WO2014132624A1 - 光学材料、光学素子及び複合光学素子 - Google Patents

光学材料、光学素子及び複合光学素子 Download PDF

Info

Publication number
WO2014132624A1
WO2014132624A1 PCT/JP2014/000978 JP2014000978W WO2014132624A1 WO 2014132624 A1 WO2014132624 A1 WO 2014132624A1 JP 2014000978 W JP2014000978 W JP 2014000978W WO 2014132624 A1 WO2014132624 A1 WO 2014132624A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
inorganic fine
optical
composite material
resin
Prior art date
Application number
PCT/JP2014/000978
Other languages
English (en)
French (fr)
Inventor
上野 巌
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015502771A priority Critical patent/JPWO2014132624A1/ja
Publication of WO2014132624A1 publication Critical patent/WO2014132624A1/ja
Priority to US14/834,982 priority patent/US20150362631A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the present disclosure relates to an optical material, an optical element, and a composite optical element.
  • High-precision imaging devices such as digital still cameras use an optical system having a plurality of lens groups, and require various optical materials with different optical constants such as refractive index, Abbe number, and partial dispersion ratio. is there. Therefore, optical glass materials and optical resin materials having various optical constants have been developed and used. In particular, optical glass materials having a high refractive index and a high Abbe number are frequently used for improving optical performance in many imaging devices.
  • Nanocomposite materials with optical constants that cannot be realized even with optical glass are expected to replace optical glass with special optical constants of high refractive index and high Abbe number, and optical glass with poor durability. Yes.
  • Patent Document 1 discloses a material using yttrium oxide (Y 2 O 3 ) as inorganic fine particles
  • Patent Document 2 discloses a material containing Al, Si, Ti, Zr, Ga, La, or the like. Has been.
  • This disclosure provides an optical material capable of freely controlling a wide range of optical constants, and an optical element and a composite optical element made of the optical material.
  • the optical material in the present disclosure is: It is composed of a resin material and inorganic fine particles dispersed in the resin material,
  • the inorganic fine particles have a core and a shell formed to cover at least a part of the surface of the core,
  • the core SiO 2, TiO 2, ZnO , Al 2 O 3, B 2 O 3, Y 2 O 3, MgO, BaO, CaO, SrO, NiO, CuO, BaTiO 3, indium tin oxide, SnO 2 and zeolite It is formed by at least one selected from.
  • the shell is formed of at least one oxide selected from Si, Ti, Zn, Al, B, Y, Mg, Ba, Ca, Sr, Ni, Cu, In and Sn.
  • the optical element in the present disclosure is: It is composed of a resin material and inorganic fine particles dispersed in the resin material,
  • the inorganic fine particles have a core and a shell formed to cover at least a part of the surface of the core,
  • the core SiO 2, TiO 2, ZnO , Al 2 O 3, B 2 O 3, Y 2 O 3, MgO, BaO, CaO, SrO, NiO, CuO, BaTiO 3, indium tin oxide, SnO 2 and zeolite It is formed from the optical material formed by at least one selected from.
  • the composite optical element in the present disclosure is: A first optical element, and a second optical element laminated on the optical surface of the first optical element,
  • the second optical element includes: It is composed of a resin material and inorganic fine particles dispersed in the resin material, The inorganic fine particles have a core and a shell formed to cover at least a part of the surface of the core, The core, SiO 2, TiO 2, ZnO , Al 2 O 3, B 2 O 3, Y 2 O 3, MgO, BaO, CaO, SrO, NiO, CuO, BaTiO 3, indium tin oxide, SnO 2 and zeolite It is an optical element formed from an optical material formed of at least one selected from the above.
  • the optical material according to the present disclosure which is a composite material in which inorganic fine particles having a core-shell structure are dispersed in a resin material, can freely control a wide range of optical constants.
  • FIG. 1A and 1B are schematic views of a composite material according to Embodiment 1, wherein FIG. 1A is a schematic cross-sectional view showing a configuration of the composite material, and FIG. 1B is a schematic cross-sectional view showing a core-shell structure of inorganic fine particles.
  • FIG. 2 is a graph for explaining the effective particle diameter of the inorganic fine particles.
  • FIG. 3 is a plot showing the relationship between the refractive index of SiO 2 and the Abbe number in the first embodiment.
  • FIG. 4 is a plot and a normal dispersion line showing the relationship between the partial dispersion ratio of SiO 2 and the Abbe number in the first embodiment.
  • FIG. 5 is a transmission electron micrograph of SiO 2 fine particles.
  • FIG. 6 is a transmission electron micrograph of inorganic fine particles having a core-shell structure in which the core is SiO 2 and the shell is TiO 2 .
  • FIG. 7 is a schematic configuration diagram of a hybrid lens according to the second embodiment.
  • FIG. 8 is a plot showing the relationship between the refractive index and Abbe number of various materials in Examples 1 to 8 and Comparative Examples 1 and 2.
  • FIG. 9 is a plot and a normal dispersion line showing the relationship between the partial dispersion ratio of various materials and the Abbe number in Examples 1 to 8 and Comparative Examples 1 and 2.
  • FIG. 10 is a plot showing the relationship between the refractive index of various materials and the Abbe number in Examples 9 to 14 and Comparative Examples 1 and 3.
  • FIG. 11 is a plot and a normal dispersion line showing the relationship between the partial dispersion ratio of various materials and the Abbe number in Examples 9 to 14 and Comparative Examples 1 and 3.
  • FIG. 1A and 1B are schematic views of a composite material according to Embodiment 1, wherein FIG. 1A is a schematic cross-sectional view showing a configuration of the composite material, and FIG. 1B is a schematic cross-sectional view showing a core-shell structure of inorganic fine particles.
  • the composite material 100 includes a resin material 10 as a matrix material, and an inorganic material dispersed in the resin material 10. It consists of fine particles 20.
  • the inorganic fine particle 20 has a core 21 and a shell 22 formed so as to cover the surface of the core 21.
  • the shell 22 may cover the entire surface of the core 21 or may cover a part of the surface of the core 21.
  • the shell 22 may be formed in a film shape, or a plurality of fine particles may be formed densely.
  • the core 21 of the inorganic fine particles 20 is made of SiO 2 , TiO 2 , ZnO, Al 2 O 3 , B 2 O 3 , Y 2 O 3 , MgO, BaO, CaO, SrO, NiO, CuO, BaTiO 3 , indium tin oxide ( (Hereinafter referred to as ITO), SnO 2 and at least one selected from zeolite.
  • ITO indium tin oxide
  • SiO 2 and ZnO are useful as the material of the core 21 because an optical material capable of controlling a wide range of optical constants more freely can be obtained.
  • the core is a core-shell structure formed by SiO 2, also referred to as SiO 2 based core-shell structure.
  • the shell 22 of the inorganic fine particles 20 may be formed of at least one oxide selected from Si, Ti, Zn, Al, B, Y, Mg, Ba, Ca, Sr, Ni, Cu, In, and Sn. It is beneficial. Among these, it is at least one oxide selected from Y, Zn, Ti, In and Sn from the viewpoint that an optical material capable of controlling a wide range of optical constants more freely can be obtained. Y 2 O 3 , ZnO, TiO 2 and ITO are useful as materials for the shell 22.
  • the ratio of the material forming the core and the material forming the shell in the core-shell structure is no particular limitation on the ratio of the material forming the core and the material forming the shell in the core-shell structure, and according to the combination of each material used, the effect of being able to freely control a wide range of optical constants in the resulting optical material.
  • the material forming the shell is about 1 to 20% by weight, more preferably about 2 to 18% by weight of the material forming the core. .
  • the inorganic fine particles 20 may be either aggregated particles or non-aggregated particles, and are generally configured to include primary particles 20a and secondary particles 20b formed by aggregating a plurality of the primary particles 20a.
  • the dispersion state of the inorganic fine particles 20 is not particularly limited in that a desired effect can be obtained as long as the inorganic fine particles 20 are present in the resin material 10 that is a matrix material. It is beneficial to be evenly dispersed in.
  • “the inorganic fine particles 20 are uniformly dispersed in the resin material 10” means that the primary particles 20 a and the secondary particles 20 b of the inorganic fine particles 20 are not unevenly distributed at specific positions in the composite material 100. It means that it is dispersed substantially uniformly. In order not to impair the translucency as an optical material, it is beneficial that the dispersibility of the particles is good. For that purpose, it is beneficial that the inorganic fine particles 20 are composed only of the primary particles 20a.
  • the particle diameter of the inorganic fine particles 20 is important.
  • the composite material 100 in which the inorganic fine particles 20 are dispersed in the resin material 10 can be regarded as a homogeneous medium having no refractive index variation. Therefore, it is beneficial that the particle diameter of the inorganic fine particles 20 is not larger than the wavelength of visible light. Since visible light has a wavelength in the range of 400 to 700 nm, it is beneficial that the maximum particle size of the inorganic fine particles 20 is 400 nm or less.
  • the maximum particle diameter of the inorganic fine particles 20 is obtained by taking a scanning electron micrograph of the inorganic fine particles 20 and measuring the particle diameter of the largest inorganic fine particles 20 (secondary particle diameter in the case of secondary particles). be able to.
  • the particle diameter of the inorganic fine particles 20 When the particle diameter of the inorganic fine particles 20 is larger than 1 ⁇ 4 of the wavelength of light, the translucency of the composite material 100 may be impaired due to Rayleigh scattering. Therefore, in order to realize high translucency in the visible light region, it is beneficial that the effective particle diameter of the inorganic fine particles 20 is 100 nm or less. However, if the effective particle size of the inorganic fine particles 20 is less than 1 nm, fluorescence may be generated when the inorganic fine particles 20 are made of a material that exhibits a quantum effect. This is an optical component formed of the composite material 100. May affect properties.
  • the effective particle size of the inorganic fine particles 20 is beneficially in the range of 1 to 100 nm, and more advantageously in the range of 1 to 50 nm.
  • the effective particle diameter of the inorganic fine particles 20 is 20 nm or less, the effect of Rayleigh scattering becomes very small, and the translucency of the composite material 100 becomes particularly high, which is further beneficial.
