WO2013175594A1 - ドライバ状態判定装置及びドライバ状態判定方法 - Google Patents

ドライバ状態判定装置及びドライバ状態判定方法 Download PDF

Info

Publication number
WO2013175594A1
WO2013175594A1 PCT/JP2012/063205 JP2012063205W WO2013175594A1 WO 2013175594 A1 WO2013175594 A1 WO 2013175594A1 JP 2012063205 W JP2012063205 W JP 2012063205W WO 2013175594 A1 WO2013175594 A1 WO 2013175594A1
Authority
WO
WIPO (PCT)
Prior art keywords
consciousness
meandering
driver
vehicle
degree
Prior art date
Application number
PCT/JP2012/063205
Other languages
English (en)
French (fr)
Inventor
裕宇二 奥田
正太郎 佐々木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/063205 priority Critical patent/WO2013175594A1/ja
Priority to JP2014516574A priority patent/JP5967196B2/ja
Publication of WO2013175594A1 publication Critical patent/WO2013175594A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • B60W2040/0827Inactivity or incapacity of driver due to sleepiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0872Driver physiology

Definitions

  • the present invention relates to a driver state determination device and a driver state determination method for detecting a predetermined driving operation and determining a driver state.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-18695
  • a wobbling detection unit that detects wobbling of a vehicle, and determines whether or not the number of wobblings exceeds a threshold value.
  • a technique for notifying a driver of a break acquisition advice when a determination is made is disclosed.
  • a driver state determination device that notifies a driver of advice or warning according to the number of times the vehicle fluctuates is known.
  • the wobbling of the vehicle may increase even if the driver's awareness is not lowered. Therefore, when determining the driver state according to the number of times of wandering as described above, the number of misjudgments that determine that the driver's consciousness has not decreased but increased is increased, and an unnecessary alarm is output. Problems occur. Thus, in the conventional driver state determination device, there is room for improvement in the accuracy of determination as to whether or not the driver's consciousness has decreased.
  • an object of the present invention is to provide a driver state determination device and a driver state determination method that can accurately determine the state of the driver by determining the state of the driver according to the driving skill and driving habit.
  • the driver state determination apparatus includes a meandering detection unit that detects the degree of meandering per reference time of the host vehicle and a consciousness determination that determines whether or not the driver's consciousness of the host vehicle has decreased.
  • the driver state determination device is configured such that the greater the degree of meandering, the less likely it is to be determined that the consciousness is reduced. For this reason, it becomes possible to determine a decrease in consciousness according to the driver's driving skill and driving habits, and the driver's state can be accurately determined.
  • the control unit includes a consciousness decrease determination unit so that the consciousness decrease is less likely to be determined when the degree of meandering per reference time detected by the meander detection unit is greater than a reference value. It is preferable to control the operation of. According to the present invention, when the degree of meandering per reference time is larger than the reference value, it is difficult to determine that the consciousness is lowered. For this reason, even when the driver's driving skill is low or when the vehicle fluctuates due to driving habits, it is possible to reduce the determination that this is a decrease in consciousness. Therefore, it is possible to reduce the erroneous determination of the driver's consciousness decrease and to determine the driver state with higher accuracy.
  • the meandering degree is preferably at least one of the meandering amount and the meandering number per reference time of the host vehicle.
  • a control part controls the action
  • the consciousness reduction determination unit determines whether or not the consciousness has decreased based on the traveling state of the host vehicle, and when the traveling state of the host vehicle exceeds a threshold value.
  • the control unit sets the threshold higher when the degree of meandering per reference time is greater than the reference value compared to when the degree of meandering is less than or equal to the reference value. It is preferable.
  • a control part changes the determination threshold value of a consciousness fall determination part according to the meandering degree per reference
  • the driver state determination method is a driver state determination method for determining whether or not the driver's consciousness of the own vehicle has deteriorated.
  • the meandering degree detection step of detecting the degree of meandering per reference time of the own vehicle.
  • a control step for controlling the operation of the consciousness decrease determination so that it is difficult to determine that the driver has decreased consciousness as the detected degree of meandering is larger.
  • the operation of the consciousness decrease determination is controlled by the control step so that it becomes difficult to determine that the driver has decreased consciousness as the degree of meandering increases. For this reason, even if the driver's driving skill is low or the vehicle fluctuates due to driving habits, it is possible to reduce the determination that this is a decrease in consciousness. Therefore, it is possible to reduce the erroneous determination of the driver's consciousness decrease and to determine the driver state with higher accuracy.
  • a driver state determination device that can accurately determine the state of the driver by determining the state of the driver according to the driving skill and driving habit.
  • a driver state determination device 1 is mounted on a vehicle 100 that is a host vehicle, and determines whether or not a driver performing a predetermined driving operation is in a state of reduced consciousness. It is.
  • the driver state determination device 1 includes a meandering detection unit 27 that detects the degree of meandering per reference time of the vehicle 100, a consciousness decrease determination unit 26 that determines whether or not the driver of the vehicle 100 has decreased, and a meandering detection unit.
  • 27 is configured to include a control unit 28 that controls the operation of the consciousness lowering determination unit 26 so that the degree of meandering detected by 27 is less likely to be determined as consciousness lowering.
  • the consciousness decrease determination unit 26, the meandering detection unit 27, and the control unit 28 are mounted on, for example, a driver state detection ECU 2 (Electronic Control Unit) 2.
  • the driver state determination device 1 includes various sensors for measuring a vehicle state including an inter-vehicle distance detection unit 11, a steering angle sensor 12, a lateral position detection unit 13, a vehicle speed sensor 14, a front camera 15, and the like, an alarm device 16, A driver state detection ECU 2 is provided.
  • the various sensors and alarm device 16 are connected to the driver state detection ECU 2. Further, the driver state detection ECU 2 generates consciousness decrease information indicating a driver's consciousness decrease state, and outputs the generated consciousness decrease information to the alarm device 16.
  • the inter-vehicle distance detection unit 11 is provided, for example, in the front part of the vehicle 100, and detects the inter-vehicle distance between the vehicle 100 and a preceding vehicle traveling in front of the vehicle 100.
  • the inter-vehicle distance detection unit 11 transmits the detected inter-vehicle distance to the driver state detection ECU 2 as an inter-vehicle distance signal.
  • a front radar such as a laser radar or a millimeter wave radar can be used as the inter-vehicle distance detection unit 11.
  • the steering angle sensor 12 functions as a traveling state detection unit that detects the traveling state of the vehicle 100, and specifically, is a steering amount detection unit that has a function of detecting the steering amount of the steering wheel of the vehicle 100. .
  • a sensor that detects a steering angle of a steering wheel input by a driver is used as the steering angle sensor 12.
  • the steering angle sensor 12 transmits the detected steering angle to the driver state detection ECU 2 as a steering angle signal.
  • the driver state detection ECU 2 calculates the steering angular velocity based on the steering angle signal from the steering angle sensor 12, and stores the calculated steering angular velocity in the information storage unit 23 described later.
  • the lateral position detector 13 is a sensor that detects the lateral position with reference to the center of the lane in which the vehicle 100 is traveling, for example.
  • the lateral position detector 13 transmits the detected lateral position to the driver state detection ECU 2 as a lateral position signal.
  • the lateral position detection unit 13 for example, a unit that detects the lateral position based on a white line (lane marker) of a lane in a front image captured by a camera can be used.
  • the driver state detection ECU 2 calculates the lateral position speed based on the amount of change in the lateral position signal from the lateral position detection unit 13 and stores the calculated lateral position speed in the information storage unit 23.
  • the vehicle speed sensor 14 has a function of detecting the speed of the vehicle 100 and is provided, for example, on a wheel of the vehicle 100. For example, the vehicle speed sensor 14 detects the rotational speed of the wheel and calculates the vehicle speed of the vehicle 100 from the rotational speed. The vehicle speed sensor 14 transmits the calculated vehicle speed to the driver state detection ECU 2 as a vehicle speed signal.
