPが-0.7以上+0.7[cal/cm31/2以下であり、前記基体内の前記光学調整層側、および、前記光学調整層内の前記基体側に、前記第1光学材料および前記第2光学材料の屈折率のいずれとも異なる屈折率を有する部分を含まない。
  ΔSP=[前記第2樹脂の溶解度パラメータ]-[前記第1樹脂の溶解度パラメータ]
 ΔSPが+0.5以上+0.7[cal/cm31/2以下であってもよい。
 前記第1樹脂は、ポリカーボネート、および、フルオレン構造を有する樹脂の少なくとも一方を含んでいてもよい。
 前記第2樹脂は、ペンタエリスリトールトリアクリレートを含んでいてもよい。
 前記無機粒子は、酸化ジルコニウム、酸化イットリウム、酸化ランタン、酸化ハフニウム、酸化スカンジウム、アルミナおよびシリカからなる群より選ばれる少なくとも1つを主成分として含んでいてもよい。
 前記第1光学材料の屈折率は前記第2光学材料の屈折率より小さく、前記第1光学材料の屈折率の波長分散性は前記第2光学材料の屈折率の波長分散性より大きくてもよい。
 前記無機粒子の実効粒径は、1nm以上100nm以下であってもよい。
 本発明の一態様である回折光学素子の製造方法は、第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体を用意する工程と、無機粒子および第2樹脂の原料を含む第2光学材料の原料を用意する工程と、前記回折格子を覆うように前記基体上に第2光学材料の原料を配置する工程と、光学調整層の外形を規定する型を前記第2光学材料の原料に押し当てながら前記第2樹脂の原料を硬化させることにより、前記第2樹脂および前記無機粒子を含む前記第2光学材料からなる前記光学調整層を形成する工程とを包含し、前記第2光学材料の原料は、前記第2光学材料の原料を配置する工程の前において、溶媒を実質的に含んでおらず、下記式で定義されるΔSPが、-0.7以上+0.7[cal/cm31/2以下である。
  ΔSP=[前記第2樹脂の溶解度パラメータ]-[前記第1樹脂の溶解度パラメータ]
 前記第2光学材料の原料を用意する工程は、溶媒に分散した前記無機粒子と前記第2樹脂の原料とを混合し、混合物を得る工程と、前記混合物から前記溶媒を除去する工程とを含んでいてもよい。
 前記第2光学材料の原料の未硬化状態における粘度が1000mPa・s以下であってもよい。
 前記第1樹脂は、ポリカーボネート、および、フルオレン構造を有する樹脂の少なくとも一方を含んでいてもよい。
 前記第2樹脂は、ペンタエリスリトールトリアクリレートを含んでいてもよい。
 以下、本発明の具体的な実施形態を説明する。
(第1の実施形態)
 図1(a)および図1(b)は、本発明による回折光学素子の第1の実施形態の断面図および上面図を示している。
 回折光学素子101は、基体1および光学調整層3を備えている。基体1は第1樹脂を含む第1光学材料からなり、光学調整層3は第2樹脂を含む第2光学材料からなる。第2樹脂を含むマトリクス樹脂5に無機粒子4が分散したコンポジット材料を用いることにより、第2光学材料の屈折率およびアッベ数を調整することが可能となる。
 基体1の1つの主面には回折格子2が設けられている。基体1と光学調整層3の光学特性や最終的に得られる回折光学素子101の光学設計から、回折格子2の断面形状、配置、ピッチ、深さが決定される。例えば、回折格子2にレンズ作用を持たせる場合には、鋸歯状の断面形状を有する回折格子を、ピッチがレンズの中心から周辺に向かって小さくなるように連続的に変化させて同心円状に配置させればよい。この場合の回折格子は、レンズ作用が得られる断面形状、配置、ピッチを有していれば、図1(a)のように曲面上に形成してもよいし、平面上に形成してもよい。特に、回折格子2の先端を通る面がレンズ作用を有する非球面となるように基体1に回折格子2を形成すると、屈折作用および回折作用の最適な組み合わせを選択することが可能となり、色収差や像面湾曲等をバランスよく改善し、高い撮像性能を有するレンズを得ることが可能となる。回折格子2の深さdは、式(1)を用いて決定することができる。
 なお、図1(a)においては1つの主面に回折格子2を有する回折光学素子を示しているが、基体1は2つ以上の回折格子面を有していてもよい。また、図1(a)においては、基体1は、回折格子2を有する凸面と凸面の反対側に位置する平面とを有しているが、少なくともいずれかの面に回折格子が形成されていれば、基体1の2つの主面が、両凸面、凸面と凹面、両凹面、凹面と平面または両平面であっても差し支えない。この場合、回折格子は1つの面のみに形成されていても、両面に形成されていてもよい。また、両面に回折格子が形成される場合、両面の回折格子の形状、配置、ピッチ、回折格子深さは、回折光学素子に要求される性能を満たすものであれば必ずしも一致しなくてもよい。
 光学調整層3は、回折光学素子101における回折効率の波長依存性を低減する目的で、少なくとも回折格子2の段差を埋めるように基体1の回折格子2が設けられた主面を覆って設けられている。
 回折効率の波長依存性を低減するためには、基体1および光学調整層3は、使用する光の全波長領域において式(1)を満たすことが好ましい。このためには、基体1の第1光学材料と光学調整層3の第2光学材料とは、屈折率の波長依存性が逆の傾向を示し、波長に対する屈折率の変化を互いに打ち消し合う特性を備えていることが好ましい。より具体的には、第1光学材料の屈折率は第2光学材料の屈折率より小さく、第1光学材料の屈折率の波長分散性は第2光学材料の屈折率の波長分散性より大きいことが好ましい。屈折率の波長分散性は、例えば、アッベ数によって表わされる。アッベ数が大きいほど屈折率の波長分散性は小さい。したがって、第1光学材料の屈折率は第2光学材料の屈折率より小さく、かつ、第1光学材料のアッベ数は第2光学材料のアッベ数よりも小さいことが好ましい。第1光学材料および第2光学材料の屈折率の波長依存性は、それぞれに含まれる第1樹脂および第2樹脂の物性に依存する。
 なお、実際の回折光学素子において、式(1)が使用する波長の全領域において、厳密に成立しなくてもよい。式(1)の右辺と左辺との差が±10%であれば、設計次数において、高い回折効率を得ることができる。
 上述したように、基体1を構成する第1光学材料は第1樹脂を含む。第1光学材料として樹脂を含む材料を使用するのは、レンズの生産において最も生産性が期待できる金型成形を考えた場合、ガラスを含む材料においては、金型の耐久性が樹脂を含む材料の1/10以下であり、回折格子形状を有する基体1の製造が容易ではないのに対して、樹脂を含む材料は、射出成形等の量産性の高い製造方法を適用することができるからである。また、樹脂を含む材料は金型成形や他の加工法により微細加工を実施することが容易であるため、回折格子2のピッチを小さくすることによって回折光学素子101の性能を向上させたり、回折光学素子101を小型化したりすることができる。さらに、回折光学素子101の軽量化を図ることも可能である。
 第1樹脂としては、一般に光学素子の基体として使用される透光性の樹脂材料の中から、回折光学素子の設計次数での回折効率の波長依存性を低減可能な屈折率特性と波長分散性を有する材料を選択する。第1光学材料は第1樹脂以外に、屈折率等の光学特性や、熱膨張性等の力学特性を調整するための無機物粒子や、特定の波長領域の電磁波を吸収する染料や顔料等の添加剤を含んでいてもよい。
 同様に、光学調整層3を構成する第2光学材料は第2樹脂を含む。第2光学材料として樹脂を含む材料を使用するのも、回折格子2の段差を埋める光学調整層3の成形性が良いからである。さらに成形温度も無機材料と比較すると低温であることから、基体1が第1樹脂を含む第1光学材料より構成される場合においては特に好ましい。