  • the effective particle size of the inorganic fine particles will be described with reference to FIG.
  • the horizontal axis represents the particle diameter of the inorganic fine particles
  • the vertical axis represents the cumulative frequency of the inorganic fine particles for each particle diameter on the horizontal axis.
  • the particle diameter on the horizontal axis is the secondary particle diameter in the aggregated state when the inorganic fine particles are aggregated.
  • the effective particle diameter means a central particle diameter (median diameter: d50) at which the cumulative frequency is 50% in the cumulative frequency distribution chart of each particle diameter of the inorganic fine particles as shown in FIG.
  • the composite material 100 according to the first embodiment is configured by dispersing the inorganic fine particles 20 having the SiO 2 core-shell structure in the resin material 10. As will be described later, the composite material 100 configured in this way can easily control the optical characteristics over a wide range as compared with the case of using inorganic fine particles of SiO 2 alone.
  • FIG. 3 is a plot showing the relationship between the refractive index nd of SiO 2 at the d-line (wavelength 587.6 nm) and the Abbe number ⁇ d at the d-line indicating wavelength dispersion.
  • the Abbe number ⁇ d is a value defined by the following equation (1).
  • ⁇ d (nd ⁇ 1) / (nF ⁇ nC) (1) here, nd: the refractive index of the material at the d-line, nF: the refractive index of the material at the F-line (wavelength 486.1 nm), nC: Refractive index of material at C line (wavelength 656.3 nm).
  • FIG. 4 is a plot showing the relationship between the partial dispersion ratio PgF indicating dispersibility of g-line (wavelength 435.8 nm) and F-line of SiO 2 and the Abbe number ⁇ d in the d-line indicating wavelength dispersibility and normal. Dispersion line.
  • the partial dispersion ratio PgF is a value defined by the following equation (2).
  • PgF (ng ⁇ nF) / (nF ⁇ nC) (2) here, ng: refractive index of the material at g-line (wavelength 435.8 nm), nF: the refractive index of the material in the F-line, nC: Refractive index of the material at the C-line.
  • the anomalous dispersion ⁇ PgF is a deviation between a point on the normal line of the normal partially dispersed glass corresponding to ⁇ d of the material and the PgF of the material.
  • ⁇ PgF is calculated using a straight line passing through the coordinates (normal dispersion line in FIG. 4).
  • SiO 2 has optical properties of a refractive index nd: 1.54, an Abbe number ⁇ d: 69.6, and a partial dispersion ratio PgF: 0.53. Also, anomalous dispersion ⁇ PgF of SiO 2 is 0.00, SiO 2 is a very common material present in normal dispersion line. A composite material using inorganic fine particles having a SiO 2 core-shell structure with this SiO 2 as a core and ZnO, TiO 2 , ITO, Y 2 O 3 , Al 2 O 3 , SnO 2 , ZrO 2, etc.
  • the composite material using the inorganic fine particles having the SiO 2 -based core-shell structure can expand the degree of freedom in designing the optical component as compared with the related art.
  • the optical thickness can be controlled in a wider range by increasing the thickness of the shell (in the embodiments described later, the ratio of the material forming the shell to the material forming the core is increased). Can do.
  • a resin having high translucency can be used from resins such as a thermoplastic resin, a thermosetting resin, and an energy ray curable resin.
  • resins such as a thermoplastic resin, a thermosetting resin, and an energy ray curable resin.
  • acrylic resin methacrylic resin such as polymethyl methacrylate; epoxy resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate and polycaprolactone; polystyrene resin such as polystyrene; olefin resin such as polypropylene; polyamide resin such as nylon; polyimide Polyimide resin such as polyetherimide; polyvinyl alcohol; butyral resin; vinyl acetate resin; alicyclic polyolefin resin; silicone resin;
  • engineering plastics such as polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, and amorphous polyolefin may be used. Furthermore, these mixtures and
  • acrylic resin, methacrylic resin, epoxy resin, polyimide resin, butyral resin, alicyclic polyolefin resin, and polycarbonate are useful because they have high transparency and good moldability.
  • These resins can have a refractive index nd in the range of 1.4 to 1.7 by selecting a predetermined molecular skeleton.
  • the Abbe number [nu] d m in the d-line of the resin material 10 is high, the d-line of the composite material 100 is obtained by dispersing inorganic fine particles 20 Needless to say, the Abbe number ⁇ d COM at the same time is also improved.
  • a resin having an Abbe number ⁇ d m of 45 or more as the resin material 10 a composite material having an Abbe number ⁇ d COM of 40 or more and sufficient optical properties for application to an optical component such as a lens is obtained. Is possible, so it is beneficial.
  • the Abbe number [nu] d m is 45 or more resins, for example, alicyclic polyolefin resin having an alicyclic hydrocarbon group in the backbone, silicone resin, amorphous fluorine resin or the like having a fluorine atom in its main chain having a siloxane structure However, it is not limited to these.
  • the refractive index of the composite material 100 can be estimated from the refractive index of the inorganic fine particles 20 and the refractive index of the resin material 10 by, for example, Maxwell-Garnet theory expressed by the following formula (3). It is also possible to estimate the refractive index of the composite material 100 for the d-line, F-line, and C-line from Equation (3), respectively, and further to estimate the Abbe number ⁇ d of the composite material 100 from Equation (1). Conversely, the weight ratio between the resin material 10 and the inorganic fine particles 20 may be determined from the estimation based on this theory.
  • n ⁇ COM average refractive index of the composite material 100 at a specific wavelength ⁇
  • n ⁇ p refractive index of the inorganic fine particles 20 at a specific wavelength ⁇
  • n ⁇ m refractive index of the resin material 10 at a specific wavelength ⁇
  • P Volume ratio of the inorganic fine particles 20 to the entire composite material 100.
  • Equation (3) Since the establishment in the case of n [lambda p ⁇ n [lambda m, in the case of n [lambda p ⁇ n [lambda m, estimating the refractive index of the composite material 100 using the following equation (4).
  • n ⁇ COM , n ⁇ p , n ⁇ m and P are the same as in equation (3).
  • Evaluation of the actual refractive index of the composite material 100 is performed by forming or molding the prepared composite material 100 into a shape suitable for each measurement method, and performing spectroscopic analysis such as ellipsometry, Abeles method, optical waveguide method, and spectral reflectance method. It can be performed by actual measurement by a measurement method, a prism coupler method, or the like.
  • the optical characteristics of the composite material 100 estimated using the Maxwell-Garnet theory and the content of the inorganic fine particles 20 in the composite material 100 will be described. If the content of the inorganic fine particles 20 in the composite material 100 is too small, the effect of adjusting the optical properties by the inorganic fine particles 20 may not be sufficiently obtained. Therefore, the content of the inorganic fine particles 20 is determined by the composite material (optical material). It is beneficial that it is 1% by weight or more of the whole 100, further 5% by weight or more, particularly 10% by weight or more.
  • the content of the inorganic fine particles 20 in the composite material 100 is too large, the fluidity of the composite material 100 is lowered and it becomes difficult to form the optical element, or the resin material 10 is filled with the inorganic fine particles 20. Since it may be difficult per se, it is beneficial that the content of the inorganic fine particles 20 is 80% by weight or less, further 60% by weight or less, particularly 40% by weight or less of the entire composite material (optical material) 100. is there.
  • the core 21 of the inorganic fine particles 20 can be formed by a liquid phase method such as a coprecipitation method, a sol-gel method, or a metal complex decomposition method, or a gas phase method.
  • the core 21 may be formed by making the bulk into fine particles by a pulverization method using a ball mill or a bead mill.
  • An organometallic complex solution can be used for forming the shell 22 of the inorganic fine particles 20.
  • the material of the shell 22 that is at least one oxide selected from Si, Ti, Zn, Al, B, Y, Mg, Ba, Ca, Sr, Ni, Cu, In, and Sn is toluene, benzene, xylene,
  • the organometallic complex solution diluted with alcohol or the like and the core 21 are mixed, the solid content from which the excess solution has been removed by a centrifuge is heat-treated in the atmosphere to cover at least a part of the surface of the core 21.
  • the inorganic fine particles 20 having the core-shell structure in which the shell 22 is formed are obtained.
  • the core 21 tends to grow.
  • the heat treatment is performed at an excessively low temperature, the organic matter tends to be difficult to thermally decompose. It is advantageous to perform heat treatment at about 200 to 400 ° C. for about 30 to 60 minutes.
  • FIG. 5 is a transmission electron micrograph of SiO 2 fine particles
  • FIG. 6 is a transmission electron micrograph of inorganic fine particles having a core-shell structure in which the core is SiO 2 and the shell is TiO 2 .
  • the photo of the inorganic fine particle having the core-shell structure of FIG. 6 is observed to have fine unevenness on the surface.
  • TiO 2 particles having a particle diameter of 1 to 3 nm are densely formed on the surface of SiO 2 particles having a particle diameter of several tens of nm.
  • the shell was expected to be formed as an amorphous film, it can be seen that the shell is formed as crystalline fine particles.
  • the method of preparing the composite material 100 by dispersing the inorganic fine particles 20 formed by the above method in the resin material 10 as a matrix material is not particularly limited, and a physical method may be adopted. Chemical methods may be employed.
  • the composite material 100 can be prepared by any of the following methods (1) to (4).
  • a method of mechanically and physically mixing a resin or a resin-dissolved solution and inorganic fine particles (1) A method of mechanically and physically mixing a resin or a resin-dissolved solution and inorganic fine particles. (2) A method of polymerizing monomers, oligomers, etc., which are resin raw materials, after mechanically and physically mixing the monomers, oligomers, etc., which are resin raw materials, to obtain a mixture. . (3) A method in which a resin or a solution in which a resin is dissolved and a raw material of inorganic fine particles are mixed, and then the raw material of inorganic fine particles is reacted to form inorganic fine particles in the resin.