  • the front camera 15 is attached to the front part of the vehicle 100, for example, images a predetermined range in front of the vehicle 100, and generates image data such as a preceding vehicle and a road. Imaging by the front camera 15 and generation of image data are performed at predetermined time intervals, and the generated image data is output to, for example, a curvature calculation unit 22 described later of the driver state detection ECU 2.
  • the alarm device 16 is a device that issues an alarm to the driver in accordance with the driving consciousness reduction information output from the driver state detection ECU 2 and alerts the driver.
  • the alarm device 16 for example, a speaker that emits sound to the driver can be used.
  • the driver state detection ECU 2 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and includes an information acquisition unit 21, a curvature calculation unit 22, an information storage unit 23, and a normal one.
  • a steering amount calculation unit 24, an overcorrection determination unit 25, a consciousness decrease determination unit 26, a meandering detection unit 27, and a control unit 28 are provided.
  • the information acquisition unit 21 repeatedly acquires various signals output from the inter-vehicle distance detection unit 11, the steering angle sensor 12, the lateral position detection unit 13, and the vehicle speed sensor 14, and stores each signal in the information storage unit 23.
  • the curvature calculation unit 22 acquires image information of the traveling road ahead of the vehicle 100 imaged by the front camera 15, and calculates the curvature of the traveling road based on the image information.
  • the curvature of the traveling road is calculated based on, for example, the detection state of the white line on the traveling road.
  • the curvature calculation unit 22 stores the calculated curvature of the traveling path in the information storage unit 23.
  • the information storage unit 23 has a function of storing travel information of the vehicle 100 detected by various sensors such as the inter-vehicle distance detection unit 11.
  • the information storage unit 23 cumulatively stores the lateral position of the vehicle 100 detected by, for example, the lateral position detection unit 13.
  • the normal steering amount calculation unit 24 calculates the normal steering amount based on, for example, a forward gaze model using the inter-vehicle distance, steering angle, lateral position, vehicle speed, lateral position speed, road curvature, and the like stored in the information storage unit 23. To do.
  • the normal steering amount indicates a steering angle estimated to be steered in a driver's normal consciousness state, and is also referred to as a normal steering region or steering angle dispersion.
  • the overcorrection determination unit 25 has a function of calculating a difference between the normal steering amount and the steering amount detected by the steering angle sensor 12 as an index indicating whether the driver's steering correction is excessive.
  • the excessive correction means that the correction is performed excessively compared with the steering amount that should be corrected.
  • the consciousness decrease determination unit 26 has a function of determining whether or not the driver's consciousness of the vehicle 100 has decreased.
  • the consciousness decrease determination unit 26 determines whether or not the consciousness has decreased based on the traveling state of the vehicle 100. For example, when the traveling state of the vehicle 100 exceeds the threshold value X, the consciousness of the driver of the vehicle 100 has decreased. Judge that it is. More specifically, the traveling state is a specific steering pattern or a vehicle behavior pattern that is set in advance so that it is determined that the driver has reduced consciousness when a predetermined condition is satisfied.
  • the consciousness reduction determination unit 26 determines that the driver is in a state of consciousness reduction, the consciousness reduction determination unit 26 outputs consciousness reduction information to the alarm device 16.
  • the meandering detection unit 27 detects the degree of meandering of the vehicle 100. Specifically, the meandering detection unit 27 has a function of detecting an average meandering amount and the number of meandering times per reference time of the vehicle 100. For example, the meandering detection unit 27 obtains the lateral position of the vehicle 100 stored in the information storage unit 23 every predetermined time, and calculates the average meandering amount. Further, the meander detection unit 27 counts the number of meanders from the lateral position of the vehicle 100 stored in the information storage unit 23, for example. Specifically, the number of times that the lateral position of the vehicle 100 per reference time is equal to or greater than the threshold value Y is counted. The threshold Y can be set to 1 m, for example. As for the method of counting the number of meandering times, a method of detecting the mountain (peak value) of the trajectory of the lateral position of the vehicle and counting the number of times may be used.
  • the control unit 28 has a function of comprehensively controlling the driver state detection ECU 2.
  • the control unit 28 controls the operation of the consciousness decrease determination unit 26 such that the greater the degree of meandering detected by the meandering detection unit 27, the more difficult it is determined that the consciousness is decreased.
  • the control unit 28 sets the threshold value X of the consciousness deterioration determining unit 26 higher than when the degree of meandering is equal to or less than the reference value. .
  • the process shown in FIG. 2 is executed by the driver state detection ECU 2, and is a consciousness decrease determination process routine for determining whether or not the driver's consciousness driving the vehicle 100 has decreased.
  • This consciousness decrease determination process is repeatedly executed at predetermined time intervals such as 100 ms.
  • step S10 the meandering detection unit 27 performs lateral position acquisition processing. Specifically, the lateral position of the vehicle 100 detected by the lateral position detection unit 13 is stored in the information storage unit 23, and the meandering detection unit 27 acquires this stored information.
  • the signals output from the inter-vehicle distance detection unit 11 and the like are stored in the information storage unit 23, and the steering angular velocity and the lateral position velocity are calculated based on these signals. It is stored in the storage unit 23. After the process of S10 is completed, the process proceeds to S12.
  • the time measurement process is executed by the meandering detection unit 27.
  • the meandering detection unit 27 starts measuring the operation continuation time, and the process proceeds to S14.
  • the meandering amount calculating process is executed by the meandering detection unit 27. Specifically, the lateral position of the vehicle 100 acquired in S10 is added to the lateral position of the vehicle 100 already stored in the information storage unit 23, and the average value of the lateral position is calculated as the average meandering amount of the vehicle 100. . After this average meandering amount calculation process is completed, the process proceeds to S16.
  • the process of S14 corresponds to a meandering degree detecting step for detecting the meandering degree of the host vehicle.
  • the meandering amount determination process is executed by the control unit 28. Specifically, the control unit 28 determines whether or not the average meandering amount calculated in S14 is larger than the reference value A. When the average meandering amount is larger than the reference value A, the process proceeds to S18, and when the average meandering amount is equal to or less than the reference value A, the process proceeds to S10 and the lateral position acquisition process is executed again.
  • the meandering detection unit 27 performs a meandering count process.
  • the meander detection unit 27 calculates the number of meanders of the vehicle 100 based on the number of lateral position information stored in the information storage unit 23, for example. Specifically, meandering detection unit 27 counts the number of times that the lateral position of vehicle 100 is equal to or greater than threshold value Y, and proceeds to S20.
  • the process of S18 corresponds to a meandering degree detecting step for detecting the meandering degree of the host vehicle.
  • the control unit 28 executes the meandering number determination process. Specifically, the control unit 28 determines whether or not the number of meanders calculated in S18 is greater than the reference value B. If the number of meanders is greater than the reference value B, the process proceeds to S22, and if it is equal to or less than the reference value B, the process proceeds to S10 and the horizontal position acquisition process is executed again.
  • the control unit 28 executes a first operation duration determination process. Specifically, the control unit 28 determines whether or not the operation continuation time at which measurement is started in S12 is less than the reference time C. Then, when the operation continuation time is less than the reference time C, the process proceeds to S26, and when it is equal to or more than the reference time C, the process proceeds to S24.