 また、屈折率の高い無機粒子4をマトリクス樹脂5に分散させることにより、樹脂単体では達成し得ない高い屈折率を第2光学材料は有することができる。このため、第1光学材料と第2光学材料との屈折率差を拡大することができ、式(1)から明らかなように、回折格子2の深さを低減することが可能となる。
 一般に無機粒子4は樹脂より高屈折率であることが多い。このため、基体1に第1樹脂を含む第1光学材料を用い、光学調整層3として、第2樹脂を含むマトリクス樹脂5に無機粒子4が分散した第2光学材料を用いる場合、第2光学材料は、第1光学材料よりも高屈折率低波長分散性を示すように調整することが、無機粒子4として選択し得る材料が多くなるため好ましい。言い換えれば、第1光学材料は第2光学材料よりも低屈折率高波長分散性であることが好ましい。
 コンポジット材料である第2光学材料の屈折率は、マトリクス樹脂5に含まれる第2樹脂および無機粒子4の屈折率から、例えば下記式(3)にて表されるマックスウェル-ガーネット理論により推定できる。
 式(3)において、nCOMλは、ある特定波長λにおける第2光学材料の平均屈折率であり、npλ、nmλはそれぞれこの波長λにおける無機粒子および第2樹脂の屈折率である。Pは、第2光学材料全体に対する無機粒子の体積比である。式(3)において、波長λとしてフラウンホーファーのD線(589.2nm)F線(486.1nm)C線(656.3nm)における屈折率をそれぞれ推定することにより、さらにコンポジット材料のアッベ数を推定することも可能である。逆にこの理論に基づく推定から、第2樹脂と無機粒子4との混合比を決めてもよい。
Figure JPOXMLDOC01-appb-M000002
 なお、式(3)において、無機粒子4が光を吸収する場合や無機粒子4が金属を含む場合には、式(3)の屈折率を複素屈折率として計算する。式(2)はnpλ≧nmλの場合に成立する式であり、npλ<nmλの場合は以下の式(4)を用いて屈折率を推定する。
Figure JPOXMLDOC01-appb-M000003
 コンポジット材料を第2光学材料として用いることによって、基体1と光学調整層3との屈折率差を大きくすることができ、基体に設けられた回折格子の段差を小さくすることができる。このため、基体1を成形により作製する場合、回折格子2の転写性が改善する。また、回折格子2の段差を浅くできるため、段差のピッチを狭くしても転写が容易となる。したがって、回折格子2の狭ピッチ化による回折性能の向上を図ることができる。さらに、第2樹脂にも様々な物性を有する材料を使用することが可能となり、光学特性と光学特性以外の物理的あるいは科学的特性とを両立させることもより容易となる。
 第1樹脂および第2樹脂は、上述したように第1光学材料および第2光学材料が所望の屈折率の波長依存性を有するように公知の樹脂材料から選択される。また、第1光学材料および第2光学材料のSP値の差ΔSPが、前記第1樹脂の溶解度パラメータを基準として-0.7以上+0.7[cal/cm31/2以下である材料を選択する。つまり、下記式で定義されるΔSPが-0.7以上+0.7[cal/cm31/2以下である。
  ΔSP=[第2樹脂の溶解度パラメータ]-[第1樹脂の溶解度パラメータ]
 以下の実施例で詳細に説明するように、第1樹脂および第2樹脂の溶解度パラメータの差が小さいことにより、第1樹脂および第2樹脂の分子間力の強さがほぼ等しくなり、第1樹脂および第2樹脂をそれぞれ含む第1光学材料と第2光学材料とは親和性が高くなり、互いに密着しやすくなる。
 基体1と光学調整層3との間における気泡のかみこみは、基体および光学調整層3が互いに接する表面における濡れ性に関連している。濡れ性の要因の1つには表面張力が含まれ、表面張力を決定する要因としてSP値が挙げられる。本実施形態の回折光学素子によれば、上述したように第1樹脂および第2樹脂のΔSPが-0.7以上+0.7[cal/cm31/2以下であることにより、気泡のかみこみが抑制される。
 特に、第1光学材料および第2光学材料のSP値の差ΔSPが+0.5以上+0.7[cal/cm31/2以下の範囲では、光学調整層3に含まれる第2樹脂の溶解度パラメータがより大きくなる。このため、より光学調整層3の濡れ性が高まり、光学調整層3の成形速度に依存せず回折格子での気泡かみこみを抑制することができる。このため、より光学特性の優れた回折光学素子を実現することができる。
 なお上述したように、気泡のかみこみは、光学調整層3を構成する第2光学材料の粘度にも依存し、第2光学材料の粘度が低い場合にも気泡のかみこみが生じやすい。以下の実施例で説明するように、第2光学材料が無機粒子を含まない場合、第2光学材料の粘度が低くなり、気泡のかみこみが生じやすい。上述したΔSPは、第2光学材料が第2樹脂および無機粒子を含む場合において、第1樹脂および第2樹脂の溶解度パラメータが満たす関係を示している。
 また、本実施形態の回折光学素子では、回折格子2による回折の設計次数をn次とした場合に、400nm以上700nm以下の波長領域における(n+1)次の不要回折光が、以下の式5において、7%以下である。
Figure JPOXMLDOC01-appb-M000004
 一例として、図1(c)に、回折光学素子に光線を透過させた際の、各回折次数に対応する集光点30、31、32における最大輝度40、41、42を測定した結果を示す。図1(c)において、集光点31が0次回折光を示し、集光点32および集光点30は、それぞれ-1次回折光および+1次回折光を示す。また、集光点30、31、32はそれぞれ最大輝度40、41、42を有している。最大輝度を式(5)に代入することによって(n+1)次回折効率が求められる。
 不要回折光の発生には種々の原因が考えられる。しかし、特に、回折光学素子101における回折格子2の形状が設計通りでない場合、および、基体1および光学調整層3の光学的特性が設計通りでない場合に不要回折光が発生しやすいと考えられる。
 回折光学素子の基体1および光学調整層3の第1光学材料および第2光学材料が樹脂を含む場合、回折光学素子の製造時には、第1光学材料および第2光学材料の少なくとも一方が、未硬化の状態であったり、成形可能な程度に変形する状態にあるため、第1光学材料の第1樹脂と第2光学材料の第2樹脂との間で化学的な相互作用が生じ、第1光学材料および第2光学材料の光学特性が変化する可能性がある。
 本実施形態の回折光学素子101によれば、図2に示すように、回折光学素子101は、基体1内の光学調整層3側の領域2a、および、光学調整層3内の基体1側の領域3aに、第1光学材料および第2光学材料の屈折率のいずれとも異なる屈折率を有する部分を含んでいない。ここで、「第1光学材料および第2光学材料の屈折率のいずれとも異なる屈折率を有する部分を含まない」とは、TEM(透過型電子顕微鏡)観察において、基体1および光学調整層3との間に別の層や領域が目視できないことをいう。つまり、第1光学材料および第2光学材料は、光学的な特性に影響を与えるほど、相互に化学的な作用を及ぼしていない。これは第2の実施形態において詳細に説明するように、回折光学素子101の製造時において、第1光学材料の第1樹脂と第2光学材料の第2樹脂との相互作用を抑制するような工程を採用しているからである。このため、上述したように、不要回折光の発生が抑制され、光学特性の優れた回折光学素子を実現することができる。
