WO2015145502A1 - 光学材料、光学素子及び複合光学素子 - Google Patents
光学材料、光学素子及び複合光学素子 Download PDFInfo
- Publication number
- WO2015145502A1 WO2015145502A1 PCT/JP2014/005412 JP2014005412W WO2015145502A1 WO 2015145502 A1 WO2015145502 A1 WO 2015145502A1 JP 2014005412 W JP2014005412 W JP 2014005412W WO 2015145502 A1 WO2015145502 A1 WO 2015145502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine particles
- optical
- inorganic fine
- resin
- sio
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/005—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
- G02B27/0062—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations by controlling the dispersion of a lens material, e.g. adapting the relative partial dispersion
Definitions
- the present disclosure relates to an optical material, an optical element, and a composite optical element.
- High-precision imaging devices such as digital still cameras use an optical system having a plurality of lens groups, and require various optical materials with different optical constants such as refractive index, Abbe number, and partial dispersion ratio. is there. Therefore, optical glass materials and optical resin materials having various optical constants have been developed and used. In particular, optical glass materials having a high refractive index and a high Abbe number are frequently used for improving optical performance in many imaging devices.
- Nanocomposite materials with optical constants that cannot be realized even with optical glass are expected to replace optical glass with special optical constants of high refractive index and high Abbe number, and optical glass with poor durability. Yes.
- Patent Document 1 discloses a material using yttrium oxide (Y 2 O 3 ) as inorganic fine particles
- Patent Document 2 discloses a material containing Al, Si, Ti, Zr, Ga, La, or the like. Has been.
- the present disclosure can freely control a wide range of optical constants, in particular, an optical material having negative anomalous dispersion that cannot be realized by optical glass while maintaining high transmittance, and the optical material.
- An optical element and a composite optical element are provided.
- the optical material in the present disclosure is: It is composed of a resin material and inorganic fine particles dispersed in the resin material,
- the inorganic fine particles are fine particles formed of SiO 2 , and at least a part of the surface of the SiO 2 is SiON in which oxygen atoms are substituted with nitrogen atoms.
- the optical element in the present disclosure is: And a resin material, is composed of inorganic fine particles dispersed in the resin material, the inorganic fine particles in fine particles formed by SiO 2, at least a portion of the SiO 2 surface, its oxygen atom It is formed of an optical material that is SiON substituted with nitrogen atoms.
- the composite optical element in the present disclosure is: A first optical element, and a second optical element laminated on the optical surface of the first optical element,
- the second optical element includes: And a resin material, is composed of inorganic fine particles dispersed in the resin material, the inorganic fine particles in fine particles formed by SiO 2, at least a portion of the SiO 2 surface, its oxygen atom It is an optical element formed from an optical material which is SiON substituted with nitrogen atoms.
- the optical material according to the present disclosure which is a composite material in which SiO 2 fine particles in which at least a part of the surface thereof is SiON is dispersed in a resin material, can freely control a wide range of optical constants, and in particular, has a high transmittance. While maintaining the above, it has negative anomalous dispersion that cannot be realized with optical glass.
- FIG. 1 is a schematic cross-sectional view of a composite material according to Embodiment 1.
- FIG. FIG. 2 is a graph for explaining the effective particle diameter of the inorganic fine particles.
- FIG. 3 is a plot showing the relationship between the refractive index of SiO 2 and the Abbe number in the first embodiment.
- FIG. 4 is a plot and a normal dispersion line showing the relationship between the partial dispersion ratio of SiO 2 and the Abbe number in the first embodiment.
- FIG. 5 is a schematic configuration diagram of a hybrid lens according to the second embodiment.
- Composite material] 1 is a schematic cross-sectional view of a composite material according to Embodiment 1.
- FIG. 1 is a schematic cross-sectional view of a composite material according to Embodiment 1.
- the composite material 100 which is an example of the optical material in the present disclosure, includes a resin material 10 as a matrix material, and inorganic fine particles 20 dispersed in the resin material 10. It consists of
- the inorganic fine particles 20 are fine particles formed of SiO 2 , and the SiO 2 is SiON in which oxygen atoms on the surface thereof are substituted with nitrogen atoms.
- the entire surface of the SiO 2 fine particles may be SiON, or a part of the surface may be SiON.
- the inorganic fine particles 20 in the present disclosure have a structure similar to a so-called core-shell structure in which SiO 2 is a core and SiON covering at least a part of the surface of the SiO 2 is a shell. Note that the structure of the inorganic fine particles 20 in the present disclosure is also referred to as a SiO 2 —SiON structure.
- the inorganic fine particles 20 may be either aggregated particles or non-aggregated particles, and are generally configured to include primary particles 20a and secondary particles 20b formed by aggregating a plurality of the primary particles 20a.
- the dispersion state of the inorganic fine particles 20 is not particularly limited in that a desired effect can be obtained as long as the inorganic fine particles 20 are present in the resin material 10 that is a matrix material. It is beneficial to be evenly dispersed in.
- “the inorganic fine particles 20 are uniformly dispersed in the resin material 10” means that the primary particles 20 a and the secondary particles 20 b of the inorganic fine particles 20 are not unevenly distributed at specific positions in the composite material 100. It means that it is dispersed substantially uniformly. In order not to impair the translucency as an optical material, it is beneficial that the dispersibility of the particles is good. For that purpose, it is beneficial that the inorganic fine particles 20 are composed only of the primary particles 20a.
- the particle diameter of the inorganic fine particles 20 is important.
- the composite material 100 in which the inorganic fine particles 20 are dispersed in the resin material 10 can be regarded as a homogeneous medium having no refractive index variation. Therefore, it is beneficial that the particle diameter of the inorganic fine particles 20 is not larger than the wavelength of visible light. Since visible light has a wavelength in the range of 400 to 700 nm, it is beneficial that the maximum particle size of the inorganic fine particles 20 is 400 nm or less.
- the maximum particle diameter of the inorganic fine particles 20 is obtained by taking a scanning electron micrograph of the inorganic fine particles 20 and measuring the particle diameter of the largest inorganic fine particles 20 (secondary particle diameter in the case of secondary particles). be able to.
- the particle diameter of the inorganic fine particles 20 When the particle diameter of the inorganic fine particles 20 is larger than 1 ⁇ 4 of the wavelength of light, the translucency of the composite material 100 may be impaired due to Rayleigh scattering. Therefore, in order to realize high translucency in the visible light region, it is beneficial that the effective particle diameter of the inorganic fine particles 20 is 100 nm or less. However, if the effective particle size of the inorganic fine particles 20 is less than 1 nm, fluorescence may be generated when the inorganic fine particles 20 are made of a material that exhibits a quantum effect. This is an optical component formed of the composite material 100. May affect properties.
- the effective particle size of the inorganic fine particles 20 is beneficially in the range of 1 to 100 nm, and more advantageously in the range of 1 to 50 nm.
- the effective particle diameter of the inorganic fine particles 20 is 20 nm or less, the effect of Rayleigh scattering becomes very small, and the translucency of the composite material 100 becomes particularly high, which is further beneficial.
- the effective particle size of the inorganic fine particles will be described with reference to FIG.
- the horizontal axis represents the particle diameter of the inorganic fine particles
- the vertical axis represents the cumulative frequency of the inorganic fine particles for each particle diameter on the horizontal axis.
- the particle diameter on the horizontal axis is the secondary particle diameter in the aggregated state when the inorganic fine particles are aggregated.
- the effective particle diameter means a central particle diameter (median diameter: d50) at which the cumulative frequency is 50% in the cumulative frequency distribution chart of each particle diameter of the inorganic fine particles as shown in FIG.