  • the control unit 28 executes the second operation duration determination process. Specifically, the control unit 28 determines whether or not the operation continuation start time when the measurement is started in S12 is longer than the reference time D. The reference time D is set longer than the reference time C. Then, when the operation continuation time is longer than the reference time D, the process proceeds to S28, and when it is equal to or less than the reference time D, the process proceeds to S10 and the lateral position acquisition process is executed again.
  • the control unit 28 executes the first threshold value changing process.
  • the control unit 28 determines that the driving skill of the driver is low, for example, and sets the threshold value X that is the determination threshold value of the consciousness decrease determination unit 26 to be high. This makes it difficult for the consciousness decrease determination unit 26 to determine that the driver's consciousness has decreased.
  • the process of S26 corresponds to a control step for controlling the operation of the consciousness decrease determination so that the driver is less likely to be determined to have decreased consciousness as the detected degree of meandering is larger.
  • the control unit 28 executes the second threshold value changing process.
  • the control unit 28 determines that the driver's consciousness lowering state continues for a long time and sets the threshold value X low. Thereby, the consciousness decrease determination unit 26 can easily determine that the driver's consciousness has decreased.
  • the consciousness decrease determination unit 26 executes the consciousness decrease determination process. Specifically, the consciousness decrease determination unit 26 determines whether or not the traveling state of the vehicle 100 exceeds the threshold value X, and outputs the consciousness decrease information to the alarm device 16 when the threshold value X is exceeded. Then, after the alarm device 16 issues an alarm to the driver, the series of processing ends. On the other hand, if it is equal to or less than the threshold value X, the consciousness decrease determination unit 26 determines that the driver's consciousness has not decreased, and then ends the series of processes. For example, when the consciousness decrease determination unit 26 performs the consciousness decrease determination based on the difference between the normal steering amount and the actual steering amount, the consciousness decrease determination unit 26 is conscious when the difference in the steering amount is larger than the threshold value X. It is determined that it has decreased, and when it is equal to or less than the threshold value X, it is determined that awareness has not decreased.
  • the driver state determination apparatus 1 has the meandering detection unit 27 that detects the meandering amount and the number of meanders per reference time C of the vehicle 100 and whether the driver's consciousness of the vehicle 100 has decreased.
  • the meandering detection unit 27 detects the meandering amount and the number of meanders per reference time C of the vehicle 100 and whether the driver's consciousness of the vehicle 100 has decreased.
  • the control unit 28 controls the operation of the consciousness decrease determination unit 26.
  • the average meandering amount per reference time C is larger than the reference value A and the meandering frequency is larger than the reference value B, it is difficult to determine that the consciousness is lowered. For this reason, immediately after the start of driving, if the driver's driving skill is low, driving is hesitant, or even if he / she is not accustomed or is driving well, it is determined that this is a decrease in consciousness. Misjudgments can be reduced. Accordingly, it is possible to reduce the erroneous determination of the driver's consciousness decrease and to increase the accuracy of the determination as to whether or not the driver's consciousness has decreased.
  • the threshold value X is updated so as to match the driver's driving skill, driving habit, etc., and the greater the degree of meander, the less likely it is to be determined that the consciousness is lowered. It is possible to perform a decrease determination, and it is possible to reduce the driver's feeling of discomfort with the support content of the driver state determination device 1.
  • the control unit 28 sets the threshold value X low (see S28 in FIG. 2). Therefore, since the driver state determination device 1 has logic according to the level of danger such as when the driver's consciousness reduction state continues for a long time, the driver state determination device 1 is surely connected when the driver enters the consciousness reduction state. It is possible to reduce the risk by outputting an alarm or the like.
  • the consciousness decrease determination unit 26 determines whether or not the consciousness has decreased based on the traveling state of the vehicle 100, and the traveling state of the vehicle 100 exceeds the threshold value X.
  • the control unit 28 determines that the consciousness of the driver of the vehicle 100 has decreased, the average meandering amount per reference time C exceeds the reference value A, and the number of meanders per reference time C exceeds the reference value B.
  • the threshold value X is set higher than when the average meandering amount is the reference value A or less or the meandering frequency is the reference value B or less. Therefore, since the control unit 28 changes the determination threshold value of the consciousness decrease determination unit 26 according to the meandering degree per reference time C, it becomes possible to perform a more precise consciousness decrease determination, and erroneous determination of the consciousness decrease determination This can be further reduced.
  • the driver state determination method of the present embodiment has a meandering degree detection step for detecting the meandering degree per reference time C of the vehicle 100, and the greater the detected meandering degree, the more difficult it is to determine that the driver has become less conscious. And a control step for controlling the operation of the consciousness degrading determination, so that even if the driver's driving skill is low or the driving habits cause the vehicle 100 to fluctuate, it is determined that the consciousness is degrading. Therefore, it is possible to reduce the erroneous determination of the driver's consciousness decrease and to determine the driver state with higher accuracy.
  • the above-described embodiment is an explanation of an embodiment of the driver state determination device and the driver state determination method according to the present invention, and the driver state determination device and the driver state determination method according to the present invention are described in this embodiment. It is not limited to that.
  • the driver state determination device and the driver state determination method according to the present invention are modified or changed to the driver state determination device and the driver state determination method according to the present embodiment without changing the gist described in each claim. It may be applied.
  • the processing of S16 and S20 in FIG. 2 is performed, and the determination threshold is increased when the average meandering amount per reference time C is larger than the reference value A and the number of meandering times is larger than the reference value B.
  • the condition that makes it difficult to determine that consciousness is reduced is not limited to this.
  • one of S16 and S20 may be omitted. Specifically, at least one of the case where the average meandering amount per reference time C of the vehicle 100 is larger than the reference value B and the number of meandering times per reference time C of the vehicle 100 is larger than the reference value B. You may make it difficult to determine with consciousness fall.
  • the average meandering amount is not necessarily used.
  • any index indicating the degree of meandering may be used. For example, when the minimum meandering amount per reference time C of the vehicle 100 is larger than a predetermined reference value, it is difficult to determine that the consciousness is lowered. Also good.
  • the present invention is not limited to an example in which it is difficult to determine that the consciousness is lowered when the vehicle is larger than the reference value.
  • three or more threshold values X may be set when setting the determination threshold value X for consciousness deterioration according to the degree of meandering, or the relationship between the degree of meandering and the threshold value X may be a map or graph, for example.
  • the threshold value X may be determined as appropriate according to the detected meandering degree.
  • the difference between the actual steering amount and the normal steering amount is used for the consciousness reduction determination has been described.
  • this difference in steering amount does not necessarily have to be used.
  • this index can be used instead of the steering amount.
  • the consciousness deterioration determination may be performed based on whether or not the vehicle approach angle with respect to the lane exceeds a predetermined angle. In this case, the same effect as in the above embodiment can be obtained.
  • the present invention can be used as a driver state determination device mounted on a vehicle.
  • SYMBOLS 1 Driver state determination apparatus, 2 ... Driver state detection ECU, 11 ... Inter-vehicle distance detection part, 12 ... Steering angle sensor, 13 ... Lateral position detection part, 14 ... Vehicle speed sensor, 15 ... Front camera, 16 ... Alarm device, 21 DESCRIPTION OF SYMBOLS Information acquisition part 22 ... Curvature calculation part 23 ... Information storage part 24 ... Normal steering amount calculation part 25 ... Overcorrection determination part 26 ... Decrease consciousness determination part 27 ... Meander detection part 28 ... Control part.