 基体1を構成する第1光学材料としては、光学調整層3として高屈折率低波長分散性のコンポジット材料からなる第2光学材料を用いる場合、基体1を構成する第1光学材料の第1樹脂は低屈折率高波長分散性を備えていることが好ましい。芳香環を含むポリカーボネート(ビスフェノールA系ポリカーボネート、ビスフェノールF系ポリカーボネート等)や、フルオレン構造を含む樹脂(例えば、大阪ガスケミカル「OKP」シリーズ等)、比較的低いアッベ数を有しており、屈折率の波長分散性を調整する上で適している。ただし、必要に応じて、第2光学材料との間で式(1)を満たすように、ポリカーボネート系樹脂と他の樹脂と共重合させたり、他の樹脂とのアロイ化を行ったり、他の樹脂をブレンドしたものを第1光学材料として用いてもよい。また、第1光学材料は添加剤を含んでいてもよい。
 第2樹脂としては、光学調整層3を形成するプロセスが簡易となることから、熱硬化性樹脂またはエネルギー線硬化性樹脂を用いることが好ましい。具体的には、アクリレート樹脂、メタクリレート樹脂、エポキシ樹脂、オキセタン樹脂、エン-チオール樹脂等が挙げられる。
 特に、第1樹脂にポリカーボネートを用いた場合には、ΔSPの値を-0.7以上+0.7[cal/cm31/2以下の範囲にするために、ポリカーボネートとSP値が離れた樹脂を混合させることで、SP値の調整がしやすくなる。特にSP値が11.5[cal/cm31/2と、ポリカーボネートやフルオレン構造を含む樹脂から大きく離れているペンタエリスリトールトリアクリレートを含むものを用いると好ましい。
 第2樹脂は上述した樹脂のアロイまたはブレンドによって構成してもよい。特に、上述した樹脂が、第2樹脂中20重量%以上含まれていることが好ましい。また、これらの樹脂を変性したものを用いてもよい。
 上述したように、光学調整層3としてコンポジット材料からなる第2光学材料を用いる場合、第2光学材料は第1光学材料よりも高い屈折率を有し、かつ、第1光学材料よりも低い波長分散性を有することが必要である。このため、第2樹脂に分散させる無機粒子4も、低波長分散性、すなわち高アッベ数の材料を主成分とすることが好ましい。特に第1樹脂としてベンゼン環を有するポリカーボネート系樹脂やフルオレン構造を含む樹脂を使用する場合、無機粒子4としてはアッベ数が25以上の材料を主成分とすることが好ましい。例えば、酸化ジルコニウム(アッベ数:35)、酸化イットリウム(アッベ数:34)、酸化ランタン(アッベ数:35)、酸化ハフニウム(アッベ数32)、酸化スカンジウム(アッベ数:27)、アルミナ(アッベ数:76)およびシリカ(アッベ数:68)からなる群より選ばれる少なくとも1つの酸化物を主成分とすることが特に好ましい。また、これらの複合酸化物を用いてもよい。回折光学素子101が用いられる光の波長帯域において、式(1)を満たす限り、さらにこれらの無機粒子に加えて、例えば酸化チタンや酸化亜鉛等に代表される高屈折率を示す無機粒子等を共存させてもよい。
 無機粒子4の実効粒径は、1nm以上100nm以下であることが好ましい。実効粒径が100nm以下であることにより、レイリー散乱による損失を低減させ、光学調整層3の透明性を高くすることができる。また、実効粒径を1nm以上とすることにより、量子効果による発光等の影響を抑制することができる。第2光学材料は、必要に応じて、無機粒子の分散性を改善する分散剤や、重合開始剤、レベリング剤等の添加剤をさらに含んでいてもよい。
 ここで実効粒径について図3を参照しながら説明する。図3において、横軸は無機物粒子の粒径を表し、左側の縦軸は横軸の粒径に対する無機粒子の頻度を示す。また、右側の縦軸は粒径の累積頻度を表している。実効粒径とは、無機物粒子全体のうち、その粒径頻度分布において、累積頻度が50%となる粒径を中心粒径(メジアン径:d50)とし、その中心粒径を中心として累積頻度が50%の範囲Aにある粒径範囲Bのことを指す。したがって、無機粒子4のこのように定義される実効粒径の範囲が1nm以上100nm以下の範囲内であることが好ましい。実効粒径の値を精度よく求めるためには、例えば、200個以上の無機物粒子を測定することが好ましい。
 また、第2光学材料は、上述の無機粒子を均一に分散させる分散剤として、シランカップリング剤を含んでいることが好ましい。分散剤は、粒子の凝集を抑制し、光学調整層の透明性を向上させる作用がある。シランカップリング剤としては、例えば、アクリルシラン、ビニルシラン、エポキシシラン等がある。アクリルシランとしては、γ―メタクリロキシプロピルトリメトキシシランなどがある。さらに、第2光学材料にアクリレート樹脂を使用する場合には、アクリル基を有するシランカップリング剤を用いるのが好ましい。
 特に、光学調整層としてコンポジット材料を使用することにより、回折格子深さが低減され、加工が容易になる。回折格子深さが浅くなるほど、隣接する回折格子との距離を近づけることができる、即ち、狭ピッチ化できるため、高い回折効果をもたせることができる。これにより高性能な回折光学素子が実現できる。
 本実施形態の回折光学素子によれば、第1樹脂の溶解度パラメータと第2樹脂の溶解度パラメータの差ΔSP値が-0.7以上+0.7[cal/cm31/2以下であるため、光学調整層を形成する際に気泡のかみこみが抑制される。
 また、厳しい使用環境においても、光学調整層が基体から剥離することがなく、良好な密着状態を維持することが可能であり、信頼性が高く、軽量で優れた光学特性を有する回折光学素子が得られる。また、基体に樹脂を用いるため、成形性が比較的容易であり、また、金型の寿命を長くすることができる。よって、本実施形態の回折格子素子は量産性に優れる。このような特徴を本実施形態の回折光学素子は備えているため、例えば、環境温度変化や振動が大きい場所に設置される光学装置、より具体的には、屋外に設置される監視カメラや自動車の車載カメラなどの光学素子として好適に用いられる。
 なお、本実施形態の回折光学素子101において、光学調整層3の表面に反射防止層を設けてもよい。反射防止層の材料としては、光学調整層3より小さい屈折率を有する材料であれば特に制限はない。例えば、樹脂または樹脂と無機粒子とのコンポジット材料のいずれか、あるいは真空蒸着等で形成された無機薄膜等を用いることができる。反射防止層としてのコンポジット材料に使用される無機物粒子としては、屈折率の小さいシリカ、アルミナ、酸化マグネシウム等が挙げられる。また、光学調整層3の表面にナノ構造の反射防止形状を形成してもよい。ナノ構造の反射防止形状は、例えば型による転写工法(ナノインプリント)で容易に形成することができる。また、光学調整層3または反射防止層の表面に、耐摩擦性、熱膨張性等の力学特性を調整する作用を有する表面層を別途形成してもよい。さらに、光学調整層3または反射防止層の表面に、耐摩擦性、熱膨張性等の力学特性を調整する作用を有する表面層を別途形成してもよい。
(第2の実施形態)
 以下、本発明による回折光学素子の製造方法の実施形態を説明する。
 まず図4(a)に示すように、表面に回折格子2を形成した基体1を用意する。例えば、射出成形やプレス成形等に代表されるように、回折格子形状を形成した型に、第1光学材料を軟化または溶融させた状態で供給し成形を行う方法、回折格子形状を形成した型に第1光学材料の原料であるモノマーやオリゴマー等を注型し、加熱および/またはエネルギー線照射により原料を重合する方法、あるいは、あらかじめ成形した基体1の表面に切削、研磨等により回折格子2を成形する方法等によって、回折格子2を形成した基体1を作製することができる。これら以外の方法によって回折格子2を形成した基体1を作製してもよい。