- the composite material 100 according to the first embodiment is configured by dispersing the inorganic fine particles 20 having the SiO 2 —SiON structure in the resin material 10.
- the composite material 100 configured in this way can control the optical characteristics over a wide range and easily compared with the case of using inorganic fine particles of a simple substance of SiO 2 , and in particular, anomalous dispersibility without lowering the transmittance. Can be greatly reduced.
- FIG. 3 is a plot showing the relationship between the refractive index nd of SiO 2 at the d-line (wavelength 587.6 nm) and the Abbe number ⁇ d at the d-line indicating wavelength dispersion.
- the Abbe number ⁇ d is a value defined by the following equation (1).
- ⁇ d (nd ⁇ 1) / (nF ⁇ nC) (1) here, nd: the refractive index of the material at the d-line, nF: the refractive index of the material at the F-line (wavelength 486.1 nm), nC: Refractive index of material at C line (wavelength 656.3 nm).
- FIG. 4 is a plot showing the relationship between the partial dispersion ratio PgF indicating dispersibility of g-line (wavelength 435.8 nm) and F-line of SiO 2 and the Abbe number ⁇ d in the d-line indicating wavelength dispersibility and normal. Dispersion line.
- the partial dispersion ratio PgF is a value defined by the following equation (2).
- PgF (ng ⁇ nF) / (nF ⁇ nC) (2) here, ng: the refractive index of the material at the g-line, nF: the refractive index of the material in the F-line, nC: Refractive index of the material at the C-line.
- the anomalous dispersion ⁇ PgF is a deviation between a point on the normal line of the normal partially dispersed glass corresponding to ⁇ d of the material and the PgF of the material.
- ⁇ PgF is calculated using a straight line passing through the coordinates (normal dispersion line in FIG. 4).
- SiO 2 has optical properties of a refractive index nd: 1.54, an Abbe number ⁇ d: 69.6, and a partial dispersion ratio PgF: 0.53. Also, anomalous dispersion ⁇ PgF of SiO 2 is 0.00, SiO 2 is a very common material present in normal dispersion line.
- a composite material using inorganic fine particles having a SiO 2 —SiON structure in which fine particles formed of SiO 2 and at least a part of the surface thereof is SiON in which oxygen atoms are substituted with nitrogen atoms, has an Abbe number
- optical characteristics such as refractive index and partial dispersion ratio can be controlled over a wide range, and as a result, a characteristic of negative anomalous dispersion is imparted. Therefore, the composite material using the inorganic fine particles having the SiO 2 —SiON structure can expand the degree of freedom in designing optical parts as compared with the past, and in particular, the design of optical parts that cannot be realized by the conventional optical glass. Enable.
- the optical characteristics can be controlled over a wider range, and the negative anomalous dispersibility can be further increased.
- a resin having high translucency can be used from resins such as a thermoplastic resin, a thermosetting resin, and an energy ray curable resin.
- resins such as a thermoplastic resin, a thermosetting resin, and an energy ray curable resin.
- acrylic resin methacrylic resin such as polymethyl methacrylate; epoxy resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate and polycaprolactone; polystyrene resin such as polystyrene; olefin resin such as polypropylene; polyamide resin such as nylon; polyimide Polyimide resin such as polyetherimide; polyvinyl alcohol; butyral resin; vinyl acetate resin; alicyclic polyolefin resin; silicone resin;
- engineering plastics such as polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, and amorphous polyolefin may be used. Furthermore, these mixtures and
- acrylic resin, methacrylic resin, epoxy resin, polyimide resin, butyral resin, alicyclic polyolefin resin, and polycarbonate are useful because they have high transparency and good moldability.
- These resins can have a refractive index nd in the range of 1.4 to 1.7 by selecting a predetermined molecular skeleton.
- the Abbe number [nu] d m in the d-line of the resin material 10 is high, the d-line of the composite material 100 is obtained by dispersing inorganic fine particles 20 Needless to say, the Abbe number ⁇ d COM at the same time is also improved.
- a resin having an Abbe number ⁇ d m of 45 or more as the resin material 10 a composite material having an Abbe number ⁇ d COM of 40 or more and sufficient optical properties for application to an optical component such as a lens is obtained. Is possible, so it is beneficial.
- the Abbe number [nu] d m is 45 or more resins, for example, alicyclic polyolefin resin having an alicyclic hydrocarbon group in the backbone, silicone resin, amorphous fluorine resin or the like having a fluorine atom in its main chain having a siloxane structure However, it is not limited to these.
- the refractive index of the composite material 100 can be estimated from the refractive index of the inorganic fine particles 20 and the refractive index of the resin material 10 by, for example, Maxwell-Garnet theory expressed by the following formula (3). It is also possible to estimate the refractive index of the composite material 100 for the d-line, F-line, and C-line from Equation (3), respectively, and further to estimate the Abbe number ⁇ d of the composite material 100 from Equation (1). Conversely, the weight ratio between the resin material 10 and the inorganic fine particles 20 may be determined from the estimation based on this theory.
- n ⁇ COM average refractive index of the composite material 100 at a specific wavelength ⁇
- n ⁇ p refractive index of the inorganic fine particles 20 at a specific wavelength ⁇
- n ⁇ m refractive index of the resin material 10 at a specific wavelength ⁇
- P Volume ratio of the inorganic fine particles 20 to the entire composite material 100.
- Equation (3) Since the establishment in the case of n [lambda p ⁇ n [lambda m, in the case of n [lambda p ⁇ n [lambda m, estimating the refractive index of the composite material 100 using the following equation (4).
- n ⁇ COM , n ⁇ p , n ⁇ m and P are the same as in equation (3).
- Evaluation of the actual refractive index of the composite material 100 is performed by forming or molding the prepared composite material 100 into a shape suitable for each measurement method, and performing spectroscopic analysis such as ellipsometry, Abeles method, optical waveguide method, and spectral reflectance method. It can be performed by actual measurement by a measurement method, a prism coupler method, or the like.
- the optical characteristics of the composite material 100 estimated using the Maxwell-Garnet theory and the content of the inorganic fine particles 20 in the composite material 100 will be described. If the content of the inorganic fine particles 20 in the composite material 100 is too small, there is a possibility that the effect of adjusting the optical properties by the inorganic fine particles 20, particularly the effect of imparting negative anomalous dispersibility may not be sufficiently obtained.
- the content of 20 is advantageously 1% by weight or more of the entire composite material (optical material) 100, more preferably 5% by weight or more, and particularly preferably 10% by weight or more.
- the content of the inorganic fine particles 20 in the composite material 100 is too large, the fluidity of the composite material 100 is lowered and it becomes difficult to form the optical element, or the resin material 10 is filled with the inorganic fine particles 20. Since it may be difficult per se, it is beneficial that the content of the inorganic fine particles 20 is 80% by weight or less, further 60% by weight or less, particularly 40% by weight or less of the entire composite material (optical material) 100. is there.
- the inorganic fine particles 20 are formed by heat-treating SiO 2 fine particles in a predetermined gas atmosphere and replacing the oxygen atoms on the surface with nitrogen atoms to form SiON.
- nitrogen gas is flowed at a flow rate of about 900 to 1100 ml / min.
- the flow of nitrogen gas is stopped and the flow rate is about 850 to 1100 ml / min.
- Ammonia gas is flowed, and at the same time, hydrocarbon gas is flowed at a flow rate of about 5 to 15 ml / min to raise the temperature of the SiO 2 fine particles to a predetermined temperature. Heat treatment is performed at this temperature for about 0.5 to 3 hours to burn the SiO 2 fine particles with ammonia.