Abstract

 本発明に係るドライバ状態判定装置は、車両の基準時間Cあたりの蛇行度合いを検出する蛇行検出部と、車両のドライバの意識が低下したか否かを判定する意識低下判定部と、蛇行検出部により検出された蛇行度合いが大きいほど意識低下と判定されにくくなるように意識低下判定部の作動を制御する制御部とを備える。

Description

ドライバ状態判定装置及びドライバ状態判定方法
 本発明は、所定の運転操作を検出してドライバの状態を判断するドライバ状態判定装置及びドライバ状態判定方法に関する。
 従来から、所定の運転操作を検出して、ドライバの状態を確認したりドライバを覚醒させたりする技術が知られている。例えば、下記特許文献1(特開2011-186995号公報)には、車両のふらつきを検出するふらつき検出部と、ふらつきの回数が閾値を超えているか否かを判定し、閾値を超えていると判定した場合に、ドライバに休憩取得のアドバイスを通知する技術が開示されている。このように、車両のふらつきの回数に応じてドライバにアドバイスや警告を通知するドライバ状態判定装置が公知となっている。
特開2011-186995号公報 特開2011-227551号公報
 ところで、例えばドライバの運転技量が低い場合、あるいは運転に癖があるような場合は、ドライバの意識が低下していなくても車両のふらつきが多くなることがある。よって、上記のようにふらつきの回数に応じてドライバの状態を判定する場合、ドライバの意識が低下していないにもかかわらず低下したものと判定する誤判定が増加し、不要な警報が出力される問題が発生する。このように、従来のドライバ状態判定装置では、ドライバの意識が低下したか否かの判断の精度について改善の余地がある。
 そこで、本発明の目的は、運転技量や運転の癖に応じてドライバの状態を判定することにより、ドライバの状態を精度よく判定できるドライバ状態判定装置及びドライバ状態判定方法を提供することである。
 上記の課題を解決した本発明に係るドライバ状態判定装置は、自車両の基準時間あたりの蛇行度合いを検出する蛇行検出部と、自車両のドライバの意識が低下したか否かを判定する意識低下判定部と、蛇行検出部により検出された蛇行度合いが大きいほど意識低下と判定されにくくなるように意識低下判定部の作動を制御する制御部と、を備える。
 本発明に係るドライバ状態判定装置は、蛇行度合いが大きいほど意識低下と判定されにくくなるようになっている。このため、ドライバの運転技量や運転の癖に応じて意識低下の判定を行うことが可能となり、ドライバの状態を精度よく判定できる。
 また、本発明に係るドライバ状態判定装置において、制御部は、蛇行検出部により検出された基準時間あたりの蛇行度合いが基準値より大きい場合に、意識低下と判定されにくくなるように意識低下判定部の作動を制御することが好ましい。この発明によれば、基準時間あたりの蛇行度合いが基準値より大きい場合には、意識低下と判定されにくくなるようになっている。このため、ドライバの運転技量が低い場合や運転に癖があることによって車両のふらつきが発生してもこれを意識低下と判定することを低減させることができる。従って、ドライバの意識低下の誤判定を低減し、ドライバの状態をより精度よく判定できる。
 また、本発明に係るドライバ状態判定装置において、蛇行度合いは、自車両の基準時間あたりの蛇行量及び蛇行回数の少なくともいずれかであることが好ましい。この発明によれば、制御部は、基準時間あたりの蛇行量及び蛇行回数の少なくともいずれかに基づいて意識低下判定部の作動を制御する。従って、蛇行量及び蛇行回数の少なくともいずれかに応じた適切な意識低下判定を行うことが可能となり、ドライバの意識低下の誤判定を低減することができる。
 また、本発明に係るドライバ状態判定装置において、意識低下判定部は、自車両の走行状態に基づいて意識が低下したか否かの判定を行い、自車両の走行状態が閾値を超えた場合に自車両のドライバの意識が低下したものと判定し、制御部は、基準時間あたりの蛇行度合いが基準値より大きい場合には、蛇行度合いが基準値以下である場合に比べて閾値を高く設定することが好ましい。この発明によれば、制御部が基準時間あたりの蛇行度合いに応じて意識低下判定部の判定閾値を変更する。従って、より決め細やかな意識低下判定を行うことが可能となり、意識低下判定の誤判定をより一層低減させることができる。
 また、本発明に係るドライバ状態判定方法は、自車両のドライバの意識が低下したか否かを判定するドライバ状態判定方法において、前記自車両の基準時間あたりの蛇行度合いを検出する蛇行度合い検出ステップと、前記検出された蛇行度合いが大きいほど前記ドライバが意識低下したと判定されにくくなるように前記意識低下判定の作動を制御する制御ステップと、を備える。
 本発明に係るドライバ状態判定方法は、制御ステップによって、蛇行度合いが大きいほどドライバが意識低下したと判定されにくくなるように意識低下判定の作動が制御される。このため、ドライバの運転技量が低い場合や運転に癖があることによって車両のふらつきが発生しても、これを意識低下と判定することを低減させることができる。従って、ドライバの意識低下の誤判定を低減し、ドライバの状態をより精度よく判定できる。
 本発明によれば、運転技量や運転の癖に応じてドライバの状態を判定することにより、ドライバの状態を精度よく判定できるドライバ状態判定装置を提供することができる。
本発明の実施形態に係るドライバ状態判定装置のブロック図である。 図1のドライバ状態判定装置により実行される意識低下判定処理を示すフローチャートである。
 以下、添付図面を参照して、本発明の好適な実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明を省略する。
 図1に示すように、本実施形態に係るドライバ状態判定装置1は、自車両である車両100に搭載され、所定の運転操作を行うドライバが意識低下状態にあるか否かの判定を行うものである。ドライバ状態判定装置1は、車両100の基準時間あたりの蛇行度合いを検出する蛇行検出部27と、車両100のドライバの意識が低下したか否かを判定する意識低下判定部26と、蛇行検出部27により検出された蛇行度合いが大きいほど意識低下と判定されにくくなるように意識低下判定部26の作動を制御する制御部28とを備えて構成されている。意識低下判定部26、蛇行検出部27及び制御部28は、例えばドライバ状態検出ECU2(Electronic Control Unit)2に搭載されている。