 次に、無機粒子および第2樹脂の原料を含む第2光学材料の原料を用意する。第1の実施形態で説明したように、第2光学材料として求められる光学特性に応じて選択される無機粒子を用いることができる。第2樹脂には、ΔSPが-0.7以上+0.7[cal/cm31/2以下、つまり、溶解度パラメータが、第1光学材料に含まれる第1樹脂の溶解度パラメータより-0.7以上+0.7[cal/cm31/2以下である第2樹脂の原料を含む第2光学材料の原料を用意する。
 また、第2樹脂は、無機粒子と混合してコンポジットを構成した場合においても、基体1への塗布が可能であり、かつ、回折格子への気泡がかみこまないような粘度となるように樹脂を選択することが好ましい。特に、未硬化での粘度が1000mPa・s以下であることが好ましい。また、複数の樹脂を混合する場合も、混合した状態での樹脂の粘度が、1000mPa・s以下であることが好ましい。なお、一般に、混合樹脂の粘度η(樹脂Aと樹脂Bの混合粘度)は、それぞれの樹脂の重量比(%)をCA、CB、それぞれの樹脂の粘度をηA、ηBとして下記式(6)より計算できる。
   logη=CA・logηA+CB・logηB         (6)
 無機粒子および第2樹脂の原料を含む第2光学材料の原料は基体1へ配置する前の状態において、溶媒を実質的に含んでいないことが好ましい。ここで、実質的に含まない状態とは、第2光学材料の原料の全体重量に対して、溶媒の含有量が0.3%以下であることを意味する。
 このように、第2光学材料の原料が溶媒を実質的に含まないことによって、回折光学素子の製造時における第1光学材料と第2光学材料との化学的な相互作用を抑制し、屈折率が第1光学材料および第2光学材料のいずれとも異なる層あるいは領域が形成されるのを抑制することができる。また、溶媒が残存していた場合における光学調整層の強度低下によるクラック等が発生するのを抑制することができる。
 溶媒を実質的に含んでいない第2光学材料の原料は、例えば、溶媒を実質的に含まない第2樹脂の原料を用い、無機粒子を第2樹脂の原料に分散させることによって得られる。
 無機粒子を第2樹脂の原料に均一に分散させるのが困難である場合には、無機粒子を溶媒と混合し、混合液と第2樹脂の原料とを混ぜ合わせることによって、無機粒子を第2樹脂の原料に分散させてもよい。この場合、溶媒には、無機粒子が分散した第2樹脂の原料から除去しやすいものを選ぶことができる。例えば、イソプロピルアルコール(IPA)などを用いることができる。
 溶媒の除去には、例えば、エバポレーターを用いる。具体的には、図4(b)に示すように、溶媒を含んだ第2光学材料の原料12’を、フラスコ10に入れ、ウォーターバスなどで温めながら、減圧にすることで溶媒を実質的に含まない状態となるまで除去する。
 次に図4(c)に示すように、回折格子2を覆うように基体1上に第2光学材料の原料12を配置する。
 第2光学材料の原料12を基体1の回折格子2上に配置する方法は、粘度等の材料特性および回折光学素子に要求される光学的特性から決定される回折格子2の形状精度に応じ、公知の種々のコーティング層形成プロセスから適宜選択することができる。例えば、ディスペンサー等の注液ノズルを用いた塗布、ディップコート等の浸漬塗布、スプレーコート、インクジェット法等の噴射塗布、スピンコーティング等の回転による塗布、スクリーン印刷等スキージングによる塗布等を用いてもよい。またこれらのプロセスを適宜組み合わせてもよい。この点は、以下の実施例においても同様である。
 この際、第1の実施形態で説明したように第1樹脂および第2樹脂のΔSPが-0.7以上+0.7[cal/cm31/2以下であるため、第2光学材料の原料12が基体1の回折格子上に塗布される際、基体1と原料12との間にある空気が、基体1の表面や原料12の表面に沿って押し出され、気泡のかみこみが抑制される。
 光学調整層3に要求される形状精度、特に回折格子2と反対側の面の形状を高い精度で成形する必要がある場合は、硬化工程において、型を使用し、光学調整層3の形状をより高い成形精度で制御してもよい。図4(c)に示すように、ディスペンサー11から、溶媒を除去した光学調整層の原料12を基体1上に滴下する。続いて、図4(d)に示すように、原料12に型13を押し当て、原料12を覆うように型13を基体1上に配置する。型13の材料は、要求される形状精度や耐久性に応じて適宜選択することができる。例えば、鉄やアルミニウム、これらの合金、真鍮等の金属を用いることができる。必要に応じて、ニッケルめっき等の表面処理を行った金属を使用してもよい。また、石英やガラス、エポキシ樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の樹脂も型13の材料として使用することが可能である。
 型13を使用して光学調整層3の形状を成形する場合、第2光学材料の原料12を型13の内側に配置した後、基体1に押圧してもよい。しかし、硬化前の原料12が低粘度であることから、回折格子2を表面に形成した基体1に回り込みやすく、気泡のかみこみ等が抑えられ、かつ硬化後の光学調整層3と基体1との密着性も高くなるため、原料12を基体1上に直接配置する方がより好ましい。
 型13を使用して光学調整層3を成形する場合、硬化工程後に離型を行うのが一般的である。しかし、硬化前の状態で原料12が変形しないのであれば、先に離型を行ってから原料12に含まれる第2樹脂の原料を硬化させてもよい。エネルギー線照射による硬化後に離型を行う場合、原料12が型13で規制された状態で原料12に含まれる第2樹脂の原料にエネルギー線が照射される。型13として金属などの不透明な材料を使用する場合には、図4(d)に示すように、基体1の原料12を配置した面と反対の面からエネルギー線を照射する。一方、型13としてエネルギー線に対して透明な材料、例えばエネルギー線として紫外線を使用し、石英等によって型13を構成する場合には、基体1の原料12を配置した面側から型13を介して、原料12に含まれる第2樹脂の原料にエネルギー線を照射することによって第2の樹脂を硬化させることが可能である。第2樹脂の原料を硬化させることにより、原料12全体が硬化する。その後、型13を硬化させた原料12から取り外すことにより、図4(e)に示すように、基体1の表面に光学調整層3が形成された回折光学素子101が完成する。回折光学素子101において、第1樹脂と第2樹脂との溶解度パラメータの差であるΔSPが小さいため、光学調整層3は基体1の表面で密着する。
 第2光学材料の原料12に溶媒が含まれる場合、第2光学材料の原料を基体1に配置してから溶媒を除去することも考えられる。しかし、この場合、溶媒の除去に、数分から数時間を要するため、この間に、第2樹脂の原料であるモノマーあるいはオリゴマーが基体1へ浸透しないように、第2樹脂として、第1樹脂と溶解度パラメータ差が大きい材料を用意する必要がある。これに対し、本実施形態の製造方法によれば、第2光学材料の原料は、溶媒を実質的に含まないため、このような基体1の第2樹脂の原料や溶媒の浸透が抑制される。また、第2光学材料の原料を基体1に配置してから溶媒を除去する必要がないため、第2樹脂の原料であるモノマーあるいはオリゴマーが基体1へ浸透し得るとしても、第2光学材料の原料を基体1に配置後、時間を置かずに第2光学材料の原料を硬化することができるため、モノマーあるいはオリゴマーが基体1へ浸透するのを抑制することができる。また、回折光学素子を製造する生産タクトも短縮することができる。