- the flow of ammonia gas and the flow of hydrocarbon gas are stopped, and the nitrogen gas is flowed at a flow rate of about 900 to 1100 ml / min and further cooled gradually.
- the desired inorganic fine particles 20 having the SiO 2 —SiON structure are obtained.
- the SiO 2 —SiON structure is formed by baking the SiO 2 fine particles with ammonia. As described above, not only the flow of ammonia gas but also the flow of hydrocarbon gas is simultaneously performed. This is because the oxygen atom of the SiO 2 is directly substituted by nitrogen atoms activation energy is too high, firstly, an oxygen atom of the SiO 2 is replaced by a carbon atom, then the carbon atom at the nitrogen atom This is because it is replaced. Therefore, as the hydrocarbon gas, for example, ethylene gas, propane gas, butane gas or the like can be used, but in addition to these, solid carbon can also be used.
- the hydrocarbon gas for example, ethylene gas, propane gas, butane gas or the like can be used, but in addition to these, solid carbon can also be used.
- the firing temperature of the SiO 2 fine particles with ammonia is advantageously 1100 to 1400 ° C. If the sintering temperature is less than 1100 ° C., an oxygen atom of the SiO 2 it is hardly replaced by nitrogen atoms, without SiO 2 -SiON structure is formed, which may remain in the SiO 2 particles. Conversely, when the firing temperature exceeds 1400 ° C., not only the oxygen atoms on the surface of the SiO 2 fine particles but also the internal oxygen atoms are replaced with nitrogen atoms, and the SiO 2 —SiON structure is not formed, and Si There is a risk of becoming 3 N 4 fine particles. A composite material in which Si 3 N 4 fine particles are dispersed in a resin material is not suitable for an optical material because the transmittance is reduced due to the black color of Si 3 N 4 .
- the method of preparing the composite material 100 by dispersing the inorganic fine particles 20 formed by the above method in the resin material 10 as a matrix material is not particularly limited, and a physical method may be adopted. Chemical methods may be employed.
- the composite material 100 can be prepared by any of the following methods (1) to (4).
- a method of mechanically and physically mixing a resin or a resin-dissolved solution and inorganic fine particles (1) A method of mechanically and physically mixing a resin or a resin-dissolved solution and inorganic fine particles. (2) A method of polymerizing monomers, oligomers, etc., which are resin raw materials, after mechanically and physically mixing the monomers, oligomers, etc., which are resin raw materials, to obtain a mixture. . (3) A method of forming inorganic fine particles in a resin by mixing a resin or a resin-dissolved solution and a raw material of inorganic fine particles and then reacting the raw material of inorganic fine particles.
- the methods (1) and (2) are advantageous in that various inorganic fine particles formed in advance can be used, and a composite material can be prepared by a general-purpose dispersing device.
- the methods (3) and (4) since it is necessary to perform a chemical reaction, there are some restrictions on the materials used. However, these methods have an advantage that the dispersibility of the inorganic fine particles can be improved because the raw materials are mixed at the molecular level.
- the order of mixing the inorganic fine particles or the raw materials of the inorganic fine particles and the monomers or oligomers that are the raw materials of the resin or the resin there is no particular limitation on the order of mixing the inorganic fine particles or the raw materials of the inorganic fine particles and the monomers or oligomers that are the raw materials of the resin or the resin, and the order may be appropriately determined depending on the case.
- a resin, a raw material of resin, or a solution in which these are dissolved may be added to a solution in which inorganic fine particles having a primary particle diameter in the range of substantially 1 to 100 nm are dispersed, and mechanically and physically mixed.
- the method for manufacturing the composite material 100 is not particularly limited as long as the effect of the present disclosure can be obtained.
- the composite material 100 may include components other than the inorganic fine particles 20 and the resin material 10 that is a matrix material as long as the effect of the present disclosure is obtained.
- a dispersant or surfactant that improves the dispersibility of the inorganic fine particles 20 in the resin material 10 a dye or pigment that absorbs electromagnetic waves having a specific range of wavelengths coexists in the composite material 100. May be.
- an optical element such as a lens is formed by filling a mold having a shape corresponding to an optical element such as a lens with the composite material 100 and curing the composite material 100 by irradiating energy rays such as ultraviolet rays. Can do.
- FIG. 5 is a schematic configuration diagram of a hybrid lens according to the second embodiment.
- the hybrid lens 30 includes a first lens 31 serving as a base material and a second lens 32 stacked on the optical surface of the first lens 31.
- the hybrid lens 30 is an example of a composite optical element.
- the first lens 31 is a first optical element and is an example of a glass lens.
- the first lens 31 is made of a glass material and is a biconvex lens.
- the second lens 32 is a second optical element and is an example of a resin lens.
- the second lens 32 is made of a composite material, and the composite material 100 according to the first embodiment is used as the composite material.
- the hybrid lens 30 shown in FIG. 5 has a convex shape on both sides, but at least one surface may be concave, for example, and the shape is not particularly limited.
- the hybrid lens 30 is appropriately designed according to desired optical characteristics.
- the second lens 32 is stacked on one optical surface of the first lens 31, but may be stacked on both optical surfaces of the first lens 31. .
- the manufacturing method of the hybrid lens 30 is not particularly limited, and a known method can be adopted.
- a mold having a shape corresponding to the second lens 32 is filled with the composite material 100, and from above
- the first lens 31 is spread by spreading the composite material until a predetermined thickness is reached, and the composite material 100 is cured by irradiating energy rays such as ultraviolet rays from above the first lens 31.
- a hybrid lens 30 that is an example of a composite optical element in which the second lens 32 is laminated on the optical surface is obtained.
- Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
- the obtained inorganic fine particles having the SiO 2 —SiON structure were subjected to surface elemental analysis using an X-ray photoelectron spectrometer (Quanta SXM manufactured by ULVAC-PHI Co., Ltd.), and the ratios of C, N, O and Si were determined. Asked.
- the surface elemental analysis was similarly performed on the raw material SiO 2 fine particles and Si 3 N 4 in which all oxygen atoms of SiO 2 were substituted with nitrogen atoms (SII08PB, manufactured by Kojundo Chemical Laboratory Co., Ltd.) The ratios of C, N, O and Si were determined. These results are shown in Table 1.
- the obtained inorganic fine particles having a SiO 2 —SiON structure were found to have a surface composition corresponding to an intermediate between SiO 2 and Si 3 N 4 from the ratio of N and O.
- Examples 1 to 3 The inorganic fine particles obtained in Production Example 1 were blended in diethyl acrylamide resin A, and both were stirred and mixed to obtain composite materials of Examples 1 to 3.
- the content of inorganic fine particles in the composite material was 10% by weight (Example 1), 15% by weight (Example 2) and 20% by weight (Example 3), respectively.
- Example 4 The inorganic fine particles obtained in Production Example 1 were blended with diethyl acrylamide resin B and both were stirred and mixed to obtain composite materials of Examples 4 to 6.
- the content of inorganic fine particles in the composite material was 10% by weight (Example 4), 15% by weight (Example 5) and 20% by weight (Example 6), respectively.
- Example 7 The inorganic fine particles obtained in Production Example 1 were blended in diethyl acrylamide resin C, and both were stirred and mixed to obtain composite materials of Examples 7-9.
- the content of inorganic fine particles in the composite material was 10% by weight (Example 7), 15% by weight (Example 8) and 20% by weight (Example 9), respectively.