 ドライバ状態判定装置1は、車間距離検知部11、操舵角センサ12、横位置検出部13、車速センサ14及び前方カメラ15等からなる車両状態を計測するための各種センサと、警報装置16と、ドライバ状態検出ECU2とを備えて構成されている。ドライバ状態検出ECU2には上記各種センサ及び警報装置16が接続される。また、ドライバ状態検出ECU2は、ドライバの意識低下状態を示す意識低下情報を生成し、生成した意識低下情報を警報装置16に出力する。
 車間距離検知部11は、例えば車両100の前部に設けられ、車両100とその前方を走行する先行車両との車間距離を検知する。車間距離検知部11は、検知した車間距離を車間距離信号としてドライバ状態検出ECU2に送信する。車間距離検知部11としては、例えばレーザレーダやミリ波レーダ等の前方レーダを用いることができる。
 操舵角センサ12は、車両100の走行状態を検出する走行状態検出手段として機能するものであって、具体的には、車両100のハンドルの操舵量を検出する機能を有する操舵量検出手段である。操舵角センサ12としては、例えばドライバによって入力されるステアリングホイールの操舵角を検出するセンサが用いられる。操舵角センサ12では、検出した操舵角を操舵角信号としてドライバ状態検出ECU2に送信する。また、操舵角センサ12からの操舵角信号に基づいてドライバ状態検出ECU2は操舵角速度を算出し、算出した操舵角速度を後述する情報格納部23に格納する。
 横位置検出部13は、例えば車両100が走行している車線の中心部を基準とした横位置を検出するセンサである。横位置検出部13は、検出した横位置を横位置信号としてドライバ状態検出ECU2に送信する。横位置検出部13としては、例えばカメラにより撮像された前方画像における車線の白線(レーンマーカ)に基づいて横位置を検出するものを用いることができる。なお、横位置検出部13からの横位置信号の変化量に基づいてドライバ状態検出ECU2は横位置速度を算出し、算出した横位置速度を情報格納部23に格納する。
 車速センサ14は、車両100の速度を検出する機能を有し、例えば車両100の車輪に設けられる。車速センサ14は、例えば車輪の回転速度を検出し、当該回転速度から車両100の車速を算出する。車速センサ14は、算出した車速を車速信号としてドライバ状態検出ECU2に送信する。
 前方カメラ15は、例えば車両100の前部に取り付けられており、車両100前方の所定範囲を撮像し、先行車両及び道路等の画像データを生成する。前方カメラ15による撮像及び画像データの生成は所定時間ごとに行われ、生成された画像データは例えばドライバ状態検出ECU2の後述する曲率算出部22に出力される。
 警報装置16は、ドライバ状態検出ECU2から出力される運転意識低下情報に応じてドライバに警報を発して、ドライバに対して注意を促す装置である。警報装置16としては、例えばドライバに対して音声を発するスピーカを用いることができる。
 ドライバ状態検出ECU2は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備えて構成され、情報取得部21、曲率算出部22、情報格納部23、通常操舵量算出部24、修正過大判定部25、意識低下判定部26、蛇行検出部27及び制御部28を備えている。
 情報取得部21は、車間距離検知部11、操舵角センサ12、横位置検出部13及び車速センサ14から出力される各種信号を繰り返し取得して、各々の信号を情報格納部23に格納する。
 曲率算出部22は、前方カメラ15により撮像された車両100の前方の走行路の画像情報を取得して、その画像情報に基づいて走行路の曲率を算出する。走行路の曲率は、例えば走行路の白線の検出状態に基づいて算出される。曲率算出部22は、算出した走行路の曲率を情報格納部23に格納する。
 情報格納部23は、車間距離検知部11等の各種センサによって検出された車両100の走行情報を記憶する機能を有する。情報格納部23は、例えば横位置検出部13によって検出された車両100の横位置を累積的に記憶する。
 通常操舵量算出部24は、情報格納部23に格納された車間距離、操舵角、横位置、車速、横位置速度、道路曲率等を用いて、例えば前方注視モデルに基づいて通常操舵量を算出する。通常操舵量とは、ドライバの通常の意識状態において操舵されると推測される操舵角を示すものであり、通常操舵領域又は舵角分散とも称される。
 修正過大判定部25は、ドライバの操舵の修正が過大かどうかを示す指標として、通常操舵量と操舵角センサ12により検出された操舵量との差分を算出する機能を有する。ここで、修正が過大であるとは本来修正すべき操舵量に比べ過剰に修正を行うことをいう。ドライバの意識状態が低下すると操舵のばらつきが大きくなり、このばらつきが大きくなると、それに伴う操舵の修正も過大となる。言い換えれば、ドライバの意識状態が低下すると、操舵の修正過大を含むような特定の操舵パターンが発生する。
 意識低下判定部26は、車両100のドライバの意識が低下したか否かを判定する機能を有する。意識低下判定部26は、車両100の走行状態に基づいて意識が低下したか否かの判定を行い、例えば車両100の走行状態が閾値Xを超えた場合に車両100のドライバの意識が低下したものと判定する。走行状態とは、より具体的には、所定の条件の成立時にドライバが意識低下したと判定されるように予め設定された特定の操舵パターン、又は車両挙動のパターンであり、意識低下判定部26は、例えば修正過大判定部25により算出された上記差分が閾値X以上である場合にドライバが意識低下状態であると判定し、上記差分が閾値X未満である場合はドライバが意識低下状態でないと判定する。意識低下判定部26は、ドライバが意識低下状態であると判定すると、警報装置16に意識低下情報を出力する。