  • the methods (1) and (2) are advantageous in that various inorganic fine particles formed in advance can be used, and a composite material can be prepared by a general-purpose dispersing device.
  • the methods (3) and (4) since it is necessary to perform a chemical reaction, there are some restrictions on the materials used. However, these methods have an advantage that the dispersibility of the inorganic fine particles can be improved because the raw materials are mixed at the molecular level.
  • the order of mixing the inorganic fine particles or the raw materials of the inorganic fine particles and the monomers or oligomers that are the raw materials of the resin or the resin there is no particular limitation on the order of mixing the inorganic fine particles or the raw materials of the inorganic fine particles and the monomers or oligomers that are the raw materials of the resin or the resin, and the order may be appropriately determined depending on the case.
  • a resin, a raw material of resin, or a solution in which these are dissolved may be added to a solution in which inorganic fine particles having a primary particle diameter in the range of substantially 1 to 100 nm are dispersed, and mechanically and physically mixed.
  • the method for manufacturing the composite material 100 is not particularly limited as long as the effect of the present disclosure can be obtained.
  • the composite material 100 may include components other than the inorganic fine particles 20 and the resin material 10 that is a matrix material as long as the effect of the present disclosure is obtained.
  • a dispersant or surfactant that improves the dispersibility of the inorganic fine particles 20 in the resin material 10 a dye or pigment that absorbs electromagnetic waves having a specific range of wavelengths coexists in the composite material 100. May be.
  • an optical element such as a lens is formed by filling a mold having a shape corresponding to an optical element such as a lens with the composite material 100 and curing the composite material 100 by irradiating energy rays such as ultraviolet rays. Can do.
  • FIG. 7 is a schematic configuration diagram of a hybrid lens according to the second embodiment.
  • the hybrid lens 30 includes a first lens 31 serving as a base material and a second lens 32 stacked on the optical surface of the first lens 31.
  • the hybrid lens 30 is an example of a composite optical element.
  • the first lens 31 is a first optical element and is an example of a glass lens.
  • the first lens 31 is made of a glass material and is a biconvex lens.
  • the second lens 32 is a second optical element and is an example of a resin lens.
  • the second lens 32 is made of a composite material, and the composite material 100 according to the first embodiment is used as the composite material.
  • the hybrid lens 30 shown in FIG. 7 has a convex shape on both sides, but at least one surface may be concave, for example, and the shape is not particularly limited.
  • the hybrid lens 30 is appropriately designed according to desired optical characteristics.
  • the second lens 32 is stacked on one optical surface of the first lens 31, but may be stacked on both optical surfaces of the first lens 31. .
  • the manufacturing method of the hybrid lens 30 is not particularly limited, and a known method can be adopted.
  • a mold having a shape corresponding to the second lens 32 is filled with the composite material 100, and from above
  • the first lens 31 is spread by spreading the composite material until a predetermined thickness is reached, and the composite material 100 is cured by irradiating energy rays such as ultraviolet rays from above the first lens 31.
  • a hybrid lens 30 that is an example of a composite optical element in which the second lens 32 is laminated on the optical surface is obtained.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the thickness of the shell was changed by changing the ratio of the organometallic complex (the fatty acid salt solution containing the shell material) to the core material.
  • SiO 2 was prepared as the core material and Y 2 O 3 was prepared as the shell material.
  • a fatty acid salt octylate, naphthenate, acetylacetone metal complex
  • a diluted solution xylene, toluene
  • the obtained slurry containing inorganic fine particles was mixed with an ultraviolet curable acrylate monomer (trade name “M-8060” manufactured by Toagosei Co., Ltd.) and a polymerization initiator (trade name “Irgacure 754” manufactured by BASF).
  • the solvent was removed under vacuum. This was irradiated with ultraviolet rays and cured to obtain a composite material of Example 1.
  • the content of inorganic fine particles in the composite material was 5% by weight.
  • Example 2 In Example 1, the amount of the fatty acid salt solution containing Y 2 O 3 was changed to 0.15 g, and the ratio of Y 2 O 3 to SiO 2 was changed to 15% by weight. Fine particles were obtained. A composite material of Example 2 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 3 Inorganic particles were obtained in the same manner as in Example 1, except that the shell material was changed to ZnO and the ratio of ZnO to SiO 2 was changed to 5% by weight.
  • a composite material of Example 3 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 4 In Example 3, inorganic fine particles were obtained in the same manner as in Example 3 except that the amount of the fatty acid salt solution containing ZnO was changed to 0.15 g and the ratio of ZnO to SiO 2 was 15 wt%. A composite material of Example 4 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 5 In Example 1, by changing the material of the shell TiO 2, except that the ratio of SiO 2 to TiO 2 and 5 wt%, to obtain an inorganic fine particle in the same manner as in Example 1. Using the obtained inorganic fine particles, a composite material of Example 5 was obtained in the same manner as Example 1. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 6 In Example 5, inorganic fine particles were obtained in the same manner as in Example 5 except that the amount of the fatty acid salt solution containing TiO 2 was changed to 0.15 g and the ratio of TiO 2 to SiO 2 was 15 wt%. .
  • a composite material of Example 6 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 7 Inorganic particles were obtained in the same manner as in Example 1 except that the shell material was changed to ITO and the ratio of ITO to SiO 2 was changed to 5% by weight. A composite material of Example 7 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 8 In Example 7, inorganic fine particles were obtained in the same manner as in Example 7 except that the amount of the fatty acid salt solution containing ITO was changed to 0.15 g and the ratio of ITO to SiO 2 was 15 wt%. A composite material of Example 8 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 9 In Example 1, inorganic fine particles were obtained in the same manner as in Example 1 except that the core material was changed to ZnO fine particles having a specific surface area of 100 m 2 / g and the ratio of Y 2 O 3 to ZnO was 5 wt%. It was. A composite material of Example 9 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 10 Inorganic fine particles were prepared in the same manner as in Example 9, except that the amount of the fatty acid salt solution containing Y 2 O 3 was changed to 0.15 g and the ratio of Y 2 O 3 to ZnO was 15% by weight. Got. A composite material of Example 10 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 11 In Example 9, to change the material of the shell TiO 2, except that the ratio of TiO 2 with respect to ZnO and 5 wt%, to obtain an inorganic fine particle in the same manner as in Example 9. A composite material of Example 11 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 12 In Example 11, inorganic fine particles were obtained in the same manner as in Example 11 except that the amount of the fatty acid salt solution containing TiO 2 was changed to 0.15 g and the ratio of TiO 2 to ZnO was 15 wt%. A composite material of Example 12 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 13 Inorganic particles were obtained in the same manner as in Example 9 except that the shell material was changed to ITO in Example 9 and the ratio of ITO to ZnO was changed to 5% by weight.
  • a composite material of Example 13 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Example 14 In Example 13, inorganic fine particles were obtained in the same manner as in Example 13 except that the amount of the fatty acid salt solution containing ITO was changed to 0.15 g and the ratio of ITO to ZnO was 15% by weight. A composite material of Example 14 was obtained in the same manner as Example 1 using the obtained inorganic fine particles. The content of inorganic fine particles in the composite material was 5% by weight.
  • Comparative Example 2 Curing by irradiating a mixture of SiO 2 fine particles, UV curable acrylate monomer (manufactured by Toagosei Co., Ltd., trade name “M-8060”) and polymerization initiator (BASF Corp., trade name “Irgacure 754”) with UV light
  • a composite material of Comparative Example 2 was obtained.
  • the content of SiO 2 fine particles in the composite material was 5% by weight.
  • Comparative Example 3 A mixture of ZnO fine particles, UV curable acrylate monomer (manufactured by Toagosei Co., Ltd., trade name “M-8060”) and polymerization initiator (BASF Corporation, trade name “IRGACURE 754”) is irradiated with UV light and cured. A composite material of Comparative Example 3 was obtained. The content of ZnO fine particles in the composite material was 5% by weight.
  • FIG. 8 is a plot showing the relationship between the refractive index and Abbe number of various materials in Examples 1 to 8 and Comparative Examples 1 and 2.
  • FIG. 9 is a plot and a normal dispersion line showing the relationship between the partial dispersion ratio of various materials and the Abbe number in Examples 1 to 8 and Comparative Examples 1 and 2.
  • FIG. 10 is a plot showing the relationship between the refractive index of various materials and the Abbe number in Examples 9 to 14 and Comparative Examples 1 and 3.
  • FIG. 11 is a plot and a normal dispersion line showing the relationship between the partial dispersion ratio of various materials and the Abbe number in Examples 9 to 14 and Comparative Examples 1 and 3.
  • the composite materials (optical materials) of Examples 1 to 14 are affected by the optical properties of the shells of the inorganic fine particles having the core-shell structure.
  • a wide range of optical constants can be freely controlled as compared with the comparative material used. Therefore, it can be seen that a composite material obtained by dispersing inorganic fine particles having a core-shell structure in a resin material has optical characteristics of low dispersion and large anomalous dispersion.
  • optical elements such as lenses, prisms, optical filters, and diffractive optical elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、前記無機微粒子は、コアと、該コアの表面の少なくとも一部を覆って形成されたシェルとを有し、前記コアは、SiO、TiO、ZnO、Al、B、Y、MgO、BaO、CaO、SrO、NiO、CuO、BaTiO、酸化インジウムスズ、SnO及びゼオライトから選択される少なくとも1つで形成される光学材料、前記光学材料から形成されてなる光学素子、並びに前記光学素子を備える複合光学素子。