- the composite materials (optical materials) of Examples 1 to 9 are all realized in optical glass under the influence of the optical properties of SiON on the surface of inorganic fine particles having a SiO 2 —SiON structure. It has negative anomalous dispersibility that cannot be achieved.
- the composite materials of Examples 1 to 3, 4 to 6, and 7 to 9 are abnormal as compared with the materials of Comparative Examples 1 to 3 that did not use inorganic fine particles having a SiO 2 —SiON structure.
- the composite materials of Examples 3, 6 and 9 have anomalous dispersibility of 0.06 as compared with the materials of Comparative Examples 1 to 3, respectively. That is, the inorganic fine particles having a SiO 2 —SiON structure can greatly reduce the anomalous dispersibility.
- all of the composite materials of Examples 1 to 9 can freely control a wide range of optical constants, and as a result, the characteristic of negative anomalous dispersion is imparted.
- optical elements such as lenses, prisms, optical filters, and diffractive optical elements.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである、広範囲な光学定数を自由に制御することができ、特に、高い透過率を維持しながら、光学ガラスでは実現することができない負の異常分散性を有する光学材料、前記光学材料から形成されてなる光学素子、並びに前記光学素子を備える複合光学素子。
Description
本開示は、光学材料、光学素子及び複合光学素子に関する。
デジタルスチルカメラ等の高精度な撮像機器においては、複数のレンズ群を有する光学系が用いられており、屈折率、アッベ数、部分分散比等の光学定数が異なる、種々の光学材料が必要である。そのため、種々の光学定数を有する光学ガラス材料や光学樹脂材料が開発され、使用されている。特に、高屈折率で高アッベ数の光学ガラス材料は、多くの撮像機器において光学性能の向上のために多用されている。
一方、樹脂材料に特殊な光学定数を有するナノ微粒子を分散させることによって、従来の樹脂材料にはない光学定数を有する成形可能なナノコンポジット材料を合成する技術開発が盛んに行われている。光学ガラスでも実現することができないような光学定数を有するナノコンポジット材料は、高屈折率で高アッベ数の特殊な光学定数を有する光学ガラスや、耐久性の悪い光学ガラスの代替材料として期待されている。
前記ナノコンポジット材料の中でも特に、高屈折率のナノコンポジット材料の開発が盛んに行われている。特許文献1には、無機微粒子に酸化イットリウム(Y2O3)を用いた材料が開示されており、特許文献2には、Al、Si、Ti、Zr、Ga、La等を含む材料が開示されている。
本開示は、広範囲な光学定数を自由に制御することができ、特に、高い透過率を維持しながら、光学ガラスでは実現することができない負の異常分散性を有する光学材料、並びに該光学材料からなる光学素子及び複合光学素子を提供する。
本開示における光学材料は、
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、
前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである
ことを特徴とする。
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、
前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである
ことを特徴とする。
本開示における光学素子は、
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである光学材料、から形成されてなる
ことを特徴とする。
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである光学材料、から形成されてなる
ことを特徴とする。
本開示における複合光学素子は、
第1の光学素子と、該第1の光学素子の光学面上に積層された第2の光学素子とを備え、
前記第2の光学素子は、
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである光学材料、から形成されてなる光学素子である
ことを特徴とする。
第1の光学素子と、該第1の光学素子の光学面上に積層された第2の光学素子とを備え、
前記第2の光学素子は、
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである光学材料、から形成されてなる光学素子である
ことを特徴とする。
その表面の少なくとも一部がSiONであるSiO2微粒子が樹脂材料に分散されたコンポジット材料である、本開示における光学材料は、広範囲な光学定数を自由に制御することができ、特に、高い透過率を維持しながら、光学ガラスでは実現することができない負の異常分散性を有する。
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
<実施の形態1>
以下、実施の形態1について図面を参照しながら説明する。
以下、実施の形態1について図面を参照しながら説明する。
[1.コンポジット材料]
図1は、実施の形態1に係るコンポジット材料の概略断面図である。
図1は、実施の形態1に係るコンポジット材料の概略断面図である。
図1に示すように、本開示における光学材料の一例である、実施の形態1に係るコンポジット材料100は、マトリクス材としての樹脂材料10と、該樹脂材料10中に分散された無機微粒子20とで構成されている。
[2.無機微粒子]
無機微粒子20は、SiO2で形成された微粒子であり、該SiO2は、その表面の酸素原子がチッ素原子で置換されたSiONである。SiO2微粒子の全表面がSiONであってもよく、一部表面がSiONであってもよい。このように、本開示における無機微粒子20は、SiO2をコアとし、該SiO2の表面の少なくとも一部を覆うSiONをシェルとする、いわゆるコアシェル構造に類似した構造を有する。なお、本開示における無機微粒子20の構造をSiO2-SiON構造ともいう。
無機微粒子20は、SiO2で形成された微粒子であり、該SiO2は、その表面の酸素原子がチッ素原子で置換されたSiONである。SiO2微粒子の全表面がSiONであってもよく、一部表面がSiONであってもよい。このように、本開示における無機微粒子20は、SiO2をコアとし、該SiO2の表面の少なくとも一部を覆うSiONをシェルとする、いわゆるコアシェル構造に類似した構造を有する。なお、本開示における無機微粒子20の構造をSiO2-SiON構造ともいう。
無機微粒子20は、凝集粒子、非凝集粒子のいずれであってもよく、一般に、一次粒子20aと、該一次粒子20aが複数個凝集してなる二次粒子20bとを含んで構成されている。無機微粒子20の分散状態は、マトリクス材である樹脂材料10中に無機微粒子20が存在する限り、所望の効果を得ることができるという点から特に限定はないが、無機微粒子20が樹脂材料10中に均一に分散されていることが有益である。ここで、「無機微粒子20が樹脂材料10中に均一に分散されている」とは、無機微粒子20の一次粒子20a及び二次粒子20bがコンポジット材料100内の特定の位置に偏在することなく、実質的に均一に分散していることを意味する。光学用材料として透光性を損なわないためには、粒子の分散性が良好であることが有益である。そのためには、無機微粒子20は一次粒子20aのみで構成されていることが有益である。