 蛇行検出部27は、車両100の蛇行度合いを検出する。具体的には、蛇行検出部27は、車両100の基準時間あたりの平均蛇行量及び蛇行回数を検出する機能を有する。また、蛇行検出部27は、例えば情報格納部23に格納された車両100の横位置を所定時間毎に取得して、平均蛇行量を算出する。更に蛇行検出部27は、例えば情報格納部23に格納された車両100の横位置から蛇行回数をカウントする。具体的には、基準時間あたりの車両100の横位置が閾値Y以上となった回数をカウントする。なお、閾値Yとしては、例えば1mとすることができる。なお、蛇行回数のカウント方法に関しては、車両の横方向位置の軌跡の山(ピーク値)を検出し、その回数をカウントする方法を用いてもよい。
 制御部28は、ドライバ状態検出ECU2を統括制御する機能を有する。制御部28は、蛇行検出部27により検出された蛇行度合いが大きいほど意識低下と判定されにくくなるように意識低下判定部26の作動を制御する。具体的には、制御部28は、基準時間あたりの蛇行度合いが基準値より大きい場合には、蛇行度合いが基準値以下である場合に比べて意識低下判定部26の閾値Xをより高く設定する。
 次に、本実施形態に係るドライバ状態判定装置1の動作、及び本実施形態に係るドライバ状態判定方法について図2を参照しながら説明する。図2に示す処理は、ドライバ状態検出ECU2によって実行されるものであり、車両100を運転するドライバの意識が低下したか否かを判定する意識低下判定処理ルーチンである。この意識低下判定処理は、例えば100ms等、所定時間毎に繰り返し実行される。
 まず、ステップS10(以下、「S10」という。他のステップにおいても同様とする。)において蛇行検出部27により横位置取得処理が実行される。具体的には、横位置検出部13により検出された車両100の横位置が情報格納部23に格納され、この格納された情報を蛇行検出部27が取得する。
 なお、このS10において、車間距離検知部11等から出力された信号が情報格納部23に格納されるとともに、これらの信号に基づいて操舵角速度及び横位置速度を各々算出し、これらの値も情報格納部23に格納される。このS10の処理を終えた後、S12に移行する。
 S12では、蛇行検出部27により時間計測処理が実行される。このS12において、蛇行検出部27が運転継続時間の計測を開始し、S14に移行する。
 S14では、蛇行検出部27により平均蛇行量演算処理が実行される。具体的には、S10にて取得した車両100の横位置を既に情報格納部23に格納されている車両100の横位置に足し合わせて横位置の平均値を車両100の平均蛇行量として算出する。この平均蛇行量演算処理を終えた後、S16に移行する。このS14の処理は、自車両の蛇行度合いを検出する蛇行度合い検出ステップに相当する。
 S16では、制御部28により平均蛇行量判定処理が実行される。具体的には、制御部28は、S14で算出された平均蛇行量が基準値Aより大きいか否かを判定する。そして、平均蛇行量が基準値Aより大きい場合はS18に移行し、基準値A以下である場合はS10に移行し、再度横位置取得処理を実行する。
 S18では、蛇行検出部27により蛇行回数カウント処理が実行される。このS18において、蛇行検出部27は、例えば情報格納部23に格納されている横位置情報の数に基づいて車両100の蛇行回数を算出する。具体的には、蛇行検出部27は、車両100の横位置が閾値Y以上となった回数をカウントして、S20に移行する。このS18の処理は、自車両の蛇行度合いを検出する蛇行度合い検出ステップに相当する。
 S20では、制御部28により蛇行回数判定処理が実行される。具体的には、制御部28は、S18で算出された蛇行回数が基準値Bより大きいか否かを判定する。そして、蛇行回数が基準値Bより大きい場合はS22に移行し、基準値B以下である場合はS10に移行し、再度横位置取得処理を実行する。
 S22では、制御部28により第1の運転継続時間判定処理が実行される。具体的には、制御部28は、S12において計測を開始した運転継続時間が基準時間C未満であるか否かを判定する。そして、運転継続時間が基準時間C未満である場合はS26に移行し、基準時間C以上である場合はS24に移行する。
 なお、このS22における「運転継続時間が基準時間C未満である場合」とは、「蛇行検出部27により検出された基準時間Cあたりの平均蛇行量が基準値Aより大きく且つ蛇行回数が基準値Bより多い場合」を示す。また、基準時間Cの設定に関しては、運転開始(初期)からの設定された所定時間内における時間を用いることがより好ましい。
 S24では、制御部28により第2の運転継続時間判定処理が実行される。具体的には、制御部28は、S12において計測を開始した運転継続開始時間が基準時間Dより長いか否かを判定する。なお、基準時間Dは、基準時間Cより長く設定されている。そして、運転継続時間が基準時間Dより長い場合はS28に移行し、基準時間D以下である場合はS10に移行して再度横位置取得処理を実行する。
 S26では、制御部28により第1の閾値変更処理が実行される。この第1の閾値変更処理において、制御部28は、例えばドライバの運転技量が低いと判断して意識低下判定部26の判定閾値である閾値Xを高く設定する。これにより、意識低下判定部26は、ドライバの意識が低下したものと判定しにくくなる。このS26の処理は、検出された蛇行度合いが大きいほどドライバが意識低下したと判定されにくくなるように意識低下判定の作動を制御する制御ステップに相当する。
 一方、S28では、制御部28により第2の閾値変更処理が実行される。この第2の閾値変更処理において、制御部28は、ドライバの意識低下状態が長時間続いていると判断して閾値Xを低く設定する。これにより、意識低下判定部26は、ドライバの意識が低下したものと判定しやすくなる。以上のS26又はS28の処理を経た後、S30に移行する。
 S30では、意識低下判定部26により意識低下判定処理が実行される。具体的には、意識低下判定部26は、車両100の走行状態が閾値Xを超えているか否かを判定し、閾値Xを超えている場合には、警報装置16に意識低下情報を出力し、警報装置16がドライバに警報を発した後に一連の処理を終了する。一方、閾値X以下である場合には、意識低下判定部26は、ドライバの意識が低下していないものと判定し、その後一連の処理を終了する。例えば、意識低下判定部26が通常操舵量と実際の操舵量との差分に基づいて意識低下判定を行う場合、意識低下判定部26は、上記操舵量の差分が閾値Xより大きい場合に意識が低下したものと判定し、閾値X以下である場合に意識が低下していないものと判定する。