Description

光学材料、光学素子及び複合光学素子
 本開示は、光学材料、光学素子及び複合光学素子に関する。
 デジタルスチルカメラ等の高精度な撮像機器においては、複数のレンズ群を有する光学系が用いられており、屈折率、アッベ数、部分分散比等の光学定数が異なる、種々の光学材料が必要である。そのため、種々の光学定数を有する光学ガラス材料や光学樹脂材料が開発され、使用されている。特に、高屈折率で高アッベ数の光学ガラス材料は、多くの撮像機器において光学性能の向上のために多用されている。
 一方、樹脂材料に特殊な光学定数を有するナノ微粒子を分散させることによって、従来の樹脂材料にはない光学定数を有する成形可能なナノコンポジット材料を合成する技術開発が盛んに行われている。光学ガラスでも実現することができないような光学定数を有するナノコンポジット材料は、高屈折率で高アッベ数の特殊な光学定数を有する光学ガラスや、耐久性の悪い光学ガラスの代替材料として期待されている。
 前記ナノコンポジット材料の中でも特に、高屈折率のナノコンポジット材料の開発が盛んに行われている。特許文献1には、無機微粒子に酸化イットリウム(Y)を用いた材料が開示されており、特許文献2には、Al、Si、Ti、Zr、Ga、La等を含む材料が開示されている。
特開2006-089706号公報 特開2008-203821号公報
 本開示は、広範囲な光学定数を自由に制御することができる光学材料、並びに該光学材料からなる光学素子及び複合光学素子を提供する。
 本開示における光学材料は、
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、
前記無機微粒子は、コアと、該コアの表面の少なくとも一部を覆って形成されたシェルとを有し、
前記コアは、SiO、TiO、ZnO、Al、B、Y、MgO、BaO、CaO、SrO、NiO、CuO、BaTiO、酸化インジウムスズ、SnO及びゼオライトから選択される少なくとも1つで形成される
ことを特徴とする。
 前記シェルは、Si、Ti、Zn、Al、B、Y、Mg、Ba、Ca、Sr、Ni、Cu、In及びSnから選択される少なくとも1つの酸化物で形成されることが有益である。
 本開示における光学素子は、
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、
前記無機微粒子は、コアと、該コアの表面の少なくとも一部を覆って形成されたシェルとを有し、
前記コアは、SiO、TiO、ZnO、Al、B、Y、MgO、BaO、CaO、SrO、NiO、CuO、BaTiO、酸化インジウムスズ、SnO及びゼオライトから選択される少なくとも1つで形成される光学材料、から形成されてなる
ことを特徴とする。
 本開示における複合光学素子は、
第1の光学素子と、該第1の光学素子の光学面上に積層された第2の光学素子とを備え、
前記第2の光学素子は、
樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、
前記無機微粒子は、コアと、該コアの表面の少なくとも一部を覆って形成されたシェルとを有し、
前記コアは、SiO、TiO、ZnO、Al、B、Y、MgO、BaO、CaO、SrO、NiO、CuO、BaTiO、酸化インジウムスズ、SnO及びゼオライトから選択される少なくとも1つで形成される光学材料、から形成されてなる光学素子である
ことを特徴とする。
 コアシェル構造を有する無機微粒子が樹脂材料に分散されたコンポジット材料である、本開示における光学材料は、広範囲な光学定数を自由に制御することができる。
図1は、実施の形態1に係るコンポジット材料の概略図であり、(a)はコンポジット材料の構成を示す概略断面図、(b)は無機微粒子のコアシェル構造を示す概略断面図である。 図2は、無機微粒子の実効粒子径を説明するグラフである。 図3は、実施の形態1における、SiOの屈折率とアッベ数との関係を示したプロットである。 図4は、実施の形態1における、SiOの部分分散比とアッベ数との関係を示したプロット及び正常分散線である。 図5は、SiO微粒子の透過型電子顕微鏡写真である。 図6は、コアがSiO、シェルがTiOのコアシェル構造を有する無機微粒子の透過型電子顕微鏡写真である。 図7は、実施の形態2に係るハイブリッドレンズの概略構成図である。 図8は、実施例1~8、並びに比較例1及び2における、各種材料の屈折率とアッベ数との関係を示したプロットである。 図9は、実施例1~8、並びに比較例1及び2における、各種材料の部分分散比とアッベ数との関係を示したプロット及び正常分散線である。 図10は、実施例9~14、並びに比較例1及び3における、各種材料の屈折率とアッベ数との関係を示したプロットである。 図11は、実施例9~14、並びに比較例1及び3における、各種材料の部分分散比とアッベ数との関係を示したプロット及び正常分散線である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者は、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
<実施の形態1>
 以下、実施の形態1について図面を参照しながら説明する。
[1.コンポジット材料]
 図1は、実施の形態1に係るコンポジット材料の概略図であり、(a)はコンポジット材料の構成を示す概略断面図、(b)は無機微粒子のコアシェル構造を示す概略断面図である。
 図1(a)に示すように、本開示における光学材料の一例である、実施の形態1に係るコンポジット材料100は、マトリクス材としての樹脂材料10と、該樹脂材料10中に分散された無機微粒子20とで構成されている。図1(b)に示すように、無機微粒子20は、コア21と、該コア21の表面を覆って形成されたシェル22とを有する。シェル22は、コア21の表面全体を覆っていてもよく、コア21の表面の一部を覆っていてもよい。また、シェル22は、膜状に形成されていてもよく、複数の微粒子が密に形成されていてもよい。
[2.無機微粒子]
 無機微粒子20のコア21は、SiO、TiO、ZnO、Al、B、Y、MgO、BaO、CaO、SrO、NiO、CuO、BaTiO、酸化インジウムスズ(以下、ITOという)、SnO及びゼオライトから選択される少なくとも1つで形成される。これらの中でも、広範囲な光学定数をより自由に制御することが可能な光学材料を得ることができるという点から、SiO及びZnOが、コア21の材料として有益である。
 なお、コアがSiOで形成されるコアシェル構造を、SiO系コアシェル構造ともいう。
 無機微粒子20のシェル22は、Si、Ti、Zn、Al、B、Y、Mg、Ba、Ca、Sr、Ni、Cu、In及びSnから選択される少なくとも1つの酸化物で形成されることが有益である。これらの中でも、広範囲な光学定数をより自由に制御することが可能な光学材料を得ることができるという点から、Y、Zn、Ti、In及びSnから選択される少なくとも1つの酸化物である、Y、ZnO、TiO及びITOが、シェル22の材料として有益である。
 コアシェル構造におけるコアを形成する材料とシェルを形成する材料との割合には特に限定がなく、用いる各材料の組合せに応じて、得られる光学材料に広範囲な光学定数を自由に制御し得る効果を付与することができるように適宜調整すればよいが、例えば、シェルを形成する材料はコアを形成する材料の1~20重量%程度、さらには2~18重量%程度であることが有益である。
 無機微粒子20は、凝集粒子、非凝集粒子のいずれであってもよく、一般に、一次粒子20aと、該一次粒子20aが複数個凝集してなる二次粒子20bとを含んで構成されている。無機微粒子20の分散状態は、マトリクス材である樹脂材料10中に無機微粒子20が存在する限り、所望の効果を得ることができるという点から特に限定はないが、無機微粒子20が樹脂材料10中に均一に分散されていることが有益である。ここで、「無機微粒子20が樹脂材料10中に均一に分散されている」とは、無機微粒子20の一次粒子20a及び二次粒子20bがコンポジット材料100内の特定の位置に偏在することなく、実質的に均一に分散していることを意味する。光学用材料として透光性を損なわないためには、粒子の分散性が良好であることが有益である。そのためには、無機微粒子20は一次粒子20aのみで構成されていることが有益である。