SiO2-SiON構造を有する無機微粒子20を樹脂材料10中に分散させたコンポジット材料100の透光性を確保するためには、無機微粒子20の粒子径が重要である。無機微粒子20の粒子径が光の波長よりも充分小さい場合は、無機微粒子20が樹脂材料10中に分散されているコンポジット材料100を、屈折率のばらつきがない均質な媒体とみなすことができる。したがって、無機微粒子20の粒子径は、可視光の波長以下の大きさであることが有益である。可視光は400~700nmの範囲の波長を有するので、無機微粒子20の最大粒子径は400nm以下であることが有益である。なお、無機微粒子20の最大粒子径は、無機微粒子20の走査型電子顕微鏡写真を撮影し、最も大きな無機微粒子20の粒子径(二次粒子の場合は二次粒子径)を測定することにより求めることができる。
無機微粒子20の粒子径が光の波長の1/4よりも大きい場合は、レイリー散乱によってコンポジット材料100の透光性が損なわれるおそれがある。そのため、可視光域において高い透光性を実現するためには、無機微粒子20の実効粒子径は100nm以下であることが有益である。ただし、無機微粒子20の実効粒子径が1nm未満であると、無機微粒子20が量子的な効果を発現する材料からなる場合に蛍光を生じることがあり、これがコンポジット材料100から形成された光学部品の特性に影響を及ぼす場合がある。
以上の観点から、無機微粒子20の実効粒子径は1~100nmの範囲内であることが有益であり、1~50nmの範囲内であることがより有益である。特に、無機微粒子20の実効粒子径を20nm以下とすると、レイリー散乱の影響が非常に小さくなり、コンポジット材料100の透光性が特に高くなるので、さらに有益である。
ここで、無機微粒子の実効粒子径について図2を用いて説明する。図2において、横軸は無機微粒子の粒子径を示し、縦軸は横軸の各粒子径に対する無機微粒子の累積頻度を示す。横軸の粒子径は、無機微粒子が凝集している場合には、凝集した状態での二次粒子径である。実効粒子径とは、図2のような無機微粒子の各粒子径における累積頻度分布図において、累積頻度が50%となる中心粒子径(メジアン径:d50)を意味する。実効粒子径の精度を向上させるには、例えば、無機微粒子の走査型電子顕微鏡写真を撮影し、200個以上の無機微粒子について、その粒子径を測定して求めることが有益である。
上述のように、本実施の形態1に係るコンポジット材料100は、SiO2-SiON構造を有する無機微粒子20を樹脂材料10中に分散させることにより構成されている。このように構成されたコンポジット材料100は、SiO2単体の無機微粒子を用いた場合と比べ、光学特性を広範囲でかつ容易に制御することができ、特に、透過率を低下させることなく異常分散性を大きく低下させることができる。
図3は、SiO2の、d線(波長587.6nm)における屈折率ndと、波長分散性を示すd線におけるアッベ数νdとの関係を示したプロットである。なお、アッベ数νdは、以下の式(1)により定義される値である。
νd=(nd-1)/(nF-nC) ・・・(1)
ここで、
nd:d線における材料の屈折率、
nF:F線(波長486.1nm)における材料の屈折率、
nC:C線(波長656.3nm)における材料の屈折率
である。
νd=(nd-1)/(nF-nC) ・・・(1)
ここで、
nd:d線における材料の屈折率、
nF:F線(波長486.1nm)における材料の屈折率、
nC:C線(波長656.3nm)における材料の屈折率
である。
図4は、SiO2の、g線(波長435.8nm)及びF線の分散性を示す部分分散比PgFと、波長分散性を示すd線におけるアッベ数νdとの関係を示したプロット及び正常分散線である。なお、部分分散比PgFは、以下の式(2)により定義される値である。
PgF=(ng-nF)/(nF-nC) ・・・(2)
ここで、
ng:g線における材料の屈折率、
nF:F線における材料の屈折率、
nC:C線における材料の屈折率
である。
PgF=(ng-nF)/(nF-nC) ・・・(2)
ここで、
ng:g線における材料の屈折率、
nF:F線における材料の屈折率、
nC:C線における材料の屈折率
である。
異常分散性ΔPgFは、材料のνdに対応する正常部分分散ガラスの標準線上の点と、その材料のPgFとの偏差である。本開示においては、HOYA(株)の基準に基づく、正常部分分散ガラスの標準線として硝種C7(nd:1.51、νd:60.5、PgF:0.54)と硝種F2(nd:1.62、νd:36.3、PgF:0.58)との座標を通る直線(図4における正常分散線)を用いてΔPgFを算出している。
図3及び4に示すとおり、SiO2は、屈折率nd:1.54、アッベ数νd:69.6、部分分散比PgF:0.53という光学特性を有する。また、SiO2の異常分散性ΔPgFは0.00であり、SiO2は、正常分散線上に存在する極めて一般的な材料である。このSiO2で形成された微粒子で、その表面の少なくとも一部が、酸素原子がチッ素原子で置換されたSiONである、SiO2-SiON構造を有する無機微粒子を用いたコンポジット材料は、アッベ数、屈折率、部分分散比等の光学特性を広範囲に制御することができ、結果として、負の異常分散性という特性が付与される。したがって、SiO2-SiON構造を有する無機微粒子を用いたコンポジット材料は、光学部品設計の自由度を従来よりも拡大することができ、特に、従来の光学ガラスでは実現することができない光学部品の設計を可能にする。
また、SiO2-SiON構造において、SiO2の表面におけるSiONの割合を増大させることで、光学特性をより広範囲に制御することができ、負の異常分散性をより大きくすることができる。
[3.樹脂材料]
樹脂材料10としては、熱可塑性樹脂、熱硬化性樹脂、エネルギー線硬化性樹脂等の樹脂の中から、透光性が高い樹脂を用いることができる。例えば、アクリル樹脂;ポリメタクリル酸メチル等のメタクリル樹脂;エポキシ樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカプロラクトン等のポリエステル樹脂;ポリスチレン等のポリスチレン樹脂;ポリプロピレン等のオレフィン樹脂;ナイロン等のポリアミド樹脂;ポリイミド、ポリエーテルイミド等のポリイミド樹脂;ポリビニルアルコール;ブチラール樹脂;酢酸ビニル樹脂;脂環式ポリオレフィン樹脂;シリコーン樹脂;非晶性フッ素樹脂等を用いることができる。また、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート、非晶性ポリオレフィン等のエンジニアリングプラスチックを用いてもよい。さらに、これらの混合体や共重合体、及びこれらの変性樹脂を用いることもできる。
樹脂材料10としては、熱可塑性樹脂、熱硬化性樹脂、エネルギー線硬化性樹脂等の樹脂の中から、透光性が高い樹脂を用いることができる。例えば、アクリル樹脂;ポリメタクリル酸メチル等のメタクリル樹脂;エポキシ樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカプロラクトン等のポリエステル樹脂;ポリスチレン等のポリスチレン樹脂;ポリプロピレン等のオレフィン樹脂;ナイロン等のポリアミド樹脂;ポリイミド、ポリエーテルイミド等のポリイミド樹脂;ポリビニルアルコール;ブチラール樹脂;酢酸ビニル樹脂;脂環式ポリオレフィン樹脂;シリコーン樹脂;非晶性フッ素樹脂等を用いることができる。また、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート、非晶性ポリオレフィン等のエンジニアリングプラスチックを用いてもよい。さらに、これらの混合体や共重合体、及びこれらの変性樹脂を用いることもできる。
これらの中でも、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ブチラール樹脂、脂環式ポリオレフィン樹脂及びポリカーボネートは、透明性が高く、成形性も良好であるので有益である。これらの樹脂は、所定の分子骨格を選択することによって、屈折率ndを1.4~1.7の範囲とすることができる。
樹脂材料10のd線におけるアッベ数νdmには特に限定はないが、マトリクス材となる樹脂材料10のアッベ数νdmが高いほど、無機微粒子20を分散して得られるコンポジット材料100のd線におけるアッベ数νdCOMも向上することは言うまでもない。特に、樹脂材料10としてアッベ数νdmが45以上の樹脂を使用することにより、アッベ数νdCOMが40以上の、レンズ等の光学部品への応用に充分な光学特性を有するコンポジット材料を得ることが可能となるので、有益である。アッベ数νdmが45以上の樹脂としては、例えば、脂環式炭化水素基を骨格に有する脂環式ポリオレフィン樹脂、シロキサン構造を有するシリコーン樹脂、主鎖にフッ素原子を有する非晶性フッ素樹脂等が挙げられるが、これらに限定されるものではない。
[4.コンポジット材料の光学特性]
コンポジット材料100の屈折率は、無機微粒子20の屈折率及び樹脂材料10の屈折率から、例えば以下の式(3)で表されるマックスウェル-ガーネット理論により推定することができる。式(3)より、d線、F線及びC線におけるコンポジット材料100の屈折率をそれぞれ推定し、さらに前記式(1)より、コンポジット材料100のアッベ数νdを推定することも可能である。逆にこの理論に基づく推定から、樹脂材料10と無機微粒子20との重量比を決定してもよい。