 このように、本実施形態の回折光学素子の製造方法によれば、基体1に第2光学材料の原料を配置する際に、第2光学材料の原料が溶媒を実質的に含んでいないため、回折光学素子の製造時における第1光学材料と第2光学材料との化学的な相互作用を抑制し、屈折率が第1光学材料および第2光学材料のいずれとも異なる層あるいは領域が形成されるのを抑制することができる。また、ΔSPが-0.7以上+0.7[cal/cm31/2以下であるため、回折光学素子の製造途中における基体1の回折格子への気泡のかみこみが抑制され、基体と光学調整層との密着性も高められる。
以下、本発明による回折光学素子を作製し、特性を評価した結果を具体的に説明する。
1.回折光学素子の作成および特性の測定
(実施例1)
 図1(a)~(b)に示す構造を備えた回折光学素子101を、次の方法により作製した。回折光学素子101はレンズ作用を有し、1次回折光を利用するように設計されている。この点は以下の実施例についても同様である。
 まず、第1樹脂として、ポリカーボネート樹脂(d線屈折率1.585、アッベ数28、SP値9.8[cal/cm31/2)を射出成形することにより、非球面形状の上に、深さdが15μmの輪帯状の回折格子2を片面に有する基体1を作製した。レンズ部有効半径は0.828mm、輪帯数は29本、最小輪帯ピッチ14μm、回折が形成された非球面の近軸R(曲率半径)は-1.0144mmである。
 次に、光学調整層3の原料となるコンポジット材料を次のように調製した。第2光学材料の第2樹脂として、アクリレート樹脂A(d線屈折率1.529、アッベ数50、SP値11.5[cal/cm31/2)と、アクリレート樹脂B(d線屈折率1.531、アッベ数52、SP値9.0[cal/cm31/2)を重量比5:95の割合で混合したもの用いた。
 この混合物に、酸化ジルコニウム(一次粒径3~10nm、光散乱法による実効粒径6nm、シラン系表面処理剤含有)のIPA分散液を、分散媒であるIPAを除いた全固形分中における酸化ジルコニウムの重量比が36重量%となるように分散し、光重合開始剤とともに混合した。
 その後、エバポレーターを用いて、コンポジット材料中の溶媒を完全に除去し、真空攪拌脱泡ミキサー(株式会社EME製、V-mini300)を用いて、コンポジット材料を脱泡しながらシリンジに充填した。
 第2光学材料の硬化後の光学特性は、d線における屈折率が1.623であり、アッベ数43であり、波長400~700nmにおける光線の透過率が90%以上(膜厚30μm)である。
 屈折率については、平板上に光学調整層3の原料を用い、同条件で膜を形成し、プリズムカプラー(メトリコン社製、MODEL2010)を用いて測定を行った。測定は、3波長(405nm、532nm、633nm)で行い、それぞれの屈折率測定値を用いて、近似式にて他波長の屈折率およびアッベ数を算出するという方法で行った。
 この第2光学材料を、基体1上にディスペンサーを用いて0.4μL滴下し、すぐに金型(ステンレス系合金表面にニッケルめっき膜形成)に設置し、基体1の裏面(コンポジット材料を滴下した面と反対の面)から、紫外線(照度120mW/cm2、積算光量4000mJ/cm2)を照射することによって第2樹脂を硬化させた。その後、金型から分離し、光学調整層3として形成した。
 光学調整層3の表面形状は、回折格子2の根元の包絡面形状に沿った非球面形状と一致するように形成した。また光学調整層3の厚さは、最も厚い部分(すなわち回折光学素子の最深部に対応する部分)において30μm、最も薄い部分(すなわち回折光学素子の先端部に対応する部分)において15μmとなるように形成した。
 以上の工程によって作製した回折光学素子101の回折効率の測定を行った。白色光源とカラーフィルター(R:640nm、G:540nm、B:440nm)を用い、各波長の光線を回折光学素子に透過させた際の、各回折次数に対応する集光点における最大輝度を、超精密3次元測定装置(三鷹光器(株)製)を用いて測定し、以下の式7より算出した。なお、以下の実施例ならびに比較例において、3次回折光以上の高次の回折光は検出されなかった。
Figure JPOXMLDOC01-appb-M000005
 本実施例の回折光学素子101の1次回折効率は、全波長において90%以上、2次回折光は、6%であった。なお、1次回折効率が85%以上であれば、回折光学素子は高い集光性能を備えるといえる。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡は観察されなかった。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。
 また、温度変化による熱ストレスに対する耐性を評価するため、厳しい使用環境を想定した信頼性試験を実施した。具体的には、回折光学素子101を環境試験機(エスペックエンジニアリング製、PVL-2SP)に入れ、温度90℃、湿度85%の環境に168時間放置した。放置後、回折光学素子を光学顕微鏡で観察し、光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(実施例2)
 実施例2として、実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。実施例1と異なる点は、第2樹脂を、アクリレート樹脂Aと、アクリレート樹脂Bを重量比20:80の割合で混合した点である。
 本実施例の回折光学素子101の1次回折効率は、全波長において92%以上、2次回折光は、6%であった。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡は観察されなかった。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(実施例3)
 実施例3として、実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。実施例1と異なる点は、第2樹脂を、アクリレート樹脂Aと、アクリレート樹脂Bを重量比40:60の割合で混合した点である。
 本実施例の回折光学素子101の1次回折効率は、全波長において90%以上、2次回折光は、7%であった。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡は観察されなかった。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(実施例4)
 実施例4として、実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。実施例1と異なる点は、第2樹脂を、アクリレート樹脂Aと、アクリレート樹脂Bを重量比50:50の割合で混合した点である。
 本実施例の回折光学素子101の1次回折効率は、全波長において91%以上、2次回折光は、5%であった。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡は観察されなかった。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(実施例5)
 実施例5として、実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。実施例1と異なる点は、第2樹脂を、アクリレート樹脂Aと、アクリレート樹脂Bを重量比60:40の割合で混合した点である。
 本実施例の回折光学素子101の1次回折効率は、全波長において91%以上、2次回折光は、6%であった。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡は観察されなかった。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(比較例1)