 SiO系コアシェル構造を有する無機微粒子20を樹脂材料10中に分散させたコンポジット材料100の透光性を確保するためには、無機微粒子20の粒子径が重要である。無機微粒子20の粒子径が光の波長よりも充分小さい場合は、無機微粒子20が樹脂材料10中に分散されているコンポジット材料100を、屈折率のばらつきがない均質な媒体とみなすことができる。したがって、無機微粒子20の粒子径は、可視光の波長以下の大きさであることが有益である。可視光は400~700nmの範囲の波長を有するので、無機微粒子20の最大粒子径は400nm以下であることが有益である。なお、無機微粒子20の最大粒子径は、無機微粒子20の走査型電子顕微鏡写真を撮影し、最も大きな無機微粒子20の粒子径(二次粒子の場合は二次粒子径)を測定することにより求めることができる。
 無機微粒子20の粒子径が光の波長の1/4よりも大きい場合は、レイリー散乱によってコンポジット材料100の透光性が損なわれるおそれがある。そのため、可視光域において高い透光性を実現するためには、無機微粒子20の実効粒子径は100nm以下であることが有益である。ただし、無機微粒子20の実効粒子径が1nm未満であると、無機微粒子20が量子的な効果を発現する材料からなる場合に蛍光を生じることがあり、これがコンポジット材料100から形成された光学部品の特性に影響を及ぼす場合がある。
 以上の観点から、無機微粒子20の実効粒子径は1~100nmの範囲内であることが有益であり、1~50nmの範囲内であることがより有益である。特に、無機微粒子20の実効粒子径を20nm以下とすると、レイリー散乱の影響が非常に小さくなり、コンポジット材料100の透光性が特に高くなるので、さらに有益である。
 ここで、無機微粒子の実効粒子径について図2を用いて説明する。図2において、横軸は無機微粒子の粒子径を示し、縦軸は横軸の各粒子径に対する無機微粒子の累積頻度を示す。横軸の粒子径は、無機微粒子が凝集している場合には、凝集した状態での二次粒子径である。実効粒子径とは、図2のような無機微粒子の各粒子径における累積頻度分布図において、累積頻度が50%となる中心粒子径(メジアン径:d50)を意味する。実効粒子径の精度を向上させるには、例えば、無機微粒子の走査型電子顕微鏡写真を撮影し、200個以上の無機微粒子について、その粒子径を測定して求めることが有益である。
 上述のように、本実施の形態1に係るコンポジット材料100は、SiO系コアシェル構造を有する無機微粒子20を樹脂材料10中に分散させることにより構成されている。後述のとおり、このように構成されたコンポジット材料100は、SiO単体の無機微粒子を用いた場合と比べ、光学特性を広範囲でかつ容易に制御することができる。
 図3は、SiOの、d線(波長587.6nm)における屈折率ndと、波長分散性を示すd線におけるアッベ数νdとの関係を示したプロットである。なお、アッベ数νdは、以下の式(1)により定義される値である。
  νd=(nd-1)/(nF-nC) ・・・(1)
ここで、
 nd:d線における材料の屈折率、
 nF:F線(波長486.1nm)における材料の屈折率、
 nC:C線(波長656.3nm)における材料の屈折率
である。
 図4は、SiOの、g線(波長435.8nm)及びF線の分散性を示す部分分散比PgFと、波長分散性を示すd線におけるアッベ数νdとの関係を示したプロット及び正常分散線である。なお、部分分散比PgFは、以下の式(2)により定義される値である。
  PgF=(ng-nF)/(nF-nC) ・・・(2)
ここで、
 ng:g線(波長435.8nm)における材料の屈折率、
 nF:F線における材料の屈折率、
 nC:C線における材料の屈折率
である。
 異常分散性ΔPgFは、材料のνdに対応する正常部分分散ガラスの標準線上の点と、その材料のPgFとの偏差である。本開示においては、HOYA(株)の基準に基づく、正常部分分散ガラスの標準線として硝種C7(nd:1.51、νd:60.5、PgF:0.54)と硝種F2(nd:1.62、νd:36.3、PgF:0.58)との座標を通る直線(図4における正常分散線)を用いてΔPgFを算出している。
 図3及び4に示すとおり、SiOは、屈折率nd:1.54、アッベ数νd:69.6、部分分散比PgF:0.53という光学特性を有する。また、SiOの異常分散性ΔPgFは0.00であり、SiOは、正常分散線上に存在する極めて一般的な材料である。このSiOをコアとし、ZnO、TiO、ITO、Y、Al、SnO、ZrO等をシェルとしたSiO系コアシェル構造を有する無機微粒子を用いたコンポジット材料は、アッベ数、屈折率、部分分散比等の光学特性を広範囲に制御することができ、結果として、異常分散性が極めて大きいという特性が付与される。したがって、SiO系コアシェル構造を有する無機微粒子を用いたコンポジット材料は、光学部品設計の自由度を従来よりも拡大することができる。
 また、コアシェル構造において、シェルの厚みを増大させる(後述する実施例では、コアを形成する材料に対するシェルを形成する材料の割合を高くしている)ことで、光学特性をより広範囲に制御することができる。
[3.樹脂材料]
 樹脂材料10としては、熱可塑性樹脂、熱硬化性樹脂、エネルギー線硬化性樹脂等の樹脂の中から、透光性が高い樹脂を用いることができる。例えば、アクリル樹脂;ポリメタクリル酸メチル等のメタクリル樹脂;エポキシ樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカプロラクトン等のポリエステル樹脂;ポリスチレン等のポリスチレン樹脂;ポリプロピレン等のオレフィン樹脂;ナイロン等のポリアミド樹脂;ポリイミド、ポリエーテルイミド等のポリイミド樹脂;ポリビニルアルコール;ブチラール樹脂;酢酸ビニル樹脂;脂環式ポリオレフィン樹脂;シリコーン樹脂;非晶性フッ素樹脂等を用いることができる。また、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート、非晶性ポリオレフィン等のエンジニアリングプラスチックを用いてもよい。さらに、これらの混合体や共重合体、及びこれらの変性樹脂を用いることもできる。
 これらの中でも、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ブチラール樹脂、脂環式ポリオレフィン樹脂及びポリカーボネートは、透明性が高く、成形性も良好であるので有益である。これらの樹脂は、所定の分子骨格を選択することによって、屈折率ndを1.4~1.7の範囲とすることができる。
 樹脂材料10のd線におけるアッベ数νdには特に限定はないが、マトリクス材となる樹脂材料10のアッベ数νdが高いほど、無機微粒子20を分散して得られるコンポジット材料100のd線におけるアッベ数νdCOMも向上することは言うまでもない。特に、樹脂材料10としてアッベ数νdが45以上の樹脂を使用することにより、アッベ数νdCOMが40以上の、レンズ等の光学部品への応用に充分な光学特性を有するコンポジット材料を得ることが可能となるので、有益である。アッベ数νdが45以上の樹脂としては、例えば、脂環式炭化水素基を骨格に有する脂環式ポリオレフィン樹脂、シロキサン構造を有するシリコーン樹脂、主鎖にフッ素原子を有する非晶性フッ素樹脂等が挙げられるが、これらに限定されるものではない。
[4.コンポジット材料の光学特性]
 コンポジット材料100の屈折率は、無機微粒子20の屈折率及び樹脂材料10の屈折率から、例えば以下の式(3)で表されるマックスウェル-ガーネット理論により推定することができる。式(3)より、d線、F線及びC線におけるコンポジット材料100の屈折率をそれぞれ推定し、さらに前記式(1)より、コンポジット材料100のアッベ数νdを推定することも可能である。逆にこの理論に基づく推定から、樹脂材料10と無機微粒子20との重量比を決定してもよい。
Figure JPOXMLDOC01-appb-M000001
ここで、
 nλCOM:特定波長λにおけるコンポジット材料100の平均屈折率、
 nλ:特定波長λにおける無機微粒子20の屈折率、
 nλ:特定波長λにおける樹脂材料10の屈折率、
 P:コンポジット材料100全体に対する無機微粒子20の体積比
である。
 無機微粒子20が光を吸収する場合や無機微粒子20が金属を含む場合には、式(3)の屈折率を複素屈折率として計算する。なお、式(3)は、nλ≧nλの場合に成立するので、nλ<nλの場合は、以下の式(4)を用いてコンポジット材料100の屈折率を推定する。
Figure JPOXMLDOC01-appb-M000002
ここで、nλCOM、nλ、nλ及びPは、各々式(3)と同じである。