ここで、
nλCOM:特定波長λにおけるコンポジット材料100の平均屈折率、
nλp:特定波長λにおける無機微粒子20の屈折率、
nλm:特定波長λにおける樹脂材料10の屈折率、
P:コンポジット材料100全体に対する無機微粒子20の体積比
である。
コンポジット材料100の屈折率は、無機微粒子20の屈折率及び樹脂材料10の屈折率から、例えば以下の式(3)で表されるマックスウェル-ガーネット理論により推定することができる。式(3)より、d線、F線及びC線におけるコンポジット材料100の屈折率をそれぞれ推定し、さらに前記式(1)より、コンポジット材料100のアッベ数νdを推定することも可能である。逆にこの理論に基づく推定から、樹脂材料10と無機微粒子20との重量比を決定してもよい。
nλCOM:特定波長λにおけるコンポジット材料100の平均屈折率、
nλp:特定波長λにおける無機微粒子20の屈折率、
nλm:特定波長λにおける樹脂材料10の屈折率、
P:コンポジット材料100全体に対する無機微粒子20の体積比
である。
無機微粒子20が光を吸収する場合や無機微粒子20が金属を含む場合には、式(3)の屈折率を複素屈折率として計算する。なお、式(3)は、nλp≧nλmの場合に成立するので、nλp<nλmの場合は、以下の式(4)を用いてコンポジット材料100の屈折率を推定する。
ここで、nλCOM、nλp、nλm及びPは、各々式(3)と同じである。
コンポジット材料100の実際の屈折率の評価は、調製したコンポジット材料100を各測定法に適した形状に成膜又は成型し、エリプソメトリ法、アベレス法、光導波路法、分光反射率法等の分光測定法や、プリズムカプラ法等で実測することによって行うことができる。
前記マックスウェル-ガーネット理論を用いて推定したコンポジット材料100の光学特性と、コンポジット材料100中の無機微粒子20の含有量とについて説明する。コンポジット材料100中の無機微粒子20の含有量が少なすぎると、無機微粒子20による光学特性の調整効果、特に、負の異常分散性を付与する効果が充分に得られないおそれがあるので、無機微粒子20の含有量は、コンポジット材料(光学材料)100全体の1重量%以上、さらには5重量%以上、特に10重量%以上であることが有益である。一方、コンポジット材料100中の無機微粒子20の含有量が多すぎると、コンポジット材料100の流動性が低下して光学素子への成形が困難になる場合や、無機微粒子20の樹脂材料10への充填自体が困難になる場合があるので、無機微粒子20の含有量は、コンポジット材料(光学材料)100全体の80重量%以下、さらには60重量%以下、特に40重量%以下であることが有益である。
[5.コンポジット材料の製造方法]
まず、無機微粒子20の形成方法について説明する。無機微粒子20は、SiO2微粒子を所定のガス雰囲気下で熱処理し、その表面の酸素原子をチッ素原子で置換してSiONとすることにより形成される。
まず、無機微粒子20の形成方法について説明する。無機微粒子20は、SiO2微粒子を所定のガス雰囲気下で熱処理し、その表面の酸素原子をチッ素原子で置換してSiONとすることにより形成される。
まず、流量約900~1100ml/分でチッ素ガスをフローし、SiO2微粒子を約580~620℃まで昇温させた後、チッ素ガスのフローを停止し、流量約850~1100ml/分でアンモニアガスをフローし、同時に流量約5~15ml/分で炭化水素ガスをフローして、SiO2微粒子を所定の温度まで昇温させる。この温度で約0.5~3時間熱処理をしてアンモニアによるSiO2微粒子の焼成を行う。次いで焼成した微粒子を約630~670℃まで徐冷した後、アンモニアガスのフロー及び炭化水素ガスのフローを停止し、流量約900~1100ml/分でチッ素ガスをフローしてさらに徐冷して、目的とするSiO2-SiON構造を有する無機微粒子20が得られる。
アンモニアによるSiO2微粒子の焼成でSiO2-SiON構造が形成されるが、前記のとおり、アンモニアガスのフローだけではなく、炭化水素ガスのフローも同時に行う。これは、SiO2の酸素原子がチッ素原子で直接置換されるには活性化エネルギーが高すぎるので、まず、SiO2の酸素原子が炭素原子で置換され、次いで、炭素原子がチッ素原子で置換されるからである。したがって、炭化水素ガスとして、例えばエチレンガス、プロパンガス、ブタンガス等を用いることができるが、これら以外にも、固体の炭素を用いることも可能である。
前記アンモニアによるSiO2微粒子の焼成温度は、1100~1400℃であることが有益である。焼成温度が1100℃未満であると、SiO2の酸素原子がチッ素原子で置換され難く、SiO2-SiON構造が形成されずに、SiO2微粒子のままとなる恐れがある。逆に焼成温度が1400℃を超えると、SiO2微粒子の表面の酸素原子だけではなく、内部の酸素原子までもチッ素原子で置換されてしまい、SiO2-SiON構造が形成されずに、Si3N4微粒子となる恐れがある。Si3N4微粒子を樹脂材料に分散させたコンポジット材料は、Si3N4の黒色に起因して透過率が低下するので、光学材料に適さない。
次に、コンポジット材料100の調製方法について説明する。例えば前記方法にて形成された無機微粒子20を、マトリクス材としての樹脂材料10に分散させてコンポジット材料100を調製する方法には特に限定はなく、物理的な方法を採用してもよいし、化学的な方法を採用してもよい。例えば、以下の(1)~(4)いずれかの方法でコンポジット材料100を調製することができる。
(1)樹脂又は樹脂を溶解した溶液と無機微粒子とを、機械的、物理的に混合する方法。
(2)樹脂の原料である単量体やオリゴマー等と無機微粒子とを、機械的、物理的に混合して混合物を得た後、樹脂の原料である単量体やオリゴマー等を重合する方法。
(3)樹脂又は樹脂を溶解した溶液と無機微粒子の原料とを混合した後、無機微粒子の原料を反応させ、樹脂中で無機微粒子を形成する方法。
(4)樹脂の原料である単量体やオリゴマー等と無機微粒子の原料とを混合した後、無機微粒子の原料を反応させて無機微粒子を形成する工程と、樹脂の原料である単量体やオリゴマー等を重合して樹脂を合成する工程とを行う方法。
(2)樹脂の原料である単量体やオリゴマー等と無機微粒子とを、機械的、物理的に混合して混合物を得た後、樹脂の原料である単量体やオリゴマー等を重合する方法。
(3)樹脂又は樹脂を溶解した溶液と無機微粒子の原料とを混合した後、無機微粒子の原料を反応させ、樹脂中で無機微粒子を形成する方法。
(4)樹脂の原料である単量体やオリゴマー等と無機微粒子の原料とを混合した後、無機微粒子の原料を反応させて無機微粒子を形成する工程と、樹脂の原料である単量体やオリゴマー等を重合して樹脂を合成する工程とを行う方法。
前記(1)及び(2)の方法では、予め形成された種々の無機微粒子を用いることができ、また、汎用の分散装置によってコンポジット材料を調製することができるという利点がある。一方、前記(3)及び(4)の方法では、化学的な反応を行う必要があるため、使用する材料にある程度の制限が生じる。しかし、これらの方法は、原料を分子レベルで混合するので、無機微粒子の分散性を高めることができるという利点を有する。
なお、前記方法において、無機微粒子又は無機微粒子の原料と、樹脂又は樹脂の原料である単量体やオリゴマー等とを混合する順序に特に限定はなく、場合に応じて適宜順序を決定すればよい。例えば、一次粒子径が実質1~100nmの範囲内にある無機微粒子を分散した溶液に、樹脂、樹脂の原料又はこれらを溶解した溶液を加えて機械的、物理的に混合してもよい。コンポジット材料100の製造方法は、本開示における効果が得られる限り、特に限定はない。
また、コンポジット材料100は、本開示における効果が得られる限り、無機微粒子20及びマトリクス材である樹脂材料10以外の成分を含んでもよい。例えば、図示していないが、樹脂材料10における無機微粒子20の分散性を向上させる分散剤や界面活性剤、特定範囲の波長の電磁波を吸収する染料や顔料等がコンポジット材料100中に共存していてもよい。
なお、コンポジット材料100から、例えばレンズ等の光学素子を形成する方法には特に限定はなく、公知の方法を採用することができる。例えば、レンズ等の光学素子に対応する形状を有する型にコンポジット材料100を充填し、例えば紫外線等のエネルギー線を照射してコンポジット材料100を硬化させることによって、レンズ等の光学素子を形成することができる。
<実施の形態2>
以下、実施の形態2について図面を参照しながら説明する。
以下、実施の形態2について図面を参照しながら説明する。
図5は、実施の形態2に係るハイブリッドレンズの概略構成図である。ハイブリッドレンズレンズ30は、基材となる第1レンズ31と、該第1レンズ31の光学面上に積層された第2レンズ32とで構成されている。ハイブリッドレンズ30は、複合光学素子の一例である。
第1レンズ31は、第1の光学素子で、ガラスレンズの一例である。第1レンズ31は、ガラス材料から形成されており、両凸形状のレンズである。