 比較例として、実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。実施例1と異なる点は、第2樹脂を、アクリレート樹脂Aと、アクリレート樹脂Bを重量比0:100の割合で混合した点である。
 本比較例の回折光学素子101の1次回折効率は、全波長において90%以上、2次回折光は、6%であった。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡が観察された。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(比較例2)
 比較例として、実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。実施例1と異なる点は、第2樹脂を、アクリレート樹脂Aと、アクリレート樹脂Bを重量比70:30の割合で混合した点である。
 本比較例の回折光学素子101の1次回折効率は、全波長において90%以上、2次回折光は、7%であった。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡は観察されなかった。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離が観察された。
(比較例3)
 比較例として、実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。実施例1と異なる点は、第2樹脂を、アクリレート樹脂Aと、エポキシアクリレート樹脂C(d線屈折率1.569、アッベ数35、SP値12.1[cal/cm31/2)を重量比90:10の割合で混合し、この混合物に、酸化ジルコニウム(一次粒径3~10nm、光散乱法による実効粒径6nm、シラン系表面処理剤含有)のIPA分散液を、分散媒であるIPAを除いた全固形分中における酸化ジルコニウムの重量比が25重量%となるように分散し、光重合開始剤とともに混合した点である。
 本比較例の回折光学素子101の1次回折効率は、全波長において91%以上、2次回折光は、6%であった。
 さらに、回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡は観察されなかった。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離が観察された。
(比較例4)
 比較例として、実施例4と同じ構造を備えた回折光学素子を、実施例4と同様の方法により作製した。実施例4と異なる点は、光学調整層を形成する際に無機粒子を混合せずに、樹脂のみで形成した点である。
 本比較例の回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡が観察された。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(比較例5)
 比較例として、実施例3と同じ構造を備えた回折光学素子を、実施例3と同様の方法により作製した。実施例3と異なる点は、光学調整層を形成する際に無機粒子を混合せずに、樹脂のみで形成した点である。
 本比較例の回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡が観察された。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
(比較例6)
 比較例として、実施例5と同じ構造を備えた回折光学素子を、実施例5と同様の方法により作製した。実施例5と異なる点は、光学調整層を形成する際に無機粒子を混合せずに、樹脂のみで形成した点である。
 本比較例の回折光学素子101を、光学顕微鏡で観察したところ、回折光学素子の有効径内に気泡が観察された。また、光軸を通る断面にて切断し、基体1と光学調整層3の境界部分を光学顕微鏡で観察したところ、材料の相互作用による回折格子の変化や屈折率変化層は観察されなかった。また、実施例1と同様の方法で光学調整層の密着性を調べたところ、回折光学素子の有効径内における剥離は観察されなかった。
2.結果の考察
 各実施例および比較例による回折光学素子の第2樹脂の組成および粘度、ΔSP、吐出および気泡、高温高湿保管試験の結果を表1にまとめて示す。表1において示す○、△、×は、吐出時間、気泡の状態、および高温高湿保管試験結果の評価を示し、図2に示すようにそれぞれの評価項目の結果を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~5では、ΔSPが-0.7以上+0.7[cal/cm31/2以下の範囲ある。実施例1~5では、光学調整層を形成する際の気泡のかみこみおよび高温高湿試験後の光学調整層の剥離は見られなかった。これは、ΔSPが-0.7以上+0.7[cal/cm31/2以下であり、第1樹脂および第2樹脂のいずれの溶解度パラメータも小さくないため、第2光学材料の原料12が基体1の回折格子上に塗布される際、基体1と原料12との間にある空気が、基体1の表面や原料12の表面に沿って押し出され、気泡のかみこみが抑制されるからであると考えられる。また、ΔSPが小さいため、第1光学材料と第2光学材料との密着性が向上しているからと考えられる。
 これに対し、比較例1~3では、ΔSPが-0.7以上+0.7[cal/cm31/2以下の範囲外にある。このため、気泡がかみこんだり、高い密着性が得られず、高温高湿試験において光学調整層が剥離したりしたものと考えられる。特に、比較例1では、ΔSpが-0.8であるため、光学調整層3に含まれる第2樹脂の溶解度パラメータが比較的小さい。このため、光学調整層3の濡れ性が悪く、気泡がかみこみやすいからであると考えられる。また、比較例2、3では、ΔSPが+0.7を超えて大きくなっており、第1樹脂と第2樹脂の溶解度パラメータの差が大きい。よって、第1光学材料と第2光学材料との密着性が低下し、高温高湿試験において光学調整層が剥離したと考えられる。
 比較例4~6では、光学調整層の第2光学材料が無機粒子を含んでいない。このため、第2光学材料の粘度が低くなることによって、ΔSPの値が-0.7以上+0.7[cal/cm31/2以下の範囲であっても、気泡のかみこみが発生したと考えられる。
 これらの結果から、第2光学材料が第2樹脂および無機粒子を含み、ΔSPが-0.7以上+0.7[cal/cm31/2以下であることによって、回折格子への気泡のかみこみがなく、厳しい使用環境においても、光学調整層が基体から剥離することがなく、優れた光学特性を有する回折光学素子が得られることが分かる。
 また、ΔSPが-0.7以上+0.7[cal/cm31/2以下の範囲で優れた特性を有することは、コンポジット材料に特有であることが分かる。
 本願に開示された回折光学素子は、例えばカメラのレンズ、空間ローパスフィルタ、偏光ホログラム等として好適に用いることができる。特に、環境温度変化や振動の激しい場所に設置される装置の光学素子として好適に用いられる。
  1   基体
  2   回折格子
  3   光学調整層
  4   無機粒子
  5   マトリクス樹脂
  10  フラスコ
  11  ディスペンサー
  12  溶媒を含まない光学調整層の原料
  12’ 溶媒を含む光学調整層の原料
  13  型
  101 回折光学素子

Claims (13)