 コンポジット材料100の実際の屈折率の評価は、調製したコンポジット材料100を各測定法に適した形状に成膜又は成型し、エリプソメトリ法、アベレス法、光導波路法、分光反射率法等の分光測定法や、プリズムカプラ法等で実測することによって行うことができる。
 前記マックスウェル-ガーネット理論を用いて推定したコンポジット材料100の光学特性と、コンポジット材料100中の無機微粒子20の含有量とについて説明する。コンポジット材料100中の無機微粒子20の含有量が少なすぎると、無機微粒子20による光学特性の調整効果が充分に得られないおそれがあるので、無機微粒子20の含有量は、コンポジット材料(光学材料)100全体の1重量%以上、さらには5重量%以上、特に10重量%以上であることが有益である。一方、コンポジット材料100中の無機微粒子20の含有量が多すぎると、コンポジット材料100の流動性が低下して光学素子への成形が困難になる場合や、無機微粒子20の樹脂材料10への充填自体が困難になる場合があるので、無機微粒子20の含有量は、コンポジット材料(光学材料)100全体の80重量%以下、さらには60重量%以下、特に40重量%以下であることが有益である。
[5.コンポジット材料の製造方法]
 まず、無機微粒子20の形成方法について説明する。無機微粒子20のコア21は、共沈法、ゾルゲル法、金属錯体分解法等の液相法又は気相法により形成することができる。また、ボールミルあるいはビーズミルによる粉砕法により、バルク体を微粒子化することでコア21を形成してもよい。コア21の材料は、SiO、TiO、ZnO、Al、B、Y、MgO、BaO、CaO、SrO、NiO、CuO、BaTiO、ITO、SnO及びゼオライトから選択される少なくとも1つである。
 無機微粒子20のシェル22の形成には、有機金属錯体溶液を用いることができる。例えばSi、Ti、Zn、Al、B、Y、Mg、Ba、Ca、Sr、Ni、Cu、In及びSnから選択される少なくとも1つの酸化物であるシェル22の材料をトルエン、ベンゼン、キシレン、アルコール等で希釈した有機金属錯体溶液と、コア21とを混合した後、遠心分離機で余分な溶液を除去した固形分を大気中で熱処理することにより、コア21の表面の少なくとも一部を覆ってシェル22が形成されたコアシェル構造を有する無機微粒子20が得られる。なお、あまりにも高温で熱処理を行うと、コア21が粒成長する傾向があり、逆にあまりにも低温で熱処理を行うと、有機物が熱分解し難い傾向があるので、200~600℃程度、さらには200~400℃程度で、30~60分間程度熱処理を行うことが有益である。
 図5は、SiO微粒子の透過型電子顕微鏡写真であり、図6は、コアがSiO、シェルがTiOのコアシェル構造を有する無機微粒子の透過型電子顕微鏡写真である。
 図5及び6に示すように、図5のSiO微粒子の写真とは異なり、図6のコアシェル構造を有する無機微粒子の写真は、表面に微細な凹凸が顕著に存在していることが観察される。すなわち、図6の写真から、粒子径が数10nmのSiO粒子の表面に、粒子径が1~3nmのTiO粒子が密に形成されていることがわかる。シェルは、無定形の膜として形成されていると予想されたが、結晶性の微粒子として形成されていることがわかる。
 次に、コンポジット材料100の調製方法について説明する。例えば前記方法にて形成された無機微粒子20を、マトリクス材としての樹脂材料10に分散させてコンポジット材料100を調製する方法には特に限定はなく、物理的な方法を採用してもよいし、化学的な方法を採用してもよい。例えば、以下の(1)~(4)いずれかの方法でコンポジット材料100を調製することができる。
(1)樹脂又は樹脂を溶解した溶液と無機微粒子とを、機械的、物理的に混合する方法。
(2)樹脂の原料である単量体やオリゴマー等と無機微粒子とを、機械的、物理的に混合して混合物を得た後、樹脂の原料である単量体やオリゴマー等を重合する方法。
(3)樹脂又は樹脂を溶解した溶液と無機微粒子の原料とを混合した後、無機微粒子の原料を反応させ、樹脂中で無機微粒子を形成する方法。
(4)樹脂の原料である単量体やオリゴマー等と無機微粒子の原料とを混合した後、無機微粒子の原料を反応させて無機微粒子を形成する工程と、樹脂の原料である単量体やオリゴマー等を重合して樹脂を合成する工程とを行う方法。
 前記(1)及び(2)の方法では、予め形成された種々の無機微粒子を用いることができ、また、汎用の分散装置によってコンポジット材料を調製することができるという利点がある。一方、前記(3)及び(4)の方法では、化学的な反応を行う必要があるため、使用する材料にある程度の制限が生じる。しかし、これらの方法は、原料を分子レベルで混合するので、無機微粒子の分散性を高めることができるという利点を有する。
 なお、前記方法において、無機微粒子又は無機微粒子の原料と、樹脂又は樹脂の原料である単量体やオリゴマー等とを混合する順序に特に限定はなく、場合に応じて適宜順序を決定すればよい。例えば、一次粒子径が実質1~100nmの範囲内にある無機微粒子を分散した溶液に、樹脂、樹脂の原料又はこれらを溶解した溶液を加えて機械的、物理的に混合してもよい。コンポジット材料100の製造方法は、本開示における効果が得られる限り、特に限定はない。
 また、コンポジット材料100は、本開示における効果が得られる限り、無機微粒子20及びマトリクス材である樹脂材料10以外の成分を含んでもよい。例えば、図示していないが、樹脂材料10における無機微粒子20の分散性を向上させる分散剤や界面活性剤、特定範囲の波長の電磁波を吸収する染料や顔料等がコンポジット材料100中に共存していてもよい。
 なお、コンポジット材料100から、例えばレンズ等の光学素子を形成する方法には特に限定はなく、公知の方法を採用することができる。例えば、レンズ等の光学素子に対応する形状を有する型にコンポジット材料100を充填し、例えば紫外線等のエネルギー線を照射してコンポジット材料100を硬化させることによって、レンズ等の光学素子を形成することができる。
<実施の形態2>
 以下、実施の形態2について図面を参照しながら説明する。
 図7は、実施の形態2に係るハイブリッドレンズの概略構成図である。ハイブリッドレンズレンズ30は、基材となる第1レンズ31と、該第1レンズ31の光学面上に積層された第2レンズ32とで構成されている。ハイブリッドレンズ30は、複合光学素子の一例である。
 第1レンズ31は、第1の光学素子で、ガラスレンズの一例である。第1レンズ31は、ガラス材料から形成されており、両凸形状のレンズである。
 第2レンズ32は、第2の光学素子で、樹脂レンズの一例である。第2レンズ32は、コンポジット材料から形成されており、該コンポジット材料として、前記実施の形態1に係るコンポジット材料100が用いられる。
 なお、図7に示すハイブリッドレンズ30は、両面が凸形状であるが、例えば少なくとも一方の面が凹形状であってもよく、その形状に特に限定はない。ハイブリッドレンズ30は、所望の光学特性に応じて適宜設計される。また、図7に示すハイブリッドレンズ30では、第2レンズ32は、第1レンズ31の一方の光学面上に積層されているが、第1レンズ31の両光学面上に積層されていてもよい。
 ハイブリッドレンズ30の製造方法には特に限定がなく、公知の方法を採用することができる。例えば、レンズ研磨、射出成形、プレス成形等により、ガラスレンズの一例である第1レンズ31を成形したのち、第2レンズ32に対応する形状を有する型にコンポジット材料100を充填し、この上方から第1レンズ31を載せて所定の厚みになるまでコンポジット材料を押し広げ、第1レンズ31の上方から、例えば紫外線等のエネルギー線を照射してコンポジット材料100を硬化させることによって、第1レンズ31の光学面上に、第2レンズ32が積層された、複合光学素子の一例であるハイブリッドレンズ30が得られる。
 以上のように、本出願において開示する技術の例示として、実施の形態1及び2を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下に、本実施の形態に係る実施例と、比較例とを示す。なお、本開示はこれらの実施例に限定されるものではない。
 なお、実施例1~14において、コアの材料に対する有機金属錯体(シェルの材料を含む脂肪酸塩溶液)の割合を変更することにより、シェルの厚みを変化させた。
(実施例1)
 コアの材料としてSiOを、シェルの材料としてYを用意した。比表面積200m/gのSiO微粒子1.0gに対して、Yを含む脂肪酸塩(オクチル酸塩、ナフテン酸塩、アセチルアセトン金属錯体)溶液0.05gと、希釈溶液(キシレン、トルエン、酢酸エチル、メタノール)10gとを用い、YのSiOに対する比率を5重量%とした。これらを室温で攪拌混合した後、遠心分離機で上澄み液を除去し、固形分を乾燥した。これを大気中にて400℃で30分間熱処理し、無機微粒子を得た。