第2レンズ32は、第2の光学素子で、樹脂レンズの一例である。第2レンズ32は、コンポジット材料から形成されており、該コンポジット材料として、前記実施の形態1に係るコンポジット材料100が用いられる。
なお、図5に示すハイブリッドレンズ30は、両面が凸形状であるが、例えば少なくとも一方の面が凹形状であってもよく、その形状に特に限定はない。ハイブリッドレンズ30は、所望の光学特性に応じて適宜設計される。また、図5に示すハイブリッドレンズ30では、第2レンズ32は、第1レンズ31の一方の光学面上に積層されているが、第1レンズ31の両光学面上に積層されていてもよい。
ハイブリッドレンズ30の製造方法には特に限定がなく、公知の方法を採用することができる。例えば、レンズ研磨、射出成形、プレス成形等により、ガラスレンズの一例である第1レンズ31を成形したのち、第2レンズ32に対応する形状を有する型にコンポジット材料100を充填し、この上方から第1レンズ31を載せて所定の厚みになるまでコンポジット材料を押し広げ、第1レンズ31の上方から、例えば紫外線等のエネルギー線を照射してコンポジット材料100を硬化させることによって、第1レンズ31の光学面上に、第2レンズ32が積層された、複合光学素子の一例であるハイブリッドレンズ30が得られる。
以上のように、本出願において開示する技術の例示として、実施の形態1及び2を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
以下に、本実施の形態に係る実施例と、比較例とを示す。なお、本開示はこれらの実施例に限定されるものではない。
(製造例1)
まず、流量1000ml/分でチッ素ガスをフローし、アルミナ製の焼成容器に入れたSiO2微粒子(日本アエロジル(株)製、AEROSIL(登録商標)380、親水性フュームドシリカ、比表面積380m2/g)を600℃まで昇温させた。次いで、チッ素ガスのフローを停止し、流量990ml/分でアンモニアガスをフローし、同時に流量10ml/分でエチレンガスをフローして、SiO2微粒子を1400℃まで昇温させた。この温度で1時間熱処理を施し、アンモニアによるSiO2微粒子の焼成を行った。
まず、流量1000ml/分でチッ素ガスをフローし、アルミナ製の焼成容器に入れたSiO2微粒子(日本アエロジル(株)製、AEROSIL(登録商標)380、親水性フュームドシリカ、比表面積380m2/g)を600℃まで昇温させた。次いで、チッ素ガスのフローを停止し、流量990ml/分でアンモニアガスをフローし、同時に流量10ml/分でエチレンガスをフローして、SiO2微粒子を1400℃まで昇温させた。この温度で1時間熱処理を施し、アンモニアによるSiO2微粒子の焼成を行った。
次に、焼成した微粒子を650℃まで徐冷した後、アンモニアガスのフロー及びエチレンガスのフローを停止し、流量1000ml/分でチッ素ガスをフローしてさらに徐冷して、SiO2-SiON構造を有する無機微粒子を得た。
得られたSiO2-SiON構造を有する無機微粒子について、X線光電子分光分析装置(アルバック・ファイ(株)製、Quantera SXM)にて表面元素分析を行い、C、N、O及びSiの割合を求めた。また、原料のSiO2微粒子と、SiO2の酸素原子が全て窒素原子で置換されたSi3N4((株)高純度化学研究所製、SII08PB)についても、同様に表面元素分析を行い、C、N、O及びSiの割合を求めた。これらの結果を表1に示す。
表1に示すように、得られたSiO2-SiON構造を有する無機微粒子は、N及びOの割合から、SiO2とSi3N4との中間に相当する表面組成であることが分かった。
(実施例1~3)
前記製造例1で得られた無機微粒子をジエチルアクリルアミド系樹脂Aに配合して両者を撹拌混合し、実施例1~3のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は、各々10重量%(実施例1)、15重量%(実施例2)及び20重量%(実施例3)であった。
前記製造例1で得られた無機微粒子をジエチルアクリルアミド系樹脂Aに配合して両者を撹拌混合し、実施例1~3のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は、各々10重量%(実施例1)、15重量%(実施例2)及び20重量%(実施例3)であった。
(比較例1)
製造例1で得られた無機微粒子を用いずに、ジエチルアクリルアミド系樹脂Aのみをコンポジット材料とした。
製造例1で得られた無機微粒子を用いずに、ジエチルアクリルアミド系樹脂Aのみをコンポジット材料とした。
(実施例4~6)
前記製造例1で得られた無機微粒子をジエチルアクリルアミド系樹脂Bに配合して両者を撹拌混合し、実施例4~6のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は、各々10重量%(実施例4)、15重量%(実施例5)及び20重量%(実施例6)であった。
前記製造例1で得られた無機微粒子をジエチルアクリルアミド系樹脂Bに配合して両者を撹拌混合し、実施例4~6のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は、各々10重量%(実施例4)、15重量%(実施例5)及び20重量%(実施例6)であった。
(比較例2)
製造例1で得られた無機微粒子を用いずに、ジエチルアクリルアミド系樹脂Bのみをコンポジット材料とした。
製造例1で得られた無機微粒子を用いずに、ジエチルアクリルアミド系樹脂Bのみをコンポジット材料とした。
(実施例7~9)
前記製造例1で得られた無機微粒子をジエチルアクリルアミド系樹脂Cに配合して両者を撹拌混合し、実施例7~9のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は、各々10重量%(実施例7)、15重量%(実施例8)及び20重量%(実施例9)であった。
前記製造例1で得られた無機微粒子をジエチルアクリルアミド系樹脂Cに配合して両者を撹拌混合し、実施例7~9のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は、各々10重量%(実施例7)、15重量%(実施例8)及び20重量%(実施例9)であった。
(比較例3)
製造例1で得られた無機微粒子を用いずに、ジエチルアクリルアミド系樹脂Cのみをコンポジット材料とした。
製造例1で得られた無機微粒子を用いずに、ジエチルアクリルアミド系樹脂Cのみをコンポジット材料とした。
実施例1~9及び比較例1~3の材料について、精密屈折計((株)島津デバイス製造製、KPR-200)を用い、g線、F線、d線及びC線における屈折率を測定し、前記式(1)及び(2)より、アッベ数νdと部分分散比PgFとを算出した。また、以下の式(5)より、異常分散性ΔPgFを算出した。これらの結果を表2に示す。
ΔPgF=PgF-(-0.001802397685×νd+0.648327036) ・・・(5)
ΔPgF=PgF-(-0.001802397685×νd+0.648327036) ・・・(5)
表2に示すように、実施例1~9のコンポジット材料(光学材料)は、いずれも、SiO2-SiON構造を有する無機微粒子の表面のSiONの光学特性の影響を受けて、光学ガラスでは実現することができない負の異常分散性を有するものである。また、実施例1~3、4~6、及び7~9のコンポジット材料は、SiO2-SiON構造を有する無機微粒子を用いなかった比較例1~3の材料と各々比較して、いずれも異常分散性が低下しており、特に実施例3、6及び9のコンポジット材料は、比較例1~3の材料と各々比較して、いずれも異常分散性が0.06も低下している。すなわち、SiO2-SiON構造を有する無機微粒子は、異常分散性を大きく低下させることができるものである。このように、実施例1~9のコンポジット材料は、いずれも、広範囲な光学定数を自由に制御することができ、結果として、負の異常分散性という特性が付与されることがわかる。
以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
本開示は、レンズ、プリズム、光学フィルター、回折光学素子等の光学素子に好適に使用することができる。
10 樹脂材料
20 無機微粒子
20a 一次粒子
20b 二次粒子
30 ハイブリッドレンズ
31 第1レンズ
32 第2レンズ
100 コンポジット材料
20 無機微粒子
20a 一次粒子
20b 二次粒子
30 ハイブリッドレンズ
31 第1レンズ
32 第2レンズ
100 コンポジット材料
Claims (3)
- 樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、
前記無機微粒子は、SiO2で形成された微粒子で、該SiO2の表面の少なくとも一部は、その酸素原子がチッ素原子で置換されたSiONである、光学材料。 - 請求項1に記載の光学材料から形成されてなる光学素子。
- 第1の光学素子と、該第1の光学素子の光学面上に積層された第2の光学素子とを備え、