  1.  第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、
     第2樹脂および無機粒子を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層と、
    を備え、
     下記式で定義されるΔSPが-0.7以上+0.7[cal/cm31/2以下であり、
      ΔSP=[前記第2樹脂の溶解度パラメータ]-[前記第1樹脂の溶解度パラメータ]
     前記回折格子による回折の設計次数はn次であり、400nm以上700nm以下の波長領域におけるn+1次の不要次数回折光が7%以下である、回折光学素子。
  2.  第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、
     第2樹脂および無機粒子を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層と、
    を備え、
     下記式で定義されるΔSPが-0.7以上+0.7[cal/cm31/2以下であり、
      ΔSP=[前記第2樹脂の溶解度パラメータ]-[前記第1樹脂の溶解度パラメータ]
     前記基体内の前記光学調整層側、および、前記光学調整層内の前記基体側に、前記第1光学材料および前記第2光学材料の屈折率のいずれとも異なる屈折率を有する部分を含まない、回折光学素子。
  3.  ΔSPが+0.5以上+0.7[cal/cm31/2以下である請求項1または2に記載の回折光学素子。
  4.  前記第1樹脂は、ポリカーボネート、および、フルオレン構造を有する樹脂の少なくとも一方を含む請求項1または2に記載の回折光学素子。
  5.  前記第2樹脂は、ペンタエリスリトールトリアクリレートを含む請求項1または2に記載の回折光学素子。
  6.  前記無機粒子は、酸化ジルコニウム、酸化イットリウム、酸化ランタン、酸化ハフニウム、酸化スカンジウム、アルミナおよびシリカからなる群より選ばれる少なくとも1つを主成分として含む請求項1または2に記載の回折光学素子。
  7.  前記第1光学材料の屈折率は前記第2光学材料の屈折率より小さく、前記第1光学材料の屈折率の波長分散性は前記第2光学材料の屈折率の波長分散性より大きい請求項1または2に記載の回折光学素子。
  8.  前記無機粒子の実効粒径は、1nm以上100nm以下である請求項6に記載の回折光学素子。
  9.  第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体を用意する工程と、
     無機粒子および第2樹脂の原料を含む第2光学材料の原料を用意する工程と、
     前記回折格子を覆うように前記基体上に第2光学材料の原料を配置する工程と、
     光学調整層の外形を規定する型を前記第2光学材料の原料に押し当てながら前記第2樹脂の原料を硬化させることにより、前記第2樹脂および前記無機粒子を含む前記第2光学材料からなる前記光学調整層を形成する工程と
    を包含し、
     前記第2光学材料の原料は、前記第2光学材料の原料を配置する工程の前において、溶媒を実質的に含んでおらず、
     下記式で定義されるΔSPが、
      ΔSP=[前記第2樹脂の溶解度パラメータ]-[前記第1樹脂の溶解度パラメータ]
    -0.7以上+0.7[cal/cm31/2以下である、回折光学素子の製造方法。
  10.  前記第2光学材料の原料を用意する工程は、
     溶媒に分散した前記無機粒子と前記第2樹脂の原料とを混合し、混合物を得る工程と、
     前記混合物から前記溶媒を除去する工程と
    を含む請求項9に記載の回折光学素子の製造方法。
  11.  前記第2光学材料の原料の未硬化状態における粘度が1000mPa・s以下である、請求項9または10に記載の回折光学素子の製造方法。
  12.  前記第1樹脂は、ポリカーボネート、および、フルオレン構造を有する樹脂の少なくとも一方を含む請求項9から11のいずれかに記載の回折光学素子の製造方法。
  13.  前記第2樹脂は、ペンタエリスリトールトリアクリレートを含む請求項9から12のいずれかに記載の回折光学素子の製造方法。
PCT/JP2013/003298 2012-05-25 2013-05-24 回折光学素子およびその製造方法 WO2013175801A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/130,737 US20140139923A1 (en) 2012-05-25 2013-05-24 Diffraction optical element and manufacturing method therefor
JP2013548665A JPWO2013175801A1 (ja) 2012-05-25 2013-05-24 回折光学素子およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012119921 2012-05-25
JP2012-119921 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013175801A1 true WO2013175801A1 (ja) 2013-11-28

Family

ID=49623507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003298 WO2013175801A1 (ja) 2012-05-25 2013-05-24 回折光学素子およびその製造方法

Country Status (3)

Country Link
US (1) US20140139923A1 (ja)
JP (1) JPWO2013175801A1 (ja)
WO (1) WO2013175801A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035912A (ja) * 2017-08-21 2019-03-07 国立大学法人電気通信大学 感光性組成物、ホログラフィック回折格子記録層、ホログラフィック回折格子記録媒体、およびホログラフィックパターン形成方法
CN112363257A (zh) * 2020-11-03 2021-02-12 荆门麦隆珂机器人科技有限公司 一种入射偏转式高透光率菲涅尔透镜机器人

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581827B1 (en) * 2015-09-03 2017-02-28 3M Innovative Properties Company Optical system
US10197800B2 (en) * 2015-09-25 2019-02-05 Everready Precision Ind. Corp. Optical lens
WO2019031786A1 (en) * 2017-08-08 2019-02-14 Samsung Electronics Co., Ltd. OPTICAL ELEMENT, POLARIZING ELEMENT, AND DISPLAY DEVICE
US11305706B2 (en) * 2019-05-30 2022-04-19 Ford Global Technologies, Llc Vehicle appliques