 得られた無機微粒子を観察したところ、図6に示すような、SiO粒子をコアとして、その表面により細かなY微粒子がぎっしりと形成されたコアシェル構造を有することが確認された。
 得られた無機微粒子を含むスラリーを、紫外線硬化性アクリレートモノマー(東亞合成(株)製、商品名「M-8060」)及び重合開始剤(BASF社製、商品名「イルガキュア754」)と混合し、真空下で脱溶媒した。これに紫外線を照射して硬化させ、実施例1のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例2)
 実施例1において、Yを含む脂肪酸塩溶液の量を0.15gに変更し、YのSiOに対する比率を15重量%としたほかは、実施例1と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例2のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例3)
 実施例1において、シェルの材料をZnOに変更し、ZnOのSiOに対する比率を5重量%としたほかは、実施例1と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例3のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例4)
 実施例3において、ZnOを含む脂肪酸塩溶液の量を0.15gに変更し、ZnOのSiOに対する比率を15重量%としたほかは、実施例3と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例4のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例5)
 実施例1において、シェルの材料をTiOに変更し、TiOのSiOに対する比率を5重量%としたほかは、実施例1と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例5のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例6)
 実施例5において、TiOを含む脂肪酸塩溶液の量を0.15gに変更し、TiOのSiOに対する比率を15重量%としたほかは、実施例5と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例6のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例7)
 実施例1において、シェルの材料をITOに変更し、ITOのSiOに対する比率を5重量%としたほかは、実施例1と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例7のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例8)
 実施例7において、ITOを含む脂肪酸塩溶液の量を0.15gに変更し、ITOのSiOに対する比率を15重量%としたほかは、実施例7と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例8のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例9)
 実施例1において、コアの材料を比表面積100m/gのZnO微粒子に変更し、YのZnOに対する比率を5重量%としたほかは、実施例1と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例9のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例10)
 実施例9において、Yを含む脂肪酸塩溶液の量を0.15gに変更し、YのZnOに対する比率を15重量%としたほかは、実施例9と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例10のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例11)
 実施例9において、シェルの材料をTiOに変更し、TiOのZnOに対する比率を5重量%としたほかは、実施例9と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例11のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例12)
 実施例11において、TiOを含む脂肪酸塩溶液の量を0.15gに変更し、TiOのZnOに対する比率を15重量%としたほかは、実施例11と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例12のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例13)
 実施例9において、シェルの材料をITOに変更し、ITOのZnOに対する比率を5重量%としたほかは、実施例9と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例13のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(実施例14)
 実施例13において、ITOを含む脂肪酸塩溶液の量を0.15gに変更し、ITOのZnOに対する比率を15重量%としたほかは、実施例13と同様にして無機微粒子を得た。得られた無機微粒子を用い、実施例1と同様にして実施例14のコンポジット材料を得た。コンポジット材料中の無機微粒子の含有量は5重量%であった。
(比較例1)
 紫外線硬化性アクリレートモノマー(東亞合成(株)製、商品名「M-8060」)及び重合開始剤(BASF社製、商品名「イルガキュア754」)の混合物に紫外線を照射して硬化させ、比較例1の材料とした。
(比較例2)
 SiO微粒子、紫外線硬化性アクリレートモノマー(東亞合成(株)製、商品名「M-8060」)及び重合開始剤(BASF社製、商品名「イルガキュア754」)の混合物に紫外線を照射して硬化させ、比較例2のコンポジット材料を得た。コンポジット材料中のSiO微粒子の含有量は5重量%であった。
(比較例3)
 ZnO微粒子、紫外線硬化性アクリレートモノマー(東亞合成(株)製、商品名「M-8060」)及び重合開始剤(BASF社製、商品名「イルガキュア754」)の混合物に紫外線を照射して硬化させ、比較例3のコンポジット材料を得た。コンポジット材料中のZnO微粒子の含有量は5重量%であった。
 実施例1~14及び比較例1~3の材料について、精密屈折計((株)島津デバイス製造製、KPR-200)を用い、g線、F線、d線及びC線における屈折率を測定し、前記式(1)及び(2)より、アッベ数νdと部分分散比PgFとを算出した。これらの結果を図8~11に示す。
 図8は、実施例1~8、並びに比較例1及び2における、各種材料の屈折率とアッベ数との関係を示したプロットである。図9は、実施例1~8、並びに比較例1及び2における、各種材料の部分分散比とアッベ数との関係を示したプロット及び正常分散線である。図10は、実施例9~14、並びに比較例1及び3における、各種材料の屈折率とアッベ数との関係を示したプロットである。図11は、実施例9~14、並びに比較例1及び3における、各種材料の部分分散比とアッベ数との関係を示したプロット及び正常分散線である。
 図8~11に示すように、実施例1~14のコンポジット材料(光学材料)は、コアシェル構造を有する無機微粒子のシェルの光学特性の影響を受けて、シェルを備えないコアのみの無機微粒子を用いた比較例の材料よりも、広範囲な光学定数を自由に制御することができる。したがって、コアシェル構造を有する無機微粒子を樹脂材料に分散させてなるコンポジット材料は、低分散かつ大きな異常分散性という光学特性を有することがわかる。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、レンズ、プリズム、光学フィルター、回折光学素子等の光学素子に好適に使用することができる。
10  樹脂材料
20  無機微粒子
20a 一次粒子
20b 二次粒子
21  コア
22  シェル
30  ハイブリッドレンズ
31  第1レンズ
32  第2レンズ
100 コンポジット材料