 以上のように、本実施形態のドライバ状態判定装置1は、車両100の基準時間Cあたりの平均蛇行量及び蛇行回数を検出する蛇行検出部27と、車両100のドライバの意識が低下したか否かを判定する意識低下判定部26と、蛇行検出部27により検出された平均蛇行量が基準値Aより大きく且つ蛇行回数が基準値Bより大きい場合には、意識低下と判定されにくくなるように意識低下判定部26の作動を制御する制御部28とを備える。
 以上のように、本実施形態では、基準時間Cあたりの平均蛇行量が基準値Aより大きく且つ蛇行回数が基準値Bより大きい場合には、意識低下と判定されにくくなるようになっている。このため、運転開始直後において、ドライバの運転技量が低い場合や運転に癖があるような場合、あるいはまだ慣れていない若しくは慣熟走行の場合におけるふらつきが発生しても、これを意識低下と判定する誤判定を低減させることができる。従って、ドライバの意識低下の誤判定を低減し、ドライバの意識が低下したか否かの判断の精度を高めることができる。また、本実施形態では、ドライバの運転技量や運転の癖等に合うように閾値Xが更新され、蛇行度合いが大きいほど意識低下と判定されにくくなるため、ドライバの運転技量や癖に応じた意識低下判定を行うことが可能となり、ドライバがドライバ状態判定装置1の支援内容に違和感を感じることを低減させることができる。
 また、ドライバ状態判定装置1において、制御部28は、運転継続開始時間が基準時間Dより長い場合には、閾値Xを低く設定する(図2のS28参照)。よって、ドライバ状態判定装置1は、ドライバの意識低下状態が長時間継続する場合等の危険度のレベルに応じたロジックを有しているため、ドライバが意識低下状態になったときには、確実にドライバに警報等を出力し危険度を低減させることが可能となる。
 また、本実施形態のドライバ状態判定装置1は、意識低下判定部26は、車両100の走行状態に基づいて意識が低下したか否かの判定を行い、車両100の走行状態が閾値Xを超えた場合に車両100のドライバの意識が低下したものと判定し、制御部28は、基準時間Cあたりの平均蛇行量が基準値Aを超え且つ基準時間Cあたりの蛇行回数が基準値Bを超えた場合には、平均蛇行量が基準値A以下又は蛇行回数が基準値B以下である場合に比べて閾値Xを高く設定する。従って、制御部28が基準時間Cあたりの蛇行度合いに応じて意識低下判定部26の判定閾値を変更するため、より決め細やかな意識低下判定を行うことが可能となり、意識低下判定の誤判定をより一層低減させることができる。
 また、本実施形態のドライバ状態判定方法は、車両100の基準時間Cあたりの蛇行度合いを検出する蛇行度合い検出ステップと、検出された蛇行度合いが大きいほどドライバが意識低下したと判定されにくくなるように意識低下判定の作動を制御する制御ステップと、を備えるため、ドライバの運転技量が低い場合や運転に癖があることによって、車両100のふらつきが発生してもこれを意識低下と判定することを低減できることとなり、ドライバの意識低下の誤判定を低減し、ドライバの状態をより精度よく判定できる。
 なお、上述した実施形態は本発明に係るドライバ状態判定装置及びドライバ状態判定方法の実施形態を説明したものであり、本発明に係るドライバ状態判定装置及びドライバ状態判定方法は本実施形態に記載されたものに限定されない。本発明に係るドライバ状態判定装置及びドライバ状態判定方法は、各請求項に記載した要旨を変更しないように本実施形態に係るドライバ状態判定装置及びドライバ状態判定方法を変形し、又は他のものに適用したものであってもよい。
 例えば、上記実施形態では、図2のS16及びS20の処理を行って、基準時間Cあたりの平均蛇行量が基準値Aより大きく且つ蛇行回数が基準値Bより大きい場合に判定閾値を高くして意識低下と判定されにくくする例について説明した。しかし、意識低下と判定されにくくする条件はこれに限定されず、例えばS16及びS20のいずれか一方の処理を省略してもよい。具体的には、車両100の基準時間Cあたりの平均蛇行量が基準値Bより大きい場合、及び車両100の基準時間Cあたりの蛇行回数が基準値Bより大きい場合、の少なくともいずれかの場合に意識低下と判定されにくくするようにしてもよい。
 また、上記実施形態では、車両100の基準時間Cあたりの平均蛇行量が基準値Bより大きい場合に意識低下と判定されにくくする例について説明した。しかし、必ずしも平均蛇行量を用いなければならないわけではない。すなわち、平均蛇行量の代わりに蛇行度合いを示す何らかの指標を用いればよく、例えば車両100の基準時間Cあたりの最小蛇行量が所定の基準値より大きい場合に意識低下と判定されにくくするようにしてもよい。
 また、上記実施形態では、車両100の基準時間Cあたりの蛇行度合いが基準値より大きい場合に意識低下と判定されにくくする例について説明した。しかし、基準値より大きい場合に意識低下と判定されにくくする例に限られず、車両100の蛇行度合いが大きいほど意識低下と判定されにくくなるようにすればよい。具体的には、蛇行度合いに応じて意識低下の判定閾値Xを設定するにあたり3段階以上の閾値Xを設定するようにしてもよいし、又は蛇行度合いと閾値Xとの関係を例えばマップやグラフ等を用いて予め設定しておき、検出した蛇行度合いに応じて適宜閾値Xの値を決定するようにしてもよい。
 また、上記実施形態では、実際の操舵量と通常操舵量との差分を意識低下判定に用いた例について説明した。しかし、必ずしもこの操舵量の差分を用いなければならないわけではない。すなわち、車両の走行状態が通常時(ドライバの覚醒時)と比較して逸脱しているか否かが検出できる指標があれば、この指標を上記操舵量の代わりに用いることができる。具体的には、例えば、車線に対する車両の進入角度が所定角度を超過したか否かに基づいて意識低下判定をしてもよく、この場合も上記実施形態と同様の効果が得られる。
 本発明は、車両に搭載されるドライバ状態判定装置として利用可能である。
1…ドライバ状態判定装置、2…ドライバ状態検出ECU、11…車間距離検知部、12…操舵角センサ、13…横位置検出部、14…車速センサ、15…前方カメラ、16…警報装置、21…情報取得部、22…曲率算出部、23…情報格納部、24…通常操舵量算出部、25…修正過大判定部、26…意識低下判定部、27…蛇行検出部、28…制御部。