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026597A1 (ja) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. 回折光学素子とその製造方法、及びこれを用いた撮像装置
WO2009098846A1 (ja) * 2008-02-06 2009-08-13 Panasonic Corporation 回折光学素子およびその製造方法
WO2010032347A1 (ja) * 2008-09-18 2010-03-25 パナソニック株式会社 回折光学素子および回折光学素子の製造方法
WO2010098055A1 (ja) * 2009-02-25 2010-09-02 パナソニック株式会社 回折光学素子
JP2011237491A (ja) * 2010-05-06 2011-11-24 Canon Inc エネルギー硬化型樹脂組成物、光学材料および多層型回折光学素子
JP2012018252A (ja) * 2010-07-07 2012-01-26 Canon Inc 回折光学素子及びそれを有する光学系
JP2012220711A (ja) * 2011-04-08 2012-11-12 Canon Inc 光学素子および多層回折光学素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816164A4 (en) * 2003-11-25 2008-01-02 Asahi Kasei Life & Living Corp MATTER FILM
US20120182618A1 (en) * 2010-08-19 2012-07-19 Panasonic Corporation Diffraction grating lens and imaging device using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026597A1 (ja) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. 回折光学素子とその製造方法、及びこれを用いた撮像装置
WO2009098846A1 (ja) * 2008-02-06 2009-08-13 Panasonic Corporation 回折光学素子およびその製造方法
WO2010032347A1 (ja) * 2008-09-18 2010-03-25 パナソニック株式会社 回折光学素子および回折光学素子の製造方法
WO2010098055A1 (ja) * 2009-02-25 2010-09-02 パナソニック株式会社 回折光学素子
JP2011237491A (ja) * 2010-05-06 2011-11-24 Canon Inc エネルギー硬化型樹脂組成物、光学材料および多層型回折光学素子
JP2012018252A (ja) * 2010-07-07 2012-01-26 Canon Inc 回折光学素子及びそれを有する光学系
JP2012220711A (ja) * 2011-04-08 2012-11-12 Canon Inc 光学素子および多層回折光学素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035912A (ja) * 2017-08-21 2019-03-07 国立大学法人電気通信大学 感光性組成物、ホログラフィック回折格子記録層、ホログラフィック回折格子記録媒体、およびホログラフィックパターン形成方法
JP7011249B2 (ja) 2017-08-21 2022-01-26 国立大学法人電気通信大学 感光性組成物、ホログラフィック回折格子記録層、ホログラフィック回折格子記録媒体、およびホログラフィックパターン形成方法
CN112363257A (zh) * 2020-11-03 2021-02-12 荆门麦隆珂机器人科技有限公司 一种入射偏转式高透光率菲涅尔透镜机器人

Also Published As

Publication number Publication date
JPWO2013175801A1 (ja) 2016-01-12
US20140139923A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP4567094B2 (ja) 回折光学素子および回折光学素子の製造方法
JP4547467B1 (ja) 回折光学素子
WO2013175801A1 (ja) 回折光学素子およびその製造方法
JP4077508B2 (ja) レンズの製造方法
JP5271457B1 (ja) 回折光学素子および回折光学素子の製造方法
JP5618510B2 (ja) 光学材料および光学素子
WO2007032217A1 (ja) コンポジット材料、及びこれを用いた光学部品
WO2014179780A1 (en) Gradient refractive index optics with low dispersion using nanoparticles
JP4767836B2 (ja) 光学用樹脂組成物およびそれを用いた光学素子
TW200933186A (en) Resin composite-type optical element and process for rpoducing the resin composite-type optical element
JP5596859B2 (ja) 回折光学素子
JP2010102000A (ja) 回折光学素子および回折光学素子の製造方法
EP2565227A1 (en) Organic-inorganic composite material, optical element, and multilayer diffractive optical element
WO2015015693A1 (ja) 回折光学素子、回折光学素子の製造方法および回折光学素子の製造方法に用いられる型
JP5807219B2 (ja) 光学材料及びこれを含む光学素子
JP7204363B2 (ja) 回折光学素子、その製造方法および光学機器
JP2009276726A (ja) 光学用の材料組成物およびそれを用いた光学素子
WO2010140341A1 (ja) 回折光学素子
WO2010087208A1 (ja) 回折光学素子およびその製造方法
JP2006232907A (ja) 光学材料、及び該光学材料を用いた光学素子の成形方法、該成形方法によって成形された光学素子、該光学素子を有する光学系装置
JP2013036037A (ja) 光学用の材料組成物およびそれを用いた光学素子
JP2010211115A (ja) 複合光学素子
WO2015145502A1 (ja) 光学材料、光学素子及び複合光学素子
JP2015194731A (ja) 光学材料、光学素子及び複合光学素子
JP2005036174A (ja) 光学材料用樹脂組成物およびこれを用いた光学素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548665

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130737

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794524

Country of ref document: EP

Kind code of ref document: A1