Claims (4)

  1.  樹脂材料と、該樹脂材料中に分散された無機微粒子とで構成されており、
    前記無機微粒子は、コアと、該コアの表面の少なくとも一部を覆って形成されたシェルとを有し、
    前記コアは、SiO、TiO、ZnO、Al、B、Y、MgO、BaO、CaO、SrO、NiO、CuO、BaTiO、酸化インジウムスズ、SnO及びゼオライトから選択される少なくとも1つで形成される、光学材料。
  2.  前記シェルは、Si、Ti、Zn、Al、B、Y、Mg、Ba、Ca、Sr、Ni、Cu、In及びSnから選択される少なくとも1つの酸化物で形成される、請求項1に記載の光学材料。
  3.  請求項1に記載の光学材料から形成されてなる光学素子。
  4.  第1の光学素子と、該第1の光学素子の光学面上に積層された第2の光学素子とを備え、
    前記第2の光学素子は、請求項1に記載の光学材料から形成されてなる光学素子である、複合光学素子。
     
PCT/JP2014/000978 2013-02-27 2014-02-25 光学材料、光学素子及び複合光学素子 WO2014132624A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015502771A JPWO2014132624A1 (ja) 2013-02-27 2014-02-25 光学材料、光学素子及び複合光学素子
US14/834,982 US20150362631A1 (en) 2013-02-27 2015-08-25 Optical material, optical element and hybrid optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-036571 2013-02-27
JP2013036571 2013-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/834,982 Continuation US20150362631A1 (en) 2013-02-27 2015-08-25 Optical material, optical element and hybrid optical element

Publications (1)

Publication Number Publication Date
WO2014132624A1 true WO2014132624A1 (ja) 2014-09-04

Family

ID=51427901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000978 WO2014132624A1 (ja) 2013-02-27 2014-02-25 光学材料、光学素子及び複合光学素子

Country Status (3)

Country Link
US (1) US20150362631A1 (ja)
JP (1) JPWO2014132624A1 (ja)
WO (1) WO2014132624A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168197A1 (ja) * 2018-03-02 2019-09-06 株式会社アドマテックス 粒子材料及びその製造方法、並びに透明樹脂組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507969B2 (ja) * 2015-09-25 2019-05-08 コニカミノルタ株式会社 ガス検知方法及びガス検知装置
KR20190022689A (ko) * 2016-06-27 2019-03-06 나노시스, 인크. 나노구조체들의 완충된 코팅을 위한 방법들
EP4004638A4 (en) * 2019-07-29 2023-11-08 Menicon Co., Ltd. SYSTEMS AND METHOD FOR PRODUCING AN OPHTHALMIC LENS WITH METAOPTICS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234529A (ja) * 2004-01-21 2005-09-02 Seiko Epson Corp プラスチックレンズ
JP2008001895A (ja) * 2006-05-25 2008-01-10 Konica Minolta Opto Inc 光学用樹脂材料及び光学素子
WO2009020116A1 (ja) * 2007-08-09 2009-02-12 Konica Minolta Opto, Inc. 光学用樹脂材料及びそれを用いた光学素子
JP2010169708A (ja) * 2009-01-20 2010-08-05 Olympus Corp 複合型光学素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749200B2 (ja) * 2006-03-31 2011-08-17 三井化学株式会社 高屈折率樹脂組成物
JP2009217114A (ja) * 2008-03-12 2009-09-24 Fujifilm Corp 光学部品
JP2009221350A (ja) * 2008-03-17 2009-10-01 Konica Minolta Opto Inc 樹脂組成物、その製造方法、及びそれを用いた光学素子
JP2010235658A (ja) * 2009-03-30 2010-10-21 Fujifilm Corp 有機無機複合組成物、成形体、光学部品および耐湿熱性改善剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234529A (ja) * 2004-01-21 2005-09-02 Seiko Epson Corp プラスチックレンズ
JP2008001895A (ja) * 2006-05-25 2008-01-10 Konica Minolta Opto Inc 光学用樹脂材料及び光学素子
WO2009020116A1 (ja) * 2007-08-09 2009-02-12 Konica Minolta Opto, Inc. 光学用樹脂材料及びそれを用いた光学素子
JP2010169708A (ja) * 2009-01-20 2010-08-05 Olympus Corp 複合型光学素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168197A1 (ja) * 2018-03-02 2019-09-06 株式会社アドマテックス 粒子材料及びその製造方法、並びに透明樹脂組成物
US11976179B2 (en) 2018-03-02 2024-05-07 Admatechs Co., Ltd. Particle material and manufacturing method therefor, and transparent resin composition

Also Published As

Publication number Publication date
US20150362631A1 (en) 2015-12-17
JPWO2014132624A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP4142734B2 (ja) 回折光学素子
US9422414B2 (en) Organic-inorganic composite material, optical element, and multilayer diffractive optical element
WO2014132624A1 (ja) 光学材料、光学素子及び複合光学素子
JP5037393B2 (ja) 金属酸化物微粒子分散液及び成形体
KR20100058491A (ko) 광학용 수지 재료 및 광학 소자
JP4552940B2 (ja) 透光性セラミックを用いたハイブリッドレンズ
JP5807219B2 (ja) 光学材料及びこれを含む光学素子
JP2012176882A (ja) 光学部材用の組成物及び光学部材
JP4941288B2 (ja) 透光性セラミックおよびその製造方法、ならびに光学部品および光学装置
JP2010031186A (ja) 有機無機複合材料、その製造方法および光学部品
US20150362626A1 (en) Optical lens
JP2010195636A (ja) 金属酸化物微粒子、金属酸化物微粒子分散液、及び成形体
JP2011202067A (ja) ナノコンポジット材料およびナノコンポジット材料を備えた光学レンズ又は窓材とナノコンポジット材料の製造方法
WO2015145502A1 (ja) 光学材料、光学素子及び複合光学素子
WO2013125179A1 (ja) 光学素子、複合光学素子、交換レンズおよび撮像装置
US20150276985A1 (en) Optical material and method for producing the same, optical element, and hybrid optical element
JP2015194731A (ja) 光学材料、光学素子及び複合光学素子
WO2013179543A1 (ja) レンズ、ハイブリッドレンズ、交換レンズおよび撮像装置
JP2012176883A (ja) 光学部材用の組成物及び光学部材
WO2013125192A1 (ja) レンズ、ハイブリッドレンズ、交換レンズおよび撮像装置
WO2013125180A1 (ja) 光学素子、複合光学素子、交換レンズおよび撮像装置
US20150362629A1 (en) Optical lens
JP5214077B1 (ja) 光学材料及びこれを含む光学素子
WO2014129200A1 (ja) 複合光学素子
WO2014129207A1 (ja) 光学素子、複合光学素子、交換レンズ及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757158

Country of ref document: EP

Kind code of ref document: A1