Claims (5)

  1.  自車両の基準時間あたりの蛇行度合いを検出する蛇行検出部と、
     前記自車両のドライバの意識が低下したか否かを判定する意識低下判定部と、
     前記蛇行検出部により検出された蛇行度合いが大きいほど意識低下と判定されにくくなるように前記意識低下判定部の作動を制御する制御部と、
    を備えるドライバ状態判定装置。
  2.  前記制御部は、前記蛇行検出部により検出された前記基準時間あたりの蛇行度合いが基準値より大きい場合に、意識低下と判定されにくくなるように前記意識低下判定部の作動を制御する、
    請求項1に記載のドライバ状態判定装置。
  3.  前記蛇行度合いは、前記自車両の前記基準時間あたりの蛇行量及び蛇行回数の少なくともいずれかである、
    請求項1又は2に記載のドライバ状態判定装置。
  4.  前記意識低下判定部は、前記自車両の走行状態に基づいて意識が低下したか否かの判定を行い、前記自車両の走行状態が閾値を超えた場合に前記自車両のドライバの意識が低下したものと判定し、
     前記制御部は、前記基準時間あたりの蛇行度合いが前記基準値より大きい場合には、前記蛇行度合いが前記基準値以下である場合に比べて前記閾値を高く設定する、
    請求項2に記載のドライバ状態判定装置。
  5.  自車両のドライバの意識が低下したか否かを判定するドライバ状態判定方法において、
     前記自車両の基準時間あたりの蛇行度合いを検出する蛇行度合い検出ステップと、
     前記検出された蛇行度合いが大きいほど前記ドライバが意識低下したと判定されにくくなるように前記意識低下判定の作動を制御する制御ステップと、を備えるドライバ状態判定方法。
PCT/JP2012/063205 2012-05-23 2012-05-23 ドライバ状態判定装置及びドライバ状態判定方法 WO2013175594A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/063205 WO2013175594A1 (ja) 2012-05-23 2012-05-23 ドライバ状態判定装置及びドライバ状態判定方法
JP2014516574A JP5967196B2 (ja) 2012-05-23 2012-05-23 ドライバ状態判定装置及びドライバ状態判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063205 WO2013175594A1 (ja) 2012-05-23 2012-05-23 ドライバ状態判定装置及びドライバ状態判定方法

Publications (1)

Publication Number Publication Date
WO2013175594A1 true WO2013175594A1 (ja) 2013-11-28

Family

ID=49623325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063205 WO2013175594A1 (ja) 2012-05-23 2012-05-23 ドライバ状態判定装置及びドライバ状態判定方法

Country Status (2)

Country Link
JP (1) JP5967196B2 (ja)
WO (1) WO2013175594A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030019A1 (ja) * 2016-08-08 2018-02-15 株式会社デンソー 運転支援装置
WO2021153603A1 (ja) * 2020-01-27 2021-08-05 いすゞ自動車株式会社 ふらつき警報装置およびふらつき警報制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11151865B2 (en) * 2018-03-28 2021-10-19 Robert Bosch Gmbh In-vehicle system for estimating a scene inside a vehicle cabin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145508A (ja) * 2002-10-23 2004-05-20 Fuji Heavy Ind Ltd 車両用の覚醒度推定装置および覚醒度推定方法
WO2008114839A1 (ja) * 2007-03-13 2008-09-25 Toyota Jidosha Kabushiki Kaisha 覚醒度判定装置及び覚醒度判定方法
JP2011186995A (ja) * 2010-03-11 2011-09-22 Renesas Electronics Corp 運転支援システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173929A (ja) * 2003-12-10 2005-06-30 Denso Corp 覚醒度判定装置
JP2010182147A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp 意識低下判定装置
JP2012234297A (ja) * 2011-04-28 2012-11-29 Toyota Motor Corp 意識低下判定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145508A (ja) * 2002-10-23 2004-05-20 Fuji Heavy Ind Ltd 車両用の覚醒度推定装置および覚醒度推定方法
WO2008114839A1 (ja) * 2007-03-13 2008-09-25 Toyota Jidosha Kabushiki Kaisha 覚醒度判定装置及び覚醒度判定方法
JP2011186995A (ja) * 2010-03-11 2011-09-22 Renesas Electronics Corp 運転支援システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030019A1 (ja) * 2016-08-08 2018-02-15 株式会社デンソー 運転支援装置
JP2018025870A (ja) * 2016-08-08 2018-02-15 株式会社デンソー 運転支援装置
WO2021153603A1 (ja) * 2020-01-27 2021-08-05 いすゞ自動車株式会社 ふらつき警報装置およびふらつき警報制御方法
JP2021117744A (ja) * 2020-01-27 2021-08-10 いすゞ自動車株式会社 ふらつき警報装置およびふらつき警報制御方法
CN115023748A (zh) * 2020-01-27 2022-09-06 五十铃自动车株式会社 偏移警报装置及偏移警报控制方法
JP7259775B2 (ja) 2020-01-27 2023-04-18 いすゞ自動車株式会社 ふらつき警報装置およびふらつき警報制御方法
CN115023748B (zh) * 2020-01-27 2024-01-12 五十铃自动车株式会社 偏移警报装置及偏移警报控制方法

Also Published As

Publication number Publication date
JPWO2013175594A1 (ja) 2016-01-12
JP5967196B2 (ja) 2016-08-10

Similar Documents

Publication Publication Date Title
US9415776B2 (en) Enhanced lane departure system
JP5510611B2 (ja) ドライバ状態判定装置
JP5831624B2 (ja) 意識低下判定システム
JP5403158B2 (ja) 車両制御装置及び車両制御方法
JP6040945B2 (ja) 先行車選択装置
US9499156B2 (en) On-board apparatus
JP5511512B2 (ja) 覚醒度低下警報装置、覚醒度低下警報方法およびプログラム
JP5967196B2 (ja) ドライバ状態判定装置及びドライバ状態判定方法
JP5446313B2 (ja) 車両用情報提供装置及び車両用情報提供方法
KR101803745B1 (ko) 사각지대 감지 장치 및 방법
JP2011113275A (ja) 運転支援装置
JP2010006178A (ja) 運転疲労判定装置
JP5831351B2 (ja) 運転支援装置
US20170287336A1 (en) Method and control unit for monitoring the lane of a vehicle
KR102158745B1 (ko) 곡선 도로에서 주변 장애물 감지 보정 장치 및 그 동작 방법
JP2014089579A (ja) 車両の脇見運転警報装置
WO2021060272A1 (ja) 通知装置、通知システム、及び記録媒体
JP2017033080A (ja) 方向指示器制御装置
CN111566711A (zh) 驾驶状态判定装置及驾驶状态判定方法
JP2010009242A (ja) 運転者状態推定装置
KR20170070708A (ko) 운전자 상태 검출장치 및 방법
JP2012234289A (ja) 意識低下判定装置
JP2012234308A (ja) 意識低下判定装置
JP2016118838A (ja) 情報提示制御装置、情報提示方法
JP2012234296A (ja) 意識低下判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877357

Country of ref document: EP

Kind code of ref document: A1