前記第2の光学素子は、請求項1に記載の光学材料から形成されてなる光学素子である、複合光学素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015527729A JPWO2015145502A1 (ja) | 2014-03-24 | 2014-10-27 | 光学材料及びその製造方法、光学素子、並びに複合光学素子 |
US14/738,015 US20150276985A1 (en) | 2014-03-24 | 2015-06-12 | Optical material and method for producing the same, optical element, and hybrid optical element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-060155 | 2014-03-24 | ||
JP2014060155 | 2014-03-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/738,015 Continuation US20150276985A1 (en) | 2014-03-24 | 2015-06-12 | Optical material and method for producing the same, optical element, and hybrid optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015145502A1 true WO2015145502A1 (ja) | 2015-10-01 |
Family
ID=54194104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005412 WO2015145502A1 (ja) | 2014-03-24 | 2014-10-27 | 光学材料、光学素子及び複合光学素子 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015145502A1 (ja) |
WO (1) | WO2015145502A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020158723A (ja) * | 2019-03-28 | 2020-10-01 | 三井化学株式会社 | 樹脂組成物、成形体、光学材料または光学素子、及び、成形体の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009244758A (ja) * | 2008-03-31 | 2009-10-22 | Panasonic Electric Works Co Ltd | 透明基板 |
JP2011060780A (ja) * | 2010-12-24 | 2011-03-24 | Dainippon Printing Co Ltd | 色変換層形成用塗工液および有機エレクトロルミネッセンス素子用基板、ならびにこれらの製造方法 |
JP2011146144A (ja) * | 2010-01-12 | 2011-07-28 | Konica Minolta Holdings Inc | 発光素子 |
WO2013031174A1 (ja) * | 2011-08-26 | 2013-03-07 | パナソニック株式会社 | 光学材料及びこれを含む光学素子 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4734569B2 (ja) * | 2006-07-12 | 2011-07-27 | 国立大学法人長岡技術科学大学 | ガラス材料の加工法 |
-
2014
- 2014-10-27 WO PCT/JP2014/005412 patent/WO2015145502A1/ja active Application Filing
- 2014-10-27 JP JP2015527729A patent/JPWO2015145502A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009244758A (ja) * | 2008-03-31 | 2009-10-22 | Panasonic Electric Works Co Ltd | 透明基板 |
JP2011146144A (ja) * | 2010-01-12 | 2011-07-28 | Konica Minolta Holdings Inc | 発光素子 |
JP2011060780A (ja) * | 2010-12-24 | 2011-03-24 | Dainippon Printing Co Ltd | 色変換層形成用塗工液および有機エレクトロルミネッセンス素子用基板、ならびにこれらの製造方法 |
WO2013031174A1 (ja) * | 2011-08-26 | 2013-03-07 | パナソニック株式会社 | 光学材料及びこれを含む光学素子 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020158723A (ja) * | 2019-03-28 | 2020-10-01 | 三井化学株式会社 | 樹脂組成物、成形体、光学材料または光学素子、及び、成形体の製造方法 |
JP7248475B2 (ja) | 2019-03-28 | 2023-03-29 | 三井化学株式会社 | 樹脂組成物、成形体、光学材料または光学素子、及び、成形体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015145502A1 (ja) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4142734B2 (ja) | 回折光学素子 | |
CN101231357B (zh) | 层叠衍射光学元件 | |
JP5618510B2 (ja) | 光学材料および光学素子 | |
US7663803B2 (en) | Laminated diffraction optical element | |
US9422414B2 (en) | Organic-inorganic composite material, optical element, and multilayer diffractive optical element | |
WO2014179780A1 (en) | Gradient refractive index optics with low dispersion using nanoparticles | |
JP5596859B2 (ja) | 回折光学素子 | |
JP5037393B2 (ja) | 金属酸化物微粒子分散液及び成形体 | |
KR20100058491A (ko) | 광학용 수지 재료 및 광학 소자 | |
WO2014132624A1 (ja) | 光学材料、光学素子及び複合光学素子 | |
JP5807219B2 (ja) | 光学材料及びこれを含む光学素子 | |
WO2015145502A1 (ja) | 光学材料、光学素子及び複合光学素子 | |
WO2014132588A1 (ja) | 光学レンズ | |
US20150276985A1 (en) | Optical material and method for producing the same, optical element, and hybrid optical element | |
JP2011202067A (ja) | ナノコンポジット材料およびナノコンポジット材料を備えた光学レンズ又は窓材とナノコンポジット材料の製造方法 | |
JP2015194731A (ja) | 光学材料、光学素子及び複合光学素子 | |
WO2013125192A1 (ja) | レンズ、ハイブリッドレンズ、交換レンズおよび撮像装置 | |
WO2014129206A1 (ja) | 光学素子、複合光学素子、交換レンズ及び撮像装置 | |
WO2014129207A1 (ja) | 光学素子、複合光学素子、交換レンズ及び撮像装置 | |
JPWO2014129175A1 (ja) | 光学レンズ | |
WO2014129200A1 (ja) | 複合光学素子 | |
JP5214077B1 (ja) | 光学材料及びこれを含む光学素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015527729 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14887592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14887592 Country of ref document: EP Kind code of ref document: A1 |